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SCHUMACHER, SUSAN JEAN. Evoked Potentials to Syllable 
Perception and Production. (1977) 
Directed by: Dr. Robert G. Eason. Pp. 96. 

The purpose of this study was to devise and test a 

methodology to investigate cortical activity during speech 

perception and production that eliminates some of the 

confounding variables that have existed in previous research, 

such as the variability of stimuli employed across con­

ditions and the role of muscle artifacts; and to clarify the 

role of auditory feedback in speech. Evoked potentials to 

the speech stimulus /ba/ were obtained while the subject 

was hearing and speaking /ba/ with and without immediate 

air conducted feedback, as well as while hearing /ba/ 

0.6 sec. after each of these three conditions. 

Twelve adults were determined to have dominant left 

hemispheres through a series of seven hemispheric dominance 

tests. None had a history of a hearing deficiency or 

indicated a hearing loss during the practice session. 

Monopolar recordings were made from the left and right 

frontal areas corresponding to Broca's area on the left and 

the left and right temporoparietal areas posterior to the 

termination of the Sylvian fissure, with a linked earlobe 

reference. 

Subjects were instructed to produce the syllable /ba/ 

300 to 380 msec, in length and then indicate by depressing 

a switch if s/he thought the /ba/ was of correct duration. 

For the speaking conditions, /ba/ was returned to the ears 



immediately through insulated headphones, followed by that 

same /ba/ being presented 0.6 sec. later, or the subject 

was given no immediate feedback and heard the /ba/ 0.6 sec. 

after speaking. The hearing condition consisted of the 

subject hearing a tape of the previously recorded speaking 

condition with immediate and delayed feedback in which s/he 

listened to the sound twice (0.6 sec. interstimulus interval) 

and then determined if the heard /ba/ was of the correct 

duration. 

The potentials resulting from hearing /ba/ in all 

conditions at the temporoparietal locations were analyzed 

in a 4x3x2 ANOVA to investigate the four hearing conditions, 

the hemispheric differences, and the amplitude differences 

among the three component measures utilized (P^-N^., Nj-P2, 

P2-N2). Hearing the /ba/ unpreceded by hearing or speaking 

produced greater amplitude potentials than hearing /ba/ 

following speaking or hearing (jK. 01). When the delayed /ba/ 

was preceded by the spoken /ba/ without immediate feedback, 

a greater potential occurred than when the delayed /ba/ was 

preceded by hearing /ba/ only (g_<. 05). The effects of the 

speaking process on the potential to the delayed /ba/ 

apparently did not mask the effects of hearing on the delayed 

/ba/. The left hemisphere gave a significantly greater 

response to the delayed /ba/ for the comPonent• 

N1-P2 and P2'^2 were mo,e sensitive to changes in conditions 

than 



Although statistical analysis was limited to the EPs 

occurring in the hearing conditions at the temporoparietal 

locations, some apparent trends were noted for potentials 

at the frontal locations and during speaking conditions. 

Results were discussed in terms of the importance of feed­

back for speech and related to existing literature on 

hemispheric differences during speech. 
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CHAPTER I 

INTRODUCTION 

The study of one of man's most distinctive character­

istics, speech, historically has been primarily confined to 

approaches that center around the evolution of the speech 

process, the investigation of various constituents of speech 

such as phonemes, morphemes and syllables, and how these 

components combine to form words and sentences. The neuro­

logical approach to understanding speech has been greatly 

limited by the fact that speech is uniquely human, and as 

such, can not be investigated by many of the traditional 

physiological approaches used with other animals, such as 

lesioning and ablation, brain stimulation, and single unit 

recording from various locations in the brain. Research 

with other animals having vocal communication systems has 

not thus far proven very beneficial in .the understanding of 

neural processes underlying man's verbal functioning. 

Therefore, a great need exists for a technique that will 

enable one to investigate the neural mechanisms concerned 

with the receptive and expressive aspects of speech. 

The one methodology that successfully avoids the 

limitations imposed by human subjects and appears to be a 

promision tool in the examination of cortical electrical 

activity during speech is the use of scalp-recorded evoked 
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potentials (EPs) to visual and auditory stimuli. It has been 

found that by consistently examining the electrical activity 

of the brain, recorded as the electroencephalogram or EEG, 

as it repeatedly occurs following the presentation of a 

constant stimulus and by summating or averaging this time-

locked activity, a distinct pattern of responding will emerge 

to that specific stimulus. This finding has led to the 

examination of EPs to a variety of stimuli, including many 

components of speech. If some of the problems that have 

plagued researchers in the past who have used speech stimuli, 

such as muscle artifacts, variability in the physical param­

eters of speech stimuli, and meaning, could be controlled, 

then the evoked potential would be a useful tool to examine 

the electrical correlates of speech perception and production. 

The present investigation has attempted to minimize previous 

problems with this approach while investigating the underlying 

cortial activity during speech. Evoked potentials during 

perception and production of a constant speech stimulus will 

be contrasted, and the role of muscular activity in these 

potentials will be determined. Also the contribution of feed­

back to the EP during and following speech will be examined 

for a stimulus that is both spoken and heard, in hopes of 

providing useful information about some of the speech disorders 

that appear to be related to feedback mechanisms, such as 

stuttering and aphasia. The role of individual differences 

will also be discussed. 
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Historical Background 

Since Richard Caton's (1875) demonstration that electri­

cal activity in the brain is altered by sensory input, 

researchers have used this technique to investigate cortical 

processes as a function of external stimulation. Hans Berger 

in 1929 and Jasper and Carmichael in 1935 began recording 

EEGs from the human scalp, and later Davis (1939) and Adrian 

(1941) respectively produced evoked responses to auditory and 

visual stimuli that could be distinguished from the ongoing 

activity of the EEG. However, the difficulty of detecting 

the small amplitude time-locked activity on the scalp in the 

presence of the spontaneous EEG created a need for more 

efficient recording techniques. In 1943, Galambos and Davis 

superimposed several traces on a cathode ray oscilloscope. 

Dawson (1947, 1951) modified and developed this technique 

from simple superposition of traces to summating time-locked 

activity to a stimulus so that the activity Resulting from 

the stimulus presentation would be additive and the random 

activity would average to a horizontal line. Other techniques 

were developed in the 1950's (Buller § Styles, 1959; Calvet § 

Scherrer, 1955; Re'mond, 1956), and with the advent of the 

commercially available digital computer in the early 1960's, 

wide-spread experimentation using evoked potentials began. 

Interest in the use of EEGs and EPs to investigate speech 

dates back to the late 1930's when Knott (1938, 1939) and 

Travis and Knott (1936, 1937a, 1937b) investigated brain 
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potentials under a wide variety of stimulus conditions. Travis 

and Knott (1937b) determined the time it took the EEG to 

return to the prestimulus value following the presentation of 

words, nonsense words, and blank cards and concluded that 

meaningful stimuli take more time to process. Knott (1938) 

found that the frequency of EEG activity increased during 

silent and overt reading relative to rest, and was highest 

during overt reading. 

Much of the early EEG work in the area of speech dealt 

with the problem of stuttering (Douglass, 1943; Freestone, 

1942a, 1942b; Knott fj Tjossem, 1943; Lindsley, 1940; Rhein-

berger, Karlin, § Berman, 1943; Scarborough, 1943; Travis § 

Knott, 1936) . Travis fj Knott (1937a) discovered that stut­

terers had smaller hemispheric differences with regard to 

similarity of brain potentials and more in-phase relationships 

than normals during speech. However, they also found that a 

smaller out-of-phase relationship was correlated with less 

severe stuttering. These findings resulted in a number of 

studies to further examine the relationship between laterality 

and stuttering. Rheinberger et al. (1943) reported that 

stutterers have slightly less laterality than nonstutterers. 

Recording from the right and left occipital regions, Lindsley 

(1940) found that stutterers resemble left-handed and 

ambidextrous normals with regard to alpha activity. Knott 

and Tjossem (1943), using left and right occipital and motor 

electrodes, supported the theory that stutterers as a group 
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have alpha present in the left occipital lobe area more often 

than normals. In accordance with Jasper (1937), they con­

strued this to mean that the left hemisphere of stutterers has 

less excitability than the right or than the left hemisphere 

of normals, as an increase in alpha is correlated with a de­

crease in cortical excitability. Also in line with this inter­

pretation is the work of Freestone (1942a, 1942b) that suggested 

that stutterers have reduced consciousness with regard to 

normals. In his studies comparing stutterers to normals using 

a variety of electrode placements, stutterers were found to 

have larger EEGs than normals, more alpha similarity between 

hemispheres than normals, and larger EEGs during stuttered 

speech versus normal speech or silence. This was inter­

preted as meaning that stutterers are in a relative state of 

reduced consciousness due to lack of heightened foci of 

cerebral activity and a loss of mental specificity. 

Most of these early studies lacked sufficient controls, 

but the studies by Knott were probably the most sophisticated 

in that they used a variety of electrode placements and 

monitored resting EEG. A later replication of some of Knott's 

work using more refined techniques and equipment (Pepin, 

Kibbee, fj Wells, 1952) indicated that Knott's results might 

better be interpreted as a function of muscle artifacts 

associated with the complex sensori-motor events of overt 

reading. Interest in this line of research with stutterers 

decreased, probably due to insensitivity of existing recording 
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techniques and the advancement of other theories of stutter­

ing not involving laterality, and those studies that were 

conducted often did not report methods or findings in enough 

detail to determine the true contribution of the work. 

Rationale for Use of EPs 

What the EP reflects. In order to justify the use of 

EEGs and EPs in the study of speech, it is necessary to 

briefly examine what the evoked response reflects in terms 

of underlying neural activity, and how this is related to 

external stimulation and specifically, speech stimuli. Bre­

mer (1961) concluded that EPs reflect the integrated response 

of large numbers of cortical units recorded in a volume 

conductor, and that these units respond successively through 

the various layers of neocortical mantle. The unit responses 

are relatively slow postsynaptic potentials. Creutzfeldt, 

Watanabe and Lux (1966) stated that EPs are composed of 

compound excitatory postsynaptic potentials (EPSPs) and 

inhibitory postsynaptic potentials (IPSPs) of cortical cells 

as well as of synchronous afferent and efferent fiber activity. 

Activity of individual cells does seem to be related to 

certain spontaneous and evoked scalp-recorded potentials 

(Vaughan, 1969) . The work of Fox (1970) and Fox and O'Brien 

(1965) has consistently shown that the probability of firing 

for any one cell closely corresponds to the averaged waveform 

of the evoked potential recorded from the same microelectrode. 

They concluded that the potential sources contributing to 
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the EP were either directly related to or reflected in the 

firing of single cells, and a knowledge of the waveform of 

the EP permits prediction of the firing pattern of single 

cells. 

Regan (1972) has summarized a number of hypotheses 

concerning the various possible relationships between gross 

cortical slow waves and underlying cellular activity. The 

first and least popular is that brief axon spikes (1-2 msec.) 

are the subunits of gross surface slow waves. The second 

assumes that small groups of cortical cells have the property 

of generating long spikes of 10 to 100 msec, duration, and 

these prolonged spikes are summated over many neurons to 

form gross slow surface waves. The third hypothesis asserts 

there are certain slow cellular potentials that, when 

statistically summated, can lead directly to surface slow 

waves without assuming temporal summation. The final hy­

pothesis is an elaboration of the Creutzfeldt model mentioned 

earlier involving graded dendritic postsynaptic potentials 

and assumes that the major contributor to the EEG is the 

synchronous firing of the pyramidal cells which are oriented 

at right angles to the surface of the cortex. Regan also 

stresses that the observed differences in gross cortical slow 

waves and individual neuron activity may be a function of 

whether the waves are evoked potentials or "spontaneous" EEGs, 

whether the animal is anesthetized or not and other similar 

physiological state or preparation differences, and the 

contribution of surrounding glial cells. 
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Scalp recorded activity has also been related to cortical 

surface activity (Goff, Matsumiya, Allison, § Goff, 1969), 

with amplitude attenuation and other differences a result of 

the effects of the tissue and fluid that overlie the cortex, 

scalp muscle movement, the choice of extracranial reference 

electrode position, the distribution of the generator cells 

over the cortex, and the presence of components generated by 

primary and nonprimary cortex in scalp recordings. However, 

there is evidence that these influences are minimal, with 

studies showing similar recordings from scalp and cortex for 

both visual EPs (Corletto, Gentilomo, Rosadini, Rossi, § 

Zattoni, 1967) and somatosensory EPs (Domino, Matsuoka, 

Waltz, ^ Cooper, 1964). 

Electrical activity recorded from the scalp, cortex, and 

single units has been shown to be responsive to changes in 

external stimulation. Moushegian and Rupert (1970) produced 

diverse responding in the ventral cochlear nucleus of the 

kangaroo rat in response to low frequency tones, and 

Moushegian, Rupert, and Whitcomb (1964) illustrated the 

differential responding of units in,the left accessory nucleus 

of the cat to frequency and intensity differences in a binau­

ral tone. Moushegian has also shown that scalp-recorded early 

responses in man are unique to different stimulus frequencies 

(Moushegian, Rupert, § Stillman, 1973). In addition, Lamb 

and Graham (1967) and Butler, Keidel, and Spreng (1969) 

have examined the scalp-recorded evoked potentials in humans 
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as a function of stimulus parameters and reported increased 

amplitude to increases in stimulus intensity. 

In view of the above findings concerning the relation­

ships between single cells, cortical activity, and scalp-

recorded potentials and their response characteristics to 

external stimuli, it is strongly suggested that the scalp-

recorded evoked potential is a true reflection of underlying 

variations in electrical activity of cortical and subcortical 

cells resulting from changes in various parameters of simple 

and complex external stimuli. 

Background Physiological Studies 

There are a number of lines of evidence that indicate 

.that not only are evoked potentials a representation of 

cortical activity related to stimulus changes, but that this 

activity may differentially change in various brain regions 

as a function of the sense modality being stimulated. Three 

sources of evidence will be briefly examined, focusing on 

those brain areas thought to be related to speech perception 

and production: anatomical evidence, lesion studies and 

dichotic listening findings. 

The neurosurgical and electrical stimulation techniques 

of Wilder Penfield provided a relatively complete map of 

the cortical areas involved in speech (Penfield § Rasmussen, 

1950; Penfield 5 Roberts, 1959). He identified the area 

around the Rolandic fissure in both hemispheres as being 
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important in lip, tongue, and jaw movement as well as other 

sensori-motor functions. The superior intermediate frontal 

area within the longitudinal fissure (anterior to the pre-

central motor leg area) in both hemispheres is related to 

rhythmic vocalization and word production. Penfield iden­

tified three areas found only in the speech dominant hemi­

sphere that were important for speech perception or production. 

In the frontal lobe, anterior to the precentral gyrus and 

above the fissure of Sylvius, roughly corresponding to 

Brodmann's area 44 (Brodmann, 1914), is Broca's area, 

important in counting, naming, word substitution, and expres­

sive functions. In the parietal lobe just above the fissure 

of Sylvius and posterior to the sensory representation of the 

lips and mouth (lower half of area 40 of Brodmann) is a 

region involved in word substitution as well as understanding 

speech. In the posterior part of the temporal lobe including 

the angular gyrus and the first, second, and third temporal 

convolutions is a third speech area, contributing to recep­

tion, meaning, and repetition, and producing aphasia and word 

confusion when damaged. 

Following Penfield's early mapping, a second approach 

developed for the anatomical investigation of structures that 

might be related to speech. In 1962, von Bonin discovered 

that in the left hemisphere the Sylvian fissure was longer, 

the insula were longer and higher, the cingulate sulcus 

doubled more frequently, and the left hemisphere had a greater 
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specific gravity. Witelson and Pallie (1973) found that both 

adult and infant brains were larger in the left planum tempo-

rale (part of the temporal speech cortex), as did Geschwind 

and Levitsky (1968) and Geschwind (1970) . Geschwind also 

found that the area behind Heschl's gyrus (Wernicke's area) is 

significantly larger in the left hemisphere in 65% of the 

100 brains examined postmortem but is larger in the right only 

11% of the time. LeMay and Culebras (1972) used carotid 

arteriography to identify larger left parietal operculua in 

right-handed subjects and discussed the implications of this 

for speech. McRae, Branch, and Milner (1963) found that, 

on the basis of pneumoencephalography and ventriculograms, 

the left occipital horn of the lateral ventricle was longer 

in 57% of unselected neurological patients, the right longer 

in 13%, and no difference in the remaining 30%. In right-

handed patients with unequal horns, the left horn is five 

times more likely to be longer than the right. Since the 

occipital horn is part of the lateral ventricle which under­

lies the Sylvian fissure and the temporoparietal area, and 

since the Sylvian fissure, Wernicke's area, and the planum 

temporale are all larger in the left hemisphere for the 

majority of people, it would not be surprising if many other 

left hemisphere areas were found to be larger, even if they 

are not related specifically to speech. Further anatomical 

studies are necessary that would include Broca's area as well 

as some nonspeech structures in the left hemisphere to 

discover if the anatomical hemispheric differences are 
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confined to speech-related areas. However, it must be 

acknowledged that speech-related anatomical differences do 

exist and these differences are correlated, although not 

perfectly, with handedness. 

Brenda Milner soon followed Penfield's brilliant 

contribution concerning the delimitation of speech in the 

brain with her own invaluable contribution to the local­

ization of speech by examining patients with lesions, 

primarily in the temporal and parietal areas. She found 

that lesions in the dominant temporal lobe will produce 

disturbances in verbal recall, verbal memory, and verbal 

learning, while lesions in the corresponding nondominant 

hemispheric area result in no verbal deficits, but difficul­

ties with tonal memory and pictoral identification. Removal 

of the dominant frontal area anterior to Broca's area causes 

a decrease in spontaneous speech, which suggests that 

generalized verbal control may be fairly widespread in the 

dominant hemisphere (Milner, 1962, 1965, 1967, 1969). New-

combe (1974) supported Milner's findings of expressive 

language disturbances in patients with left temporal lobe 

lesions. 

Sperry and Gazzaniga (Gazzaniga § Sperry, 1967; Sperry 

3 Gazzaniga, 1967) , after performing a complete midline section 

of the cerebral commissures and conducting extensive language 

tests on six patients, concluded that there is some compre­

hension of the spoken and written word in the minor hemisphere. 
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Semmes (1968) and Critchley (1962) cite additional evidence 

to support this conclusion. Butler and Norrsell (1968) even 

suggest that the minor hemisphere in normal subjects may be 

inhibited by the major one, which prevents it from initiating 

speech. Hecaen (1962) examined patients primarily with 

parietal or temporoparietal lesions and discussed the role of 

these left hemisphere lesions in repetition, perseveration, 

alexia, and verbal amnesia. 

A number of investigators have stressed the importance 

of the ear stimulated, regardless of the location of the 

lesion. Hirsh (1967) reported that unilateral lesions superior 

to the cochlear nucleus interfere with understanding speech 

presented through the contralateral ear. Milner (1962) also 

supported this by finding that, after temporal lobectomy, 

there is selective impairment in the discrimination of stimuli 

to the contralateral ear, although the right ear was more 

efficient when speech was located in the left hemisphere, and 

the left ear was more efficient' when speech was located in the 

right hemisphere. She, along with Calearo and Antonelli (1963) 

and Chase (1967) , showed a deficit for words presented to the 

ear contralateral to the temporal lobe lesion. 

Milner (Milner, Taylor, § Sperry, 1968) also concluded 

that there is a difference in the way the auditory system 

reacts to stimuli presented monaurally or diotically as compared 

to dichotic presentation in which a different stimulus is 

presented simultaneously to each ear. There is a large body 
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of uniform evidence showing a strong right ear superiority in 

perception of all types of dichotically presented verbal 

material, with the exception of isolated vowels (Broadbent 5 

Gregory, 1964; Bryden, 1970; Dirks, 1964; Haaland, 1974; 

Kimura, 1967, 1973; Satz, 1968; Studdert-Kennedy § Shank-

weiler, 1970) , and a left ear superiority for dichotically 

presented melodies and clicks (Broadbent § Gregory, 1964; 

Kimura, 1964, 1967, 1973). This right ear superiority for 

verbal stimuli develops at an early age, suggesting that a 

left-hemisphere predominance for speech functions may exist 

in children as young as age four (Kimura, 1967). Because 

dichotic auditory stimulation involves the contralateral and 

ipsilateral auditory pathways to the temporal lobes of the 

cerebral cortex, it can be inferred from dichotic studies that 

the left temporal lobe and its underlying pathways play an 

important role in the perception of speech. 

On the basis of the above three categories of studies 

investigating speech-related areas of the brain, it can be 

readily concluded that the left hemisphere seems to play a 

larger part in verbal processing in most subjects, and that 

different language functions are located in different areas 

of the brain, with the major regions being Broca's area in 

the frontal lobe, the temporal lobe, and the temporoparietal 

area. 

Auditory Evoked Potentials and Speech Perception 

Evoked potentials have been used to examine cortical 

activity during the perception of linguistic materials. One 
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technique has been to compare evoked potentials to a linguis­

tic stimulus with those to a nonlinguistic stimulus. However, 

one of the obvious drawbacks to this approach is that the 

stimuli have other differing characteristics than just their 

linguistic quality that could account for differences in the 

resulting potentials. Molfese, Freeman, and Palermo (1975) 

used syllables, words, and two mechanically produced sounds, 

a piano note and a noise burst, without attempting to control 

for stimulus differences and reported larger amplitude 

responses in the left hemisphere of infants to the speech 

stimuli and greater right hemisphere responses to the nonspeech 

stimuli. Greenberg and Graham (1970) also used speech stimuli 

and piano notes in a learning paradigm and supported Molfese 

by finding that EP amplitude was greater over the left hem­

isphere for speech stimuli. Using a technique of Horri's 

(Horri, House, fj Hughes, 1971) which involved shaping noise 

stimuli so that the rise-decay times and instantaneous ampli­

tude variations exactly matched each linguistic stimulus, 

Ratliff and Greenberg (1972) attempted to eliminate some of 

the possible confounding in other studies due to uncontrolled 

stimulus parameters. Although they found the usual differences 

in potentials to linguistic versus nonlinguistic stimuli, there 

were no hemispheric asymmetries evident. 

Other investigators have compared cortical electrical 

activity using verbal stimuli and nonsense syllables or other 

verbal stimuli. Burian, Gestring, and Haider (1969a, 1969b) 
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matched meaningful words to nonsense equivalents in loudness, 

duration, and frequency distribution in a contingent negative 

variation (CNV) paradigm to establish an objective criterion 

of word discrimination based upon understood meaning. Wood 

(Wood, Goff, § Day, 1971) employed the synthetically gener­

ated syllables /ba/ and /da/, which differ by only one param­

eter, the direction and extent of the second and third formant 

transition. They provided 10 right-handed adults with two 

auditory identification tasks, only one of which required 

analysis of linguistic parameters. They found that evoked 

potentials for the two tasks were different over the left 

hemisphere, but identical over the right. They concluded 

that different neural events occurred in the left hemisphere 

during these tasks that were not related to differences in 

the acoustic signal. Morrell and Salamy (1971), using 

different nonsense word stimuli, found no systematic differ­

ences in waveform for the different speech stimuli and 

obtained greater amplitude potentials over .the left hemisphere, 

especially for the temporoparietal placement. 

A different approach was taken by Teyler, Roemer, 

Harrison, and Thompson (1973) who found different waveforms 

to different meanings of the same word and larger amplitude 

responses to the verbal stimuli in the left hemisphere. These 

results were similar to those of Brown, Marsh, and Smith 

(1973) who reported more pronounced differences in the left 

hemisphere to different contextual meanings of the same word. 
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Except for the Ratliff and Greenberg article, all of the 

evidence seems to indicate a major role for the left hemisphere 

in verbal perceptual processing. This probably develops at 

an even earlier age than was suspected on the basis of the 

dichotic studies, as indicated by Molfese (in press), who 

found speech lateralization for preverbal infants. The lack 

of asymmetry in the Ratliff fj Greenberg study might be 

explained by differing techniques of data analysis. Possibly 

the features controlled in the matched noise stimuli they 

presented were some of the relevant speech features usually 

detected by the left hemisphere, or these controlled features 

may have interacted with those features more usually thought 

to be relevant features for identification of speech, such as 

formant transitions and rate of frequency or intensity change 

(Abbs ^ Sussman, 1971). A third possibility is that in some 

way the features matched were those that the right hemisphere 

could also identify, and the role of the right hemisphere 

was simply more evident in this design. 

Another conclusion from the above results is that what­

ever are considered to be "linguistic" features by the brain 

are present not just in words, but also in the more elemental 

aspects of speech such as syllables and phonemes. Although 

these particular features remain unidentified at this time, 

studies have shown that the first formant is important for 
i 

distinguishing voiced from unvoiced stop consonants, and the 

second formant transition seems to be one of the major cues 



18 

for identifying consonants (Liberman et al., 1967). Voice-

onset time, frequency, intensity, and rate of frequency and 

intensity change have also been suggested as likely candidates 

for feature detection (Abbs § Sussman, 1971; Eimas, Siqueland, 

Jusczyk, § Vigorito, 1970). It is evident that there is a 

need for more research along the lines of that produced by the 

Haskins Laboratory researchers, such as Studdert-Kennedy, 

Shankweiler, and Liberman. This would manipulate what seem to 

be the basic parameters of speech, but also examine the evoked 

potential resulting from these various stimuli. 

Auditory Evoked Potentials and Speech Production 

The evoked potential literature concerning the investi­

gation of cortical activity during speech production is less 

complete than that for speech perception, partially because of 

the complicating factor of muscle artifacts which will be 

discussed later. The literature also includes studies which 

examine electrical activity preceding speech, most of which 

show hemispheric asymmetry regardless of the particular 

potential examined (Berietschafts potential, CNV, or general 

preliminary electrical activity), the method used, and the 

specific set of problems generated by that method (Low § Fox, 

in press; Grozinger, Kornhuber, § Kriebel, 1975; Ertl 5 

Schafer, 1967; McAdam § Whitaker, 1971). 

Earlier studies of cortical potential during speech 

production indicated that there were potentials that seemed 

to be of cerebral origin which occurred during speech 
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vocalization; also that there was evidence of hemispheric 

asymmetry over some electrode locations, primarily Rolandic 

and temporoparietal (McAdam § Whitaker, 1971; Morrell § 

Huntington, 1972) . However, Grabow and Elliott (1973, 1974) 

presented and supported several strong arguments to indicate 

that the asymmetry may be due to contamination by the 

glossokinetic potential which has been described by Klass 

and Bickford (1960). Little work to clarify this matter has 

been done since their findings, probably because of insuffi-

cent methodologies to control the confounding sources. 

Therefore, a methodology or design that would enable one to 

examine cortical activity while either eliminating or holding 

constant the possible interfering muscular potentials would 

greatly advance knowledge of cerebral activity during the 

speaking process. 

Methodological Issues 

Requirements for EP studies. Much of the evoked poten­

tial research in the area of speech has been seriously 

criticized for lack of adequate controls, incomplete infor­

mation, doubtful cortical origin of potentials, and 

insufficient electrode locations. There are a number of 

important criteria that should be considered when either 

designing or evaluating research in this area. The exact 

nature of the stimuli used must be detailed, including the 

mode of presentation, the intensity, duration, and other 

physical parameters, the rate and the order of presentation, 
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and the nature of the control stimuli that have been util- . 

ized. The exact locations of all EEG and electromyogram 

(EMG) electrodes should be defined, relevant areas for the 

particular stimulus modality employed should be sampled, 

and the type of recording, monopolar or bipolar, should be 

specified. 

It is extremely important to ascertain that the response 

obtained is a function of the experimental manipulation. 

This can be achieved by recording an averaged EP to each 

stimulus a number of times, preferably counterbalanced across 

conditions. Upon superposition of these EPs, the number, 

direction, and location of the various components should be 

approximately the same. It is advisable to determine that 

the response obtained is a direct result of the specific 

stimulus conditions, and not simply a generalized arousal 

response to a change in any type of stimulation. The wave­

form of the replications should be distinctly different from 

the waveform of replications of a different stimulus condition 

or of an average of ongoing EEG activity not time-locked to 

stimulus presentation. The different stimulus conditions may 

consist of a "control" stimulus in a different modality, a 

simple stimulus such as a click, or a stimulus similar to 

the original stimulus in which systematic changes are made to 

investigate the importance of the various parameters of the 

test stimulus. Counterbalancing conditions also aids in 

eliminating habituation and fatigue effects. 
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McGuigan (1970) has noted that it is crucial to avoid 

contamination of an evoked response by other covert processes. 

Protection against such contamination requires the simultaneous 

sampling of responses from various bodily regions; i.e., 

obtaining EMGs from the lips, tongue, neck, or wrist that are 

time-locked to the stimulus presentation. Scrutinizing such 

records would aid in revealing the possible contribution of 

muscular artifacts. 

Electrode Location 

Because of the anatomical hemispheric differences 

previously discussed and the suggestion of Shagass (1972) 

that brain-to-scalp relationships may not be constant, the 

question of electrode placement must be considered in detail, 

in order to hypothesize generator sites of various potentials. 

Scalp-recorded potentials from corresponding external hemi­

spheric locations may reflect different distances from 

generator regions due to cortical size differences. 

Related to anatomical structure is the question of 

postulated dipole orientation with regard to cortical surface. 

Vaughan (1969) and Vaughan and Ritter (1970) found that the 

200 msec, component of auditory evoked responses recorded 

above a line formed by the plane of the Sylvian fissure was 

opposite in polarity to that component recorded below the 

line. Vaughan offered an explanatory model involving dipole 

orientation parallel to the scalp and located in the primary 

auditory cortex. Jeffreys (1972), Jeffreys and Axford (1972), 
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and Halliday and Michael (1970) have reported similar findings 

with regard to vision. Halliday (1972) later proposed that 

the visual cortex contains dipoles oriented in a variety of 

directions, due to its complex structure. Regan (1972) 

extended this hypothesis by further postulating that dipoles 

arranged along a concave surface result in greater electrical 

field strength at some specific distance than similar dipoles 

arranged along a flat sheet. Dipoles arranged along a 

convex surface will effect divergence of equipotentials and 

produce a weaker electrical field at that same distance. 

That evoked potentials may reflect electrical activity 

of different generator sites is supported by research that 

compares potentials from a number of scalp locations. Gastaut, 

Regis, Lyagoubi, Mano, and Simon (1967) and Vaughan (1969) 

used visual, auditory, and somatosensory stimulation while 

recording over a variety of locations. Both studies found 

maximum potentials at the vertex for auditory stimulation, 

at the Rolandic site for somatosensory stimulation, and over 

the occipital location for visual stimulation. 

Studies using stimulation in only one sensory modality 

also imply multiple generator sites. Morrell and Salamy 

(1971), recording from frontal, Rolandic, and temporoparietal 

leads in both hemispheres to natural speech stimuli, obtained 

differential responding and suggested that these electro­

physiological measures may be sensitive indicators of 

hemispheric specialization of function. Visual evoked potentials 
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were recorded from occipital, parietal, temporal, and frontal 

locations following stimulation of the fovea by a 10 msec, 

flash by Groves and Eason (1967) . A significantly larger 

response occurred in the occipital region. These findings 

strongly suggest that specialized regions of the brain may 

greatly contribute to the evoked activity recorded at 

different electrode sites. 

There are methodological variations related to electrode 

placement other than location that may explain differential 

findings of similar studies. For example, monopolar and 

bipolar recordings provide different kinds of information. 

Bipolar recording will detect the smaller of two potential 

sources if the larger contributor is constant at both recor­

ding sites and, therefore, might be considered more sensitive. 

However, the bipolar technique does not provide information 

about the absolute value of the potential (Regan, 1972) . 

Goff et al. (1969) state that, although bipolar recording may 

aid in localizing the source of a component by phase reversal, 

it produces more variable waveforms and, in general, adds to 

the confusion and hinders averaged evoked potential research. 

In the discussion section following this article, Donchin 

points out that bipolar recording adds nothing, as one can 

retrieve the bipolar potential by finding the difference 

between two monopolar recordings. Bergamini and Bergamasco 

(1967) compromise, suggesting the use of both techniques and 

implying that the two give similar results. The major 
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problem with monopolar recording is the difficulty in finding 

an electrically indifferent reference point which is at 

absolute zero potential and shows no consistent time-locked 

activity with respect to other sites (Regan, 1972) . Some 

investigators have concluded that the best general reference 

location is the earlobe contralateral to the stimulus (Goff 

et al., 1969; Regan, 1972). It should be remembered that 

monopolar recording really consists of bipolar recording 

using a common reference electrode for comparison. 

In general then, electrode location should be very care­

fully considered, with pilot mapping studies conducted to 

determine the best locations for recording potentials to the 

particular stimuli employed. Because of anatomical factors, 

dipole orientation, and multiple generator sites, examination 

of a variety of placements is desirable. An additional 

reason for the utilization of multiple locations with mono­

polar techniques, if feasible, is that it gives the option 

of examining bipolar potentials obtained by derivation. 

Handedness and Hemispheric Dominance 

Most of the physiological studies of speech perception 

and production have dealt with the issue of hemispheric 

asymmetry, which leads to the question of hemispheric dominance 

for speech. The most typical approach is to infer that the 

left hemisphere is dominant for right-handed subjects and 

contains the primary speech functions. The opposite infer­

ence is made for left handers. However, this is not a valid 
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assumption (Davis 5 Wada, 1974; Penfield § Roberts, 1959). 

Although the exact percentages vary, there is general 

agreement that 90% or more of right-handed subjects have 

speech located in the left hemisphere, while 30%-60% of 

left-handers also have speech in the left hemisphere (Branch, 

Milner, § Rasmussen, 1964; Gott § Boyarsky, 1972; Penfield § 

Roberts, 1959; Rossi § Rosadini, 1967). The most reliable 

method of determining the dominant hemisphere and the 

location of speech is the sodium amytal test (Wada 

Rasmussen,, 1960) in which sodium amytal is injected into the 

carotid artery. The impairment of various functions 

controlled by the hemisphere contralateral to the injection 

is then observed. This technique is available mainly for 

clinical populations, and its use can not be justified for 

general research because of the unpleasant side effects and 

the risk involved for the patient. Although there are a 

number of other candidates for cerebral dominance tests, 

such as the Dichotic Listening Test of Broadbent (1954) and 

the analysis of the alpha rhythm as conducted by Oiler-
» 

Daurella and Maso-Subirana (1965) and Aird and Gastaut (1959), 

probably the most practical way to obtain an independent 

determination of cerebral dominance is some sort of motor 

dominance test involving the hands, eyes, feet, ears, legs, 

etc. A variety of tests of this nature have been constructed, 

such as the Harris Tests of Lateral Dominance (1974), a 

battery by Subirana (1968), and those mentioned by Studdert-
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Kennedy and Shankweiler (1972). As it is thought that these 

tests correlate more highly with hemispheric dominance than 

the simple handedness criterion, which can be easily influ­

enced by environmental factors (Hecaen § De Ajuriaguerra, 

1964), greater confidence could be placed in correlations of 

evoked potential asymmetries and cerebral dominance as 

measured by these batteries. 

Muscle Artifacts 

A previously mentioned problem that must be controlled 

in evoked potential research, especially work concerned with 

speech production, is that of contamination by muscular 

artifacts. Teece (1970), after reviewing literature concern­

ing scalp and neck muscle effects, pupillary changes, and 

eye movements, concluded that all of these can affect the EP 

under certain conditions, although the effect of the scalp 

musculature seems to be minimal and confined to the first 

50 msec. Eye movements and reaction time responses have also 

been the concern of others (Buchsbaum § Fedio, 1969; Ellis, 

1972; Grabow § Elliott, 1974; McAdam § Whitaker, 1971; 

Morrell § Salamy, 1971; Teyler et al., 1973). 

Even more critical for speech studies is contamination 

by lip and tongue movement. Morrell and Huntington (1971) 

criticized McAdam and Whitaker's 1971 study for the contami­

nating effects of lip muscle activity and reported data 

showing no consistent hemispheric differences when this 

artifact is controlled. Schafer (1967) and Ertl and Schafer 
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(1967) , investigating cortical activity preceding speech, 

attempted to control for muscle artifacts, but later questioned 

their own findings (Ertl § Schafer, 1969) by showing that 

simultaneous recording from upper lip musculature produced a 

similar low frequency waveform. Morrell and Huntington (1972) 

presented evidence to suggest that, in spite of the difficul­

ties in separating muscle artifacts from cerebral potentials, 

there seem to be cortical potentials time-locked to speech 

production that are of cerebral origin. 

More recently, a study by Grabow and Elliott (1974) 

stressed the distorting effect of the glossokinetic potential 

on the EEG during word production or tongue movements while 

the mouth is closed. They produced hemispheric asymmetries 

in the EEG during word production by directing the tongue 

toward either the left or right side of the mouth. On this 

basis they criticized McAdam and Whitaker's (1971) study, 

which had attempted to demonstrate the existence of bilat­

erally symmetrical potentials, which were at a maximum over 

Broca's area, to spontaneously produced polysyllabic words. 

They could report no consistent hemispheric asymmetries, and 

stated that it is premature to conclude that electroenceph­

alograph^ hemispheric asymmetries are dependent on later-

alized language functions. 

Two other kinds of artifacts of concern to speech re­

searchers are those arising from differential feedback from 

vocal musculature and bone conduction following each phoneme 
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and covert movements produced when anticipating or hearing 

speech, as can be predicted by the motor theory of speech 

perception. Unless speech stimuli are composed of identical 

phonemes, each produced syllable will be accompanied by its 

own distinct feedback which is probably utilized in saying 

the next syllable. However, this feedback may be neurolog-

ically encoded in such a manner that it will be reflected in 

the ongoing evoked potential to uttered speech. Also, it has 

been suggested that bone conducted sound will influence the 

averaged evoked auditory potential (Liebman § Graham, 1967). 

Although the current motor theories do not require the 

assumption that speech is perceived only by the minature 

duplication of those muscular movements used in the actual 

voicing of those speech patterns, activation is still implied 

somewhere along the "neuromotor system". This neuromotor 

system is conceived of as being linked to incoming neural 

patterns from the ear as well as those muscles actually 

involved in the speech process (Liberman, Cooper, Shankweiler, 

§ Studdert-Kennedy, 1967; Liberman, Harris, Eimas, Lisker, § 

Bastain, 1961; Liberman, 1972). It is entirely possible that 

the electrical activity involved, regardless of the level of 

involvement, is reflected in the evoked potential to the 

heard speech sound. 

In view of the multitudinous possible artifacts influ­

encing the evoked potential (speech-related potentials in 

particular), any methods of monitoring, eliminating, or 



29 

holding constant the muscular movements that may be simulta­

neously occurring will increase confidence in the results of 

studies of cortical activity during speech. 

Control of Stimulus Parameters 

Because of the possible contamination by muscle arti­

facts, it seems imperative that the stimulus parameters in 

speech studies be manipulated in a known fashion. One way of 

achieving this is by holding constant the stimulus presented, 

as was done by Brown et al. (1973), who found different wave­

forms for different contextual meanings of the same word at 

two electrode sites in each hemisphere. Wood et al. (1971), 

used a slightly different approach, manipulating only one 

parameter of the stimulus and holding the remainder constant. 

There are a number of basic characteristics of the acous­

tic stimulus which affect the resulting evoked response. 

Lenhardt (1973) and Lowell (1967) obtained larger auditory 

evoked responses for low frequency stimuli, although there is 

some evidence to the contrary (Liebman § Graham, 1967; McCand-

less 5 Lentz, 1968). The effects of intensity upon the auditory 

evoked response have been much more reliable. As intensity 

increases, the amplitude of the response, especially the 

Nj-?2 component, increases in a linear fashion until at 

approximately 70 dB sound pressure level (SPL) it asymptotes, 

and further intensity increases produce little change in 

amplitude (Antinoro, Skinner, 5 Jones, 1969; Beagley § 

Kellogg, 1970; Beagley 5 Knight, 1967; Butler et al., 1969; 
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Lamb § Graham, 1967; Lindsey, 1971; Madell $ Goldstein, 1972; 

McCandless § Lentz, 1968; Moore $ Rose, 1969.; Picton, Goodman, 

§ Bryce, 1970; Spoor, Timmer, § Odenthal, 1969; Vaughan § 

Hull, 1965). In addition, as intensity of stimulation 

increases, the latency, especially of earlier components, 

decreases (Beagley Knight, 1967; Butler et al., 1969; Lamb 

Ei Graham, 1967 ; Lindsey, 1971; McCandless § Lentz, 1968; 

Moore § Rose, 1969; Nelson § Lassman, 1973; Spoor et al., 

1969). Longer rise-times of auditory signals have resulted 

in smaller amplitude responses for ^-£2 with longer latencies 

(Lamb § Graham, 1967; Lindsey, 1971; Skinner § Antinoro, 1971). 

The relationship between stimulus duration and evoked responses 

is not as well-defined (Muller, 1973; Picton et al., 1970; 

Skinner § Antinoro, 1971; Taurozzi, 1973), but increases in 

the interstimulus interval result in increased amplitude in 

the EP (McCandless 5 Lentz, 1968; Nelson § Lassman, 1968). 

With this many variables of a simple auditory stimulus 

affecting the evoked response, it is certain that a complex 

stimulus like a word will result in a complicated interaction 

of these effects and, therefore, should be manipulated in a 

known and controlled fashion. 

Another dimension of the verbal stimulus to be considered 

is meaning. Studies examining responses to the physical 

parameters of a stimulus may report differences in responding 

that are actually due to differences in information content, 

intelligibility, affect, or attention, and not to the 
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intentionally manipulated characteristics of the stimulus. 

Only a limited amount of the research on meaning and its 

related components has attempted to control additional types 

of variation in the stimulus. One of the best techniques for 

investigation is to endow the same physical stimulus with 

different meanings and provide different physical stimuli 

with the same meaning as did Sandler and Schwartz (1971) . In 

this type of study, it is important that the experimenter pre­

determine the meaning of his stimuli for each subject to 

control for differential experience with the stimuli. 

Most of the studies of meaning have manipulated a 

stimulus in the visual modality, such as the Sandler and 

Schwartz study that used ambiguous figures and mirror images. 

However, Lenhardt (1973) conditioned pleasant, neutral, and 

unpleasant verbal stimuli to pure tones and found an effect 

for the emotionality variable as well as for the frequency 

of the tone employed. A number of variables can influence 

the results of this type of study, such as attention 

(NUUtanen, 1967, 1970), arousal, (Eason, Harter, § White, 

1969), and relevance and difficulty of the task (Donchin § 

Cohen, 1967; Gross, Begleiter, Tobin, § Kissin, 1965; McKee, 

Humphrey, 5 McAdam, 19 73). 

Delayed Auditory Feedback 

In order to determine the role of feedback in speech 

production, investigators have attempted to alter both bone 

conducted and air conducted feedback resulting from the speaking 
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process. Techniques used include masking air conducted feed­

back with white noise, accelerating or delaying air conducted 

feedback, and masking bone conduction by the use of a bone 

vibrator. The effects of delaying auditory feedback on 

continuous speech production have been widely documented 

(Atkinson, 1953; Black, 1951; Fairbanks, 1955; Fairbanks § 

Guttman, 1958; Lee, 1951; Neelley, 1961; Roehrig, 1965; 

Tiffany § Hanley, 1956; Webster, Schumacher, § Lubker, 1970; 

Yates, 1963). The typical investigation involves the overt 

reading of a passage while experiencing delayed auditory feed­

back (DAF) through insulated headphones so that the subject 

hears his/her speaking voice a fraction of a second later 

than s/he normally would. Then some parameter of DAF is 

manipulated, such as intensity, duration, or delay interval. 

These studies all indicate that air conducted feedback plays 

an extremely important role in continuous speech production. 

However, there is another way that DAF can be used to 

investigate speech that does not require continuous vocali­

zation on the part of the subject. This permits the 

examination of cortical activity during and following the 

production of simple speech sounds such as phonemes or syl­

lables. If the subject produces isolated syllables at a slow 

rate while experiencing DAF, the typical effects of increased 

voice intensity, decreased duration, and increased articu­

lation errors usually associated with DAF presentation, do not 

occur. This procedure allows a subject to speak a syllable 
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and hear, through air conducted feedback, that same sound just 

produced but delayed by a fraction of a second until the bone 

conducted and kinesthetic feedback have occurred. In addition, 

the subject may or may not receive immediate air conducted 

feedback through the headphones while s/he is speaking. In 

this manner the stimulus spoken and later heard remains 

constant with regard to air conduction for each trial. Also, 

the entire DAF tape, which contains both spoken and heard 

sounds, may be replayed to the subject so that s/he may hear 

the same speech stimulus twice, eliminating production of the 

sound which results in contamination of the cortical 

potentials by the speaking process. In this manner the 

effects of the speaking process, including muscle movement-

and muscular and bone conducted feedback, may be separated 

from the effects of hearing that sound through air conduction. 

As this technique involves presenting a pair of stimuli 

in rapid succession, a decrease in the amplitude of the EP 

to the second stimulus can be predicted on the basis of the 

habituation literature. There is general agreement that the 

auditory evoked response decreases as a result of repeated 

stimulation (Cook, Ellinwood, fj Wilson, 1968; Fruhstorfer, 

Soveri, fj Jarvilehto, 1970; Ritter, Vaughan, 5 Costa, 1968), 

but what causes this decrease is still a matter open to 

question. This decrease is most commonly labelled habitu­

ation (Dorman § Hoffman, 1973; Fruhstorfer, 1971; 

Fruhstorfer et al., 1970), although it has also been attributed 
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to attention (Gross et al., 1965) and refractoriness in the 

auditory system (Ritter et al., 1968; Webster, 1971). 

The evidence that the evoked potential reflects the 

underlying cortical activity of individual cells as well as 

cortical surface activity, that it is responsive to changes 

in external stimulation, and that it can be used with human 

subjects makes it an excellent measure to reflect the changes 

occurring in the brain as a function of speech. Because of 

the existing physiological evidence on the localization of 

speech activity in the dominant hemisphere in the vicinity of 

Broca's area and the temporoparietal region, it would seem 

that these areas should, within the limitations previously 

- discussed, provide electrophysiological correlates of speech 

perception and production. The use of a constant simple 

auditory stimulus across conditions such as a syllable, aids 

in controlling the physical parameters of the stimulus and 

eliminates the variable of meaning which often confounds 

studies using linguistic stimuli. The use of DAF with indi­

vidual speech stimuli can shed light on the difference in 

cortical activity during speaking and hearing the same stimulus 

and, coupled with simultaneous recording of BMGs, the role of 

muscular artifacts can be at least partially assessed. 

Purpose 

The general purpose of this study was to devise and test 

a methodology to investigate cortical activity during speech 
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reception and expression that controls as many of the 

variables discussed in this chapter as possible within the 

limitations of the available equipment. EPs were contrasted 

during the perception and production of a constant speech 

stimulus. In view of the undetermined effects on the EP of 

differential feedback from producing different speech sounds 

and the possible role of neuromotor pathways in speech 

perception, as proposed by Liberman (Liberman et al., 1967), 

a single syllable was chosen as stimulus for all conditions. , 

The simplicity of a syllable reduces muscular movement while 

speaking and controls contamination by meaning, which has 

been shown to affect EPs. Not only were the potentials 

during speaking and hearing this syllable contrasted, but 

also the auditory evoked responses to the same syllable 

presented 0.6 sec. later were examined as a function of 

speaking and hearing conditions to attempt to assess the role 

of feedback in speech. The role of air conducted feedback in 

speech was further evaluated by comparing potentials during 

and after speech with and without immediate auditory feedback. 

Because a decrease in the EP can be expected as a result of 

presenting two stimuli in rapid succession, the differential 

effects of speaking and hearing on the potentials to the 

delayed syllable were investigated. 

As has been suggested earlier, there is considerable 

evidence to indicate that speech is located primarily in the 

left hemisphere for right-handed subjects and that Broca's 
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area is important in speech production, while Wernicke's area 

and the temporoparietal region seem to be concerned more with 

speech reception. Although dipole orientation, volume 

conduction, and cortical interaction may tend to distort the 

amplitude of the potentials recorded over these two speech 

areas, McAdam and Whitaker (1971), Brown et al. (1973), and 

others have reported differing potentials for these two 

locations in the left hemisphere. Therefore, frontal and 

temporoparietal electrode, placements in both hemispheres 

were used to determine if differences existed as a function 

of conditions. 
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CHAPTER II 

METHOD 

Subj ects 

Twelve adults who were determined to have a dominant 

left hemisphere by scoring "right-sided" on five out of 

seven hemispheric dominance tests were selected from a 

larger population of self-proclaimed right-handed adults 

with normal hearing. Two males and four females were 

experimentally naive with regard to electrophysiological 

research, and three males and three females had participated 

in previous evoked potential studies. None of the subjects 

had a previous history of hearing difficulties or indicated 

a hearing loss during the practice session. 

Apparatus 

Hemispheric dominance tests. One eye, one ear, two foot 

or leg, and three hand dominance tests which could be rapidly 

administered were chosen and modified from a variety of tests 

previously shown to reflect hemispheric dominance (Dimond § 

t 
Beaumont, 1974; Harris, 1974; Hecaen § De Ajuriaguerra, 1964). 

Eye dominance was tested by asking subjects to hold a broom 

like a rifle and "sight" an object in the distance. The 

dominant eye remained open. A watch was then held directly 

in front of the subject's face, and the subject was asked if 

s/'he could hear if the watch was still ticking. The ear used 
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to listen was considered dominant. If the subject tried to 

hold the watch in his/her hand and then move it to his/her 

ipsilateral ear, the ear reported as used when first answer­

ing the telephone was scored dominant. Observing the subjects 

kick a ball of paper that had been placed on the floor 

equidistant from both feet, and requesting they hop across 

the room on one foot served as foot dominance tests, with the 

foot used in each case being declared dominant. 

Hand dominance was measured three ways. The subject 

was handed the broom and asked to sweep. The hand placed 

higher on the broom was declared dominant. The subject was 

then asked to pick up a deck of cards and deal five cards. 

The hand used for dealing was marked dominant. The subject 

was then seated at a table with a blank piece of paper in 

front of him/her, given a pencil for each hand-, and asked 

to write the numbers 1-10 in a column simultaneously with 

both hands. Dominance was determined by mirror images and/ 

or legibility. The hand that wrote any numbers reversed 

was the nondominant hand, and, if there were no reversals, 

the experimenter determined which hand wrote the more 

legible column of numbers and declared it dominant. In no 

case were there reversals by both hands nor did the reversal 

criterion contradict the legibility criterion. 

Hearing tests. After eliminating subjects with know­

ledge of previous or current hearing loss or problems, each 

subject was exposed to approximately 3 min. of DAF during 
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heard his/her voice through headphones with 0.2 sec. delay, 

the delay interval shown to produce maximum disruption in 

normal speakers (Fairbanks, 1955; Lee, 1950? Melrose, 1953). 

The purpose of this was to determine if air conducted feed­

back was adequately reduced by the earphones and to discover 

what intensity would result in the subject experiencing the 

usual speech disfluencies of increased voice intensity, 

increased articulation errors, and decreased speed that 

accompany speaking with DAF. Volume levels ranged from 80 

to 90 dB SPL, which is in agreement with other reports for 

subjects with normal hearing and normal voice intensities 

(Tiffany § Hanley, 1956). 

Physiological equipment. The subjects were seated in 

an electrically-shielded sound-deadened chamber. EEGs 

were recorded through gold disc electrodes attached to the 

scalp with Redux electrode jelly and held in place by elas­

tic headbands. Monopolar recordings were made from the left 

and right frontal areas corresponding to Broca's area (FBI 

and FB2) and the left and right temporoparietal areas (TP1 

and TP2). These electrode locations are shown in Figure 1. 

FBI and FB2 were located 40% of the distance between F7 

(or F8) and T3 (or T4) and 37% of the distance between F7 

(or F8) and F3 (or F4), measured from F7, according to the 

Ten Twenty System of the International Federation (Jasper, 

1958). TF1 and TP2 were located roughly 2 cm posterior to 
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the termination of the Sylvian fissure and identified on the 

scalp as the point formed by the intersection of lines from 

T3- (or T4) to P3 (or P4) and from T5 (or T6) to C3 (or C4). 

Initially, recordings were made from the vertex (CZ) to 

determine if they differed in form from those made from the 

TP placements, and in no case were there waveform differences, 

although the vertex response was often of greater amplitude. 

A linked-ear earlobe reference was used. Skin resistance 

was maintained under 10,000 ohms throughout all sessions. 

Cortical activity for 1024 msec, following each of 64 

presentations of the first stimulus in the pair was ampli­

fied with a Grass Model 7 polygraph with 7P5A preamplifiers 

whose half amplitude high and low frequency filters were 

set at 35 and 0.3Hz. The signal was then averaged with a 

Fabri-Tek Model 1062 signal averaging computer and plotted 

on a Hewlett Packard 7035B X-Y recorder at an amplitude 

factor which resulted in a 1 cm pen deflection representing 

5.8 juV. Th<? computer was triggered by a negative pulse 

from a laboratory built phonation timer^ which detected the 

first voiced cycle of speech above the chosen threshold with 

a constant error of less than 5 msec, for each threshold 

level, regardless of sound intensity. 

Spoken sounds were first recorded on a Lafayette-

modified Bell and Howell variable interval delayed feedback 

recorder, from which both normal and delayed signal outputs 

were mixed and equated for volume by a laboratory built 
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auditory mixer (see Footnote 1). Mixer output was recorded 

by a Sony stereo TC-650 tape recorder and further amplified 

by a Kenwood KA-2002 amplifier before being conducted to 

the ears through insulated Sony stereo DR-7A earphones. 

During the conditions when the subject did not speak but 

received the previously recorded stimuli through the ear­

phones, a simultaneous output from the Kenwood amplifier was 

passed through a second adjustable amplifier to a speaker 

in the experimental cubicle to activate the phonation timer. 

The amplitude of the speaker output was equated with the 

subjects' spoken output at the level of the microphone of 

the phonation timer by a General Radio 1565-A sound pressure 

level meter, using the A scale, which discriminates against 

low frequency sounds, resulting in a level closely corre­

lated with subjective estimates of loudness, annoyance, and 

speech interference. Sound pressure level was also equated 

at the earphones for all auditory feedback conditions and 

maintained at 80-85 dB SPL for most subjects, with individ­

ual adjustment increases up to 90 dB SPL made for subjects 

shown to require greater volume levels on the preliminary 

hearing test. 

Procedure 

Pilot studies. A mapping study was conducted to deter­

mine which electrode locations produced the largest and most 

consistent potentials during both speaking and hearing. 

Waveforms from seven electrode locations were examined in 



43 

four subjects who spoke the syllable /ba/ and then tapped the 

table with a pencil held in their right hand to indicate if 

the /ba/ was not of the specified duration of 250-500 msec. 

Two to eight replications were obtained for each electrode 

location for speaking /ba/ and for hearing the tape of the 

/ba/s previously spoken. Sound intensity at the headphone 

level was 80 dB SPL for both speaking and hearing conditions. 

The three anterior, three posterior, and the vertex locations 

investigated are shown in Figure 1. As each right hemisphere 

location was shown to give a waveform similar to that of the 

corresponding left hemisphere location, only left hemisphere 

placements were consistently studied in all four subjects. 

All anterior locations gave analogous waveforms, as did all 

posterior ones, but exhibited generally greater amplitude 

changes. Figure 2 presents potentials from a representative 

subject for the locations numbered in Figure 1 for two 

replications when speaking the syllable /ba/. Potentials for 

the anterior placements obtained while hearing the syllable 

/ba/ were similar in form, as were all posterior placements, 

as illustrated by the potentials in Figure 3, which are from 

the same subject as those in Figure 2. The electrode sites 

chosen as a result of these findings were thought to best 

represent electrical activity for this type of stimulus sit­

uation for both anterior and posterior regions. The syllables 

/ba/ and /da/ were originally selected for pilot work because 

they have been used by a number of investigators (which would 
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permit comparison of results to those of other studies), 

because they can be equated on all characteristics except 

direction and extent of second and third formant transitions 

when synthetically produced (Wood et al., 1971), they begin 

with plosives which provide a sufficiently fast rise time 

for the production of a clear auditory evoked response 

(Tobin, 1968), and they differ in only one of the two 

articulation features, that of place (Studdert-Kennedy § 

Shankweiler, 1970). As pilot work showed that the potentials 

to the syllable /ba/ were quite comparable in form to those 

to /da/ for speaking and hearing, only /ba/ was chosen for 

the main experiment. The use of syllables instead of words 

reduced confounding by meaning, muscle artifacts, and 

difficulties in producing a consistent stimulus across 

trials. 

Preliminary and practice session. Immediately prior to 

the first experimental session on Day 1, each subject was 

given the hemispheric dominance tests. Then exact electrode 

placement was determined and marked on the scalp with India 

ink. The locations were cleaned with alcohol and scrubbed 

with Redux electrode jelly, and the electrode cups, also 

filled with Redux jelly, were placed on the scalp and secured 

by an elastic headband. After it had been determined that 

skin resistance was less than 10,000 ohms for each placement, 

the subject was comfortably seated in the shielded chamber 

and the headphones carefully fitted. S/He was instructed to 
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place his/her forehead in a headrest positioned so the 

phonation timer and tape recorder microphones were 5 in. from 

his/her lips. The hearing test was then conducted and the 

volume through the headphones adjusted appropriately. 

The subject was told to relax and visually fixate upon a 

point directly in front of and 2 ft. from him/her and to keep 

his/her eyes open during all sessions. During the speaking 

conditions s/he was instructed to utter the syllable /ba/, 

300-380 msec, in duration, whenever s/he observed the onset 

of a white signal light, which was at the approximate rate 

of once every 5-7 sec. and to hold his/her mouth in the open 

position that results from speaking the syllable until 

signalled by the light offset to close it. This long a delay 

between stimulus presentations is necessary to permit recovery 

of electrical activity from the preceding potential (Davis, 

Mast, Yoshie, § Zerlin, 1966; Ohman $ Lader, 1972). The light 

offset not only served as a signal to close his/her mouth, 

but also to give his/her response in a task designed to main­

tain a constant attentional state and to insure uniformity of 

the test stimuli and thus decrease variability within and 

across sessions. The task' consisted of determining whether the 

syllable just spoken was of the correct or incorrect duration 

as defined by the preliminary instructions. The subject was 

to depress the appropriate side of a rocker switch with one 

of the first two fingers on his/her right hand to report his/ 

her judgement response. A correct judgement produced a green 
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flash and an incorrect judgement produced a red flash, follow­

ed by the onset of the white light 1.5 sec. after the switch 

was depressed. During the hearing condition the subject was 
T-

told to listen to the previously recorded /ba/s and indicate 

following the offset of the light whether the duration of the 

heard stimulus was between the 300 and 380 msec, specified. 

All subjects were given sufficient time to practice this task 

until they could produce a /ba/ of the correct duration at 

least 60% of the time and were confident that they understood 

the task and the meaning of the feedback lights. The practice 

session was concluded by an illustration of each condition 

to be experienced during the actual experimental sessions 

and a complete run through one condition while recording 

from all electrode locations using the vertex (CZ) location 

instead of the TP1 placement. The subject was then permit­

ted to leave the experimental cubicle for a 5 to 10 min. 

break, during which the CZ electrode was replaced by the TP1 

placement. 

Testing sessions. After the short break, subjects were 

again escorted into the experimental chamber and seated,. 

Electrode resistance was again checked to insure good contact 

after repositioning the headphones. The subject was told what 

condition to expect next and asked if s/he had any questions 

about the procedure. S/He was given the opportunity to 

practice again if s/he desired. This procedure was followed 

for the other two conditions in this session as well. The 
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data were plotted and the tapes rewound after every condi­

tion, permitting the subject to rest in place about 3 min. 

before the next series of 64 stimulus presentations. Upon 

completion of the session, the subject was requested to 

return another day for the concluding two sessions. Except 

for counterbalancing the order of conditions, the procedure 

for the next two sessions was identical to that for the first 

testing session, using the method of electrode placement 

utilized in the practice session and giving the subject a 

5-10 min. break between sessions. 

Conditions. The stimulus situation for each condition 

was composed of two parts separated by an interval of 0.6 sec. 

The first part (S-^) consisted of the syllable /ba/ being 

spoken and heard (SH) immediately through the headphones, 

being spoken and not immediately heard (S) through the head­

phones, or being heard (H) through the headphones without 

being spoken by playing a tape of a prior condition in which 

/ba/ was spoken. The second part CS2) was always the same: 

the syllable /ba/ being heard (H) through the headphones 0.6 

sec. after the onset of S^. This resulted in each subject 

experiencing each of the following conditions during each 

session: 

1. Speak /ba/ with no immediate auditory feedback but 

with the sound returned to the ears 0.6 sec. after the onset 

of phonation, designated S-H. 

2. Speak /ba/ with the sound heard both instantaneously 

and 0.6 sec. after phonation onset and labelled SH-H. 
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3. Hear the recorded sounds from the SH-H condition 

from a previous session in which /ba/ occurred both 

immediately and 0.6 sec. after phonation onset (H-H). 

All subjects experienced three orders of the three 

conditions, with half of the subjects being given the first 

three possible condition orders and the other half being 

given the remaining orders. Table 1 shows the order of 

presentation of conditions for each session for all subjects. 

The tape used inthe H-H condition was always the one recorded 

during the SH-H condition of the previous session or of the 

preliminary practice session. The practice session and the 

first experimental session occurred on Day 1 and the next 

two sessions occurred on Day 2 to prevent fatigue in subjects. 

Amplifier differences were controlled by counterbalancing 

for left and right hemisphere locations within each condition 

(switching amplifiers for corresponding left and right lo­

cations after 32 of the 64 stimulus presentations). 
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Table 1 

The Order of the Three Conditions, S-H, SH-H, and 

H-H, for Each Subject During Each Session 

Sess ions Sessions 
Subjects 1 2 3 Subjects 4 5 6 

SL 

S-H 
SH-H 
H-H 

SH-H 
H-H 
S-H 

H-H 
S-H 
SH-H 

S2 

S-H 
H-H 
SH-H 

H-H 
SH-H 
S-H 

SH-H 
S-H 
H-H 

1 3 2 4 6 5 

S3 

S-H 
SH-H 
H-H 

H-H 
S-H 
SH-H 

SH-H 
H-H 
S-H 

S4 

S-H 
H-H 
SH-H 

SH-H 
S-H 
H-H 

H-H 
SH-H 
S-H 

2 3 1 5 6 4 

S5 

SH-H 
H-H 
S-H 

H-H 
S-H 
SH-H 

S-H 
SH-H 
H-H 

S6 

H-H 
SH-H 
S-H 

SH-H 
S-H 
H-H 

S-H 
H-H 
SH-H 

2 1 3 5 4 6 

s7 

SH-H 
H-H 
S-H 

S-H 
SH-H 
H-H 

H-H 
S-H 
SH-H 

S8 

H-H 
SH-H 
S-H 

S-H 
H-H 
SH-H 

SH-H 
S-H 
H-H 

3 2 1 6 5 4 

s9 

H-H 
S-H 
SH-H 

SH-H 
H-H 
S-H 

S-H 
SH-H 
H-H 

S10 

SH-H 
S-H 
H-H 

H-H 
SH-H 
S-H 

S-H 
H-H 
SH-H 

3 1 2 6 4 5 

S11 

H-H 
S-H 
SH-H 

S-H 
SH-H 
H-H 

SH-H 
H-H 
S-H 

S12 

SH-H 
S-H 
H-H 

S-H 
H-H 
SH-H 

H-H 
SH-H 
S-H 
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CHAPTER III 

RESULTS 

Examination of the raw data for all subjects indicated 

that the evoked potentials occurring during the process of 

speaking /ba/ (designated by the underlined stimulus in 

S_-H and SH-H) differed in form from those occurring while 

hearing /ba/ (also indicated by the underlined stimulus in 

S-H, SH-H, H-H, and H-H). As shown in Figure 4, the poten­

tials during the speaking process exhibited much more 

variability in waveform for different subjects, with some 

subjects producing a slow positive DC shift beginning within 

the first 100 msec, and continuing for approximately 300 

msec. This shift was totally absent for some subjects and 

present in varying degrees for others, which made the appli­

cation of uniform standards for quantification of corresponding 

peaks and troughs extremely difficult. Figure 4 contasts 

the potentials for a subject producing the DC shift with 

those of a subject not displaying this shift for the two 

speaking conditions in comparison to the hearing condition. 

For the purposes of this dissertation, only the poten­

tials obtained during the various listening conditions 

(S-H, SH-H, H-H, and H-H) for the TP electrode placements 

were subjected to quantitative analysis. This limitation 

was imposed because of the highly variable DC shift present 
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in the potentials while speaking and the extremely 

voluminous amount of data generated by the experiment, 

which was exploratory in nature. In addition, one subject 

was excluded from the quantitative analysis due to failure 

to obtain complete data resulting from equipment diffi­

culties. A brief descriptive section was included to 

summarize the data not analyzed quantitatively. 

Quantification of Evoked Potentials 

Evoked potential components selected for analysis were 

the most positive deflections occurring at 50 to 100 msec. 

(Pj^) and 150 to 220 msec. (P2) and the most negative 

deflections at 100 to 150 msec. (N^)-and 250 to 350 msec. 

(N2) following stimulation. These components have been 

labelled for subject S.M. in Figure 4. Davis and Zerlin 

(1966) and Picton, Hillyard, Krausz, and Galambos (1974) 

have shown these components to be the most common longer 

latency components to occur following auditory stimulation. 

Amplitude measurements were made between the peaks and 

troughs for P^-N^, N^-P2» and P2~N2- Data were analyzed 

in two ways. First, an overall analysis of variance (ANOVA) 

was conducted (Winer, 1971) in which there were four con­

ditions (S-H, SH-H, II-H, and H-H) , two electrode locations 

(TP in each hemisphere), and three amplitude measures 

(Pj,-N^, N^-P2» and P2-N,,) . Pairwise comparisons were then 

made on significant factors using the Newman-Keuls test 

(Soderquist, in preparation; Winer, 1971). Because there 
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were significant component by condition and component by 

hemisphere interactions, £f (6, 60) = 6.26, £<.001; 

F (2, 20) = 4.85, £<.025] as seen in Figures 5 and 6, and 

because of the questionable relationship between components 

within an EP, individual ANOVAs were performed on each 

separate component amplitude measurement and on a composite 

amplitude measurement that was a sum of the individual 

amplitude components. Pairwise comparisons were then made 

using the Newman-Keuls (N-K). In every case there was agree­

ment in the significance levels for the Newman-Keuls following 

the 4x3x2 ANOVA and the individual ANOVAs and their pairwise 

comparisons. Table 2 compares the significant results for 

all ANOVAs and Newman-Keuls tests. Complete ANOVAs are 

reported in Appendix I. As the composite ANOVA provided the 

same information as the overall ANOVA with the exception of 

the component interactions, it will not be discussed further. 

Utility Indices (UI) were conducted for all significant 

factors to determine the proportion of variance accounted 

for by that particular manipulation (Gaebelein & Soderquist, 

in preparation). 

Conditions. The four hearing conditions differed 

significantly for the overall analysis £ir (3, 30) = 14.08, 

£<.001, UI = .24] . Figure 5 illustrates the overall ampli­

tude differences resulting from the various conditions as 

well as the effects of conditions on each component. As 

previously stated, the condition by component interaction 
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Table 2 

Significant Results for All 

-Keuls Pairwise Comparisons 

ANOVAs 

Overall ANOVA Individual ANOVAS 
Significant Probability Probability 
Effects Test Level ANOVA Test Level 

Conditions F .001 Composite F .001 
S-H < H-H N-K .01 N-K .01 
SH-H < H-H N-K .01 N-K .01 
H-H < H-H N-K .01 N-K .01 
S-H > H-H N-K .05 

-
•N-K .05 

Components F .001 — — _ 
P1-N]_ < NL-P2 N-K .01 — - -

PL-NL < P2-N2 N-K .01 — — — 

Conditions x Components F .001 - - -

Conditions at N]_-P2 - — Component Nj_-P2 F .001 
S-H < H-H N-K .01 N-K .01 
SH-H < H-H N-K .01 N-K .01 
H-H < H-H N-K .01 N-K .01 

Conditions at P2-N- — _ Component P2~N2 F .001 
S-H < H-H N-K .01 N-K .01 
SH-H < H-H N-K .01 N-K .01 
H-H < H-H N-K .01 N-K .01 
S-H > H-H N-K .05 N-K .05 

Components at H-H — _ _ 

PI-NI < NL-P2 N-K .01 - - -

Pi-NL < P2-N2 N-K .01 — — — 

Hemisphere x Components F .025 - - -

cr> 



Table 2 (continued) 

Significant 
Effects 

Overall &NOVA 
Probability 

Test 'L^vel 
^ y 

ANOVA 

Individual ANOVAS 
Probability 

Test Level 

Hemispheres at N^-P2 n-k .05 Component Nj-P2 F .05 

Components at L 
Hemisphere 
Pi-nl < nl-p2 
pl-nl < p2-n2 

n-k 
n-k 

.01 

.01 

- -

Components at r 
Hemisphere 

pj-nj. < n -p2 
p!-nl < nt-p2 

n-k 
n-k 

.05 

.05 — 

-

U1 
"vl 
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was also significant [f (6, 60) = 6.26, £<.001, UI t= .09], 

and the ANOV&s for individual components indicated that 

the various hearing conditions differed significantly for 

both components Nj_-P2 (3, 30) - 14.38, £<.001, UI = .67^ 

and p2-n2 [f (3, 30) = 11.78, £<.001, UI = .35]. In view 

of the relatively high values of the UIs for these tests, 

it can be concluded that the manipulation of conditions 

was quite effective. 

The N-K for the overall analysis revealed that the 

potential to the first /ba/ when heard only (H-H) was 

significantly greater at the .01 level than that to the 

/ba/ that had been preceded by a spoken and/or heard /ba/ 

(S-H, SH-H, and H-H). As the potential for hearing /ba/ 

after speaking (S-H) was also greater than that for just 

hearing /ba/ the second time (H-H) (£<.05), it would appear 

that hearing the /ba/ previously decreases the amplitude 

of the potential to S2- This is also supported by the fact 

that the SH-H and H-H potentials do not differ significantly 

(£>.05). The Newman-Keuls revealed that this is primarily 

a result of the S-H potential being greater than the H-H 

one for component P2-N2 (£<.05). The effects of the 

speaking process did not apparently mask the effects of 

then hearing /ba/, since, as stated earlier, the potentials 

SH-H and H-H did not differ significantly and H-H was actually 

less than S-H. Whether or not the subject received immediate 

auditory feedback had little influence on S2» as can be seen 
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by comparing SH-H to S-H in Figure 5. Newman-Keuls tests 

indicated that the H-H potential was of greater amplitude 

than the S-H, SH-H, or H-H potentials for the N^-P2 and 

p2~n2 comPonents (£<.01), which accounts for the condition 

effect in the overall ANOVA„ 

Hemispheres. Figure 6 shows that there was a signifi­

cant component by hemisphere interaction [F (2, 20) = 4.85, 

£<.025, UI = .OlJ, primarily due to the greater response 

from the left as compared to the right hemisphere for only 

the N^-P2 component {V (1, 10) = 5.71, £<.05, UI = .03]. 

The magnitude of this effect was similar for all conditions 

and was not great, as indicated by the low UIs. Figure 6 

also shows that Pi-N^ was smaller in amplitude than both 

N1-P2 and P2-N2 in the left and right hemispheres (£<.01 

and .05 respectively). N1-P2 ar*3 &2~®2 seemed to be the 

most sensitive components to changes in conditions and hemi­

spheric differences. Pj_-Nj_ failed to differentiate among 

conditions or hemispheres. 

Behavioral Data 

A record was kept of the duration of the spoken and heard 

/ba/s and the subject's ability to judge whether the duration 

of the /ba/ was correct, and after any condition in which 

either the durations or the judgments fell below 60% accuracy, 

additional practice was given to the subject before the next 

run began. A one way ANOVA was conducted on the mean percent 

of correct judgments for each condition and indicated that 
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the conditions did not differ significantly in difficulty 

£f (2, 20) = 1.27, £>-05]. No subject fell below 60% 

accuracy more than once in any session. This, coupled with 

the extra practice periods, insured relative uniformity of 

the ,/ba/ produced. 

Some Apparent EP Changes Based Upon Visual Inspection 

Visual inspection of all of the data collected indicated 

that there were apparent trends that should be explored more 

extensively- in the future. Although, as pointed out earlier, 

no attempt was made to quantify these trends because of the 

problems involved, it seemed desirable to briefly mention 

them as directions for possible future research. A comparison 

of SH-H with H-H for subject S.M. in Figure 4 shows that the 

waveform occurring to the heard /ba/ was masked in some sub­

jects during speaking by the positive DC shift. It was 

interesting to note that this difference in waveform between 

SH and H existed to some extent in all females. The amplitude 

of the positive DC shift was not consistently different in 

the S-H condition as compared with SH-H, which is in line 

with the finding of no significant differences in S2 for 

these two conditions, and this shift seemed of equal magnitude 

in both hemispheres. As the shift appeared to be greater at 

the FB locations, in one subject (S.B.) whose data contained 

this shift, EMGs were recorded simultaneously with EPs at the 

FBI placement while speaking /ha/. EMG electrodes were 

placed 1 cm to the left and right of the corners of the mouth 
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and .5 cm above and below the center of the lips. Although 

in two cases the DC shift seemed to have the same waveform 

as one of the EMGs, for the remaining six trials there were 

either latency or relative amplitude differences that pro­

duced a lack of correspondence between the EP and the EMGs. 

Then an attempt was made to produce this positive DC shift 

in a subject (R.H.) whose EPs showed no evidence of it, 

using these same electrode placements. The subject was shown 

records with and without this DC component and told that the 

difference in the two data records may be due to lip or mouth 

movement. The subject was first instructed to "try not to 

produce this DC shift while saying /ba/". Then he was given 

four trials of saying /ba/ while trying to induce this shift 

into his EP record. In no trial did the subject's EP contain 

the DC shift, although the resulting EMG data resembled that 

of subject fl.B. Therefore, it cannot be concluded that the 

positive DC shifts appearing in some of the EP records 

during the speaking process are a result of lip or mouth 

movement. It is realized that many additional EMG placements 

are needed, however, before this can be ruled out as the 

primary source of this shift. 

With regard to electrode location, there were no clear 

indications of amplitude differences for the FB and TP place­

ments for the first 300 msec., but these two locations seemed 

to be differentially sensitive to hemispheric asymmetry for 

S2 after speaking and hearing. The FB position appeared 



more sensitive to hemispheric differences to Sj after the 

speaking conditions, while the same was true for TP after 

the hearing condition. Additional, suggested hemispheric 

asymmetries in the majority of subjects not involving FB and 

TP differences included greater amplitude N^-P2 potentials 

on the right for 70.6% of the subjects exhibiting asymmetry 

when /ba/ is first heard (H-H) compared to greater potentials 

on the left in 78% of the subjects showing asymmetry when 

/ba/ becomes S2 (H-H). There was also evidence of greater 

amplitude N^-Pj EPs on the right for across all cpnditions 

for 74% of subjects producing asymmetrical potentials. 

Although it would be extremely preliminary to draw con­

clusions concerning latency differences until additional data 

were collected to assure that the signal averager was being 

triggered at exactly the same latency and amplitude points on 

the speech stimulus for the spoken and heard conditions, the 

data suggest that analysis of iatency measures may provide 

valuable information. Future research is needed to verify 

the suggested trends that the latency of may be shorter 

for H-H than for H-H for both electrode positions and hemi­

spheres and that there may be overall latency differences for 

the FB and TP placements for the hearing conditions. 
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CHAPTER IV 

DISCUSSION 

The evoked responses to the syllable /ba/ for all 

heard conditions resembled those to the /ba/ in studies by 

Molfese (in press), and Wood et al. (1971) with regard to 

overall waveform and latencies of the major components. The 

finding that the Nj_-P2 component is one of the most sensitive 

to various manipulations corresponds with the report of 

Dorman and Hoffmann (1973), who also presented successive 

/ba/s in a habituation paradigm using infants. Dorman and 

Hoffmann's study demonstrated that the greatest amplitude 

decrease was present following the second in a series of four 

stimuli, which corresponds to the reports of Fruhstorfer 

(1971) and Ritter et al. (1968). In the prosent study this 

amplitude decrease following the second stimulus was also 

demonstrated by the reduction in the H-H potential compared 

to H-H. The two /ba/s in the H-H condition were returned to 

the ears through different amplification systems in order to 

delay the /ba/ and operate the phonatimer during heard con­

ditions. Even though these two /ba/s were equated for inten­

sity, the possibility remains that the difference in amplitude 

of the EPs during the H-H and H-H conditions could have 

resulted from amplifier differences. There were no such 

amplifier differences for the three delayed /ba/s (S-H, 

SH-H, and H-H). 
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Although the typical waveform to the H stimulus was 

sometimes masked in the SI1-H condition by the large posi­

tive DC shift, this masking did not continue into the S2 

period, as evidenced by the similarity of the SH-H and H-H 

potentials. When H was presented as S2> the corresponding 

potential was less than when H was unpreceded as in H-H, 

which would indicate a type of masking, habituation, or 

fatigue as a result of the prior stimulus. Apparently, the 

SH-H does not result in as great a decrease in the S£ poten­

tial as H-H, as shown in Figure 5, which may be due to the 

damping effect of the middle ear reflexes. These have been 

shown to be activated just prior to speech onset (Metz, 1946; 

Salamon § Starr, 1963), which could reduce the masking effect 

of the first heard /ba/ in the SH-H condition. 

That there was a significant difference between S-H 

and H-H, but not between SH-H and H-H, would indicate the 

additional suppressing effect of air conducted feedback, 

implying habituation occurred to H when combined with speak­

ing. Being preceded by speech alone had a decremental effect 

on the potential to the heard /ba/ (S-H vs H-H), which is 

probably due to incomplete neuronal recovery. However, the 

exact effects of the addition of immediate auditory feedback 

during speech on the S2 potential cannot be determined, due 

to the lack of significant difference between S-H and SH-H 

and also between SH-H and H-H. Figure 5 suggests a definite 

trend related to the addition of air conducted feedback that 

will require future verification. 
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In view of the vast number of anatomical, dichotic 

listening, and evoked potential studies demonstrating that 

the left hemisphere is dominant for speech in most right 

handers, greater evoked potentials for the left hemisphere 

electrode placements would be expected in this study. This 

effect was demonstrated in the N^-p2 measurement. The magni­

tude of the obtained differences was slightly smaller for this 

component (0.74 pV) than is usually reported (1-2 jjV) (Grabow 

& Elliott, 1974; Molfese, in press) in similar studies. 

Since there are anatomical differences in size, the right 

hemisphere may have a different orientation of dipoles, fewer 

cells, and more distance between the area of the cortex 

activated and the scalp electrodes, all of which would tend 

to diminish the EP to speech stimuli by a small amount. 

Why this laterality is demonstrated in only one of the 

three amplitude measures is not clear, nor is the reason why 

the laterality is present in the middle component rather than 

the latest one measured. P2-N2, the measure with the longest 

latency, supposedly reflects psychological parameters such as 

meaningfulness and stimulus evaluation (Regan, 1972), instead 

of just the physical parameters of the stimulus, and there­

fore, should be correlated with speech activity. The lack 

of asymmetry for the earliest component measurement is 

easier to explain. The P^-N^ component may reflect some 

activity of a subcortical nature and/or contamination by 

scalp musculature, neither of which would be expected to be 

0 



68 

asymmetrical and could have masked any hemispheric differ­

ences originating from the cortex (Picton et al., 1974). 

In general, a lack of hemispheric asymmetry for speech, 

such as obtained by Ratliff and Greenberg (1972), can be 

explained in a number of ways. Penfield (Penfield & Rasmussen, 

1950) and Sperry (Gazzaniga & Sperry, 1967) have demonstrated 

that the minor hemisphere is involved in speech, and Butler 

and Norrsell (1968) suggest that the nondominant hemisphere 

is normally inhibited during speech processing by the domi­

nant one. If the nondominant hemisphere receives speech 

information, the mere reception of this information should 

activate cortical cells in the right hemisphere, resulting 

in an EP and small hemispheric differences. If this infor­

mation is not processed, due to some simultaneous inhibitory 

effect of the dominant hemisphere, removal of the speech areas 

in the dominant hemisphere should result in only temporary 

impairment of speech skills, and the minor hemisphere should 

rapidly assume the verbal functions of the major one. 

However, Milner (1967) has provided evidence that this does 

not usually occur in adults. An alternative hypothesis is 

that speech is processed in both hemispheres, but information 

in the nondominant hemisphere must be sent to the dominant 

side for expression. Support for this position comes from 

the ingenious testing of split brain patients conducted by 

Sperry (Sperry & Gazzaniga, 1967). If this second hypothesis 

were true, then hemispheric differences in evoked potential 

amplitude would also be expected to be small. 
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The stimuli in this study were all brief and thought 

to be without specific meaning. Perhaps this lack of mean­

ing can explain the absence of asymmetry in the P2"N2 

component. It is also possible that, after several repeated 

utterances, the minor hemisphere did not encode them as speech, 

but rather as rhythmic stimuli, and therefore, was more 

active in processing this information than it would be for 

words or sentences. 

Because identification of the dominant hemisphere for 

language is only about 90% accurate (Branch et al., 1964), 

it is possible that one or more subjects were right dominant 

for speech, or at least not strongly left dominant (Studdert-

Kennedy § Shankweiler, 1972), which could have made statis­

tical detection of hemispheric differences across subjects 

more difficult. Therefore, an analysis of data for individual 

subjects might be more appropriate for detection of these 

differences. All of these explanations support a lack of 

hemispheric asymmetry in general, but none can satisfactorily 

account for the differential reflection of asymmetry in the 

N-^-P2 and P2~N2 measures • 

Questions and Speculations Based upon Visual 

Inspection of the Data 

The evidence reported by Penfield (Penfield 5 Rasmussen, 

1950; Penfield § Roberts, 1959) and Milner (1962, 1965, 1969) 

of localization of speech processing within the speech domi­

nant hemisphere indicates that speech production is controlled 
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primarily by Broca's area and perception is located in the 

temporoparietal area, especially Wernicke's area. For this 

reason, differences in EPs at the FB and TP locations were 

expected. The only difference in potential amplitude for 

these two locations was the indication based upon visual 

inspection that the FB position might be more sensitive to 

hemispheric asymmetry for S2 after the speaking conditions. 

TP was possibly more sensitive to Sj following the hearing 

condition. If this difference would prove to be statisti­

cally significant, it would be supported by the localization 

of speech functioning within the dominant hemisphere as 

described by Penfield. 

A more puzzling trend which needs statistical verifi­

cation was the apparent greater amplitude N^-P2 potentials in 

the right hemisphere for Si across all conditions, which could 

not be explained on the basis of amplifier differences which 

were counterbalanced in this study. A similar finding has 

been reported for subjects engaged in mental arithmetic 

(Butler & Glass, 1974). Additional research is needed to 

determine whether and under what conditions this difference 

exists, and why it is in conflict with other studies. 

Grabow and Elliott (1974), Morrell and Huntington (1971), 

Ertl and Schafer (1969), and Grozinger, Kornhuber, and Kriebal 

(1975) proposed that asymmetry in EPs for the hemispheres is 

probably due to contamination by face, mouth, and tongue 

movement. Grabow and Elliott produced hemispheric asymmetries 
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during word production by purposely directing the tongue to 

one side of the mouth. Conversely, Low and Fox (in press) 

found little asymmetry in the glossokinetic potentials. 

Although this study produced no EMG evidence that the result­

ing EPs contained extracerebral artifacts, Ertl and Schafer's 

(1969) report of contamination of EEGs preceding speech by 

upper lip movement would suggest that additional and syste­

matic research on this issue is needed. Certainly more EMG 

placements are necessary, including EOG electrodes to record 

horizontal eye movements, as this has been found to influence 

EEG activity recorded at frontal and temporal locations (Low 

& Fox, in press). 

The large positive DC shift occurring in the EPs of 

some subjects remains unexplained. Its duration was approxi­

mately 300 msec, in most subjects, which is roughly the 

duration of the spoken /ba/. Although subjects were instructed 

not to move their mouth after saying /ba/, possibly changes 

in other structures associated with speech termination, such 

as the vocal cords, larynx, pharynx, soft palate, and epi­

glottis (Denes & Pinson, 1973), could be responsible for this 

shift and should be carefully monitored in future investiga­

tions. The contamination by horizontal eye movements that 

might have been associated with the judgement task can not 

be eliminated, nor can other contributions by facial muscula­

ture, although this position was not supported by the limited 

amount of EMG data collected in this study. The direction of 
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the shift is opposite to that for expectancy waves such as 

the CNV and Bereitschaft*s potential. A number of investi­

gations have observed slow DC shifts in both directions prior 

to articulation and have reported that these shifts are a 

function of type of task and electrode location (Ellis, 1972) 

or respiration (Grozinger et al., 1975). Examination of EPs 

prior to voice onset might possibly provide additional infor­

mation about the onset and origin of the DC shift reported 

here, as the shift resembles those reported by Grozinger et 

al. (1975) and Morrell and Huntington (1972). 

Conclusions and Implications 

The purpose of this study was to develop a methodology 

suitable for examining cortical activity during and following 

speech perception and production that controlled many of the 

variables that have hindered this type of research in the past. 

The cortical effects after speaking and hearing as well as 

the effects of immediate versus delayed auditory feedback were 

investigated using the single stimulus /ba/. 

Examination of the data revealed a large positive DC 

shift in the evoked potentials during speech which prevented 

analysis of the data obtained during speech. The analysis of 

the potentials during all hearing conditions for the TP 

placements has shown that the N^-?2 and P2-N2 components were 

sensitive to changes in speaking and hearing conditions. 
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The N^-?2 was also of greater amplitude in the left hemi­

sphere than the right following the speaking ahd hearing 

conditions. The differential effects of the stimuli pre­

ceding the delayed /ba/ indicated that there were differen­

tial cortical effects resulting from changes in the auditory 

feedback associated with speech. 

The determination of the precise role of feedback in 

speech is important for theoretical models as well as 

clinical applications. Issues such as open- versus closed-

loop feedback theories of speech, a motor theory of speech 

perception versus a more central one without articulatory 

reference, and the identification of the basic units of 

speech must be approached through refined techniques employ­

ing adequate controls for a sufficient understanding of the 

neurological processes underlying speech. This basic knowledge 

is required to broaden understanding of the role of feedback 

in speech disorders. Stuttering, for example, is dramatically 

affected by changes in feedback such as delaying auditory 

feedback, reducing air conducted feedback by masking or having 

the stutterer whisper, and altering the timing or rhythm of 

speech by increasing external cues by presenting a rhythmic 

stimulus like a metronome or having the stutterer sing or sp^ak 

in unison, h better understanding of the cortical processes 

during such altered states of feedback may provide valuable 

clues to the successful treatment of similar speech problems. 
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Both the statistical findings of this study and the 

trends that have been suggested by visual inspection of the 

data produced many questions and directions for future 

investigations. The origin of the DC shift present in some 

subjects, the differential effects of speaking with and with­

out immediate feedback on the potentials to a delayed pre­

sentation of that same sound, and hemispheric differences 

reported in this study demand additional exploration. A 

more complete evaluation of the contribution of the vocal and 

facial musculature to speech-related EPs is needed. Finally, 

a variety of systematic manipulations of the speech stimulus 

employed in this design would result in a greater understanding 

of cortical activity during speech. 
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Footnote 

1 
The phonation timer operates with instantaneous 

attack time (0.5 msec.) and a fixed decay time, while 

the standard voice key has an attack time delay and 

both attack and decay times are a function of amplitude. 

The author is grateful to George Girod for construction 

of the phonation timer and the auditory mixer. 
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Appendix A: Analyses of Variance 

Table A 

The Overall ANOVA for Conditions, Components and Hemispheres 

Source of Error Sum of Degrees of Mean 
Variation Term Squares Freedom Square F 

Conditions (C) CS 1033.83 3 344.61 14.08** 

Subjects (S) 1153.37 10 115.34 

Hemispheres (H) SH 10.37 1 10.37 1. 14 

Components (P) SP 559.33 2 279.67 7.13** 

CS 734 .19 30 24.47 

CH CSH 22.41 3 7.47 2.17 

SH 90.60 10 9.06 

CP CSP 408.45 6 68.07 6.26** 

SP 784.58 20 39.23 

HP SHP 27.60 2 13.80 4.85* 

CSH 103.12 30 3.44 

CSP 652.89 60 10.88 

CHP CSHP 11.39 6 1.90 1.02 

SHP . 56.94 20 2.85 

CSHP 112.24 60 1.87 

*£ <.025 

* * £  < . 0 0 1  
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Table B 

ANOVA for Component P^ -

Source of Error Sum of Degree of Mean 
Variation Term Squares Freedom Square F 

C CS 72.76 3 24.25 2.05 

S 291.17 10 29.12 

H SH 1.37 1 1.37 .46 

CS 354.12 30 11.80 

CH CSH 7.28 3 2.43 1.17 

SH 29.70 10 2.97 

CSH 61.76 30 2.06 
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Table C 

ANOVA for Component 

Source of 
Variation 

Error 
Term 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F 

C CS 844.45 3 281.48 14.38** 

S 455.71 10 45.57 

H SH 36.06 1 36.06 5.71* 

CS 587.43 30 19.58 

CH CSH 19.07 3 6.36 1.64 

SH 63.12 10 6.31 

CSH 116-. 5 0 30 3.88 

*£ < .05 

**£ <.001 

I 



Table D 

ANOVA for Component P2 -

Source of 
Variation 

Error 
Term 

Sum of Degrees of Mean 
Squares Freedom Square F 

C CS 525. ,07 3 175. ,02 

CO •
 

H
 

S 1191. .08 10 119. .10 

H SH « .55 1 i .55 .10 

cs 445. ,59 30 14, .85 

CH CSH 7. .45 3 2, .48 2.01 

SH 54, .72 10 5, .47 

CSH 37, .10 30 1 .24 

*£, < .001 


