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Background: The use of pasteurized donor human milk (PDHM) is growing 

among neonatal intensive care units. Addition of commercial fortifiers to better 

meet the nutritional needs of preterm infants is common, however limited 

information is available regarding nutrient stability in fortified PDHM (FPDHM). 

Objective: The purpose of this study is to measure the anti-microbial activity and 

protein content of FPDHM during refrigerated storage over 96 hours. Methods: 

Unfortified PDHM served as the control (CONTROL). PDHM was subjected to 

treatment with 3 different fortifiers: an acidic (F-ACID), a neutral (F-NEUT), and a 

human-milk derived (F-HUM) fortifier. Samples were stored at 4°C, and every 

24h, a 1-mL aliquot was removed for analysis. Samples were analyzed for total 

protein, immunoglobulin A (IgA), and lysozyme. Results: At baseline, there was a 

significant difference in protein (mean, standard deviation) concentration (g/dL) 

between control (1.3, 0.14) and all other treatments (F-ACID = 2.0, 0.19; F-NEUT 

= 2.2, 0.14 ; F-HUM = 2.5, 0.12; p<0.001). Lysozyme and IgA were significantly 

lower in the F-ACID group (p<0.001). Lysozyme and IgA were significantly higher 

in the F-HUM group (p<0.001). There was no significant effect of time (p>0.9 all 

variables), nor was there a significant interaction effect between time and 

treatment (p>0.9 all variables). Conclusion: The type of fortifier has a more 

significant impact on bioactive components in fortified PDHM than storage time.
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CHAPTER I 

INTRODUCTION 
 
 

Human milk (HM) is the ideal source of food for the majority of infants. 

This idea has been well-studied and global initiatives are in place supporting the 

expanded adoption of breastfeeding practices.1–4 A diverse array of benefits are 

conferred to infants through breastmilk, ranging from the development of the 

immune system and protection against infections to emotional and cognitive 

advantages throughout the life cycle.5,6  

Population Overview: Preterm Infants 

Infants born before 37 weeks of gestation are considered preterm. More 

than 10% of infants born worldwide are premature and preterm birth rates are 

rising. Along with social, emotional, and financial burdens, preterm birth is 

associated with a host of health complications, along with higher rates of hospital 

readmission and longer hospital stays.7,8 Immediate, short-term health concerns 

include compromised immunity,9 feeding challenges,10 and poor growth.11 Long-

term health consequences include neurological impairment and chronic lung 

disease, as well as an increased risk of developing non-communicable disease
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later in life, such as hypertension and diabetes.7,8,12 Many of the early challenges 

faced by premature infants can be addressed with proper nutrition intervention 

which are imperative to combat the consequences of poor growth that persist into 

childhood and beyond.13 

Feeding Recommendations for the Preterm Infant 

Providing preterm infants with sufficient nutrients to support growth and 

development is of tantamount importance. Kumar et al summarized the 

European Society of Pediatric Gastroenterology, Hepatology, and Nutrition’s 

(ESPGHAN) recommendations for enteral nutrient intakes for preterm infants in 

their 2017 review.10 (Table 1) 

 
Table 1. ESPGHAN’s Recommendations for Enteral Nutrient Intake for Preterm 
Infants10  
 
Nutrient Per kg of body weight per day 
Fluid, mL 135-200 
Energy, kcal 110-135 
Protein, g 3.5-4.5 
Fat, g 4.8-6.6 
Carbohydrate, g 11.6-13.2 

 

Preterm infants gain many benefits from a diet comprised primarily of HM. 

The use of expressed breastmilk from mom is the top choice among experts, with 

PDHM ranking second when mother’s own milk is unavailable.2,10,14 While infant 

formulas are associated with more impressive growth parameters, they confer 

none of the immunity-building components or innate defense mechanisms found 



 3 

in HM. When compared to infant formula, the use of HM is associated with a 

lower risk of developing sepsis, late-onset sepsis, and necrotizing enterocolitis 

(NEC),2,15,16 improved feeding tolerance,2,15 and fewer hospital readmissions.17,18 

Pasteurized donor human milk (PDHM) distributed by milk banks is 

recommended for feeding infants weighing less than 1500g when a mother’s own 

milk is unavailable or insufficient.14 Its use is associated with reduced healthcare 

costs,17 better health outcomes,2,19,20 and a reduced risk of the development of 

NEC.21 PDHM is prescribed for a number of medical conditions, including 

prematurity, malabsorption syndrome, feeding intolerance, immunologic 

deficiencies, trophic feeds/gut priming, among others.22 In neonatal hospitals in 

the United States, the use of PDHM has been steadily on the rise since the 

Human Milk Banking Association of North America‘s (HMBANA) inception in 

1985,23 with 68% and 73% of level 3 and 4 facilities reporting usage, 

respectively, in 2015.24  

The pasteurization of donor HM is common practice among milk banking 

organizations, primarily to remove infectious contaminants and reduce the growth 

of harmful bacteria.25,26 Optimizing the safety of banked HM is an appropriate 

concern given that it is often fed to preterm infants who have compromised 

immune systems.27 The pasteurization of HM has been well-studied. A 

systematic review of 44 studies reported that, while pasteurization does indeed 

partially diminish several important biological components, such as 
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immunoglobulins and the activity of lipase enzymes, macronutrients are almost 

fully retained.26  

While HM remains the ideal food for the majority of infants, its protein and 

energy contents are too low at all stages of lactation to support the increased 

needs of low and very low birth weight infants.28 This led to the development of 

HM fortifiers (HMF), which are recommended when feeding preterm infants in 

order to meet their increased protein, energy, and micronutrient needs.2,29 

Fortification with HMF is now standard practice for the preterm neonate, with 

over 90% of NICU hospitals reporting use of bovine-milk-based or human-milk-

based fortifiers.24 However, the routine use of HMF has not eliminated postnatal 

growth failure.30  

Storage of Pasteurized Donor Human Milk 

Less is known about what happens to PDHM over the course of long-term 

storage. While the Academy of Breastfeeding Medicine has issued storage 

recommendations for raw HM fed to healthy infants in home settings,31 

recommendations regarding the storage of PDHM for use in a clinical setting with 

medically fragile infants are scarce. Existing guidelines recommend that: 1) 

thawed PDHM be stored at 4°C and used within 24 hours,32 and 2) the maximum 

frozen storage (-20°C) time for PDHM is 3-6 months,32–36 or one year after the 

earliest pumping date of milk within the pool.37 Understanding appropriate 

storage conditions for PDHM in a clinical setting is an important area of research.  
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PDHM is a valuable commodity with a short shelf-life. Affordability was the 

most frequently cited barriers of non-use in a 2013 survey of 183 Level 3 

NICUs.38 Research to evaluate the feasibility of extending PDHM expiration 

dates has the potential to reduce cost barriers associated with a short shelf-life 

and product waste.  

Study Aims 

While the use of HMF has increased, there is scant research examining 

the effects of refrigerated storage time on the retention of macronutrients and 

other bioactive components in fortified HM. This is an important area of research 

and a major gap in the literature that this study aims to address. 

The first aim of this study is to compare total protein content, lysozyme 

activity, and immunoglobulin A (IgA) activity in unfortified PDHM and PDHM 

fortified with three commercially available fortifiers at baseline. The second aim of 

this study is to evaluate changes in total protein, lysozyme and IgA activity over 

96 hours of refrigerated storage. Both bovine- and human-milk-based fortifiers 

contribute additional protein and it can therefore be hypothesized that total 

protein content will increase in all fortified PDHM samples compared to 

unfortified. As bovine-milk-based fortifiers contain limited lysozyme and IgA, it 

can be hypothesized that only the human-milk-based fortifier will cause an 

increase in these antimicrobial proteins. Acidic fortifiers have been shown to 

reduce the pH of PDHM39 and changes in pH can impact protein stability; 
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therefore, it was hypothesized that PDHM fortified with acidic Enfamil HMF would 

show greater losses of lysozyme and IgA compared to neutral Similac HMF, 

human-milk based Prolact+8, and unfortified. 

Overall, we hypothesized that all fortified samples will have higher total 

protein concentrations than unfortified samples. Fortified PDHM will be as stable 

as unfortified samples over time, and all PDHM samples will be unaffected by 

storage time.
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CHAPTER II 

THE EFFECTS OF REFRIGERATED AND FROZEN STORAGE ON HOLDER- 
PASTEURIZED DONOR HUMAN MILK: A SYSTEMATIC REVIEW 

 
 
 Reprinted with permission of Mary Ann Liebert, Inc., Publishers.  
 Copyright 2018. Mary Ann Liebert, Inc., Publishers. 
 Hannah R. Schlotterer and Maryanne T. Perrin, Breastfeeding Medicine. 
 http://doi.org/10.1089/bfm.208.0135 
 Published in Volume: 13 Issue 7: September 12, 2018 
 Online Ahead of Print: August 27, 2018.40 
 
 
Storage of Holder Pasteurized Donor Human Milk 

Introduction 

According to a 2017 policy statement published by the American Academy 

of Pediatrics, the use of pasteurized donor human milk (PDHM) distributed by 

milk banks is recommended for infants weighing less than 1500g when a 

mother’s own milk is unavailable or insufficient.14 The use of PDHM is associated 

with reduced healthcare costs,17 better health outcomes,2,19,20 and a reduced risk 

of the development of necrotizing enterocolitis (NEC).21 Results from the Center 

for Disease Control’s 2015 Maternity Practices in Infant Nutrition and Care 

(mPINC) survey, indicated that two-thirds of neonatal intensive care hospitals 

were using donor human milk, and over 90% were using fortifiers to increase the 

nutrient content of human milk.24
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 The pasteurization of donor HM is common practice among milk banking 

organizations, primarily to remove infectious contaminants and reduce the growth 

of harmful bacteria.25,26 This is an appropriate concern given that PDHM is often 

fed to preterm infants who have compromised immune systems.27 The Holder 

method of pasteurization is the predominating procedure used by milk banks 

internationally and involves heating the HM to 62.5 – 63°C for 30 minutes.32–34,41 

Holder pasteurization of HM has been well-studied. While the process does 

indeed partially diminish several important biological components, such as 

immunoglobulins and the activity of lipase enzymes, macronutrients are almost 

fully retained.26  

Less is known about what happens to Holder pasteurized donor human 

milk (HPDHM) over the course of long-term storage. While the Academy of 

Breastfeeding Medicine has issued storage recommendations for raw HM fed to 

healthy infants in home settings,31 recommendations regarding the storage of 

HPDHM for use in a clinical setting with medically fragile infants are scarce. 

Understanding appropriate storage conditions for HPDHM in a clinical setting is 

an important area of research.  

In 2011, the Human Milk Banking Association of North America 

(HMBANA) issued guidelines recommending that thawed HPDHM should be 

stored at 4°C and used within 24 hours.32 Based on international guidelines 

outlining milk banking protocols, the maximum recommended frozen storage      
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(-20°C) time for HPDHM is 3-6 months.33–36 According to the 2018 HMBANA 

guidelines, frozen HPDHM expires 1 year after the earliest pumping date of milk 

within the pool.37 HPDHM is a valuable commodity with a short shelf-life. 

Affordability was the most frequently cited barrier of non-use in a 2013 survey of 

183 Level 3 NICUs.38 Research to evaluate the feasibility of extending HPDHM 

expiration dates has the potential to reduce cost barriers associated with a short 

shelf-life and product waste.  

The purpose of this paper is to review the current evidence for the storage 

of Holder pasteurized donor human milk under refrigerated and frozen storage 

conditions. 

Methods 

Search process 

This review of published literature was conducted through electronic 

searches of PubMed, Scopus, Science Direct, Google Scholar, ProQuest 

Central, and WorldCat Discovery. The electronic search included the following 

keywords and MeSH terms: (i) human milk; (ii) breast milk; (iii) donor milk; (iv) 

pasteurized donor human milk; (v) milk banks AND storage; (vi) (donor milk OR 

human milk) AND pasteurization; (vii) (donor milk OR human milk) AND storage; 

(viii) (donor milk OR human milk) AND refrigerated storage; (ix) (donor milk OR 

human milk) AND frozen storage; (x) (donor milk OR human milk) AND (storage 

OR pasteurization); (xi) (donor milk OR human milk) AND (storage OR bank) 
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AND pasteurization; (xii) (human milk OR human milk) AND (storage OR 

pasteurization) AND (bioactive OR immune OR antimicrobial); and (xiii) (donor 

milk OR human milk) AND (storage OR freez* OR refrig* OR processing) AND 

(pasteuriz*). 

Inclusion and exclusion criteria 

In order to be included in this review, a study must have been published 

between 1985 and May 2018, when the search was conducted. This cut-off date 

was chosen based on the establishment of HMBANA and its milk processing 

protocols. Studies were required to be peer-reviewed and include the primary 

outcome of the effects of extended storage, either under frozen (typically -20°C) 

or refrigerated (typically 4°C) conditions. Only studies examining donor HM that 

had undergone the Holder method of pasteurization were included, whether 

explicitly stated or as evidenced by the processing protocol used at the milk bank 

from which it was acquired. HPDHM fortified with HM fortifiers were also 

included. Studies assessing colostrum were not included. Studies were also 

excluded if they did not describe the length of storage time at a given 

temperature or the method of pasteurization employed, if they did not report 

outcomes specifically for HPDHM, or if the heat-sterilization process differed from 

the Holder method, such as high-temperature short-time (HTST), ultra-high 

temperature (UHT), or extended shelf life (ESL).  
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Data extraction 

 The following information was extracted for each study: author; year; title; 

type of milk; sample size; fortification status; storage temperature; storage 

duration; outcomes measured; findings. Two researchers independently 

reviewed all studies for inclusion/exclusion criteria and results, and differences 

were resolved via discussion. 

Results 

Initially, 19 studies that included HPDHM were identified. Three (16%) did 

not describe the length of storage time,42–44 one (5%) did not report outcomes 

specifically for HPDHM,45 and one (5%) was not peer-reviewed,46 leaving a final 

total of 14 studies included in this review (Table 2). 

 
Table 2. Summary of Refrigerated and Frozen Storage Studies Using Holder 
Pasteurized Donor Human Milk 
 

Author(s)  Year Storage 
conditions 

Storage 
duration 

Sample 
size 

Outcome(s) measured 

Lepri et al.47 1997 -20°C 90 days n = 16 
single-
donor 
samples 

Lipids: modified Folch 
method, and thin-layer 
and gas chromatography  
L-lactate: biosensor 
Degree of lipolysis: gas 
chromatography 

Silvestre et al.48 2008 4-6°C 72 hours n=10 
single-
donor 
samples 

Bactericidal capacity: E. 
coli viability assay 

Vieira et al.49 2011 -20°C 24 hours n=57 
single-
donor 
samples 

Macronutrients: Infrared 
human milk analyzer 
(MilkOScan by Foss)  
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Cohen et al.50 2012 4°C 122 
hours 

n=22 
previously 
pooled 
samples 

Bacterial growth: 
standard plate count 
method 

García-Lara et 
al.51 

2013 -20°C 180 days n=34 
individual 
samples 
from 28 
donors 

Macronutrients: Infrared 
Human Milk Analyzer 
(MIRIS, Sweden) 
 

Vázquez-Román 
et al.52 

2014 -20°C 90 days n=36 Fat and energy content: 
creamatocrit (Lucas 
method) 

Borgo et al.53  2015 -18°C 240 days n=1 
sample 
from 
single 
donor 

Saturated and 
unsaturated FA: gas 
chromatography, nuclear 
magnetic resonance, 
infrared spectroscopy 

Vickers et al.54 2015 4°C 0-96 
hours, 9 
days 

n=42 
previously 
pooled 
samples 
(2-5 
donors 
per pool) 

Bacterial growth: 
HMBANA Standard 
Operating Procedure for 
Culturing PDHM 

Marinković et 
al.55 

2016 -20°C 30 days n=10 
single-
donor 
samples 

Antioxidative properties: 
static oxidation-reduction 
potential (ORP) 
measurement; oxygen 
radical absorbance 
capacity (ORAC) assay; 
Reflectoquant ascorbic 
acid test; electron 
paramagnetic resonance 
spin-trapping 
spectroscopy 

Vázquez-Román 
et al.56 

2016 -20°C 3 months n=40 
previously 
pooled 
samples 

Dornic acidity: titration 

Meng et al.57 2016 4°C 7 days n=13 
single-
donor 
samples 

Aerobic bacteria and 
coliform count: Petrifilm 
Total protein: 
Bicinchoninic acid (BCA) 
assay 
Lysozyme activity: 
Micrococcus lysodeikticus 
based turbidimetric assay 
IgA activity: kinetic 
indirect ELISA 
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Kanaprach et 
al.58 

2018 -20°C 6 months n=40 
single-
donor 
samples 

Intestinal cell growth-
promoting activity: fetal 
intestinal growth assay 
Antimicrobial effect 
against E. coli: 
antimicrobial assay 

Salcedo et al.59 2018 4°C 90 days n=5 
single-
donor 
samples 

Gangliosides 
concentrations: ultrahigh-
performance liquid 
chromatography-tandem 
mass spectrometry 
(UHPLC-MS/MS)  

de Waard et 
al.60 

2018 -20°C 12 
months 

n=34 
single-
donor 
pools 

Bacterial growth: blood 
and CLED agar 
Macronutrients: Human 
Milk Analyzer (MIRIS, 
Sweden) 

 

Refrigerated storage of Holder pasteurized donor human milk 

 Five studies examined the storage of unfortified HPDHM under 

refrigerated conditions (Table 3). Storage times ranged from 24 hours to 90 days, 

and analytes assessed included microbial growth, total protein, bactericidal 

capacity, lysozyme activity, secretory immunoglobulin A (sIgA) activity, and total 

gangliosides concentrations. One of these studies included pilot information on 

fortified HPDHM, though significance was not independently assessed.50 
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Table 3. Effects of Extended Refrigerated Storage on Components of Unfortified 
Holder Pasteurized Donor Human Milk 
 

Component Duration Findings Author 
Microbial growth    
 24-122 hours No significant change *Cohen50 
 7 days No significant change Meng57 
 9 days No significant change Vickers54 
Total protein    
 7 days No significant change Meng57 
Bactericidal capacity    
 72 hours No significant change Silvestre48 
Lysozyme activity    
 7 days No significant change Meng57 
IgA activity    
 7 days No significant change Meng57 
Gangliosides    
GM3 90 days No significant change Salcedo59 
GD3 90 days No significant change Salcedo59 
Total gangliosides 90 days No significant change Salcedo59 

* signifies that this study included fortified and unfortified HPDHM 
 
 
Effects on microbial growth 

Currently, there is no consensus definition of “acceptable levels” of 

bacteria in HM and special considerations must be made for infants in the NICU 

with compromised immune systems. Regarding healthy, term infants, Meng et al 

suggest two options: 1) use the levels set for Pasteurized Milk Ordinance (PMO) 

for Grade A pasteurized bovine milk (4.30 log CFU/mL), or 2) set the maximum 

level as that which is present in the milk in a feeding container immediately after 

exposure to the microflora in an infant’s mouth through bottle or cup feeding 

(average 2.8 log CFU/mL). In their 2016 study, Meng et al found that, after 7 
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days of storage at 4°C, HPDHM consistently had bacteria levels below both the 

PMO standard and the more stringent constraints set in option 2. The aerobic 

bacteria count for HPDHM stored at 4°C was 0.0 log CFU/mL at all time points 

up to 7 days.57  

These data support similar findings by Cohen et al who, in a 2012 study, 

found no bacterial growth in 22 samples of HPDHM that were thawed and 

refrigerated for 24 to 122 hours of routine NICU handling.50 However, 33% (2/6) 

bottles of fortified HPDHM exhibited bacterial growth. A 2015 study by Vickers et 

al found that there was no evidence of microbial growth in HPDHM when thawed 

and stored at 4°C for up to 9 days. This study utilized 42 randomly selected 

samples of HPDHM from a HMBANA milk bank. Study milk handling protocol 

aimed to mimic that which may be found in a NICU feeding room and, on 

average, the refrigerator was opened 27 times per day.54 These data suggest 

that unfortified HPDHM maintains its antimicrobial defenses and remains free of 

microbial growth when stored at 4°C for up to 9 days.  

Effects on macronutrient concentration 

 One published study has addressed the retention of macronutrients during 

refrigerated storage of HPDHM, and only protein concentration was assessed. In 

the 2016 study by Meng et al, HPDHM stored at 4°C exhibited no significant 

change in total protein concentration (p=0.27) between 0 – 7 days.57  
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Effects on bactericidal capacity and bioactive factors 

 There are two studies that examine the impact of refrigerated storage on 

bactericidal capacity and the activity of immunological factors in HPDHM. In their 

2008 study, Silvestre et al determined that the bactericidal capacity of HPDHM 

against E. coli exhibited no significant changes during 72 hours of refrigerated 

storage (at 4-6°C).48 In 2016, Meng et al reported no significant changes in the 

activity of lysozyme (p=0.77) and sIgA (p=0.49) after 7 days of refrigerated 

storage.57  

In 2018, Salcedo et al published a study looking at the effects of heat 

treatment and storage time on the concentration of gangliosides in HM. 

Gangliosides are glycolipids primarily associated with the milk fat globule 

membrane, and their content and profile constituents vary throughout lactation. 

GD3 (Neu5Ac α2-8 Neu5Ac α2-3 Gal β1-4Glc β1-1 ceramide) is most abundant 

during the first few days of lactation, while GM3 (Neu5Ac α2-3 Gal β1-4Glc β1-1 

ceramide) is found in the highest proportion in mature HM.61 Salcedo et al found 

that storage for up to 90 days at 4°C had no significant impact on either total or 

specific ganglioside content in HPDHM.59  

Frozen storage of Holder pasteurized donor human milk  

While storing raw and pasteurized HM at -80°C minimizes changes to 

many properties, it is impractical for milk banks and neonatal units primarily due 

to its expense.62,63 Freezer storage at -20°C is much more commonplace. This 
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section summarizes the findings from the 9 studies published examining the 

impact of frozen storage conditions on pH and microbial growth, as well as the 

retention of macronutrients, immunological activity, and enzymatic activity (Table 

4). 

 
Table 4. Effects of Extended Frozen Storage at -20°C on Components of Holder 
Pasteurized Donor Human Milk 
 

Component Duration Findings Author 
Bacterial growth    
 8 months No significant growth de Waard60 
Total protein    
 24 hours Significant decrease Vieira49 
 8 months Significant increase de Waard60 
Nitrogen    
 6 months No significant change García-Lara51 
Total carbohydrate    
 6 months Significant decrease García-Lara51 
 8 months No significant change de Waard60 
Lactose    
 24 hours No significant change Vieira49 
L-lactate    
 90 days Decrease (significance not assessed) Lepri47 
Total fat    
 24 hours Significant decrease Vieira49 
 3 months Significant decrease Lepri,47  

Vázquez-Román52 
 6 months Significant decrease García-Lara51 
 8 months No significant change de Waard60 
Fatty acids    
 240 days Varied by fatty acid Borgo53 
Degree of lipolysis    
 3 months Increase (significance not assessed) Lepri47 
Energy    
 3 months Significant decrease Vázquez-Román52 
 6 months Significant decrease García-Lara51 
 8 months No significant change de Waard60 
Bactericidal capacity    
 3 months No significant change  Kanaprach58 
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 6 months Significant decrease Kanaprach58 
Antioxidative  
properties 

   

Superoxide dismutase 30 days No significant change Marinković55 
Glutathione peroxidase 30 days No significant change Marinković55 
Glutathione reductase 30 days No significant change Marinković55 
Ascorbate concentration 30 days No significant change Marinković55 
Dornic acidity    
 3 months Non-clinically significant decrease Vázquez-Román56 
Intestinal cell growth- 
promoting activity 

   

 6 months No significant change Kanaprach58 
 

Effects on microbial growth 

Only one study assessed microbial growth in HPDHM under frozen 

storage conditions. In a 2018 study, de Waard et al found that HPDHM stored at 

-20°C for 12 months remained free of microbial growth for the first 8 months.60 

Microbial analysis at 10 and 12 months revealed positive cultures in HPDHM 

samples from 17-28% of donors; however, study samples were drawn post-

pasteurization and it was unclear whether this occurred under sterile conditions, 

which may have influenced results. 

Effects on macronutrient concentrations 

 Six published studies have assessed the impact of frozen storage on 

macronutrient retention in HPDHM. Five studies examined total fats, 3 examined 

total protein or nitrogen, 3 assessed carbohydrates, and one assessed individual 

fatty acid profiles.  
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A 1997 study by Lepri et al found that, between 0 – 35 days of frozen 

storage, total fat content of HPDHM decreased only slightly (25.08 mg/mL ± 0.54 

to 24.67 mg/mL ± 0.52), then notably after 70 (23.60 mg/mL ± 0.58) and 90 days 

(23.32 mg/mL ± 0.55) of frozen storage. This represented a -7.55% change 

between baseline and day 90.47 

Others have also reported a decline in the fat content of HPDHM during 

extended frozen storage. In a 2011 study by Vieira et al, after 24 hours of storage 

at -20°C, HPDHM showed significant decreases in mean fat (5.5%, p<0.001) 

compared to never-frozen HPDHM.49 In their 2013 study, García-Lara et al found 

that there were small but significant decreases in the fat (-0.13 g/dL, 2.8% 

relative decrease, p = 0.001) and energy (-1.55 kcal/dL, or -0.46 kcal/oz, 2.2% 

relative decrease, p = 0.001) content of HPDHM after 180 days of frozen storage.  

Importantly, authors noted that, while these declines were of low magnitude, 

when the impact of pasteurization on fat content was taken into account (3.5% 

relative decrease), the total reduction was 6.2%. This reveals a more clinically 

relevant issue with regard to the retention of energy for preterm infants who are 

the primary recipients of HPDHM, given a potentially cumulative detrimental 

impact associated with multiple processes including pasteurization and storage.  

In their 2014 study, Vázquez-Román et al found that the fat content of 

HPDHM decreased by 0.39 g/dL (-15.08% relative change, p=0.01) after 30 days 

of frozen storage, but there was no significant change at 60 days (0% relative 
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decrease, p = 0.996) or 90 days (+6.5% relative change; p = 0.580) of frozen 

storage compared to baseline using creamatocrit as the method for fat 

assessment.52 The aliquots prepared for the various storage conditions were 

homogenized by rocking them in an arc-like fashion ten times. This might not 

have been enough to thoroughly mix the study samples, which potentially 

explains why there were differences in the samples at 30 days, but not at 60 and 

90 days compared to baseline. Additionally, while there is a strong correlation 

between the creamatocrit value and the lipid content of HM,64 the authors point 

out the limitations of measuring fat content with this method. There is evidence 

that the fat globule ruptures during frozen storage and subsequent thawing.65 

This breakdown, along with the continued activity of lipoprotein lipase, causes an 

increase in free fatty acids. This results in a more tightly packed cream layer and, 

as this is what is measured in a creamatocrit test, can produce a false decrease 

in the creamatocrit reading, which would misrepresent the actual fat (and energy) 

content of the HM.66  

Borgo et al, in a 2015 study, assessed the impact of extended freezer 

storage (-18°C) on the concentrations of specific saturated and unsaturated fatty 

acids in HPDHM over 8 months, with measurements taken every 30 days.53 They 

reported upward, downward, and quadratic trends in several saturated and 

unsaturated fatty acids. However, there were major limitations to this work, 

including the fact that it involved a single sample from 1 donor, that two time 
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points were dropped because of inconsistent findings, and that the study did not 

describe how the sample was mixed during aliquoting, which may impact 

whether all sub-samples had similar fat content.  

In 2018, de Waard et al reported no significant changes in total fat or 

energy contents, during 8 months of frozen storage, but a significant increase in 

protein content (13.4% relative increase, p=0.037).60 This is in contrast to 

findings by Vieira et al in 2011, who reported a significant decrease in protein 

concentrations (3.9%, p<0.001) after 24 hours of frozen storage.49 In a 2013 

study by García-Lara et al, there was no significant change in total nitrogen, 

which represents protein and non-protein nitrogen compounds, in HPDHM during 

6 months of frozen storage.51  

The 2011 study by Vieira et al reported no significant change in lactose 

concentrations (p=0.427) after 24 hours of frozen storage.49 Similarly, de Waard 

reported stable carbohydrate composition over 8 months of frozen storage.60 In 

the 2013 study by García-Lara et al, there was a small, but significant decrease 

in carbohydrate content (defined as lactose plus oligosaccharides, -0.08 g/dL, 

1.7% relative decrease, p = 0.006).51  

Overall, these studies suggest that total fat in HPDHM decreases by 3 – 

8% between 24 hours and 180 days of frozen storage, including the 

nonsignificant reduction reported by de Waard et al. These decreases 

correspond to a significant reduction in energy content. Research reflects stable 
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carbohydrates during extended frozen storage and inconsistent effects on total 

protein in HPDHM. 

Effects on bactericidal capacity and bioactive factors 

As part of their 2018 study, Kanaprach et al assessed the effects of 

extended storage on the growth-promoting activity of fetal intestinal cells and the 

antimicrobial defenses against E. coli in raw and HPDHM.58 The authors reported 

that the antimicrobial activity remained constant in HPDHM for up to 3 months of 

frozen storage (34.0% ± 13.5, compared to 35.9% ± 14.2 at baseline), but 

exhibited a significant decline at 6 months (-76.1% ± 23.5, p<0.005; -323.8% 

change), indicating an increase in bacterial growth. The HPDHM exhibited no 

significant changes in growth-promoting activity.  

Effects on antioxidative capacity  

There is only one published study assessing the antioxidative capacity of 

HPDHM during extended storage under any condition. In 2016, Marinković et al 

found that Holder pasteurization and storage at -20°C for 30 days did not affect 

static oxidation-reduction potential (ORP) or total nonenzymatic antioxidative 

capacity. While Holder pasteurization caused a significant reduction in ascorbate, 

superoxide dismutase, and glutathione peroxidase activity in HM, frozen storage 

did not lead to any further changes.55  
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Effects on pH, acidity, and osmolality 

Two studies looked at changes in acidity in HPDHM under frozen storage 

conditions. In 1997, Lepri et al found that the concentration of L-lactate remained 

constant in HPDHM during the first 35 days of frozen storage, however after 70 

and 90 days, there was an 18% decrease (significance not assessed).47 Authors 

speculated that this decrease was due to degradation or a change in optical 

isomeric form. In a 2016 study, Vázquez-Román et al found that, from baseline to 

week 1 of storage at -20°C, there was a non-clinically significant decrease in the 

Dornic acidity (3°D to 2°D, p<0.05) of HPDHM, and this reading remained 

constant over the course of the 3-month study period.56 Dornic acidity is an 

alternative measure of acidity specific to milk. This method determines the total 

titratable acidity and results are expressed in Dornic degrees, with milk 

measuring ⩾8°D classified as too acidic for pasteurization.67 The authors 

hypothesized that the limited change in Dornic acidity of HPDHM, compared to 

significant changes in raw HM, was due to inactivation of lipase enzymes during 

pasteurization. 

Discussion 

Summary of findings 

It is impossibly difficult to condense the data presented in the existing 

literature into one tidy statement. There is very little overlap amongst these 

studies in regard to the components assessed, analytical methods used, and the 
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length of study period adopted. It would be safe to conclude that extended 

storage affects some aspects of HPDHM more than others.  

Under refrigerated storage conditions, the most studied component of 

unfortified HPDHM was bacterial growth. All studies reported no bacterial growth 

in refrigerated unfortified HPDHM, with the longest study duration of 9 

days.50,54,57  Importantly, two of these studies were designed to reflect feeding 

room practices where the refrigerator and the HPDHM bottles were opened 

multiple times a day.50,54 Not all studies reflected these relevant clinical 

conditions, which may have biased their results. There have been only single 

studies on other components in unfortified HPDHM, with no changes reported in 

total protein, lysozyme activity, sIgA activity, and gangliosides for 7 days or more 

in refrigerated conditions. While the growing body of evidence suggests that 

unfortified HPDHM may be safely stored in the refrigerator for longer than 24 

hours, there is limited information on the refrigerated storage of fortified HPDHM, 

with one small study reporting bacterial growth in one-third of samples mixed with 

a powder fortifier.50 Refrigerated storage of fortified HPDHM is an important area 

for future research given the ubiquitous use of HM fortifiers in the NICU setting.24 

Donovan et al studied fortified HM (raw and HoP) over 24 hours of refrigerated 

storage and reported that different fortifier types had the potential to change milk 

properties including pH and osmolality.23  
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Under frozen storage conditions, the most studied component of HPDHM 

was fat, with most studies reporting a small but significant decrease over periods 

of 24 hours to 8 months. The mixing and handling procedure for study samples 

was often not reported in the current body of research, which may bias findings 

about fat, given its propensity to separate from the aqueous layer. Additionally, 

many studies used milliliter volumes of samples, which may bias findings as it 

relates to fat, due to the high ratio of container surface area to sample volume 

compared to what occurs in multi-ounce bottles of HPDHM. Future studies, 

especially as they relate to fat, should describe mixing and handling protocols for 

HPDHM and test clinically relevant volumes. Carbohydrates appear to be stable 

during extended freezer storage, while findings for protein and other components 

have been inconsistent or only assessed in a single study, suggesting more 

research is needed.  

Limitations and future implications 

Several limitations were observed throughout the review process. Very 

few studies have been conducted that look exclusively at the effects of long-term 

storage (refrigerated or frozen) on HPDHM. Most address this issue in 

conjunction with other treatments and outcomes, and sometimes results specific 

to HPDHM were difficult to assess. Small samples size is another limitation, 

along with the use of samples from a single donor rather than samples from 

pooled HPDHM, which would more closely represent HPDHM found in the NICU. 
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Many studies were not designed to reflect clinical practices or typical storage 

volumes, which may bias results. 

While Holder pasteurization is employed by the vast majority of milk 

banks,32–34,41 future research should also focus on the storage of HM processed 

with techniques other than Holder, given the availability of other human milk 

products in the market. Differences in storage duration prior to processing should 

be accounted for in future studies, as the storage period prior to processing is 

also likely contributing to changes in milk characteristics. Study periods should 

extend to 12 months for frozen storage, and 4-7 days for refrigerated storage 

given the emerging evidence of microbial purity during these timeframes. Primary 

outcomes should include macro- and micronutrient retention, and the activity of 

bioactive proteins. Larger sample sizes and the use of pooled donor HM would 

give more power and relevance to study findings. It would fill a gap if future 

studies were to distinguish between preterm and term HPDHM. With the 

knowledge that the vast majority of NICUs utilize HM fortifiers,24 there is a great 

need to assess the stability of fortified HPDHM beyond 24 hours of refrigerated 

storage.  

Addendum: Fortification of Pasteurized Donor Human Milk 

A variety of commercial HMF are available. While powdered forms of HMF 

provide additional essential nutrients, their use in the NICU setting is discouraged 

due to increased risk of contamination.68 Liquid fortifiers are sterilized by heat-
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treatment or acidification and are the preferred formula for use in a NICU. 

However, the use of acidified HMF is associated with increased clinical 

observations of feeding intolerance, metabolic acidosis, and poor growth.69 In a 

2014 retrospective analysis, Thoene et al examined the incidence of acidosis, 

growth, and the clinical outcomes of NICU infants fed either a powdered or liquid 

bovine-milk-based HMF. The use of an acidified liquid bovine-milk-based HMF 

resulted in a greater incidence of metabolic acidosis (p=0.002) and slower growth 

rates (p ≤ 0.0001) compared to the powdered HMF.69 While there is some 

evidence that fortification improves short-term growth outcomes in preterm 

infants,21,30 this does not appear to hold true for long-term growth outcomes.  

There are a wide variety of commercial HMF on the market and over 90% 

of NICUs reported fortifying HM.24 However, there is a general lack of 

comparative data available on their ability to supply the recommended quantities 

of macro- and micronutrients for VLBW infants. Relatively little research has 

been published evaluating the retention of bioactive components, and macro- 

and micronutrient contents of fortified HM, and on the effects of fortification on 

the osmolality and acidity of HM.  

In their 2017 study, Koo and Tice compared the nutrient contents of 

multiple commercial human milk-based and bovine milk-based HMF (liquid and 

powder), as well as nutrient-enriched preterm infant formulas (PTF).70 According 

to their findings, commercial HMF are able to provide adequate quantities of 
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protein, fat, and carbohydrates. However, in this analysis they assumed 

“average” values for HM macronutrients, which does not reflect the large 

macronutrient variability that is well supported in the literature.28,71–73 At the same 

time, commercial HMF are drastically deficient in many essential micronutrients, 

yet contain others in excess. The use of PTF leads to exceptionally high intake of 

some micronutrients and does not compensate for those that are insufficient. The 

authors suggest that these inconsistencies are due to incomplete information on 

many of the currently recommended micronutrients at the time of these products’ 

original formulation and call for reformulation of HMF to provide more appropriate 

nutrient profiles. 

Effects of fortification on osmolality 

The use of HMF raises some concern when assessing the osmolality and 

acidity of HM. Kreissl et al found that fortified HM had 147% higher osmolality 

compared to unfortified. Protein supplementation increased osmolality by 23.5 

mOsm/L per 0.5-g step, with a maximum of 605 mOsm/L, and other therapeutic 

additives increased osmolality up to 868 mOsm/L, compared to unfortified HM at 

297 mOsm/L.74 Pasteurization appears to attenuate this increase in osmolality by 

20-30 mOsm/L (p<0.001). High levels of osmolality are associated with increased 

risk of feeding intolerance and NEC,75 and the AAP recommends a 450 mOsm/L 

maximum for infant formulas, although this suggestion is quite dated.76 In a 2017 

study, Donovan et al compared the effects of two different liquid bovine-milk-
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based fortifiers - neutral Similac HMF (SHMF) and acidic Enfamil HMF (EHMF) - 

on pH, osmolality, and lipase activity.45 Fortification with neutral SHMF resulted in 

significantly higher mean osmolality (525.48 mOsm per kg H2O SHMF vs 337.16 

mOsm per kg H2O EHMF, p<0.001) and lipase activity (95596.1 U SHMF vs 

88004.4 U EHMF, p=0.002). Fortification with acidic EHMF resulted in 

significantly higher concentrations of protein, fat, and calories compared to 

SHMF, and a significant decrease in pH (4.94 EHMF vs 6.32 SHMF, p<0.001). 

These findings suggest that the formulation of HMF has significant effects on the 

composition of HM as well as infant health outcomes.  

Effects of fortification on acidity  

Fresh HM typically has a pH range of 7.0-7.4.39 The acidification of HM 

results in cellular changes that impact several important components. In a 2013 

study, Erickson et al found that, when raw HM was acidified to pH 4.5 using citric 

acid, there was a 76% decrease in white cells (p=0.001), a 56% reduction in 

lipase activity (p=0.01), a 14% decrease in total protein (p=0.001), as well as a 

36% increase in creamatocrit (p=0.002) compared to control.39 Lipoprotein lipase 

activity decreases at <pH 5, which causes higher creamatocrit readings. This 

translates into more triglycerides and less free fatty acids, and results in partial 

fat malabsorption and lower caloric intake.39 Preterm infants are already at risk 

for inadequate energy intake. Acidified HM would only exacerbate this problem 

and may cause others, such as decreased buffering capacity, decreased protein 
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digestion, weight loss, and dehydration.39 EHMF, with a pH of 4.3, has been 

shown to decrease the pH of HM to 4.7 (significance not assessed).39 HM with a 

pH <4.5 would constitute a non-physiological feeding due to changes to its 

biological components and properties.39 These research findings suggest that 

some commercial HMF may reduce the bioactive properties of HM. 

Storage of fortified, pasteurized donor human milk  

As it stands, there is limited research addressing the storage of fortified 

PDHM. Donovan et al found that, over 24 hours of refrigerator storage, 

fortification status of both preterm and term HM and PDHM had a significant 

main effect on changes in mean protein (p<0.001), carbohydrate (p=0.02), pH 

(p=0.03), osmolality (p<0.001), and lipase activity (p<0.001). However, the 

authors concluded that it is unlikely that these changes are clinically relevant.45  

No studies have examined changes in the antimicrobial proteins of fortified 

PDHM during extended refrigerated storage. Therefore, it is the aim of this study 

to address that gap in the literature by evaluating the total protein content and 

activity of lysozyme and IgA in unfortified and fortified PDHM over 96 hours of 

refrigerator storage using three commercially available fortifiers. 
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CHAPTER III 

THE EFFECTS OF REFRIGERATED STORAGE TIME AND 
FORTIFICATION ON PASTEURIZED DONOR HUMAN MILK 

 
 
Background  

The use of pasteurized donor human milk (PDHM) is supported by the 

World Health Organization, the American Academy of Pediatrics (AAP), and the 

United States Surgeon General as an important strategy for improving health 

outcomes in premature infants when their mother’s milk is not available.2,20,77 A 

recent Cochrane Review determined that preterm infants fed infant formula had a 

2.77 relative risk (95% CI 1.40 – 5.46) of developing necrotizing enterocolitis 

(NEC), a life-threatening gastrointestinal disorder, compared to infants fed 

PDHM,21 while a report from the Carolina Global Breastfeeding Institute 

estimated a healthcare savings of $2.90 for every $1.00 spent on PDHM.17 

The use of PDHM in NICUs throughout the United States’ is on the 

rise.24,38,78 To ensure the safety of PDHM, HMBANA and other international milk 

bank networks have issued guidelines, including appropriate storage 

temperatures and durations. Current best practices for the safe storage and 

handling of PDHM state that thawed milk should be stored in the refrigerator and 

should be used within 24 hours,32 and the maximum frozen storage (-20°C) time
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for PDHM is 3-6 months,32–36 or one year after the earliest pumping date of milk 

within the pool.37 Evidence is emerging that PDHM remains free of microbial 

growth during refrigerated storage of 4 days during routine clinical use, 

suggesting an opportunity to extend the expiration date and reduce unnecessary 

waste of a costly and valuable resource.50,54,57,79,80 Affordability was the most 

frequently cited barrier of non-use in a 2013 survey of 183 Level 3 NICUs.38 

Research to evaluate the feasibility of extending PDHM expiration dates has the 

potential to reduce cost barriers associated with a short shelf-life and product 

waste.  

While bacteria levels of PDHM are one marker of product quality and 

safety, additional research is needed regarding the retention of nutrients and 

immune factors in PDHM during extended refrigerated storage in order to inform 

evidence-based guidelines on appropriate clinical use. In addition, it is now 

common practice in the NICU to fortify mother’s milk and PDHM with human milk 

fortifiers (HMF) to increase protein and energy content to improve growth rates, 

therefore future storage studies should evaluate both fortified and unfortified 

PDHM. Currently, both bovine-milk-based and human-milk-based HMF are 

available in the United States. 

While the use of HMF has become standard practice,24 the effects of 

refrigerated storage time on the retention of macronutrients and other bioactive 
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components in fortified HM remain largely unstudied. This is an important area of 

research and major gap in the literature that this study aims to address. 

The first aim of this study is to compare total protein content, lysozyme 

activity, and immunoglobulin A (IgA) activity in unfortified PDHM and PDHM 

fortified with three commercially available fortifiers at baseline. The bioactive 

proteins in HM help build the framework of an infant’s innate immune system and 

are susceptible to partial degradation during heat-sterilization.26 Lysozyme and 

IgA were selected for this study because of their antimicrobial properties82 and 

their partial retention in PDHM. The second aim of this study is to evaluate 

changes in total protein, lysozyme and IgA activity over 96 hours of refrigerated 

storage. A 96-hour window was selected as the maximum amount of time a 

hospital might take to use a standard 4 oz bottle of PDHM when starting preterm 

infants at a low feeding volume (25-55 mL/kg/day) and advancing as tolerated.81 

Both bovine- and human-milk-based fortifiers contribute additional protein and it 

can therefore be hypothesized that total protein content will increase in all 

fortified PDHM samples compared to unfortified. As bovine-milk-based fortifiers 

contain limited lysozyme and IgA, it can be hypothesized that only the human-

milk-based fortifier will cause an increase in these antimicrobial proteins. Acidic 

fortifiers have been shown to reduce the pH of PDHM39 and changes in pH can 

impact protein stability; therefore, we hypothesized that PDHM fortified with 
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acidic Enfamil HMF will show greater losses of lysozyme and IgA compared to 

neutral Similac HMF, human-milk based Prolact+8, and unfortified. 

Methods 

PDHM was acquired through a HMBANA milk bank (The New York Milk 

Bank, Hastings-on-Hudson, NY) that employs Holder pasteurization. Twelve 

unique batches were subject to 4 treatments: 1) unfortified PDHM (CONTROL) 

served as the control; 2) fortification with a liquid, acidic, bovine-milk-based 

fortifier manufactured by Mead Johnson (F-ACID) and mixed to 24 kcal/ounce; 3) 

fortification with a liquid, neutral, bovine-milk-based fortifier manufactured by 

Abbot (F-NEUT) and mixed to 24 kcal/ounce; and 4) fortification with Prolact+8 

(F-HUM) manufactured by Prolacta Bioscience, a liquid, neutral, human-milk-

based fortifier which provides an estimated 29 kcal/ounce when mixed to 

manufacturer’s instructions. Details of the nutrient content of each fortifier are 

found in Table 5 and the predicted macronutrient content of HM when mixed per 

instructions are found in Table 6. These estimates assume an average nutrient 

content of mature HM and do not take into account the variability that has been 

documented in the literature. 
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Table 5. Nutrient Content of Study Human Milk Fortifiers 

 Enfamil (F-ACID)83 Similac (F-NEUT)84 Prolact+8 (F-HUM)85 
Volume of 
fortifier (mL) 

5 5 40 

Volume of 
human milk 
(mL) 

25 25 60 

Fortifier protein 
(g/serving) 

0.55 0.35 2.4 

Fortifier fat 
(g/serving) 

0.575 0.27 3.6 

Fortifier 
carbohydrate 
(g/serving) 

0.25 0.81 3.6 

 
 
Table 6. Predicted Macronutrient Content of Unfortified and Fortified Human Milk 
When Mixed with Study Human Milk Fortifier 
 

 Average 
(UNFORT)86 

Enfamil (F-ACID)83 Similac (F-NEUT)84 Prolact+8 (F-
HUM)85  

Protein 
(g/100mL) 

1 2.7 2.0 3.0 

Fat (g/100mL) 3.5 4.8 3.8 5.7 
Carbohydrate 
(g/100mL) 

7 6.7 8.5 7.8 

Note: F-ACID and F-NEUT were mixed to 24 kcal/oz; F-PRO was mixed to 29 
kcal/oz. Values were calculated from the manufacturers’ websites using mixing 
instructions and based on the nutrient profile of “average” HM in control. 
 
 

Samples were housed under refrigerated storage conditions 

(approximately 4°C) for a total of 96 hours and were analyzed for the activity of 

lysozyme and IgA, and protein content. Fortifications and storage of samples 

were conducted at Westchester Medical Center (Vallhala, NY) and sample 

analyses were conducted at the University of North Carolina at Greensboro 

(UNCG) (Greensboro, NC).  
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Sample preparation  

Fortification occurred in the hospital feeding room by a trained feeding 

technician. Each unique batch of PDHM was mixed according to the protocol 

outlined here. CONTROL, as the control, had no additional nutrients added to the 

sample. F-ACID was fortified with 1 vial of Enfamil HMF (5 mL fortifier plus 25 mL 

HM), F-NEUT was fortified with 1 envelope of Similac HMF (5 mL fortifier plus 25 

mL HM), and F-HUM was fortified with Prolact+8 HMF (40 mL fortifier plus 60 mL 

HM plus). Once mixed, all samples were stored in a clean container labeled with 

the batch number and a unique letter code corresponding to treatment type. With 

the exception of the feeding technician, all researchers were blinded to treatment 

type until after all samples were analyzed and all data were collected.  

An initial 5 mL aliquot from each treatment group was stored in the 

refrigerator in a clean, glass container. Time 0 began once the sample had been 

fortified and placed in the refrigerator. Samples were stored in the refrigerator 

throughout the study and a daily log of refrigerator temperatures were kept. 

Every 24 hours, each 5 mL aliquot was opened, and 1 mL of milk was removed 

using a sterilized pipette and transferred to a clean, glass bottle. The sample was 

resealed and returned to the refrigerator. The 1 mL aliquot was labeled with the 

storage time (0, 24, 48, 72, 96 hours) and immediately stored at -20°C in a 

specimen bag that contained the batch number and a unique letter code that 

identified the treatment group. When the 96-hour sample was added to the 



 37 

specimen bag, the bag was labeled with the date on which the last sample was 

collected. When all 12 batches had been processed, they were packaged on dry 

ice and shipped from Westchester Medical Center to the Nutrition Department at 

UNCG (Greensboro, NC) for analysis. Eleven of the 12 unique batches 

generated 20 samples, with 4 treatments at 5 time points, and the twelfth 

generated 15 samples, with 3 treatments at 5 time points, for a total of 235 

samples delivered for analysis. Due to the missing treatment from batch 1, data 

points from analyses of this batch were omitted. This left a total of 220 samples 

included in the results data. 

In the lab at UNCG, samples were thawed at room temperature and with 

the help of body heat, being held in the hands and pockets of the lab technician, 

vortexed for approximately 3 seconds, divided into 125µL aliquots, and then 

immediately refrozen at -20°C until analysis. Samples were stored frozen for 

between 4 and 15 months, and similar thawing techniques were employed prior 

to sample analysis. 

Sample analysis 

For each sample collected, IgA activity, lysozyme activity, and total protein 

content were analyzed. IgA activity was measured by enzyme-linked 

immunosorbent assay (ELISA), which has previously been described in 

detail.87,88 E. coli acquired from the STEC Center (Michigan State University, 

East Lansing, MI) were used to prepare an antigen for coating the wells of a 
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microplate. IgA antibodies from HM bind to the E coli antigens, and also bind with 

anti-human-IgA antibody labeled with Horseradish peroxidase (HRP) (part 

number A0295, Sigma Aldrich, St. Louis, MO). 2,2’-azinodi-3-

methylbenzothiazoline-6-sulfonic acid (ABTS) (part number A1888, Sigma 

Aldrich) is used as a colorimetric substrate. Absorbance is measured at 405nm 

via spectrophotometry and IgA activity measures the concentration of active IgA 

in the milk that is able to bind E. coli antigens. (Synergy HT, Bio-Tek Instruments, 

Winooski, VT) 

Lysozyme activity was analyzed by changes in turbidity to a microbial 

suspension of Micrococcus lysodeikticus (part number NC9310237, Fisher 

Scientific, Hampton, NH) at 450nm over the course of 7 minutes, measured by 

spectrophotometry.89,90 (Synergy HT, Bio-Tek Instruments, Winooski, VT) 

Total protein was measured by the BCA method (part number PI23225, 

Fisher Scientific, Hampton, NH).91 This assay measures the reduction of Cu+2 by 

the acidic side chains of HM proteins and the resulting color change, induced by 

bicinchoninic acid (BCA), which exhibits a strong absorbance at 562nm. HM was 

diluted 1:20 with deionized water and analyzed via spectrophotometry (Synergy 

HT, Bio-Tek Instruments, Winooski, VT) alongside known bovine serum albumin 

(BSA) standards.  
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For each control sample, all corresponding fortified samples and all time 

points (4 treatments x 5 time points = 20 samples total) were measured on the 

same 96-well plate to eliminate interassay variability.  

Statistical analysis  

Statistical analysis was performed using SAS software 9.4 Enterprise 

Edition (SAS Institute, Inc., Cary, NC). Descriptive statistics were computed for 

the main effects of treatment and time. Repeated measures were assessed using 

the mixed procedure to determine the effects of treatment, time, and an 

interaction between treatment and time. Main effects that were statistically 

different were evaluated using an ANOVA with a Tukey’s adjustment for multiple 

comparisons. P-values were set at 0.05.  

Results 

Each analytical test was performed in triplicate and the resulting average 

CV for assays were as follows: 1) total protein, 2.9%; 2) lysozyme activity, 9.4%; 

and 3) IgA activity, 2.3%. For IgA activity, all R2 values were >0.996, and for 

lysozyme, all R2 values were >0.979. Using the repeated measures analysis, 

there was a highly significant impact of treatment (p < 0.001 for all dependent 

variables). There was no effect of time (p > 0.7 for all variables) and there was no 

interaction between treatment and time (p > 0.9 for all variables).  
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Effect of fortification at baseline on pasteurized donor human milk  

Descriptive statistics by treatment at baseline are summarized in Table 7 

and by time in Table 8. The F-NEUT treatment group was missing in Sample 1. 

Descriptive statistics were calculated for baselines means and standard 

deviations using both all 12 samples and 11 samples, dropping Sample 1. It was 

observed that none of the significant conclusions changed, therefore all data 

presented represent analysis using only the 11 samples where all treatments and 

time points were included. 

 
Table 7. Descriptive Statistics of Treatment at Baseline (time=0) 

 Control 
(UNFORT) 

Enfamil (F-ACID)  Similac (F-NEUT)  Prolact+8 (F-HUM)  

Protein 
concentration 
(g/dL) 

1.3 (0.1)a 2.0 (0.2)b 2.2 (0.1)b 2.5 (0.1)c 

Lysozyme 
activity 
(units/mL) 

5270 (890)a 3340 (1660)b 4530 (1150)c 6230 (500)d 

IgA activity 
(mg/dL) 

80.3 (22.4)a 70.0 (12.3)b 89.5 (18.1)a 144.4 (16.1)c 

Note: Data represent means and standard deviations. Differences between 
groups were assessed by ANOVA analysis with a Tukey test for multiple 
comparisons. Entries in the same row with different superscripts are statistically 
different (p<0.05).  
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Table 8. Descriptive Statistics by Time 

 Protein (g/dL) Lysozyme activity (units/mL) IgA activity (mg/dL) 
Hour 0 2.0 (0.5) 4840 (1520) 96.0 (33.7) 
Hour 24 1.9 (0.5) 4920 (1570) 97.3 (33.4) 

Hour 48 2.0 (0.5) 4820 (1490) 97.6 (35.1) 

Hour 72 1.9 (0.5) 4830 (1560) 97.8 (36.0) 
Hour 96 1.9 (0.5) 4930 (1700) 97.8 (36.3) 

Note: Data represent means and standard deviations. There were no statistically 
significant differences between groups (p>0.05). 
 

All three fortifiers significantly increased the total protein concentration of 

PDHM (F-ACID 2.0 g/dL, F-NEUT 2.2 g/dL, F-HUM 2.5 g/dL, p<0.05) compared 

to control (1.3 g/dL). Total protein was not significantly different between F-ACID 

and F-NEUT treatments (p=0.15). F-HUM treatment group had a significantly 

higher protein concentration compared to all other treatments (p<0.0001). (Figure 

1) 
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Figure 1. Effect of Fortification on Protein Concentration at Baseline  
 

 
Note: Distributions with the same letter are not statistically different (p>0.05) 
using an ANOVA analysis with a Tukey test for multiple comparisons. In the box 
and whisker plots, the box spans the interquartile range, the line represents the 
median, the diamond represents the mean, and the top and bottom lines extend 
to the highest and lowest observations. 
 
 
 Lysozyme activity was significantly different in all treatment groups 

(p<0.0001). Fortification with F-ACID resulted in a significant decrease in 

lysozyme activity compared to all other treatments (p<0.0001), with a 37% 

reduction compared to control. Lysozyme was undetectable at all time points in 

the F-ACID treatment group of Sample 5. Mean lysozyme activity was 

a 

b 

b 

c 
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significantly higher in F-HUM group compared to all other treatments (p<0.0001), 

with an 18% increase compared to control. (Figure 2) 

 
Figure 2. Effect of Fortification on Lysozyme Activity at Baseline 

 
Note: Distributions with the same letter are not statistically different (p>0.05) 
using an ANOVA analysis with a Tukey test for multiple comparisons. In the box 
and whisker plots, the box spans the interquartile range, the line represents the 
median, the diamond represents the mean, and the top and bottom lines extend 
to the highest and lowest observations. 
 

IgA activity was not significantly different between F-NEUT and control 

samples (p=0.23). There was significant decrease in mean IgA activity with F-

b 
c 

d 

a 
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ACID treatment (p<0.0001) compared to all other treatments, with a 13% 

reduction compared to control. There was a significantly increase in mean IgA 

activity in F-HUM treatment group (p<0.0001) compared to the other treatments, 

with an 80% increase compared to control. (Figure 3) 

 
Figure 3. Effect of Fortification on IgA Activity at Baseline 
 

 
Note: Distributions with the same letter are not statistically different (p>0.05) 
using an ANOVA analysis with a Tukey test for multiple comparisons. In the box 
and whisker plots, the box spans the interquartile range, the line represents the 
median, the diamond represents the mean, and the top and bottom lines extend 
to the highest and lowest observations. 
 
 

b 

a 
a 

c 
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Effect of storage time on pasteurized donor human milk 

Neither unfortified nor fortified PDHM samples showed any significant 

changes over 96 hours of refrigeration. Time had no significant impact on protein 

concentration or the activity of lysozyme or IgA in any of the samples (p>0.97 for 

all variables). 

Interaction between time and treatment  

 There is no significant interaction between fortification type and storage 

time (p>0.7 for all variables).  

Discussion 

There is limited evidence regarding the effects of storage on fortified 

PDHM.40 In this study, 96 hours of refrigerated storage had no significant impact 

on the total protein concentration and the activity of antimicrobial proteins in 

fortified PDHM. Regarding differences among treatments at baseline, fortification 

with commercial HMF resulted in a 62 – 103% increase in protein concentration 

compared to control. While this result is unsurprising, it is important to 

acknowledge that these products indeed do what they claim to do, which is to 

boost the protein content of HM. Other studies have described similar increases. 

Donovan et al reported significant, although somewhat greater, increases in 

protein concentrations of both MOM and PDHM fortified with Enfamil and Similac 

HMF compared to unfortified.45  
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Similarly, as it was the only HM-based HMF included in the study and the 

only treatment innately containing lysozyme and IgA, it is no surprise that only F-

HUM treatment affected significant increases in both lysozyme and IgA activity. 

Fortification with F-HUM also resulted in a significantly higher protein 

concentration compared to the other HMF. This is very likely due to the fact that 

these samples were mixed to 29 kcal/oz compared to the other treatments, which 

were mixed to 24 kcal/oz.  

At baseline, PDHM fortified with F-ACID exhibited significant declines in 

both lysozyme and IgA activity compared to all other treatments. Anytime acidity 

is increased, the risk for deactivating and denaturing proteins increases. It is 

quite likely that this is the case here. While the pH of the PDHM in this study was 

not measured, Donovan et al found that fortification with acidic Enfamil HMF 

resulted in a pH of 4.96 (0.18 s.d.) in preterm PDHM and a pH of 5.10 (0.25 s.d.) 

in term PDHM.45 This would have been an interesting outcome to evaluate in 

relation to the decline in enzymatic activity seen exclusively in the F-ACID 

treatment group.  

Study limitations 

This study was not without its limitations. Regarding the milk samples, 

several issues were encountered. Throughout the aliquoting process, one 

treatment group within each sample was observed to contain a relatively large 

amount of white “grit” or precipitate. Researchers suspected this to be the F-
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ACID treatment group due to previous research findings implicating the 

precipitation of casein micelles in an acidic medium.39 A modified thawing 

technique was employed in order to improve homogenization and the accuracy of 

spectrophotometry readings of these samples, which was of particular concern 

regarding the changes in turbidity assessed in the analysis of lysozyme activity. 

This involved thawing samples in a shaking water bath at 35°C and 80 rpm for 60 

minutes to help break up the precipitate matter. Several samples were 

reanalyzed once this thawing technique was established. Once unblinded to 

treatment group, researchers confirmed that the presence of precipitate did 

correspond to fortification with acidic Enfamil HMF.  

In order to aliquot and complete analyses in the lab at UNCG, the PDHM 

samples underwent four freeze-thaw cycles, which is two more than traditionally 

encountered in a clinical setting.22 Each freeze/thaw cycle brings with it the risk of 

destabilized casein micelles and the altered quaternary structure of whey 

proteins, which can result in the formation of precipitates.62 It is possible that this 

phenomenon may have contributed to the “grit” encountered in the F-ACID 

group, which particularly impacted the analysis of lysozyme, and may have 

interfered with homogenization and spectrophotometry readings. That being said, 

all samples were subject to the same number of freeze-thaw cycles, which allows 

for comparison across the study.  
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In the hospital feeding room, the HMF Prolact+8 was mixed to 29 kcal/oz, 

while both the Enfamil and Similac HMF were mixed to 24 kcal/oz. The human-

milk-based fortifier used in this study was a higher calorie and protein fortification 

than originally planned due to clinical needs in the hospital during the study 

period, and it would be expected to provide more protein than the bovine-milk-

based fortifiers. This explains the average higher protein concentrations 

measured in this treatment group compared to the others. However, it is also 

likely that, had the human-milk based HMF been mixed to 24 kcal/oz like the 

Enfamil and Similac HMF, the levels of lysozyme and IgA activity would still have 

been significantly higher than all other treatments, due to the fact that only 

Prolact+8 contained meaningful quantities of these antimicrobial proteins. 

Sample group 1 contained only three sets of treatments when received at 

UNCG for analysis. The F-NEUT treatment was not included in this sample 

group. Baseline means were calculated using all 12 samples and only 11 

samples. There was no significant difference between the results, therefore data 

from sample group 1 was omitted. 
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CHAPTER IV 

EPILOGUE 
 
 
Challenges 

As is the case with most research projects, this study was met with a 

number of challenges. During the aliquoting process, it was observed that one 

treatment group within each sample contained a relatively large quantity of white 

“grit” or precipitate. It was suspected that these samples comprised the F-ACID 

treatment group, as the precipitation of casein micelles has been seen in acidic 

mediums.39 There was some concern that the presence of this precipitate would 

interfere with spectrophotometry readings, particularly regarding the changes in 

turbidity assessed in the analysis of lysozyme activity. Researchers attempted to 

“break up” the precipitate by modifying the thawing technique employed for this 

treatment group prior to analysis. Samples were thawed in a shaking water bath 

at 35°C and 80 rpm for 60 minutes. Once all analyses were complete and 

researchers were unblinded to treatments, researchers’ suspicions were 

confirmed, and it was revealed that the “gritty” samples were indeed all fortified 

with acidic Enfamil HMF.
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Sample 1 was missing a fourth treatment group, which turned out to be 

the F-NEUT treatment. Fortunately, after calculating means and standard 

deviations for data sets containing all 12 and only 11 samples, it was determined 

that the results were not significantly different; therefore, only data on the 11 

complete samples were included in the analysis.  

Gaps in the Literature and Future Research Implications  

In terms of published studies evaluating the longevity of PDHM post-

fortification, the body of research is lacking indeed. Research regarding the 

microbial purity of fortified PDHM during extended refrigerator storage would 

inform the feasibility of extending the current 24-hour storage time limit. If 

bacterial growth remained at a minimum, the results of the present study would 

be reinforced and provide justification for the extension of the current limited 

timeframe. There are no published studies assessing the effects of fortification on 

HM that has been pasteurized using methods other than Holder, nor is there 

research evaluating the impact of fortification on the micronutrient content of 

PDHM. 

Very few studies have specifically evaluated the impact of long-term 

refrigerated or frozen storage of PDHM. Many address long-term storage in 

combination with other pasteurization methods, treatments, and outcomes, which 

can make the results specific to storage difficult to assess. Additionally, small 

sample size and the use of milk samples from a single donor rather than samples 
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of pooled PDHM, are common limitations. In order to more accurately represent 

PDHM found in the NICU, future studies should utilize pooled milk samples in 

clinically-relevant volumes and be designed to emulate clinical practices, with the 

opening and closing of refrigerators and containers. 

Conclusion 

At baseline, all treatments effectively increased the protein concentration 

of PDHM when mixed per the manufacturer’s instructions. Only treatment with F-

ACID produced a significant decrease in the activity of lysozyme and IgA. HM-

based HMF Prolact+8 affected a significant increase in lysozyme and IgA activity. 

Time had no significant impact on any of the samples, and there was no 

significant interaction effect between time and treatment. Overall, fortified and 

unfortified PDHM are equally stable over 96 hours of refrigerated storage. It 

appears the type of HMF has a greater impact on fortified PDHM than storage 

time. 
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