
SAYEDAHMED, SAED, M.S. Predicting Network Anomalies with Deep Sequence
Analysis. (2019)
Directed by Dr. Somya D. Mohanty. 52 pp.

Network attacks can be very costly to victims and due to the complexities in

they disparate types of attacks they are also hard to detect/predict. Understanding

the underlying network traffic is critical in the developing automated solutions which

can prevent such attacks in future. Within our study, we develop data-driven machine

learning approaches to detect and predict such attacks based on the traffic behavior.

Our study compares the differences in detection versus prediction of attacks/network

anomalies where we compare traditional machine learning models for detection to the

developed approach of leveraging network traffic as sequences of states in order to

predict future network behavior. We also provide a comprehensive comparison of the

different approaches taken with a wide range of feature-sets, hyperparameters, and

variables evaluated for detection and prediction accuracy.

PREDICTING NETWORK ANOMALIES WITH DEEP SEQUENCE ANALYSIS

by

Saed SayedAhmed

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2019

Approved by

Committee Chair

APPROVAL PAGE

This thesis written by Saed SayedAhmed has been approved by the following

committee of the Faculty of The Graduate School at The University of North Carolina

at Greensboro.

Committee Chair
Somya D. Mohanty

Committee Members
Jing Deng

Stephen Tate

Date of Acceptance by Committee

Date of Final Oral Examination

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Somya D. Mohanty for supervising this thesis. His

guidance and support have been very helpful, and it allowed me to learn a lot,

improve my skills, and add up to my professional experience. I would like to thank

Dr. Jing Deng and Dr. Stephen Tate for taking the time to read the thesis and be a

part of the committee.

iii

LIST OF TABLES

Page

Table IV.1.NetFlow Feature-Set . 27

Table IV.2.Pcap Feature-Set . 28

Table IV.3.Window Label Classes Distribution Among the Different Datasets 28

Table IV.4.Random Forest and Gradient Boosting Hyperparameters 30

Table IV.5.Evaluation Metrics . 33

Table V.1. F1-Score for Attack Detection using Netflow Data 37

Table V.2. F1-Score for Attack Detection using Pcap Data 38

v

LIST OF FIGURES

Page

Figure III.1.A Decision Tree that Decides if you Can Go Out 10

Figure III.2.A Feedforward Neural Network 16

Figure III.3.A Recurrent Neural Network . 18

Figure III.4.An LSTM Unit . 19

Figure III.5.A GRU Unit . 21

Figure IV.1.Our Methodology’s Flow Diagram 23

Figure IV.2.A 1-Window Sequence Used to Predict Self-State. 26

Figure IV.3.A 2-Window Sequence Used to Predict State 2 Steps Ahead. . . . 26

Figure IV.4.Our Neural Network Architecture 31

Figure IV.5.A Confusion Matrix . 33

Figure V.1. Best Netflow Model - Top 10 Important Features 40

Figure V.2. Best Pcap Model - Top 10 Important Features 41

Figure V.3. Netflow 0.1-second Window RNNs Performance 42

Figure V.4. Netflow 1-second Window RNNs Performance 43

Figure V.5. Netflow 10-second Window RNNs Performance 43

Figure V.6. Pcap 0.1-second Window RNNs Performance 44

Figure V.7. Pcap 1-second Window RNNs Performance 44

Figure V.8. Pcap 10-second Window RNNs Performance 45

Figure V.9. Netflow Overall RNNs Performance 46

vi

Figure V.10.Pcap Overall RNNs Performance 46

Figure V.11.GRU Pcap 1-second Window Performance 47

CHAPTER I

INTRODUCTION

Malicious network behavior can be costly. It can lead up to a degradation

in service availability, losing access to sensitive information, and may compromise

privacy. With the rise of cloud services, the Internet of Things (IoT), and electronic

government, it is essential to identify malicious behavior in a network environment to

prevent such damages that can affect a wide range of users.

Machine learning techniques can help us develop systems that try to model

malicious network behavior and detect it. It has already been utilized to solve such a

problem [LWLS06] [ZZH08]. It can understand patterns and infer relationships better

than the old rule-based techniques. Also, they are lightweight approaches that can

keep learning new kinds of traffic actively. This makes them easily deployable and

future-proof in many environments.

A common problem with traditional machine learning models that they cannot

deal with sequential data representation. Sometimes this prevents the model from

understanding the full contextual picture and may lead it to miss some information.

Also, this limits them to being reactive approaches for attack detection.

Traffic data can be represented as a sequence of packets, connections, or time

windows. A packet is the atomic representation of traffic data. A single connection

is a group of a sequence of packets. While time windows can be an aggregation of

either one over a specified period, therefore, the captured traffic can be modeled as

a sequence of one of those representations. This can potentially help in not only in

detecting and modeling malicious behavior in a network, but also in predicting it.

1

However, intuitively, traffic data over time can be thought of as a sequence

of states that the network undergoes. Understanding these state changes which

occur during normal operation of a network versus an attack/anomalous scenarios can

provide essential information about predicting such events in the future. In comparison,

traditional machine learning techniques are not suited for sequential data, as they

interpret each input sample independent from previous ones. Within our approach we

build and develop prediction architectures based on recurrent neural networks which

leverage the sequential nature of states in network traffic. Such architectures can

be trained to keep only the necessary state change information in order to predict

the future events in a network. This makes them a good alternative for traditional

machine learning techniques.

I.1. Contribution

The main contribution of this work is the study of different techniques when

using machine learning and recurrent neural networks to detect and predict malicious

traffic in network environments. In particular, we focus on those aspects:

1. We study the effect of different traffic representations on model performance.

The study evaluates a wide range of network features and different aggregations

strategies for feature engineering in network data.

2. We study the performance of traditional machine learning techniques in detecting

malicious traffic behavior. In addition, we interpret the best models and explain

them in order to feed the prediction methods.

3. We develop sequence modeling architectures based on neural networks to predict

malicious behavior in the various network attack scenarios.

2

I.2. Thesis Content

This thesis is organized as follows: Chapter 2 introduces the necessary back-

ground for machine learning and deep learning. Chapter 3 provides the related

literature to this research and explains some drawbacks in them. Chapter 4 explains

the methodology and the utilization of the different techniques in solving the problem.

Chapter 5 presents the results. Finally, Chapter 6, concludes and proposes future

work and potential improvements.

3

CHAPTER II

RELATED WORK

In this chapter, we provide relevant literature for this thesis. We provide related

work using machine learning to model network attacks and the related work to model

traffic with recurrent neural networks.

Machine Learning has been widely used to detect or predict attacks in network

environments [LWLS06] [SP14] [STG+11]. The common approach is to do a binary

classification (normal vs. attack) for detection using different machine learning

approaches. For instance, in [LWLS06], they use probabilistic approaches, such as

Bayesian Networks and Naive Bayes classifiers, to detect attacks and identify malicious

hosts. They also use a decision tree to address the same problem. Also, [SP14] goes a

little bit deeper and uses Logistic Regression and Support Vector Machines (SVMs).

In their approach, they group traffic either by fixing the window length or the number

of packets in a window. However, they stick to detecting attacks but not predicting

them, and they do not apply sequence modeling techniques. Moreover, in [ZZH08],

they use Random Forests to model traffic behavior patterns and indicates an ongoing

attack. This allowed them to catch malicious behavior and explain why it happens.

In the last several years, neural networks became easier to implement and train

due to the hardware and software rise. Graphics Processing Units (GPUs) became

much powerful and ideal for neural networks training. While easy-to-use and regularly-

maintained libraries, packages, and Application Programming Interfaces (APIs) made

it even more straightforward to do the job. As a result, more research started adopting

feedforward neural networks, RNNs, LSTMs, and GRUs. In [AS18] and [XSDZ18],

4

they utilize recurrent neural networks (RNNs), Long-Short Term Memroy (LSTMs),

and Gated Recurrent Units (GRUs) for sequence modeling. However, they only try to

detect the attacks and malicious traffic but not predict it in advance. Furthermore,

[KKTK16] utilize LSTMs to model sequences, but use one fixed sequence length in

their experiments.

In [DAF18], they use machine learning and a feedforward neural network to

detect and predict attacks. However, there is no sequence modeling done and the

window length is fixed as well. Also, they do not provide a reasoning behind the

limited number of features they engineer. This can potentially miss some information

or make the model focus on using some features that are not as important as what

can be obtained.

In [RRD18], they use LSTMs to predict several kinds of attacks. Though, they

tried one sequence length and did not vary it across their experiments. They also

predicted one step ahead but not more than that. Their experiments did not include

neural networks with RNNs or GRUs, despite LSTMs not performing good in all the

scenarios, especially with DoS attacks. Finally, to evaluate their baseline and LSTM

models, they used one evaluation metric, which can be misleading sometimes.

In general, most of the approaches achieved excellent performance. However,

those lack trying different window lengths or different sequence lengths. Also, all of

them tend to do a binary classification between normal and attack traffic. Besides, a

few tried to predict the attack, and to the best of our knowledge, none tried to predict

more than one step ahead.

5

CHAPTER III

BACKGROUND

III.1. Dataset

In our analysis, we utilize the CTU University Botnet Dataset CTU-13

[GGSZ14]. The dataset includes real-time data captured within the university network,

which includes normal, background, and malicious traffic. Normal traffic consists of

packets from trusted sources, whereas botnet-driven attacks cause malicious traffic.

The background traffic is unknown connections/packets which were not annotated.

The authors developed a virtualized network mapped onto Microsoft Windows XP

systems, where 13 different types of botnet attacks were conducted across different

time intervals. Each virtual machine was also bridged to the university network in

order to create a cohesive dataset that included real-world normal/background traffic.

Each attack is executed on a separate network application protocols. In this

research, we choose to study the Distributed Denial of Service (DDoS) attack on

Internet Relay Chat (IRC) protocol, and spam attacks over the same protocol. DDoS

is an attack that runs from multiple client/bots which are actively trying to flood a

server with bogus requests in order to overwhelm the computation on it. The goal

of this flooding mechanism is to push the server to deny establishing connections or

allocating resources to clients. Spam attacks are messages containing malicious links

that can lead to a similar result depending on its content. On the other hand, IRC

protocol is an application layer protocol used for text-based communication.

For each scenario, the traffic data is stored in two formats, Pcap, and NetFlow.

Pcap is the standard network packet capture format. Each observation in this format

6

represents a raw network packet. On the other hand, NetFlow is a widely-used standard

for network traffic flow statistics. In this format, an observation corresponds to a

connection between two entities in the network, which conveys aggregated statistics

over multiple packets.

III.1.1. Pcap Format

As the standard packet capture format, Pcap captures packets in their raw

IP packet format. The raw format allows for a full capture of network traffic which

includes the header and payload. In the case of CTU-13, to protect the privacy of users,

only the Ethernet header information was captured, which included TCP, UDP, or an

ICMP header. The Ethernet header includes a source MAC address, a destination

MAC address, and an Ethernet type field. The MAC addresses represent the physical

addresses of the endpoints, and the type represents the protocol used next, which is

IPv4 in all of this dataset.

An IPv4 header consists of multiple fields, which include — a total length

field, a flags field, a fragment offset, a time-to-live (TTL) field, a protocol field, a

header checksum field, and endpoints IP addresses. The total length field holds the

total length value of the header and data. The flags field determines and controls

fragmentation. The fragment offset is measured in 8-byte blocks to represent the offset

from the first packet in the sequence of fragments. The TTL field determines the

lifetime of the packet in a unit of hop count (the number of routers it can go through).

The protocol field represents the protocol used next within the packet. In this dataset,

it can only be TCP, UDP, or ICMP. The header checksum is used to check the

correctness of the IPv4 header, as it may have been changed in transmission. Finally,

the IPv4 source and destination addresses are represented in two independent fields

to identify the sender and the receiver of a packet. Also, every packet is timecoded.

7

III.1.2. NetFlow Format

The NetFlow is a network protocol (developed by Cisco) used to monitor

network traffic and collect information about it. It is less comprehensive than Pcap

and includes only aggregated information of the connection-level between two entities.

Within this format, a record/observation represents a timecoded connection

between two endpoints. Each connection has — duration field, a protocol field,

endpoints IP addresses, endpoints port numbers, a direction of transmission field,

endpoints type-of-service (TOS), a total packets field, a total bytes field, and a source

byte field. The duration field represents the number of milliseconds the connection

lasted. The protocol, endpoint address, and port number fields are the same as the

aforementioned in Pcap format. TOS field specifies the quality of the connection,

which includes multiple factors such as speed, precedence, reliability, and throughput.

The total-packets field shows the number of sent and received packets between the

two endpoints. The total bytes field represents the total size of the sent and received

packets. Lastly, the total-source bytes field contains the number of bytes sent from

the source address.

III.2. Machine Learning Algorithms And Models

Supervised machine learning is a machine learning branch that tries to find

a mapping function f that maps a particular input (observations/features) X to

its corresponding output (labels) Y using previously-seen examples (equation III.1).

A supervised learning algorithm takes in labeled input and tries to compute the

closest mapping function with minimal error. The goal is to use the mapping function

to predict Y values for previously unseen data. Supervised learning problems can

be divided into two categories; classification problems and regression problems. In

classification, the outputs are discrete and belong to a countable set of classes, e.g.,

8

sick or healthy. In regression, the outputs are continuous real values that may not

necessarily be limited, e.g., temperature values. This study falls under the classification

problems category.

X
f(X)−−−→ Y (III.1)

In this section, we explain the different supervised machine learning algorithms

used in our study. We start by explaining the decision tree that lays the basis for

Random Forests and Gradient Boosting. Then, we explain how Logistic Regression

works. Afterward, we explain how neural networks, recurrent neural networks, Long-

Short Term Memory, and Gated Recurrent Units.

III.2.1. Decision Tree

A decision tree is a basic machine learning technique where a binary-tree

hierarchy of questions leads up to different decisions [Bre17]. Each internal node in

the tree contains a decisive question about a feature (e.g., temperature > 10). On the

other hand, each leaf node in that tree holds a decision determining the corresponding

label. Decision trees construct their internal and leaf nodes based on the distribution

of values in each feature in correspondence to the labels. Figure III.1 shows an example

of a decision tree that determines if one can go out (yes) or stay at home (no).

Furthermore, decision trees are non-parametric machine learning models, where

the model assumes nothing about the data or the contained errors. Along with the

hierarchy property, decision trees help identify linear, polynomial, or even the most

stochastic patterns that exist.

9

Figure III.1. A Decision Tree that Decides if you Can Go Out.

A decision tree training algorithm starts by looking at each feature against the

class labels. It tries to find the best cut-off (question) that gives the purest split. A

pure split divides different classes into the distinct branches of the node while keeping

similar ones in the same branch as much as possible. For instance, for each features

Xi, it looks for a xi such that a question Xi < xi has the highest purity. Then, it

compares the purity of the top question from each feature and chooses the highest one.

It keeps recursively dividing each resulting node until it is highest purity is reached.

Decision trees use several split quality and purity measures. The most used

ones are the Gini index and information gain. Gini index, shown in equation III.2,

gives a direct indication of node’s impurity. For each node, we add the squared

probabilities of classes in a child node, then subtract that addition from 1. Then we

can calculate the weighted average of all child nodes to get the final Gini value.

Gini = 1−
CN∑
i=C0

P 2
i (III.2)

10

Information gain, as the name suggests, shows how much information can be

given using an individual feature split. It does that by calculating the difference in

entropy (Equation III.3) between the children and the parent nodes. Better splits

have higher information gain.

Entropy =

CN∑
i=C0

−Pi logPi (III.3)

Decision trees implement several tunable parameters that also affects training

and branching. For instance, a node in a tree can stop branching if it has fewer

observations than the specified minimum. In addition, a maximum number of leaf

nodes can be set to deal with the same problem, and a maximum depth of the tree

can also be specified. It can even go further and specify a minimum improvement in

Gini or information gain to branch a node. Those parameters help the tree not only

finish its construction faster but also counter overfitting a training dataset.

III.2.2. Logistic Regression

Logistic Regression, despite the name, is a statistical machine learning approach

for classification. It fits an S-shape logistic function to the data and assumes a linear

relationship between the features and the labels. Also, it assigns a single weight for

each feature and global intercept for the whole fit.

Logistic Regression transforms the data from a probabilities plane to a log-of-

odds plane. A probabilities plane plots the features against plain labels (0 or 1 in

binary-classification). Then, it takes the log-of-odds (equation III.4) for those values

to transform them into a log-of-odds plane.

logodds(y) = log(
y

1− y
) (III.4)

11

The zero becomes −∞, and the one becomes∞. Afterward, Logistic Regression

creates a candidate line to fit the data. Although the points are located at −∞ and

∞, we project them on this candidate line. Then, we convert back to the probabilities

plane using equation III.5. This gives us the S-shape function. Subsequently, we

calculate the log of maximum likelihood estimate (MLE) of the points on the S-shape

function using equation III.6. The higher the value, the better the performance.

y′ = elogodds(y)

1− elogodds(y)
(III.5)

log(MLE) =

Ny∑
i=0

log(yi − yi′) (III.6)

After calculating the log of MLE, we rotate the line in the log-of-odds plane

and calculate the log of MLE again. From this rotation, Logistic Regression can infer

in which direction it should rotate the line to improve the log of MLE. After several

rotations, Logistic Regression can find the best fit, and it finishes its training. The

S-shape function, which corresponds to the best fit, represents the Logistic Regression

model.

III.2.3. Gradient Boosting

Gradient Boosting is an ensemble machine learning technique [Fri01]. An

ensemble technique combines multiple weak learners in order to get a stronger model.

In this case, Gradient Boosting trains multiple decision trees in a boosting manner,

and boosting means that it directs each tree to learn from the mistakes made by

its predecessor. At decision and prediction phase, each tree gives a decision, and a

weighted vote occurs between the trees to give a final decision.

12

Initially, we start by a leaf-tree. The tree has a single log-of-odds value for all

entries. It is calculated using the log-of-odds of the positive class by equation III.4.

Afterward, we calculate the corresponding probability value using equation III.5. With

this probability value, we calculate the residual value for each entry in the dataset

using equation III.7.

ri = yi − y′i (III.7)

After we get the residual values, we build another decision tree to predict

those residual values. However, the new log-of-odd values in the a new tree are

calculated using equation III.8. Those log-of-odd values are calculated per leaf, with

ri representing a residual value in the leaf, and y′i representing the corresponding

probability value from the tree.

logodds(leaf) =

∑
ri∑

y′i · (1− y′i)
(III.8)

Now that we got a new tree, we calculate the cumulative log-of-odds values per

entry. This is calculated using equation III.9, with α representing the learning rate.

The learning rate weighs what we learn from a new tree. To obtain the probability for

this new log-of-odds value, we use equation III.5.

logodds(y) = logodds(y)′+ α · logodds(leaf) (III.9)

In each new tree, we follow the same process of calculating residual values,

log-of-odds values, and probability values. We keep creating new trees until there

13

is no improvement noticed, or the maximum number of trees is fulfilled. After we

are done creating trees, the final model consists of all the trees combined. Any new

prediction, to be made, would go through all the trees and would take the summation

of all their output values scaled by the learning rate, plus the output value from the

initial leaf-tree.

As we saw, Gradient Boosting contains multiple hyperparameters that we can

optimize. The learning rate (α) and the maximum number of trees are the most

critical ones. Also, we can change our loss function from being the residuals. Other

decision tree hyperparameters, such as the maximum depth of a tree and the maximum

number of leaves in a tree, can be tweaked.

III.2.4. Random Forest

Random Forest is another ensemble machine learning technique [Bre01]. In

contrast to Gradient Boosting, a Random Forest trains multiple decision trees inde-

pendent of each other and performs a majority-vote for prediction. This allows for

faster training compared to Gradient Boosting, as we can train multiple trees at once.

At first, a Random Forest algorithm creates subsampled datasets equal to the

number of trees to be trained. Each subsample contains entries from the original

dataset randomly drawn with replacement, i.e., each entry can occur more than once

(also called bootstrapping). Then, on each subsample, we perform the same process but

column-wise (feature-wise). Afterward, for each subsample, we train an independent

decision tree. We keep creating new trees until we reach the maximum number of trees.

In the end, whenever we need to make a prediction, we take the prediction of each tree

as a vote, look for the one with the most votes, and make it our final prediction. The

probability value would be equal to the number of votes of the positive class divided

by the number of trees.

14

A Random Forest contains several hyperparameters to optimize. For instance,

we would look for the optimal number of trees. Also, we can look for the best

number of features to be used at subsampling. We can look for other decision tree

hyperparameters like the maximum depth of a tree or the maximum number of leaves

in a tree.

III.2.5. Neural Networks

A neural network, as the name suggests, is a deep learning technique inspired

by the biological brain. They are powerful in discovering patterns and solving com-

plex problems that traditional machine learning cannot solve. They can be used

for image-related problems, text-related problems, sound-related problems, time-

series forecasting, and many more. Also, they can be used for regression as well as

classification.

The most basic neural network is called a feedforward neural network (Multi-

Layer Perceptron) [Ros58]. Feedforward neural networks consist of multiple layers

that are connected. Layers can be divided into three groups. Input layers which come

on first in the network and take on different forms of input. Output layers which come

on last and give the final results in a network (such as a classification or prediction).

Finally, we have hidden layers (also called hidden state) that come in between the

input and output layers. Each of those layers consists of multiple neurons. Figure

III.2 illustrates a simple feedforward network.

Neurons from one layer are connected to neurons from the previous layer.

Equation III.10 explains how a value in a neuron is calculated. For instance, a neuron

i from layer k is calculated using different neurons from the previous layer k− 1. Also,

neuron i holds a weight wk
ji to scale the value of neuron j from the previous layer k−1.

Usually, the resulting value is transformed to a 0-1 range using an activation function,

15

mostly a sigmoid (σ) function (equation III.11). This sigmoid function transforms

negative values to the range (0− 0.5), the positive values to the range of (0.5− 1), and

zeros to 0.5. In general, any value okj changes with change in input, and any weight

wk
ji or bias bki is learned through training. This means, once we finish our training,

weights and biases are fixed.

Figure III.2. A Feedforward Neural Network.

Neural networks use an optimizer for their training. This optimizer enhances

performance by lowering the value of the loss function. The loss function is a measure

of the inaccuracy of the model. It goes high whenever the model is inaccurate and

goes low if the model is doing a good job. Most optimizers rely on the idea of a

gradient. In our study, we are using an optimizer called Stochastic Gradient Descent

(SGD) [Fri02]. SGD is an optimization algorithm that finds the local minimum of a

function (loss function) using its gradient (slope). In neural networks, we represent

our loss function in terms of neuron weights. It means that we are trying to find the

optimal set of weights that minimizes our loss and boosts our performance.

SGD starts by plugging in random weight values to kick-off. Afterward, it

calculates the gradient of the loss function. The gradient is calculated by taking the

16

partial derivative for each weight at its current value. Then, it calculates a step size

by scaling the slope with a learning rate. This learning rate helps the algorithm not

to overshoot its step and miss the local minimum. Finally, the step size is used to

update the current weight value. In general, this operation is done using each training

input at once, and then averaging the step sizes from all of them. However, SGD

picks up a subsample from the input and applies the optimization to it. Subsampling

helps reduce the time and complexity of the learning process. In the learning process,

we call this a step in the network. A group of steps over a batch of train samples is

called an epoch. The algorithm continues to learn until it is satisfied with the loss or

the maximum number of epochs or steps is reached.

hki = bki +

nk−1∑
j=1

ok−1
j · wk

ji (III.10)

oki = σ(hki) =
1

1 + eh
k
i

(III.11)

III.2.6. Recurrent Neural Networks (RNNs)

RNNs are networks that perform sequential data modeling [Fau94]. They

work on tasks that need context and information from previous time steps. RNNs

can perform various tasks such as language translation, speech recognition, and

stock prediction, which traditional neural networks cannot handle greatly. This is

because traditional networks do not deal with sequential data contextually. RNNs

can memorize information from earlier time steps and forward it to later time steps.

Thus, maintain the context and the temporal relationship of inputs.

17

Figure III.3. A Recurrent Neural Network.

An RNN adds a loop to the hidden state ht of a neural network (figure III.3

and equation III.12). The loop makes the output of a state become another input

for it in the upcoming training step. A hidden layer ends up having two inputs, the

traditional one which describes the current time step, and the input from its previous

state that corresponds to all previous time steps. When a hidden layer receives those

two inputs, it multiplies them by learned weights W , it concatenates them in a vector,

and then it applies a hyperbolic tangent function (tanh) to each entry within that

vector. The tanh function squishes all the values between -1 and 1. The function

ensures that the values do not explode over time. However, as RNNs go further in

processing the sequence, the earlier time steps become less significant and have a

negligible contribution to the most recent learned hidden state. This issue is known

as the short-memory problem. In the next two subsections, we are going to explain

two variations of RNNs that address and mitigate this problem.

ht =


0, t = 0

tanh(W hhht−1 +W hxxt), t > 0

(III.12)

18

III.2.7. Long Short-Term Memory (LSTM)

LSTMs are advanced RNNs that can handle the short-memory [GSC99]. In

particular, they can retain information from earlier time-steps if they are meaningful

to the context. They introduce the concept of gates. Gates help to coordinate what

to remember, what to forget, and what to pass to the next state. LSTMs consist of

four main components; a cell state, a forget gate, an input gate, and an output gate.

An LSTM unit is illustrated in figure III.4 and the formulae in equation III.13.

Figure III.4. An LSTM Unit.

The cell state acts as a transport highway that transfers relevant information

to the rest of the sequence chain. Information from earlier time steps can be carried

to the last time step, which reduces the effect of short term memory. Information gets

added or removed via gates. They contain sigmoid activations which help in keeping

information (closer to 1) or forgetting them (closer to 0). The forget gate ft decides

which information to throw away. The previous hidden state ht−1 and the current

input xt are concatenated in a vector. Afterward, they are passed to the sigmoid (red

19

circle) as a vector to figure out what to keep or leave. The output of the sigmoid is

then multiplied with the previous cell state ct−1. The input gate it updates the cell

state ct. Again, we pass the previous hidden state and the current input to a sigmoid.

Then, we pass the result to a tanh (blue circle) to decide what to update and how

much to update. Then, it adds the new vector to the vector modified vector of the

previous cell state, which produces the current cell state. The output gate ot decides

what the next hidden state ht is going to be. It puts the current cell state through a

tanh then it multiplies the output with the same sigmoid output of the forget gate.

Again, W values refer to weights at each operation in the unit.

it = σ(W ixxt +W ihht−1)

ft = σ(W fxxt +W fhht−1)

ot = σ(W oxxt +W ohht−1)

gt = tanh(W gxxt +W ghht−1)

ct = ct−1 � f t + gt � it

ht = tanh(ct)� ot

(III.13)

III.2.8. Gated Recurrent Units (GRUs)

GRUs are another variant of RNNs with gates [CVMG+14]. GRUs are similar

to LSTMs. They both address the issue of short-memory. However, GRU solves it in

a different way that is computationally less complicated and more efficient [CGCB14].

GRUs get rid of the cell state and use the hidden state to transfer information.

On the contrary, it has two gates only, an update gate, and a reset gate. The

update gate decides how much of the previous state should matter now. Moreover,

the reset gate is used to drop out information the is irrelevant in the future. Figure

III.5 defines a GRU unit and the different components of it along with the formulae

20

in equation III.14. Here, zt and rt are update and reset gates respectively, and h̃t is

the candidate activation/hidden state.

Figure III.5. A GRU Unit.

zt = σ(W zxxt +W zhht−1)

rt = σ(W rxxt +W rhht−1)

h̃
t

= tanh(W xxt + rt �W hht−1)

ht = zt � ht−1 + (1− zt)� h̃t

(III.14)

21

CHAPTER IV

METHODOLOGY

Our overall approach towards attack detection / prediction is shown in Figure

IV.1. The approach can be distinctly separated into the following stages — 1) Data

collection → 2) Data Engineering → 3) Model Development → 4) Model Evaluation.

In the data collection stage, we first collect our convert our data to proper formats.

Then, we drop the packets/connections that are missing some attributes. For data

engineering, we start by feature engineering. We do it by aggregating our attributes

using a sliding-window fashion to generate features on the window level. Then, we

perform our label engineering by assigning appropriate labels based on the purpose of

the label (detection or prediction). For the model development and evaluation, we

create our detection models at the beginning, evaluate, and analyze them. Based on

the detection models’ development and evaluation, we develop the prediction neural

network models and evaluate them. Then, based on those, we create a combined

dataset and develop a new model then evaluate it.

22

Figure IV.1. Our Methodology’s Flow Diagram.

IV.1. Data Engineering

Data engineering stands out as of the most critical phase in the machine learning

process. It hugely affects the behavior and performance of a machine learning model.

It includes feature extraction, label extraction, and the manipulation of both. This

section elaborates on explaining this process for the features and labels independently.

IV.1.1. Feature Engineering

In our study, feature engineering is divided into two sequential phases. The first

is feature extraction, and the second is feature manipulation. Feature extraction aims

to create feature-sets out of the raw data. On the other hand, feature manipulation

takes the feature-set and applies different transformations over it, such as scaling,

crossing, encoding, and so.

As mentioned before, the dataset comes in two formats; Pcap and NetFlow.

This required creating two separate feature-sets. However, both of them have several

features in common. The Pcap feature-set represents features on the packet-level, and

23

the NetFlow feature-set represents features on the connection-level. Each one has its

own advantage and unique features.

Feature extraction went into two phases. First, we create multiple time windows

of equal length (0.1, 1, 10 seconds) and annotate the packets or connections into the

one or more windows depending on if they were carried on during that time window.

Second, we aggregate the data in each time window to create over 70 features for our

models. Those features include counts, entropy values, mean values, and standard

deviation values.

For both feature-sets, as shown in Table IV.1 and IV.2, we extracted 41

features for Netflow and 31 features for Pcap. A count refers to the number of

packets/connections meeting a certain condition. The entropy, as described in equation

III.3, is used to reflect on the distribution of values in a nominal field. The mean

represents the arithmetic mean or average, which is the summation of a collection of a

number divided by their count. The standard deviation reflects the variation in values

for numerical fields. Based on those four measures, all of our features are numerical.

After extracting the features, and before feeding them to a model, we first

apply standard scaling (also known as z-scoring). The second step is to apply the

polynomial feature crossing. Finally, if the model supports sequential data, we group

the data into sequences. Standard scaling is applied for each feature independently. It

calculates the mean of the feature, as well as its standard deviation. Then, it creates

a scaled representation of the collection by applying the formula in equation IV.1 to

each feature value. This unifies the scale across all the features and helps in learning

unified, making it easier for neural networks to learn all features at the same learning

rate.

24

z(x) =
x− x̄
σx

(IV.1)

Afterward, we apply a polynomial feature crossing of degree two. Polynomial

crossing creates new features by multiplying the original features with each other. A

degree of two indicates that we can multiply two features at most to create a new

feature. Assuming we had n features, this would add n · · · (n− 1) new features. This

would make it easier for the algorithms to discover interactions between features.

Finally, if the model supports sequential data (recurrent neural network), we

sequence the windows in each feature-set. Sequencing is the process of splitting ordered

data into equal-width buckets. If the mth window slot is n windows-wide, then the

first slot (m0) contains all the windows from 1 · · ·n, the second slot (m1) contains

all the windows from n + 1 · · · 2n, and so on. Sequences give the machine learning

algorithm detailed information and a more profound context related to the state of the

network. In our study, we experimented with different values of n, trying to optimize

model performance.

IV.1.2. Label Engineering

Anomaly Detection: In order to create a supervised machine learning model

capable of detecting attacks, we needed to annotate each connection/packet with its

label. The CTU-13 dataset includes a list of IP addresses of malicious entities. Based

on that list, we created two main classes — class 0 (normal) and class 1 (attack). A

window is annotated as class 1 if an attack run during it, otherwise, it is annotated as

class 0. The distribution of the those labels is shown in table IV.3.

25

Anomaly Prediction: While the detection labeled the current window to be in

the different classes, the prediction model needed to be trained on future occurrences

of the attack. For the purpose, we created different datasets based on the number

of window steps (x) in the future we wanted to predict. For example, if the step

size was x = 1, for the first slot the sequence of prediction feature vectors are

[v1p <> · · · vn−1
p <>], which are labeled to be ln ∈ [0, 1] is the nth window label. For

x ∈ [1, · · · , 100] and n ∈ [1, · · · , 10], 1980 different datasets were created.

Figure IV.2. A 1-Window Sequence
Used to Predict Self-State.

Figure IV.3. A 2-Window Sequence
Used to Predict State 2 Steps Ahead.

After obtaining our best model, we further expanded the labeling to distinguish

between the different attacks in the same dataset. The new set consists of four classes,

which represent the presence of attacks over the IRC protocol — 0) No Attack, 1)

DDoS, 2) Spam, and 3) General attacks on IRC.

26

Table IV.1. NetFlow Feature-Set.

Feature Description
m_duration Mean connection duration

n_conn Count of all connections
n_normal Count of normal connections

n_src_ip_a

Count of source IP by Class
n_src_ip_b
n_src_ip_c
n_src_ip_na
n_dst_ip_a

Count of destination IP by Class
n_dst_ip_b
n_dst_ip_c
n_dst_ip_na

n_src_port<1024

Count of ports over and below 1024
n_src_port>=1024
n_dst_port<1024

n_dst_port>=1024
n_tcp

Count of protocol usedn_udp
n_icmp

ent_duration Entropy - connection duration
ent_packets Entropy - packets transferred
ent_srcbytes Entropy - bytes from source

ent_state Entropy - connection states
ent_totbytes Entropy - bytes transferred
sd_duration Standard deviation - duration per connection
sd_packets Standard deviation - packets transferred
sd_srcbytes Standard deviation - bytes from source
sd_totbytes Standard deviation - bytes transferred

ent_src_ip_a

Entropy - source IP by class
ent_src_ip_b
ent_src_ip_c
ent_src_ip_na
ent_dst_ip_a

Entropy - destination IP by class
ent_dst_ip_b
ent_dst_ip_c
ent_dst_ip_na

ent_src_ip
Entropy - source and destination IP addresses

ent_dst_ip
ent_src_port<1024

Entropy - source and destination ports
ent_src_port>=1024
ent_dst_port<1024

ent_dst_port>=1024

27

Table IV.2. Pcap Feature-Set.

Feature Description
n_packets Count of all packets
n_normal Count of normal packets

n_src_ip_a

Count of source IP by Class
n_src_ip_b
n_src_ip_c
n_src_ip_na
n_dst_ip_a

Count of destination IP by Class
n_dst_ip_b
n_dst_ip_c
n_dst_ip_na

n_src_port<1024

Count of ports over and below 1024
n_src_port>=1024
n_dst_port<1024

n_dst_port>=1024
n_tcp

Count of protocol usedn_udp
n_icmp

ent_src_ip_a

Entropy - source IP by class
ent_src_ip_b
ent_src_ip_c
ent_src_ip_na
ent_dst_ip_a

Entropy - destination IP by class
ent_dst_ip_b
ent_dst_ip_c
ent_dst_ip_na

ent_src_ip
Entropy - source and destination IP addresses

ent_dst_ip
ent_src_port<1024

Entropy - source and destination ports
ent_src_port>=1024
ent_dst_port<1024

ent_dst_port>=1024

Table IV.3. Window Label Classes Distribution Among the Different Datasets. (NF:
NetFlow, PC: Pcap)

0.1-Second 1-Second 10-Second
DDoS Spam IRC DDoS Spam IRC DDoS Spam IRC

NF-0 1.6e4 2.2e5 364418 15200 9343 142179 1494 1150 15313
NF-1 1.05e6 27118 2.9e6 101341 23846 184311 10162 2170 17482
PC-0 2e5 2.08e5 366710 23654 18402 175980 1600 1593 18077
PC-1 1.01e6 59729 102098 92897 7603 153611 10058 894 14049

28

IV.2. Model Development

Our supervised learning process consists of two parts. The first is to detect

attacks with machine learning methods. The second is to predict attacks with neural

networks. Equation IV.2 illustrates our approach in general. For the machine learning,

we pass a vector of detection features vid <>, trying to map it to the label vector li

using a learned function f . However, for neural networks, the feature vector vip <> is

mapped to the label vector li+x, where x ≥ 1. Also, vip <> consists of the ten most

important features rather than all of them as in vid <>.

< v[d/p] >
f(v)−−→ l[0/1] (IV.2)

IV.2.1. Machine Learning Models - Detection

For our machine learning models, the design of a model was limited to hy-

perparameter tuning for tree-based models. For our Random Forest and Gradient

Boosting, we fed the Bayesian optimization search algorithm with hyperparameters,

and it trained the model on different combinations of them until it found the best one.

Table IV.4 shows our hyperparameters for Random Forest and Gradient Boosting.

IV.2.2. Neural Network Architectures - Prediction

In order to develop our sequence based prediction model, we leverage the base

LSTM/GRU models (as described in Section III) and build a multi-feature pipeline

architecture. Figure IV.4 shows the general architecture of the model, where the models

is able to take 10 different inputs passed through a series of LSTM and GRU units.

The following equation describes the transformation and training of the vp sequence

feature vector to map towards the attack scenarios. Where, % is the LSTM/GRU

29

units which take the a sequence of a single feature v0p, · · · , vtp0 independently. Each

LSTM/GRU unit learns a feature sequence, then the output from all the units is

concatenated in V . Afterward, V is fed to a sigmoid function that maps it to the

final label lt+x to conclude the model. The model utilizes SGD with a learning rate

of 0.001. This value was reached after several experiments with a range of values

between (0.0001 - 1).

Table IV.4. Random Forest and Gradient Boosting Hyperparameters.

Parameter Values Tested

No. of Trees 10,50,100,200,500

Min. Samples Split 100-1000

Max. Tree Depth 5-15

Min. Samples per Leaf 100-1000

Learning Rate (Gradient Boosting only) 0.01-1

%(v0p0, · · · , vtp0)→ ht
0

%(v0p1, · · · , vtp1)→ ht
1

...

%(v0p9, · · · , vtp9)→ ht
9


⊕ → V → σ → lt+x (IV.3)

IV.2.3. Training

After we put the data through a preprocessing pipeline that implements the

data engineering process, we split our data into train and test subsets. Our training

subset contains 70% of the original dataset, and the testing is done on the rest 30%.

For each of machine learning techniques, we train on detecting all of the three types

30

of attack individually using different window lengths and different feature-sets. As

a result, the total number of models evaluated is 54. On the other hand, for our

neural network models, we train a total of more than 2000 models split up between

the different attacks, feature-sets, and recurrent neural network types.

Figure IV.4. Our Neural Network Architecture.

For each model, we record results over 10-fold cross-validation. The optimization

of the model hyper-parameters is tightly coupled within the cross-validation stages. For

Random Forest, and Gradient Boosting models, the hyper-parameters are evaluated

via a Bayesian approach towards optimization [PGCP99]. The approach is based on

developing a probability-based objective function, which keeps historical track of the

model f() metrics obtained (via various sets of hyper-parameters) in order to get

closer to the optimal set.

IV.3. Evaluation

Evaluating the developed models was done for two primary reasons, first to

judge the performance and reliability of the model and second, to establish a common

ground for cross-evaluation/comparisons between the models.

31

In our study, we utilize multiple evaluation criteria (as shown in Table IV.5),

to understand the performance metrics of the developed models. Generally, we use

precision, recall, and F1-score as our standard evaluation matrices, with Kolmogorov-

Smirnov (KS) test statistics value and area under the receiver operating characteristic

curve (AU-ROC) enabling an analysis of probability cutoff thresholds. Precision

describes the fraction of True Positives (TP) against all the positive predictions, recall

gives the fraction of TP against all the actual positives, and F1-score combines both

precision and recall into a more generalize score. While precision indicates how much

we can trust a positive prediction by the model, recall suggests how confident are we in

being able to predict actual positives. Both precision and recall are useful metrics and

performance estimates, but sometimes we might want to compare or evaluate based

on both of them combined, this is where F1-score comes into the picture. F1-score is

defined as the harmonic mean of both recall and precision, where it averages both

metrics and gives an overall indication of the precision-recall performance.

These metrics are calculated based on a confusion matrix. A confusion matrix

in a classification problem is a c× c matrix, where c is the number of classes. This

matrix, as shown in Figure IV.5, represents the actual classes along the rows and the

predicted classes along the columns, or vice versa. The top left entry represents the

true negatives (TN), the top right entry shows the false positives (FP), the bottom

left entry gives us the false negatives (FN), and the last one gives us the true positives

(TP).

As each model gives us a probability, we need a probability threshold value

to create our confusion matrix. Usually, the threshold is set to 0.5; however, we can

use the KS test statistics value to determine the best threshold. In particular, we

can create a curve for each of the negative and positive classes. Those two curves

32

are created by plotting the threshold against the percentage below that threshold.

Then, we look for the threshold with the maximum vertical distance between the

two curves. This threshold is guaranteed to have the best F1-score among all the

thresholds. Finally, the ROC curve is created by plotting the true positive rate (TPR)

against the false positive rate (FPR). Different pairs of TPR and FPR are calculated

by varying the threshold. After that, we can calculate the area under that curve to

get the AU-ROC value on a scale from zero to one, with one representing a perfect

classifier.

Table IV.5. Evaluation Metrics.

Metric Formula

Precision TP
TP+FP

Recall/TPR TP
TP+FN

F1-Score 2 · recall·precision
recall+precision

KS Test Statistics sup(FC1 − FC2)

FPR FP
FP+TN

Figure IV.5. A Confusion Matrix.

33

IV.4. Interpretability

In order to gain a deeper understanding of the developed models, it is essential

to explore the feature to detection/prediction decision relationship. This includes

understanding what features are being used by the model and what features are being

dismissed. Also, the questions of — the effect each feature have on a prediction; does it

move the prediction towards one class or the other? How does the range of values in a

feature affect the prediction? can be examined further. Interpretability assures us that

the model is not basing its decision on irrelevant information or contexts. Besides, it

makes it easier to troubleshoot the data engineering process and the training process.

Within our approach, we primarily used two methods to explain the model

behavior. The first one is Pearson’s correlation coefficient (equation IV.4). Pearson’s

correlation is a statistical test that measures the relationship or association between

two numerical features. In particular, it is used to measure the correlation between the

different features and prediction probabilities. This approach assumes independence

between the two features and that the correlation between them is linear. Also, it

describes the correlation by a real value from −1 to 1, with −1 describing a perfect

negative correlation, 1 describing a perfect positive correlation, and 0 describing the

absence of a correlation. A negative correlation means that if one of the features

increases, the other decreases to a certain degree. A positive correlation means that

both features increase and decrease together.

PX,Y =
cov(X,Y)
σX · σY

(IV.4)

On the other hand, we have used SHapely Additive Explanations (SHAP) [LL17].

SHAP unifies several model interpretability approaches, LIME [RSG16], DeepLIFT

34

[SGK17], and Shapley [ŠK14] are the mainly used ones. SHAP can interpret traditional

machine learning models such as Random Forest and Logistic Regression, but it also

can understand and interpret complex neural networks. Although SHAP assumes

co-linearity and features independence, it extends the concept much further. SHAP

interpolates new data from a given dataset, and experiments with removing (zeroing)

a specific feature at a time and keeping the rest. Interpolation is done on each feature

individually to generate new values that still relate to the nature of the feature.

Besides, zeroing a specific feature allows for a better understanding of its importance

based on the change in model behavior when it is absent.

35

CHAPTER V

RESULTS AND DISCUSSION

In this chapter, we show, analyze, and interpret the results obtained with

the different detection and prediction models used in this study. A comprehensive

comparison is presented to highlight the best approach, along with the best settings.

V.1. Detection

Traditional machine learning techniques were used to detect attacks. Table

V.1 shows the F1-scores for attack detection with Netflow feature-sets. We observe

that for DDoS attacks, Random Forest and Gradient Boosting do well, while Logistic

Regression is performing poorly. For DDoS with a 0.1-second window, we can notice

that Random Forest comes performs a little bit better than Gradient Boosting.

However, with a 1-second window, Gradient Boosting shows great performance and a

noticeable difference compared to Random Forest. The best performance is observed

in a 10-second window, where Gradient Boosting maintains the best performance

with nearly a perfect score. Also, spam attacks are rather not predicted with Logistic

Regression. With a 0.1-second window, Random Forest still performs better than

Gradient Boosting and Logistic Regression. Though, Gradient Boosting shows a

0.06 better performance than Random Forest with a 1-second window. Utilizing a

10-second window, Gradient Boosting still detects spam attacks better than the other

models. Finally, other attacks over IRC are always detected best by Gradient Boosting.

In the 0.1-second window scenario, they have a small advantage over Random Forest

and a massive advantage over Logistic Regression. A 1-second window and a 10-second

window are still dominated by Gradient Boosting ahead of the two other approaches

36

with 0.99 scores. Thus, Gradient Boosting proves to be the best model to detect

attacks with a 10-second window Netflow feature-set.

Table V.1. F1-Score for Attack Detection using Netflow Data. (LR: Logistic Regression,
RF: Random Forest, GB: Gradient Boosting)

0.1-Second 1-Second 10-Second
DDoS Spam IRC DDoS Spam IRC DDoS Spam IRC

LR 0.401 0.469 0.486 0.388 0.465 0.519 0.637 0.697 0.677
RF 0.918 0.938 0.938 0.951 0.927 0.927 0.958 0.922 0.941
GB 0.913 0.935 0.953 0.990 0.989 0.992 0.999 0.999 0.999

On the contrary, machine learning performance with the Pcap feature-set is

illustrated in table V.2. For DDoS detection with a 0.1-second window, we notice a

massive jump in Logistic Regression performance from 0.401 with Netflow to 0.989 with

Pcap. However, Random Forest and Gradient Boosting are still performing equally

good, and better than Logistic Regression. The three models drop in performance

with a 1-second window, and Gradient Boosting goes back at the top followed by

Logistic Regression. Moreover, a more significant drop in Logistic Regression and

Random Forest performance is observed with a 10-second window. Gradient Boosting

held the best performance for that window along with the best DDoS overall detection

performance. For spam attacks, Gradient Boosting stays ahead of Random Forest by

0.13, with logistic being a little bit behind of Random Forest. Pcap with a 1-second

window maintains the same overall performance as the 0.1-second window, with

Gradient Boosting achieving the best overall spam detection performance with this

window size. A 10-second window nearly matches the performance of the previous

window size with Gradient Boosting at the top. Lastly, other IRC attacks can

be detected a little bit better than spam. With a window of 0.1-second, Logistic

37

Regression and Random Forest show some improvement, but Gradient Boosting leads in

performance. A longer window of 1-second gets a perfect score with Gradient Boosting,

while other models stayed behind. The 10-second window shows some degradation in

Gradient Boosting performance, but it maintained the best performance as usual.

Table V.2. F1-Score for Attack Detection using Pcap Data.

0.1-Second 1-Second 10-Second
DDoS Spam IRC DDoS Spam IRC DDoS Spam IRC

LR 0.989 0.848 0.898 0.929 0.844 0.847 0.873 0.848 0.901
RF 0.995 0.866 0.938 0.925 0.867 0.886 0.844 0.866 0.911
GB 0.995 0.993 0.995 0.971 0.995 1.000 0.997 0.993 0.945

In general, Gradient Boosting performed better across most of the attack-

window size combinations. All of the attacks were nearly perfectly detected by

Gradient Boosting using both feature-sets. However, Pcap holds the best performing

model; Gradient Boosting for IRC attacks detection, and Netflow holds the worst

performing model with Logistic Regression DDoS detection. The difference between

the two feature-sets in Logistic Regression can be related to how granular a packet

can be compared to a connection.

V.2. Detection - Feature Anaylsis

Our best performing models are then analyzed furthermore to interpret their

behavior and extract their top features. Those are Gradient Boosting over Netflow

with 10-second window to detect DDoS and Gradient Boosting over Pcap with a

1-second window to detect IRC attacks. Figure V.1 illustrates the top 10 features for

our best Netflow model. The figure can be interpreted as the following; for a certain

feature, dots on the positive side mean that the feature pushes the model to detect an

attack. Dots on the negative side mean that the feature pushes the model to detect

38

a normal behavior. If the dots are red, then higher values of that feature push in

that direction. If the dots are blue, then lower values of that feature push the model

towards that direction.

The most important feature in that model is n-src-ip-a. The figure indicates

that a higher number of connections with source IP addresses from class A lead to

attack detection, while a lower number confirms the absence of an attack. Our next

important feature is ent-dst-ip-c. It refers to the entropy in destination IP addresses

in class C. A high variation in IPs from this class leads the model for attack detection.

While lower variation barely affects the decision of the model. The next one is ent-

state with a similar interpretation as the previous one. A variation in the connection

state pushes the model a decision to attack detection, while the lower variation is

hardly pushing the model against that. However, for n-tcp, a lower number of TCP

connections lead to a negative decision of an attack absence, without a higher number

leading to attack detection. The rest of the features can be interpreted the same way

as well; however, their impact on the model is lower compared to the top four.

For our best Pcap model, figure V.2 depicts the top 10 features. ent-dst-ip-c

comes up as the most important feature. The interpretation differs here as we are

looking at the entropy of class C IPs on the packets level rather than the connection

level. The second important feature is ent-src-ip. It can be interpreted as the

following; a high variation in source IP addresses indicates an attack while a very

low variation in source IP addresses indicates the absence of an attack. The next

important feature is ent-dst-port-lt-1024. The figure indicates that a high variation

in the used well-known destination ports leads the model to detect an attack, while

lower variation pushes the model a little bit towards denying a detection. Most of

the features are directly proportional to attack detection. However, The 9th most

39

important feature, ent-src-port-lt-1024, leads the model to deny an attack if the

variation of well-known source port numbers high. A slightly pushes the model to

detect an attack with lower values.

Figure V.1. Best Netflow Model - Top 10 Important Features.

40

Figure V.2. Best Pcap Model - Top 10 Important Features.

V.3. Prediction

Our neural networks were used to predict attacks. Figures V.3 to V.8 illustrate

the performance of GRU and LSTM networks in predicting attacks. Each couple of

figures refer to window size and a feature-set combination. Each couple represent 660

different models for each couple, and all of them represent 3960 models in total. The

ones on the left depict the change in F1-score with respect to different future steps.

The ones on the right represent the change in F1-score with respect to the different

sequence lengths. Figures V.9 and V.10 illustrate show the averaged performance on

the feature-set level.

As shown in figure V.3, Netflow feature-set with 0.1-second window illustrated

a poor but stable performance across different future steps as well as sequence lengths.

DDoS is the best predicted attack followed by IRC attacks with a 0.76 F1-score.

While spam attacks are poorly predicted by any model. In most cases, GRUs are

slightly performing better than LSTMs for DDoS, notably performing better in IRC

attacks, and nearly performing the same in spam attacks prediction.

41

Figure V.3. Netflow 0.1-second Window RNNs Performance

For our Netflow 1-second window, shown in figure V.4, we notice a little bit

of performance irregularity with respect to steps. However, the performance still

degrades predicting farther steps into the future. DDoS is still the best predicted

attack ahead of IRC attacks. Although spam prediction is behind, spam attacks

are predicted better with this window size. Besides, GRU and LSTM models are

performing at the same level in this case. In general, this dataset does its best with a

step of 1 and a sequence length of 6 with an F1-score of 0.76.

The final netflow feature-set of 10-second windows is shown in figure V.5. This

window is performing much better than the other two windows at a top value of 0.92

with a step of 1 and a sequence length of 6. Also, we can see a clear degradation in

performance going farther in the future and a less clear degradation with extended

sequence lengths. In general, DDoS became the worst predicted attack in this feature-

set with a value of 0.71 at best. Spam became the best predicted attack with 0.92

score followed by IRC attacks at 0.82. Both GRU and LSTM performed the same.

42

Figure V.4. Netflow 1-second Window RNNs Performance

On the other hand, Pcap scored high performance of 0.92 with 0.1-second

window feature-set. The performance degraded a little bit predicting steps ahead, and

nearly stayed the same with different sequence lengths. DDoS was the best predicted

attack by a huge difference with a score of 0.92. IRC comes next with with values

around 0.69 and spam with values around 0.5. In this feature-set, GRUs performed a

slightle better than LSTMs. Pcap’s performance is better than netflow’s here.

Figure V.5. Netflow 10-second Window RNNs Performance

43

Figure V.6. Pcap 0.1-second Window RNNs Performance

A 1-second window in Pcap performed even better than the previous one. A

high-score of 0.95 was recorded at 1 step and a sequence length of 8. The performance

still degraded with time steps, but improved a little bit with sequence lengths. IRC

attacks are predicted the best with this feature-set, then comes DDoS followed by

spam attacks. GRUs and LSTMs nearly performed the same way with this feature-set.

Figure V.7. Pcap 1-second Window RNNs Performance

44

Lastly, Pcap’s 10-second window feature-set performed its best at 1 step and a

sequence length of 2. Also, the performance still degraded notably going deeper into

the future, but mostly stabilized with different sequence lengths. Once again IRC was

the top predicted, followed by spam’s highest recorded prediction performance. GRUs

led LSTMs in different attack predictions.

Figure V.8. Pcap 10-second Window RNNs Performance

In general, figure V.9 represents the overall performance of models fed with

Netflow feature-sets. We can notice that the average F1-score degrades clearly with

time steps and sequence lengths. We observe that GRU is performing slightly better

on average and has the highest average of 0.67 at 1 step and a sequence length of 2.

On the other hand, V.10 illustrate the overall performance of models fed with

Pcap feature-sets. We observe higher averages than Netflow’s with a peak of 0.81

F1-score. The performance degrades with time-steps and sequence lengths, which

leads to 1 step and a sequence length of 2 being the best combination. GRUs still

performed notably better than LSTMs.

In our final comprehensive model (GRU with Pcap feature-set of 1-second

windows), we look for AU-ROC scores. This illustrates how good are we predicting

45

positive classes, and makes it easier for per class performance illustration. Figure

V.11 shows the AU-ROC performance of GRU for predicting all kinds of attacks in

one dataset. We can notice that the AU-ROC curve degrades by going farther in the

future. However, the performance was reaches its best with a sequence length of 10

windows and degrades afterward. The model predicted DDoS better than the rest of

the attacks, followed by spam, and ending up with other IRC Attacks.

Figure V.9. Netflow Overall RNNs Performance

Figure V.10. Pcap Overall RNNs Performance

46

Figure V.11. GRU Pcap 1-second Window Performance

47

CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we explored the performance of machine learning and neural

networks in identifying malicious network behavior. In the beginning, we monitored

the performance of the traditional machine learning techniques in detecting such

behavior. We established a comparison between the different techniques that ended

up with excellent attack detection performance with scores ≥ 0.99. Afterward, we

picked up the best model for each feature-set and analyzed it further. The analysis

ended up with interpreting the models and selecting the most important features to

build upon in the next step.

Then, using the top features, hundreds of datasets created to cover a wide

range of settings. This covered the different data formats, sliding window sizes, future

steps, sequence lengths, and attack types. As a result, hundreds of neural network

models, that utilize LSTMs and GRUs, were trained to predict the malicious behavior

in a network. Afterward, the models were compared to choose a final data format

with a sliding window size and neural network to be used in the next step.

Finally, we created a final dataset that combines all the different attacks. The

best model from the previous step was trained on different sequence lengths and future

steps and was evaluated after. The evaluation concluded with a sequence length of

10 and a future step of 1 as being the best combination for sequence building and

modeling in our study.

This work can be extended to predict the rest of the attacks as well as other

protocols. Also, more advanced and complicated neural network approaches may be

48

potentially utilized for that purpose. It can also be expanded to feed the models with

sequences of packets rather than window aggregations. Furthermore, it can be extended

to predict the intensity/damage of an attack rather than the absence/presence of the

attack and decide if it is worth blocking based on model confidence and cost prediction,

which changes it from a classification problem to a regression problem.

Another approach may include directionally modeling the traffic rather than

just including plain features about the source, destination, and direction, instead of

leaving it up to the model to figure out what those features mean. Such an approach

may lead up to a deeper understanding of the behavior and may potentially uncover

hidden patterns.

Although there is room for exploration and improvement, always, we believe

that our study covers many sides and provides a robust approach and strong models

to model malicious network traffic.

49

BIBLIOGRAPHY

[AS18] Wafaa Anani and Jagath Samarabandu, Comparison of recurrent neural
network algorithms for intrusion detection based on predicting packet
sequences, 2018 IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE), IEEE, 2018, pp. 1–4.

[Bre01] Leo Breiman, Random forests, Machine learning 45 (2001), no. 1, 5–32.

[Bre17] , Classification and regression trees, Routledge, 2017.

[CGCB14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio,
Empirical evaluation of gated recurrent neural networks on sequence
modeling, arXiv preprint arXiv:1412.3555 (2014).

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, Learning
phrase representations using rnn encoder-decoder for statistical machine
translation, arXiv preprint arXiv:1406.1078 (2014).

[DAF18] Rohan Doshi, Noah Apthorpe, and Nick Feamster, Machine learning ddos
detection for consumer internet of things devices, 2018 IEEE Security
and Privacy Workshops (SPW), IEEE, 2018, pp. 29–35.

[Fau94] Laurene Fausett, Fundamentals of neural networks: architectures, algo-
rithms, and applications, Prentice-Hall, Inc., 1994.

[Fri01] Jerome H Friedman, Greedy function approximation: a gradient boosting
machine, Annals of statistics (2001), 1189–1232.

[Fri02] , Stochastic gradient boosting, Computational statistics & data
analysis 38 (2002), no. 4, 367–378.

[GGSZ14] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino, An
empirical comparison of botnet detection methods, Computers & Security
45 (2014), 100–123.

[GSC99] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins, Learning to
forget: Continual prediction with lstm.

50

[KKTK16] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim, Long
short term memory recurrent neural network classifier for intrusion
detection, 2016 International Conference on Platform Technology and
Service (PlatCon), IEEE, 2016, pp. 1–5.

[LL17] Scott M Lundberg and Su-In Lee, A unified approach to interpreting
model predictions, Advances in Neural Information Processing Systems
30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), Curran Associates, Inc., 2017, pp. 4765–
4774.

[LWLS06] Carl Livadas, Robert Walsh, David E Lapsley, and W Timothy Strayer,
Using machine learning techniques to identify botnet traffic., LCN, Cite-
seer, 2006, pp. 967–974.

[PGCP99] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz, Boa: The
bayesian optimization algorithm, Proceedings of the 1st Annual Con-
ference on Genetic and Evolutionary Computation-Volume 1, Morgan
Kaufmann Publishers Inc., 1999, pp. 525–532.

[Ros58] Frank Rosenblatt, The perceptron: a probabilistic model for information
storage and organization in the brain., Psychological review 65 (1958),
no. 6, 386.

[RRD18] Benjamin J Radford, Bartley D Richardson, and Shawn E Davis, Se-
quence aggregation rules for anomaly detection in computer network
traffic, arXiv preprint arXiv:1805.03735 (2018).

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, "why should
I trust you?": Explaining the predictions of any classifier, Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, 2016, pp. 1135–1144.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje, Learning
important features through propagating activation differences, Proceedings
of the 34th International Conference on Machine Learning-Volume 70,
JMLR. org, 2017, pp. 3145–3153.

[ŠK14] Erik Štrumbelj and Igor Kononenko, Explaining prediction models and
individual predictions with feature contributions, Knowledge and infor-
mation systems 41 (2014), no. 3, 647–665.

51

[SP14] Matija Stevanovic and Jens Myrup Pedersen, An efficient flow-based
botnet detection using supervised machine learning, 2014 international
conference on computing, networking and communications (ICNC), IEEE,
2014, pp. 797–801.

[STG+11] Sherif Saad, Issa Traore, Ali Ghorbani, Bassam Sayed, David Zhao, Wei
Lu, John Felix, and Payman Hakimian, Detecting p2p botnets through
network behavior analysis and machine learning, 2011 Ninth annual
international conference on privacy, security and trust, IEEE, 2011,
pp. 174–180.

[XSDZ18] Congyuan Xu, Jizhong Shen, Xin Du, and Fan Zhang, An intrusion
detection system using a deep neural network with gated recurrent units,
IEEE Access 6 (2018), 48697–48707.

[ZZH08] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque, Random-forests-
based network intrusion detection systems, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 38 (2008),
no. 5, 649–659.

52

	FT-5.pdf
	FT.pdf
	FinalThesis.pdf
	Saed_Thesis (10).pdf
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Contribution
	Thesis Content

	Related Work
	Background
	Dataset
	Machine Learning Algorithms And Models

	Methodology
	Data Engineering
	Model Development
	Evaluation
	Interpretability

	Results and Discussion
	Detection
	Detection - Feature Anaylsis
	Prediction

	Conclusion and Future Work
	BIBLIOGRAPHY

	Saed_Thesis (10)-5

