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This study addresses a key assumption made while using traditional Randomized

Response models in survey sampling when the question being asked pertains to

a sensitive topic. It is traditionally assumed that under a randomized response

framework, survey participants have no further reason to lie due to privacy concerns.

We demonstrate that if this assumption is not true and even if a small proportion of

respondents do not trust the RRT model being used in a survey, we get considerably

biased estimates. We also propose alternative binary and quantitative models that

account for respondents’ lack of trust in traditional RRT models. These proposed

models are mixtures of traditional RRT models and in one particular case mixture

of an RRT model with an encryption technique, commonly used in the computer

science domain. We also incorporate optionality into these models which helps improve

the model efficiency. We evaluate the overall model performance using a combined

measure of privacy and efficiency. Both theoretical and empirical results confirm

that accounting for lack of trust helps us obtain more reliable results when survey

respondents may not trust the RRT model used. Simulation studies have also been

conducted to verify theoretical results. For sensitive mean estimation, we also propose

estimators that utilize the auxiliary information and are more efficient compared to

the ordinary mean estimator that does not utilize the auxiliary information.
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Chapter I: Introduction

The primary focus of many statistical studies is on the estimation of various population

parameters. However, conducting a thorough evaluation of the entire population of

interest is often not practically possible under time and resource constraints. Therefore,

researchers often resort to conducting sample studies to help make inferences about

the population being studied. Unfortunately, samples drawn for the purpose of such

studies may not always be an appropriate representation of the true population of

interest due to sampling and non-sampling errors which are potentially present in

surveys.

Sampling errors get introduced in a survey due to imperfect representation of the

population being studied. On the other hand, non-sampling errors are caused by

aspects that are not associated with the process and design of a sample survey such

as subject non-responses and intentional or unintentional misreporting[1]. Although

one can often reduce sampling errors by increasing the sample size, it may not always

be possible. Therefore, researchers often need to settle with a reasonable size of the

sample that aligns with constraints associated with effort, time and cost, and efficiency

in estimation for the population parameter of interest(1)[31]. Another cause of concern

for researchers while conducting a survey study is the non-sampling errors. There are

numerous sources of non-sampling errors including but not limited to non-response

and untruthful responses by the respondents(2) [51].
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If the sample drawn for a survey study is a good representation of the population

of interest, one can assume the inferences made based on such a sample would be

reasonable. However, if the sample drawn is not representative of the population under

study, the estimates computed and the inferences made would both be unreliable.

Several sampling techniques have been studied and implemented over the years

such as simple random sampling (SRS), stratified sampling, cluster sampling, two-stage

sampling etc. Depending on the study objective and the population of interest, one can

make use of one of these different sampling techniques to draw a representative sample.

One of the most basic sampling techniques is the SRS. Under this technique, each

individual in the population has an equal chance of being selected as a sample unit.

The sample units are randomly selected from the population after being identified in

the population. This method is used when the list of all subjects from the population

being studied, i.e. the sampling frame, is accessible to the researchers(3)[12]. If we do

not choose an appropriate sampling technique, we might end up with a biased sample.

In addition to the sampling techniques, we must be careful about the method of

conducting the survey based on the study objective and the potential nature of the

population being scrutinized. These decisions must be made while optimizing for

cost constraints for a study. We can use different survey mediums such as electronic

surveys, phone surveys, mail surveys and in-person interviews. Although electronic,

mail and phone surveys can be a cheaper alternative for collecting survey responses,

they tend to have a very high non-response rate. This can often lead to a non-response

bias if the respondents who choose not to participate are systematically different from

those who do. For example, suppose the survey question is "Have you consumed any

illegal drugs in the past week?". In such surveys, it is possible that the majority of

those who do not respond to the survey are also people who have actually consumed
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illegal drugs and were probably concerned about having to divulge this information.

Hence, such a phenomenon can also lead to participation bias as the majority of

people who choose to participate in the survey have a specific kind of response only.

For instance, when one is asked to take a feedback survey at the end of a customer

service call, people who have extremely good or extremely bad opinions are usually

the ones that end up taking the survey. This can leave us with survey responses that

are not reflective of how the responses are distributed in the population. Therefore,

researchers must be wary of low survey participation rates and untruthful responses

as they can be sources of considerable bias, especially when the survey is on a topic

that respondents might consider sensitive.

Face-to-face interviews are more expensive for the researcher but have a higher

response rate. However, when the question being asked is on a sensitive subject, it can

lead to social desirability bias (SDB). SDB refers to the tendency of survey respondents

to give socially acceptable and favorable responses, even if they are untruthful. For

example, if someone is asked "Have you tested positive for any sexually transmitted

disease in the last year?" or "Have you ever incorrectly reported your income to

the IRS?", they would probably report a response of "No" even if that is not the

truth because otherwise they might be worried that the surveyor would not view

them as socially acceptable or worse, report them to authorities, if applicable, which

could result in a legal repercussion against them. Therefore, for surveyors working

on sensitive data collection, non-response and untruthful responses are two major

concerns.

This dissertation will address practical issues encountered in surveys with questions

on sensitive topics. We talk about methods that address the root causes of untruthful

responses in sensitive question surveys such as social desirability bias and lack of
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trust in privacy protection under the survey method being used. For all the studies

discussed in this dissertation, we have considered samples drawn by the SRS technique.

I.1 Respondent Privacy Protection in Sensitive Ques-

tion Surveys

When respondents participate in sensitive question surveys, the concern for their

privacy can influence their behavior in the survey. The concern for privacy protection is

so high that either the sampled respondents might decline to participate, or worse, they

might lie when they do participate. This can worsen the extent of social desirability bias

(SDB) when the survey is being conducted as an in-person interview. Moreover, the

surveyors have an ethical and professional obligation to protect respondent privacy(4)

[49]. Traditional direct survey questioning is not appropriate for sensitive question

surveys. Therefore, researchers must consider methods specifically designed to reliably

collect sensitive data in a survey while protecting respondent privacy.

I.2 Social Desirability Bias

A common objective for researchers in social and behavioral science is often to estimate

the prevalence of sensitive behavior. However, human beings have a tendency to want to

appear more altruistic and society-oriented than they actually are(5)[7]. When survey

participants modify their true response before reporting for impression management

(to look better to others) or self-deception (to feel good about themselves) we end

up with social desirability bias (SDB) in our survey responses(6)[39]. This happens

when respondents try to adhere to the social status quo to come across as socially
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acceptable individuals or when respondents are afraid of unfavorable consequences

against them. Surveys that ask questions on topics that are often considered taboo

in a society such as sexual activities, illegal behavior such as social fraud or unsocial

attitude such as racism often renders responses that are distorted due to SDB(7)[35].

Such responses lead to unreliable estimates.

SDB is one of the many sources of bias that surveyors encounter. Other typical

sources of bias can be evasive responses, non-responses, selection or coverage issues,

voluntary responses, etc. These biases are issues of concern as they cause sample

estimates to systematically either over-estimate or under-estimate the population

parameters of interest.

I.3 Approaches to Circumvent Social Desirability

Bias

Statisticians, sociologists and psychologists have come up with various techniques

to encourage survey respondents to participate in surveys and to provide truthful

responses by guaranteeing them confidentiality. A few such methods are the Bogus

Pipe Line (BPL), Unmatched Count Technique (UCT), SDB scale, Randomized

Response Techniques and Encryption.

I.3.1 Bogus Pipeline Technique (BPL)

The Bogus Pipeline method was proposed by Jones and Sigall 1971 [28](8) based on

the idea that if the respondents can be convinced that a physiological monitoring

device is able to measure both the amplitude and direction of emotional response, their
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subsequent attempts to predict what the machine says about their attitudes should be

uncontaminated by many biases that obscure paper-and-pencil measures. This method

involves tricking the respondents into believing that the untruthful responses can be

detected by a mere decoy of a physiological monitoring device such as a polygraph

machine. If the respondents are convinced that the device monitoring them is a

working lie detector, the responses through this method would not get affected by

many of the potential biases because respondents would not want to possibly lose

face if they were to be caught while lying. Under this method, no attempt is made to

protect the respondents’ privacy.

I.3.2 Unmatched Count Technique (UCT)

The Unmatched Count technique (UCT) or Item Count Technique (ICT) was proposed

by Raghavarao and Federer 1979(9). Under this method, survey participants are

randomly assigned into two groups. One of the groups receives a set of non-sensitive

questions or "items" while the other group receives this list with an additional sensitive

item/question. For example, if the first group receives a list with four non-sensitive

items, the second group will receive the list with these four non-sensitive items and

a fifth item that is sensitive. Participants in both groups are then asked to report

the number of items that are applicable to them. Respondents are only required to

report the count of items applicable to them without needing to disclose what items

are applicable. The prevalence of sensitive behavior is estimated by calculating the

difference in mean count reported in the two groups[26](10). However, it should be

noted that despite the random assignment, some of the differences between the two

groups may be a function of differences between the two groups not entirely related to

the number of subjects in the second group who consider the additional sensitive item
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[9](11).

I.3.3 Social Desirability Bias (SDB) Scale

Social Desirability Bias (SDB) scales are used to measure an individual’s tendency

to present themselves as more socially acceptable than they actually might be. This

technique assumes that the reason for a respondent to lie is to look more socially

acceptable by downplaying any negative behavior.

Crowne-Marlowe Social Desirability Bias (MCSDB) was proposed by Crowne

and Marlowe (1960)[8](12) which uses a 33-item questionnaire based on personal

attitude for the subjects. Each item can be answered with a "True" or a "False"

and has a socially acceptable response depending on how the statement has been

phrased. The subjects are administered this questionnaire. For each item, if the

respondent selects the socially acceptable response, they earn a score of one, else they

get zero as the score. The higher an individual’s score, the greater their tendency to

come across as socially desirable. Although the MCSDB method helps in evaluating

the tendency of an individual to be socially desirable, the 33-item questionnaire in

addition to the sensitive question survey can cause response fatigue in the survey

participants. Therefore, Reynolds (1982) [52](13) proposed that all individuals can be

scored based on their likelihood of giving a socially desirable response based on 11,

12 and 13-item condensed versions of the MCSDB scale questionnaire which can be

used to approximate results obtained from the MCSDB scale. They showed that with

a little over one-third of the items on the original MCSDB scale, the 13-item form

recommended by them would provide a brief easy-to-administer social desirability

measure[52]. The questions on this 13-item form, along with the socially desirable

responses (in parentheses), are listed in Table I.1.
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Table I.1. Marlowe-Crowne Short Form with 13-Items proposed by Reynolds (1982)[52]

S.No Item

1 It is sometimes hard for me to go on with my work if I am not encouraged. (False)

2 I sometimes feel resentful when I don’t get my way. (False)

3 On a few occasions, I have given up doing something because I thought too little of my ability. (False)

4 There have been times when I felt like rebelling against people in authority even though I knew (False)

they were right.

5 No matter who I’m talking to, I’m always a good listener. (True)

6 There have been occasions when I took advantage of someone. (False)

7 I’m always willing to admit it when I make a mistake. (True)

8 I sometimes try to get even rather than forgive and forget. (False)

9 I am always courteous, even to people who are disagreeable. (True)

10 I have never been irked when people expressed ideas very different from my own. (True)

11 There have been times when I was quite jealous of the good fortune of others. (False)

12 I am sometimes irritated by people who ask favors of me. (False)

13 I have never deliberately said something that hurt someone’s feelings. (True)

Once obtained, the SDB scores can then be utilized as a covariate along with the

reported responses in the direct sensitive question survey to reflect a more truthful

picture in research studies that rely on self-reported measures of personality, individual

characteristics and behavior.

I.3.4 Randomized Response Technique (RRT)

The Randomized Response Technique (RRT) method allows a survey administrator to

collect sensitive data from individuals by asking them to add some noise to their original

response. The noise to be added depends on the question and potential response

types and is determined prior to conducting the data collection stage. This helps to
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protect respondent privacy and improves honest response behavior by eliminating any

potential social desirability bias (SDB) and embarrassment. RRT was first introduced

by Warner (1965)[62] to reduce or eliminate under-reporting of sensitive behaviors

(Scheers (1992)[55]. Several more field studies, such as the one by Chow et al. (1979)[5],

Chaloupka (1985)[3] and Chhabra et al. (2016)[4], have also confirmed the efficacy of

RRT models in acquiring information from the respondents. A study was conducted

by Kwan et al.(2010)[36] on software piracy and their results confirmed that the

respondents that responded to the question using RRT were more willing to provide

true responses about the behaviors of software piracy.

We will discuss various aspects of RRT models in Chapter II.

I.3.5 Data Encryption Techniques

In the modern day and age of cloud computing and connected servers, sensitive data

are being collected and stored online on a very large scale. Data Encryption is a

traditional data security method that uses a cipher to secure highly confidential

information especially the kind that is shared or collected online.

Traditionally, there are two major types of encryption- Asymmetric and Symmetric

Encryption. Here, Figure I.1 shows an example of asymmetric encryption protocol,

which is usually conducted in three steps. The first and most important stage is the key

generation in which a public and private key pair is generated. The confidential data

can be encrypted using the public key in the next stage. The encrypted information

can then be sent over to the intended organization or person where it can be decrypted

using the private key.

• Homomorphic Encryption (HE): Homomorphic encryption is a special kind
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Figure I.1. Asymmetric encryption and decryption process [27]

of encryption mechanism that can resolve the security and privacy issues [56]

and also allows the administrators to conduct certain mathematical operations

to be carried out on the ciphertext, instead of on the actual data itself [6].

Therefore, it facilitates some computations (multiplication, addition, etc.) to be

performed on the encrypted data without requiring decryption. The result of

such computations, when decrypted, is the same as what one would get if the

operation were performed on the original data. This is a critical property of

homomorphic encryption.

• Partial Homomorphic Encryption (PHE): An encryption protocol is considered

partially homomorphic if it only preserves the additive operation or the multi-

plicative operation over the ciphertext but not both. This means that, unlike

10



a (fully) homomorphic encryption protocol, one can perform either addition or

multiplication over the encrypted data and decrypt it to sum/product of original

values but both operations cannot be successfully implemented simultaneously

on the ciphertext. Some examples of partially homomorphic cryptosystems are

RSA (multiplicative homomorphism), ElGamal (multiplicative homomorphism)

and Paillier (additive homomorphism) [6].

The HE and PHE methods can be utilized when the survey question has a binary

response (Yes/No) or when the survey question has a non-negative integer response.

This method has been further discussed in Chapter V.

The primary focus of this dissertation is on the theory and application of RRT

models. In particular, we want to address the issue and the effect of the lack of trust

in RRT models, and methods to mitigate those effects. We propose various mixtures

of traditional RRT models that address and mitigate the respondents’ lack of trust in

the traditional methods used in surveys on sensitive topics.

I.4 Outline of the Dissertation

Chapter I provides a brief introduction to the issue of Social Desirability Bias (SDB)

encountered in sensitive question surveys and methods that exist in literature to help

address these issues such as the Bogus Pipeline (BPL) method, the Unmatched Count

Technique (UCT), SDB scale, Data Encryption and Randomized Response Technique

(RRT).

Chapter II provides a detailed background and literature review of some important

RRT models, including both binary and quantitative models. Additionally, this chapter

will present a detailed review of Optional RRT models, sensitive mean estimation
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in the presence of auxiliary information and accounting for the lack of trust in RRT

surveys. The concepts highlighted in this chapter serve as the foundation of the work

carried out in the subsequent chapters.

Chapter III presents a mixture of Warner’s Indirect Question model [62] and

Greenberg’s Unrelated Question model [16]. The efficiency and the privacy protection

offered under this binary RRT model are evaluated and compared to the traditional

models using a unified measure of privacy and efficiency. This model accounts for a

lack of respondents’ trust. These models are compared both theoretically and through

a simulation study. The match between the theoretical and the empirical results is

also noted.

Chapter IV presents an extension of the work discussed in Chapter III by including

the aspect of optionality. The efficiency and the privacy protection offered under this

optional binary mixture RRT model are evaluated and compared to the traditional

models using a unified measure of privacy and efficiency. These models are compared

both theoretically and through a simulation study. The match between the theoretical

and the empirical results is also noted.

Chapter V presents a model which is a hybrid mixture of RRT and Paillier

encryption techniques. Potential benefits in terms of efficiency and privacy by the

inclusion of encryption with RRT have also been discussed. A simulation study is

also conducted to show the efficiency performance of the hybrid mixture of Warner’s

Indirect Question model [62] and the Paillier encryption technique relative to a pure

Warner’s Indirect Question model [62].

Chapter VI presents mean estimators based on a quantitative model that accounts

for respondents’ lack of trust in the absence and the presence of non-sensitive auxiliary

information under various scenarios using a split-sample technique which allows
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simultaneous estimation of the sensitivity level of the survey question. A simulation

study is also conducted to show and compare the performance of the various sensitive

mean estimators.

Chapter VII presents only mean estimators for the sensitive study variable under

the quantitative model introduced in Chapter VI both in the absence and the presence

of non-sensitive auxiliary information without estimating the sensitivity level of the

survey question. This decreases the sampling burden. We also introduce a generalized

estimator for the mean of the sensitive study variable in the presence of auxiliary

information. Unlike Chapter VI, all the sensitive mean estimators were obtained

without splitting the sample.

Chapter VIII presents a general discussion of the research introduced in this

dissertation. It also summarizes the most significant findings and some future directions

for the work presented in this dissertation.
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Chapter II: Literature Review

As discussed earlier, a major cause of non-response and untruthful responses in

sensitive question surveys is social desirability bias (SDB). Over the years, several

methods have been recommended to address SDB.

The primary focus of this dissertation will be on RRT models and related topics. A

popular method used by psychologists is the Bogus Pipeline (BPL) which convinces the

respondents that any truthful response can be detected by a lie detector machine when

in fact there is no way for the BPL to detect such phenomena. However, this method

is not mathematically credible nor does it offer any privacy to the survey participants.

Although SDB scales and unmatched count technique (UCT) are relatively better in

accounting for SDB, they still put the respondents under the pressure of revealing the

truth to some extent. SDB scales provide a measure of an individual’s tendency to give

a more socially acceptable answer which can be helpful but it still puts respondents

under the pressure to reveal their responses through direct questioning. Although

UCT merely asks respondents to reveal the number of items that apply to them, it

still puts respondents against direct questioning without offering anything more to

protect their privacy. However, the Randomized Response Technique (RRT) is a

method that shifts away from a direct-questioning survey set-up to offer a more secure

data collection in terms of respondent privacy.

Randomized response technique (RRT) is a method that is based on adding noise
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to a respondent’s true response such that the survey administrator cannot know their

true response, thereby helping to curb the tendency to lie. This traditional RRT

method makes use of a randomizing mechanism that decides whether a respondent’s

final response would include the noise or not. Moreover, the aggregate responses can

be unscrambled to estimate the sensitive population parameters but there is no way

to unscramble the individual responses. Therefore, this method helps in providing

privacy to the respondents with reasonable efficiency in the estimation process.

One can broadly classify RRT models as follows:

1. Based on the type of the survey question response:

• Binary RRT Models- When the survey question can have "Yes" or "No"

i.e. binary responses.

• Quantitative RRT Models- When the survey question can have quantitative

responses.

2. Based on the rules which are followed by the respondents in scrambling their

true response before reporting it:

• Full RRT- all respondents scramble their responses.

• Partial RRT- some respondents scramble and some do not scramble their

response but the choice to do so is made by the researcher using a random

process.

• Optional RRT- if respondents find the question sensitive they scramble

their response, otherwise they report unscrambled response. The choice to

scramble or not is made by the respondent.
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[62] was the first to propose the randomized response method as a survey technique

to reduce potential bias due to non-response and social desirability during survey

studies of sensitive behavior prevalence and beliefs [2]. In the years since, several

variants of RRT models have emerged motivated by the need to improve the estimator

efficiency, respondent privacy, or both.

In this chapter, various types of RRT models and related techniques have been

reviewed.

II.1 Estimation of Sensitive Trait Prevalence using

Binary RRT Models

Binary Randomized Response Technique (RRT) models are used when the survey

question is on a sensitive topic and requires a binary response. Binary responses can

be of various forms such as "Yes/No", "Agree/Disagree", "Support/Do not Support",

etc. The most common form of binary response questions usually requires a "Yes"

or a "No" response. For example, when asked "Have you ever violated the academic

integrity policy in college?", a respondent can either respond with a "Yes" or with a

"No".

The foundation of the RRT involves creating an indirect questioning survey set-up

such that at no point is the respondent expected to respond directly to the question

based on a sensitive topic. To this effect, a randomizing device can be placed facing

only the respondent and prompts the respondent to respond with a certain set of

rules which scramble the individual responses. The interviewer would not be able to

see what prompts are provided and hence is unable to distinguish or unscramble the

reported responses thereby ensuring a much higher level of privacy compared to many
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other methods considered for sensitive data collection such as the Bogus Pipeline

Technique, the Unmatched Count Technique and the SDB scale method.

II.1.1 Warner’s Indirect Question Model [1965]

The first technique to curb the extent of untruthful responses in sensitive surveys

was introduced by S L Warner in 1965 [62] for questions with only binary responses

(Yes/No). He proposed a set-up where all respondents were randomly prompted to

respond to the sensitive question directly or indirectly while the survey investigator

would be completely oblivious to which question was being responded to. Hence, the

investigator would only know the final response (Yes/No) without knowing whether

the respondent was prompted to respond to the direct or the indirect question,

thereby protecting their privacy. Therefore, the key is to randomly divide the survey

participants into two groups and ask the question of interest either rephrased directly

or indirectly depending on which group they get assigned to.

Suppose we are interested in estimating the prevalence of academic integrity policy

violations at a university. Then the survey respondents would be prompted to respond

to one out of the following two statements:

1. I violated the academic integrity policy in one or more courses last semester

(Group A).

2. I did not violate the academic integrity policy in any course last semester (Group

B).

The randomization device that prompts all respondents could be a random spinner

on a board that points at the letter A with a fixed probability p and at the letter
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B with a probability (1 − p) thus deciding which question a particular respondent

is supposed to respond to. The surveyor cannot see which question the respondent

has been prompted to respond to. The respondents simply report a "Yes" or a "No"

truthfully to the question they have been prompted to respond to.

Alternatively, we could have a deck of n cards with a proportion p of cards that

state "I violated the academic integrity policy in one or more courses last semester"

while the remaining cards have "I did not violate the academic integrity policy in

any course last semester". The deck of cards is well shuffled and respondents pick a

card, respond truthfully to the statement or the question on the card and replace the

card back into the deck to be shuffled again before the next respondent is asked to

go through the same process. Again, the surveyor cannot see which card has been

picked up by the respondents and simply records the reported "Yes" or "No". It must

be noted that when a respondent from Group A reports a "Yes" it indicates that

they have violated the academic integrity policy. However, when a respondent from

Group B reports a "Yes", it indicates that the subject has not violated the academic

integrity policy. Thus a reported "Yes" response alone does not necessarily mean that

the respondent has violated the academic integrity policy.

Let π be the true proportion of individuals in the population who have engaged

in sensitive behavior or have a sensitive trait. Let p be the proportion of subjects in

the sample that got assigned to Group A, i.e. subjects that were asked the sensitive

question phrased directly. The value of p is fixed by the researcher before a simple

random sample of n subjects is drawn from the population. Suppose that n1 out

of the n subjects reported a "Yes" as their response. However, not all of these n1

respondents have indulged in sensitive behavior.

If Py is the probability of a reported "Yes" response then,
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Py = pπ + (1− p)(1− π). (II.1)

Rearranging equation (II.1) Warner (1965)[62] proposed the unbiased estimator

π̂ =
n1

n
− (1− p)

2p− 1
=

P̂y − (1− p)

2p− 1
, p ̸= 1

2
. (II.2)

Based on the fact that

V ar(P̂y) =
π(1− π)

n
, (II.3)

the variance of this estimator for a simple random sample with replacement is

given by

V ar(π̂) =
π(1− π)

n
+

p(1− p)

n(2p− 1)2
. (II.4)

Here, the term p(1−p)
n(2p−1)2

is the penalty added on for introducing noise through the

RRT model. In order to minimize this penalty, and thus the variance, a large sample

size n should be chosen. The proportion of subjects that get assigned to Group A (p)

should be considerably different from 0.5 or p should be fixed at a value closer to 0 or

1.

II.1.2 Greenberg’s Unrelated Question Model [1969]

A few years after Warner introduced RRT as a method for sensitive question surveys,

Greenberg et al. presented a theoretical framework for the Unrelated Question RRT

model[62]. They found that based only on the evasive answer bias and not on the

response rate, the [62] technique usually requires a substantial amount of lying before
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it becomes worthwhile. Based on the recommendation by Walt R. Simmons, [16]

felt that by providing the respondent with the opportunity of replying to one of

two questions in which one question is completely innocuous and unrelated to the

stigmatizing attribute, the respondent might be more truthful.

In this unrelated-question model, the sample subjects are assigned to one of two

groups using a randomization device similar to what one might use for the Warner’s

Indirect Question model [62]. The individual is then asked the sensitive question or

the innocuous question depending upon which group they get assigned to. A pair of

such sensitive and innocuous questions could be:

1. "Have you been diagnosed with an STD in the past 12 months?" (Group A)

2. "Were you born in the month of June?" (Group B)

Although it is not necessary, the unrelated question is chosen such that the

distribution of the responses to this question can be determined/is known prior to the

survey. For instance, the probability of a June birth is approximately 30
365

. Here we

can refer to having a diagnosis of an STD as the sensitive trait and a June birth to be

an innocuous trait.

Suppose πx is the true proportion of individuals in the population who have been

diagnosed with an STD in the past 12 months and πy is the true proportion of

individuals in the population that were born in the month of June.

Now

Py = pπx + (1− p)πy. (II.5)

This gives us the unbiased estimator
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π̂x =
P̂y − (1− p)πy

p
. (II.6)

The variance of this estimator is given by

V ar(π̂x) =
Py(1− Py)

np2
. (II.7)

Greenberg et al. (1969)[16] showed that, for p > 1
3
, this method was in fact

more efficient than [62]. Unlike Warner’s model, under the unrelated question model,

some respondents may experience added reassurance they can be asked to answer a

potentially innocuous question which can help improve respondent cooperation(24)[24].

II.2 Homomorphic Encryption Techniques

Encryption is a method used to ensure data confidentiality with regard to commu-

nication and data storage(26)[15]. In the current day and age of cloud computing

and connected servers, sensitive data is being collected and stored online on a very

large scale. Data Encryption is a traditional data security method that uses existing

conventional algorithms, i.e. a cipher, to secure highly confidential information. Thus,

working cryptosystems usually involve three stages:

1. Key Generation: First and the most important stage requires us to generate

both the encryption and decryption keys. The encryption key can be private

(symmetric encryption) or public (asymmetric encryption) but the decryption

key is kept private in order to ensure data privacy.

2. Encryption: The true response or plaintext is encrypted by the cipher into

encrypted data or the ciphertext.
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3. Decryption: Once the encrypted information has been sent over to the intended

organization/person, it can be decrypted using a private decryption key.

Suppose, we collect private data through a traditional asymmetric encryption

protocol in a survey with a binary response question and encrypt every individual

response into a set of ciphertexts. Traditionally in order to make use of this collection

of encrypted responses or to do any computation based on the true responses, one

would have to have the private decryption key to first decrypt the ciphertext back into

the plaintext for all individuals. Then the required computation can be performed on

the set of retrieved plaintext. However, this would expose the private data of all the

respondents. In a survey, where such a binary question being asked is on a sensitive

topic, it can make the respondents concerned that their true responses can ultimately

be uncovered and the collected data might get heavily affected by social desirability

bias.

However, homomorphic encryption techniques have the unique property which

allows one to simply carry out the necessary computation on the set ciphertext. The

result of the computation performed would also be in the encrypted form. When this

encrypted result is decrypted using the private decryption key, the resulting plaintext

is the same as the outcome one would have obtained if the same computation was

performed on the plaintext obtained from all individuals. Hence, one can potentially

perform complex computations on the ciphertext by only decrypting the final result

rather than every individual’s encrypted data. Therefore, homomorphic encryption

techniques give us the special ability to add two encrypted numbers and obtain the true

sum of the plaintext responses without requiring individual plaintext responses(27)[47].

A few of the applications of Homomorphic encryption have been listed below [37].
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• E-Cash

• E-Voting

• Private Information Retrieval

• Cloud Computing

II.2.1 Various Types of Homomorphic Encryption

1. Homomorphic Encryption (HE): Homomorphic encryption is a special kind of

encryption mechanism that can resolve security and privacy issues [56]. It allows

the administrators to conduct certain mathematical operations to be carried out

on ciphertext, instead of on the actual data itself [6]. Therefore, it facilitates

some computations (multiplication, addition, etc.) to be performed on the

encrypted data without decryption. The result of such computations, when

decrypted, is the same as what one would get if the operation were performed

on the original data. This is a critical property of homomorphic encryption.

Let P be a cryptosystem with encryption function E. Suppose xi is plaintext

or the true response for the ith sample unit and ci be the ciphertext for the ith

sample unit such that E(xi) = ci. Let ∆ be some operation.

• Additive Homomorphism: P is an additively homomorphic cryptosystem if

and only if:

∃∆ : E(x1)∆E(x2) = E(x1 + x2).

• Multiplicative Homomorphism: P is a multiplicatively homomorphic cryp-

tosystem if and only if:

∃∆ : E(x1)∆E(x2) = E(x1.x2).
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[44]

2. Partial Homomorphic Encryption (PHE): An encryption protocol is considered

partially homomorphic if it only preserves the additive operation or the multi-

plicative operation over the ciphertext but not both. This means that, unlike

a (fully) homomorphic encryption protocol, one can either perform addition

or multiplication over the encrypted data and decrypt it to either the sum or

the product of original values but both operations cannot be simultaneously

implemented on the ciphertext. Some examples of partially homomorphic cryp-

tosystems are RSA (multiplicative homomorphism)[53], Elgamal (multiplicative

homomorphism)[13] and Paillier (additive homomorphism)[48].

The HE and PHE methods can be utilized when the survey question has a binary

response ("Yes"/"No") or when the survey question has a non-negative integer response.

Although encryption techniques or protocols can be of many kinds, we restrict our

discussion to the Paillier encryption technique which has additive homomorphism.

This property can be utilized for the estimation of sensitive trait prevalence in the

population based on a survey with a sensitive question that has "Yes"/1 or "No"/0

responses, stored after encryption using the Paillier encryption technique. Paillier

encryption technique will be discussed in detail in Chapter V.

II.2.2 Paillier Encryption Protocol and Algorithm

Paillier encryption technique, a partially homomorphic encryption (PHE) protocol,

offers the same amount of privacy as HE but only allows for addition to be performed

on the ciphertext. This encryption scheme was proposed by Pascal Paillier (1999)[48].

The special characteristic of this encryption scheme is its additive homomorphism.
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Under the Paillier encryption scheme. When we decrypt the product of two encrypted

values, the result of this computation is the same as the sum of their corresponding

decrypted values or plaintexts.

This property of the Paillier encryption scheme can be utilized by organizations,

that outsource the processing of sensitive data to a third party, to allow for certain

helpful computations to be performed of encrypted data, without a need to expose

the sensitive data to a third-party organization which may or may not be trustworthy.

In Chapter V, we discuss the algorithm(s) used for the Paillier encryption scheme,

an example to help understand its application. We also present a discussion on the

proposed work where we leverage the strengths of this scheme to help improve upon

full RRT surveys.

II.3 Sensitive Mean Estimation using Quantitative

RRT Models

Various binary RRT models described in section II.2 can prove to be a helpful tool in

scrambling the true responses before they are reported when the sensitive question

being asked in a survey has a binary response. This protects respondent privacy

and helps us get an efficient estimate of the sensitive trait prevalence. However, it is

possible that we are also interested in estimating the mean of a sensitive trait rather

than its prevalence. Unlike the binary RRT, the true response needs to be scrambled

in a different manner with the introduction of noise. For instance, for the sensitive

question "How many times in the past month have you consumed illegal drugs?" one

could respond with many possible non-negative integers. Hence the noise introduced

must be such that it has a quantitative shift in the true responses. For this purpose,
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several quantitative RRT models have been introduced over the past several decades.

A few of the traditional quantitative RRT models have been discussed in this section.

II.3.1 Warner’s (1971) and Pollock & Beck’s (1976) Quantita-

tive RRT Model

Warner[63] proposed a modified quantitative RRT model in 1971 and this work was

further extended by Pollock and Beck [50]. Warner[63] proposed introducing a random

additive noise to the true responses of the survey participants in order to scramble

and conceal the individual responses before they are reported to the surveyor. Let

Y be the sensitive variable with unknown mean µY and unknown variance σ2
Y and S

be the scrambling variable that would be added to each individual’s response. The

scrambling variable S is independent of the sensitive variable Y and has a known

mean θ and a known variance σ2
S. Let Z be the reported response. Then

Z = Y + S. (II.8)

The expected reported response is given by

E(Z) = E(Y ) + E(S) = µY + µS. (II.9)

Then an unbiased estimator for the mean of the sensitive variable Y is given by

µ̂Y = z̄ − µS. (II.10)

Therefore, if we generate the values of the scrambling variable S such that µS = 0

then we can estimate the sensitive mean by simply computing the sample mean of
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reported responses z̄.

The variance of this estimator, under simple random sampling without replacement,

is given by

V ar(µ̂Y ) = V ar(z̄) =
σ2
Z

n
=

σ2
Y

n
+

σ2
S

n
. (II.11)

Here, σ2
S

n
is the penalty for introducing noise through this RRT model.

In practice, suppose that we are interested in estimating the mean number of times

a college student has been diagnosed with an STD in a period of 2 years. We can

draw a simple random sample of size n. In order to help each of the n individuals

scramble their response Yi, we can ask them to pick a card from a well-shuffled deck.

Each of the cards in this deck would have a number Si. The numbers on all the cards

are generated from a distribution with a known mean θ and known variance σ2
S. The

card drawn and the number on it are concealed from the surveyor. The respondents

are asked to report the sum of their true response and the number that was written

on the card they pick randomly i.e. Yi + Si = Zi. These reported Zis are then used to

estimate the sensitive mean µY using the estimator shown in equation(II.10).

II.3.2 Greenberg’s Quantitative Model (1971)

Greenberg et al. (1971)[17] extended the idea of noise added to the cases where

the sensitive survey question has quantitative responses. The respondents are still

prompted by a randomizer to respond to the sensitive question or the unrelated

question. The unrelated question is now chosen such that the responses are roughly

in the same order as those for the sensitive question. For instance, if the sensitive

question is "How many times in the past month have you consumed illegal drugs?",
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one could choose an unrelated question such as "How old are you?".

In this model, a fixed proportion p of sample respondents are prompted to respond

to the sensitive question with response A and the remaining proportion (1 − p) of

the respondents are prompted to respond to the innocuous question with response B

where the mean of the non-sensitive or the innocuous variable B is known (µB).

Let a simple random sample of size n be drawn from the population with replace-

ment and let the reported response be Z. Then we have

Z =

 A with probability p

B with probability 1− p.
(II.12)

Then the expected reported response is given by

E(Z) = pµA + (1− p)µB. (II.13)

Using this, we obtain the estimator

µ̂A =
z̄ − (1− p)µB

p
. (II.14)

We can estimate the mean of sensitive variable A by computing the mean of the

reported response i.e. z̄.

The variance of this estimator is given by

V ar(µ̂A) =
σ2
Z

np2
. (II.15)
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II.3.3 Eichhorn and Hayre (1983)

Warner (1971)[63] had also suggested the use of multiplicative models. However,

Eichhorn and Hayere (1983)[11] pursued this in greater detail.

Eichhorn and Hayere (1983)[11] proposed introducing a multiplicative noise to

help respondents conceal their true responses before they report them to the surveyor.

Therefore, instead of adding the random number on a card picked from a well-shuffled

deck, respondents need to multiply their true response with the random number

selected from a known distribution and report the product of these two numbers

divided by the mean of the multiplicative noise.

Suppose Y is the sensitive variable with unknown mean µY and unknown variance

σ2
Y and T be the scrambling variable that would be multiplied by each individual’s

response. The scrambling variable T is independent of the sensitive variable Y and has

a known mean µT = E(T ) and a known variance σ2
T . Let Z be the reported response.

Then,

Z =
Y T

µT

. (II.16)

It is common to assume µT = 1. This gives us the unbiased estimator

µ̂Y = z̄. (II.17)

Therefore, we can estimate the mean of the sensitive variable Y by computing the

sample mean of the reported responses i.e. z̄. The variance of this estimator is given

by
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V ar(µ̂Y ) =
1

n

[
σ2
Y +

σ2
T (σ

2
Y + µ2

Y )

µ2
T

]
(II.18)

Note that this model requires the respondents to perform the arithmetic correctly.

However, the respondents may not either know how to perform the multiplication or

may not want to perform the multiplication as a part of a survey. This can lead to

both intentional and unintentional misreporting.

It must also be noted that this multiplicative model is not the best in terms of

protecting respondent privacy. When the true response to the sensitive question is

0, the reported response would always be 0. For instance, if the sensitive question

is "How many times in the past month have you consumed illegal drugs?" and a

respondent has not indulged in drug abuse, their reported response would be zero

since the random noise is being multiplied by the true response zero. This implies

that the respondents who reported a non-zero value might have indulged in sensitive

behavior to some extent. This could cause the respondents to not trust the model

and could discourage them from participating truthfully in the survey.

II.3.4 Diana and Perri Linear Combination Model (2011)

As a researcher, one would want to get as efficient an estimate as possible. However,

when we conduct a survey on a sensitive topic, we have the ethical responsibility

to ensure respondent privacy as well. Based on a review of various quantitative

RRT models existing in literature at the time, [10] conducted a comparative study

of several variations of those models and proposed a general scrambling model for

survey questions with quantitative responses in sensitive question surveys. As both

the multiplicative model and the additive model have their pros and cons with respect
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to privacy and efficiency, they proposed combining the additive and multiplicative

approaches to optimize for the privacy protection and efficiency trade-off. The primary

goal of this model was to encourage the respondents to participate because of additional

privacy protection provided by the second scrambling variable.

Let T be a scrambling variable with mean µT and variance σ2
T . Let S be another

scrambling variable with mean µS and variance σ2
S. Both T and S are independent

of the sensitive study variable Y which has an unknown mean µY and an unknown

variance of σ2
Y . Then the linear combination model introduced by Diana and Perri

[10] is given by

Z = TY + S. (II.19)

It is commonly assumed that µT = 1 and µS = 0. Then the expected value and

the variance of the reported response Z, under simple random sampling without

replacement, are given by

E(Z) = µY (II.20)

and

V ar(Z) = σ2
S(µ

2
Y + σ2

Y ) + σ2
Y + σ2

T . (II.21)

If µT = 1 and µS = 0, then an unbiased estimator of the mean of the sensitive

study variable Y is given by

µ̂Y =
Z̄ − µS

µT

= z̄. (II.22)
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The variance for this estimator is given by

V ar(µ̂Y ) =
1

n
[σ2

S(µ
2
Y + σ2

Y ) + σ2
Y + σ2

T ]. (II.23)

II.4 Optional RRT Models

The RRT models described in Section II.1 and II.3 assume that all respondents would

find the survey question sensitive and force every respondent to report a scrambled

response. However, this may not be true. It is reasonable to assume that not every

individual in the population may find the survey question sensitive. Therefore, there

may not be a need to force every sample respondent to conceal their response. Hence

the Optional RRT models acknowledge that sensitivity is subjective and in fact varies

from person to person based on many reasons- the question or the subject of the

question being an important one. The true proportion of individuals in the population

that find a question sensitive, irrespective of the reason, is referred to as the sensitivity

level of that question.

The key difference between the RRT models introduced in Sections II.1 and II.3

and the Optional RRT models is that the survey participants decide if they are

comfortable providing a true response or if they wish to conceal it with some noise

due to concerns about the protection of their privacy. This is not an option for survey

participants when we use full RRT models. Therefore, it is intuitive that the data

collected from a survey that uses Optional RRT would be able to capture a greater

element of truth as opposed to the data from a survey using a full RRT model where

even those respondents who are willing to share their true responses are not able to

do so.
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II.4.1 Gutpa et al.(2002) Optional Multiplicative RRT Model

Following the idea that sensitivity is subjective, Gupta et al. (2002)[19] proposed a

modified version of the model proposed by Eichhorn and Hayre (1983)[11] multiplicative

RRT model. This optional RRT model allows respondents, who are comfortable

reporting their true responses unaltered, to do so. The respondents who find the

question sensitive and would prefer to conceal their responses have the option to

scramble their responses using a multiplicative noise.

Let Y be the sensitive variable with an unknown mean µY and unknown variance

σ2
Y . The proportion of individuals in the population who would find the question

sensitive, i.e. the sensitivity level of the question is denoted by W . Note that now

sensitivity level (W ) is a parameter we can estimate in addition to the mean of the

sensitive variable of interest (µY ). Let T be the multiplicative scrambling variable

that would be provided as an option to each survey participant which they use only

if they find the question sensitive. The scrambling variable T is independent of the

sensitive variable Y and has a known mean µT = E(T ) and a known variance σ2
T . Let

Z be the reported response. Then under this model, the reported response Z is given

by

Z =

 Y with probability W

Y T with probability 1−W.
(II.24)

If µT = 1 then the expected value of the reported response Z is given by

E(Z) = E(Y )(1−W ) + E(Y T )W = µY (1−W ) + µY µTW = µY . (II.25)
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Therefore, If µT = 1 the estimator for the sensitive mean µY is given by the sample

mean of the reported responses,

µ̂Y = Z̄. (II.26)

If µT = 1, the variance of this unbiased estimator µ̂Y is given by

V ar(µ̂Y ) =
1

n
[σ2

Y +Wσ2
T (σ

2
Y + µ2

Y )]. (II.27)

One may note that V ar(µ̂Y ) increases with W , and hence there is a gain in

efficiency in the optional models when compared to the non-optional model where

W = 1.

Gupta et al.(2002) [19] also proposed an estimator for the sensitivity level W which

is given by

Ŵ =
1
n
Σn

i=1log(Zi)− log( 1
n
Σn

i=1Zi)

E[log(T )]
. (II.28)

Thus Gupta et al.(2002)[19] showed that by not forcing every respondent to

scramble their responses, the estimator efficiency improves when compared to the

Eichhorn and Hayre (1983)[11] estimator.

II.4.2 Gupta et al. Optional Additive RRT Model (2010)

As stated earlier in section II.3.3, the multiplicative scrambling model compromises

respondent anonymity. This happens because when the true response is zero, so is the

reported response irrespective of the multiplicative scrambling variable value. This

indicates that respondents with non-zero reported responses have indulged in sensitive
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behavior to some extent. Another issue with the multiplicative scrambling model

is that some respondents may either not like to multiply or may not know how to

multiply the scrambling variable correctly. Under such a circumstance, the respondents

still provide incorrect responses. [57] showed that this case is more dangerous than

not using the scrambled response.

To help address these problems and also to estimate the sensitivity level W without

using any approximations, [22] proposed an additive Optional RRT (ORRT) model

using a split-sample approach such that different additive scrambling variables are

used for each sub-sample. Using this method, we split the sample respondents into two

sub-samples. Let Y be the sensitive variable with an unknown mean µY and unknown

variance σ2
Y . Let Si be the additive noise used by respondents in the ith sub-sample

with a known mean of µSi
and a known variance of σ2

Si
. Let W be the true sensitivity

level of the question in the population and Zi be the reported response in the ith

sub-sample (i = 1, 2). Then following the concept of optionality in RRT models, if the

respondents find the survey question sensitive, they will provide a scrambled response.

Otherwise, they give the true unscrambled response. Under this model, the reported

response Z is given by

Zi =

 Y + Si with probability W

Y with probability 1−W ,
(II.29)

where i = 1, 2.

Then the expected value and the variance of the reported response for the two

sub-samples are given by

E(Zi) = µY + µSi
W, (II.30)
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V ar(Zi) = σ2
Y + σ2

Si
W + µ2

Si
W (1−W ), (II.31)

where µSi
= E(Si), (i = 1, 2).

The unbiased estimators for the mean of sensitive variable Y and the sensitivity

level W are given by

µ̂Y =
µS1Z̄2 − µS2Z̄1

µS1 − µS2

(II.32)

and

Ŵ =
Z̄1 − Z̄2

µS1 − µS2

. (II.33)

The corresponding variances for the estimators of µY and W , under simple random

sampling without replacement, are given by

V ar(µ̂Y ) =
1

(µS2 − µS1)
2

[
µ2
S2

σ2
Z1

n1

+ µ2
S1

σ2
Z2

n2

]
(II.34)

and

V ar(Ŵ ) =
1

(µS2 − µS1)
2

[
σ2
Z1

n1

+
σ2
Z2

n2

]
, µS1 ̸= µS2 . (II.35)

II.5 Use of Auxiliary Information in Quantitative

RRT Surveys

As discussed previously, RRT models are an effective method to collect data on

sensitive topics as they protect the privacy of the respondents. Several field studies,
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such as the one by Chow et al. (1979)[5], Chaloupka (1985)[3] and Chhabra et al.

(2016)[4], have also confirmed the efficacy of RRT models in acquiring information

from the respondents. Another such study was conducted by Kwan et al. (2010)[36]

on software piracy and their results confirmed that the respondents that responded

to the question using RRT were more willing to provide a true response about the

behaviors on software piracy. Moreover, we know that the accuracy of our results is

enhanced when we use mean estimators that make use of auxiliary information (e.g.

ratio, regression, product estimators, etc.) rather than the ordinary mean estimator

when the auxiliary variable is highly correlated with the variable of interest. Therefore,

if we have a situation where we have information on a non-sensitive variable that is

highly correlated with the sensitive variable, we can take simultaneous advantage of

RRT methodology and the auxiliary information.

In this section, we introduce a few estimators from the literature that make

use of strongly correlated auxiliary variables and improve upon the estimation of

the sensitive variable compared to corresponding estimators that do not utilize the

auxiliary information.

II.5.1 Mean Estimation using Auxiliary Variables

Ratio and regression estimators are examples of the use of auxiliary information in

mean estimation. In some situations, we may know the value for the auxiliary variable

X for the entire population. Let Xi be the sample values for the auxiliary variable

X and Yi be the sample values for the study variable Y , (i = 1, 2....n). We consider

the ratio estimator in those situations when the study variable Y and the auxiliary

variable X have a roughly linear relationship through the origin. Therefore in such a

case, it is reasonable to assume that when sample value Xi is zero the sample value Yi
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will be zero [60]. We may assume the model

Y = RX + ϵ, (II.36)

where E[ϵ] = 0. Let µX be the true known mean of the auxiliary variable and µY

be the unknown mean of the study variable. Then,

µY = RµX . (II.37)

Then the ratio estimator of the population mean µY is given by

µ̂r = rµx, (II.38)

where the sample ratio r is given by

r =

∑n
i=1 Yi∑n
i=1Xi

=
ȳ

x̄
(II.39)

Here, r shown in equation (II.39) is an estimate of the population ratio R = µY

µX
.

The approximate mean square error or variance of the ratio estimator is given by,

var(µ̂r) ≈
(
N − n

N

)
σ2
r

n
(II.40)

where,

σ2
r =

1

N − 1

N∑
i=1

(Yi −RXi)
2 (II.41)

and
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R =
ΣN

i=1Yi

ΣN
i=1Xi

=
τy
τx

=
µY

µX

. (II.42)

The traditional estimator of the mean square error of the ratio estimator is given

by,

̂V ar(µ̂r) =

(
N − n

N

)
s2r
n
, (II.43)

where

s2r =
1

n− 1

n∑
i=1

(Yi − rXi)
2. (II.44)

When the auxiliary variable X is approximately linearly related to the study

variable Y, but Yi is not zero when Xi is zero, using a linear regression estimator is

more appropriate than using a ratio estimator [60].

Using the same notations introduced for ratio estimators, the (linear) regression

estimator for the population mean µ is given by,

µ̂L = a+ bµx = ȳ + b(µx − x̄). (II.45)

The value of b gives the slope and a gives the y-intercept of a straight line fitted

to the data by least squares.

where,

b =
∑n

i=1(Xi−x̄)(Yi−ȳ)∑n
i=1(Xi−x̄)2

a = ȳ − bx̄

The variance of this regression estimator can be approximated by,
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V ar(µ̂L) ≈
N − n

Nn(N − 1)

N∑
i=1

(Yi − A−BXi)
2 (II.46)

where,

B =
∑N

i=1(Xi−µx)(Yi−µ)∑N
i=1(Xi−µx)2

A = µ−Bµx

An estimator for this variance is given by,

̂V ar(µ̂L) =
N − n

Nn(n− 2)

n∑
i=1

(Yi − a− bXi)
2 (II.47)

II.5.2 Mean Estimation using Auxiliary Variables under RRT

Models

In Section II.5.1, we discussed the ordinary ratio and regression estimators when both

the study variable Y and the auxiliary variable X are non-sensitive. These estimators

are more efficient in situations in which highly correlated auxiliary information X

is available on every unit in the population. However, in sensitive question surveys,

the study variable Y is sensitive. Normally, one would expect X to be also sensitive.

However, Sousa et al. (2010)[58] pointed out that it is possible that Y is sensitive

and X is non-sensitive. Since the information on X is available on all population

units, it is not a variable of direct interest. However, if this auxiliary variable X is

highly correlated with our sensitive study variable Y , we can utilize this auxiliary

information to improve the estimation of the sensitive mean µY . Thus we can derive

ratio and regression estimators under various RRT models and sampling techniques

to improve the sensitive mean estimation.
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Ratio Estimation under RRT Models

Sousa et al. (2010)[58] proposed a ratio estimator under the additive RRT model[50].

They estimated the mean of the sensitive variable using an improved estimator based

on a non-optional RRT model by utilizing a non-sensitive auxiliary variable. Let, Y

be the sensitive study variable that can not be observed directly and X be the non-

sensitive auxiliary variable (positively correlated with Y ). Also, let S be scrambling

variable (independent of both X and Y ) with mean µS = 0 and variance σ2
S. Let µX

be the known true population mean and σ2
X be the known variance of the non-sensitive

auxiliary variable X. Let µY be the unknown true population mean and σ2
Y be the

unknown variance of the sensitive study variable Y . Then we know that under the

non-optional Pollock and Beck (1976) model the reported response Z is given by

Z = Y + S.

Assuming, E(S) = 0, we get E(Z) = E(Y ) and the unbiased ordinary estimator

under this RRT model is given by,

µ̂o = z̄, (II.48)

and the MSE of this ordinary mean estimator is given by

MSE(µ̂o) = λ(σ2
Y + σ2

S), (II.49)

where λ = (N−n)
Nn

and N and n are the size of the finite population and the simple

random sample drawn from it respectively.

Based on this ordinary mean estimator, Sousa et al. (2010)[58] proposed the ratio

estimator for the mean of the sensitive variable Y given by
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µ̂R = z̄
(µX

x̄

)
, (II.50)

where z̄ is the sample mean of reported responses and x̄ is the sample mean of an

auxiliary variable.

The mean squared error (MSE) of the ratio estimator, correct up to the first-order

approximation, is given by

MSE(µ̂R) ≈ λµ2
z(C

2
x + C2

z − 2ρzxCzCx), (II.51)

where λ = N−n
nN

, Cz = Sz/µz & Cx = Sx/µx are the coefficients of variation for

Z and X respectively and ρzx = Szx/SzSx is the population correlation coefficient

between Z and X.

It was observed that MSE(µ̂R) < MSE(µ̂o) if

ρ >
1

2

CX

CY

√
1 +

σ2
S

σ2
Y

. (II.52)

Sousa et al. (2010)[58] compared the efficiency of the ratio estimator, in terms of its

MSE in equation (II.51), with the MSE of the ordinary mean estimator from equation

(II.49), it was established that the estimator proposed by Sousa et al. (2010)[58] is

more efficient.

Ratio Estimation under Optional RRT Models

Sousa et al. (2010)[58] improved the estimation of the sensitive mean through their

proposed ratio estimator under the non-optional Pollock and Beck (1976)[50] model.

However, Gupta et al. (2002)[19] established that forcing all respondents to scramble

their responses, irrespective of whether they find the question sensitive or not, hurts
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the efficiency of the model. Gupta et al. (2014)[18] modified the work done by Sousa

et al. (2010)[58] by introducing the optionality element into their model and by using

the split-sample technique. If W is the sensitivity level of the survey question i.e.

the proportion of individuals in the population that find the question sensitive, then

according to Gupta et al. (2010), the reported response Zi in the ith sub-sample is

given by

Zi =

 Y + Si with probability W

Y with probability 1−W ,
(II.53)

where i = 1, 2.

This work was further improved by Kalucha et al.(2015)[29]. They proposed two

ratio estimators of a finite population for the sensitive mean using the Optional RRT

model shown in equation (II.53). These estimators were called the additive and the

multiplicative ratio estimators.

This additive ratio estimator is given by

µ̂AR =
1

2

[
µS2 z̄1 − µS1 z̄2
µS2 − µS1

][
µX

x̄1

+
µX

x̄2

]
, (II.54)

The MSE for this additive ratio estimator, correct up to the first-order approxima-

tion, is given by

MSE(µ̂AR) ≈ λ1

[(
µS2

µS2 − µS1

)2

σ2
Z1

+
1

4
µ2
YC

2
X − µY ρY XσY

(
µS2

µS2 − µS1

)]
(II.55)

+ λ2

[(
µS1

µS2 − µS1

)2

σ2
Z2

+
1

4
µ2
YC

2
X − µY ρY XσY

(
µS1

µS2 − µS1

)]
.
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The multiplicative ratio estimator is given by

µ̂MR =

[
µS2 z̄1 − µS1 z̄2
µS2 − µS1

][
µX

x̄1

][
µX

x̄2

]
. (II.56)

The MSE for this multiplicative ratio estimator, correct up to the first-order

approximation is given by

MSE(µ̂MR) ≈ λ1

[(
µS2

µS2 − µS1

)2

σ2
Z1

+ µ2
YC

2
X − 2µY ρY XσY

(
µS2

µS2 − µS1

)]
(II.57)

+ λ2

[(
µS1

µS2 − µS1

)2

σ2
Z2

+ µ2
YC

2
X − 2µY ρY XσY

(
µS1

µS2 − µS1

)]

The geometric mean ratio estimator was introduced by Zhang et al. (2019)[68],

which improves the multiplicative ratio estimator in equation (II.56). The geometric

mean ratio estimator is given by

µ̂GMR =

[
µS2 z̄1 − µS1 z̄2
µS2 − µS1

]√(
µX

x̄1

)(
µX

x̄2

)
. (II.58)

The MSE for this geometric mean ratio estimator, correct up to the first order of

approximation, is given by

MSE(1)(µ̂GMR) ≈ λ1

[(
µS2

µS2 − µS1

)2

σ2
Z1

+
1

4
µ2
YC

2
X − µY ρY XσY

(
µS2

µS2 − µS1

)]
(II.59)

+ λ2

[(
µS1

µS2 − µS1

)2

σ2
Z2

+
1

4
µ2
YC

2
X − µY ρY XσY

(
µS1

µS2 − µS1

)]
.
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Zhang et al.(2019)[68] established that the geometric mean estimator is always

more efficient than the multiplicative ratio estimator and it is more efficient than the

ordinary RRT mean estimator when the correlation coefficient between X and Y is

greater than 1
2
. They also show that the geometric mean estimator is approximately

as efficient as the additive ratio estimator.

Regression Estimation under RRT Models

Gupta et al. (2012)[23] proposed a regression estimator to estimate the mean of

the sensitive variable when we have, a non-sensitive but highly correlated, auxiliary

information available for every unit in the population. This work was done under

the non-optional Pollock and Beck (1976)[50] model. If the sensitive variable Y and

auxiliary variable X have a linear relationship, this regression estimator is given by

µ̂Reg = z̄ + β̂ZX(µX − x̄), (II.60)

where β̂ZX = sZX

s2x
is the sample estimate of the regression coefficient between

reported response Z = Y + S and auxiliary variable X.

The Bias and the MSE of this estimate, accurate up to the first order of approxi-

mation, are given by

Bias(µ̂Reg) ≈ −βZXλ

[
µ12

µ11

− µ03

µ02

]
, (II.61)

and

MSE(µ̂Reg) ≈ λµ2
YC

2
Z(1− ρ2ZX) = λσ2

Y

[(
1 +

σ2
S

σ2
Y

)
− ρ2Y X

]
. (II.62)
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Here, βZX = σZX

σ2
X

= σY X

σ2
X

= ρY X
σY

σX
= βY X and ρZX = ρY X√

1+
σ2
S

σ2
Y

. Also, we have

λ =

(
1−f
n

)
and µrs =

1
N−1

∑N
i=1(Zi − µZ)(Xi − µX).

The following can be noted regarding the performance of the regression estimator

given by equation (II.60)

• The RRT regression estimator(II.60) is more efficient than the RRT sample

mean estimator if ρ2Y X > 0, and

• The RRT regression estimator(II.60) is more efficient than the RRT ratio esti-

mator(II.50) if (CX − CZρZX)
2 > 0.

Considering expressions accurate for first-order approximations, these two condi-

tions are always true. Hence, this regression estimator performs better than both the

ordinary RRT estimator(II.48) and the RRT ratio estimator(II.50).

Regression Estimation under Optional RRT Models

Gupta et al.(2017) [20] also proposed a modified version of the estimator proposed by

Gupta et al. (2012)[23] under the optional version of the Pollock and Beck (1976)[50]

model. They use the split sample approach to obtain this regression estimator for the

sensitive mean, as given by

µ̂Areg =

(
θ2z̄1 − θ1z̄2
θ2 − θ1

)
+ [β̂Z1X1(µX − x̄1) + β̂Z2X2(µX − x̄2)]

(
1

2

)
. (II.63)

Here, z̄i and x̄i (i = 1, 2) are the sample mean for the reported response and

the auxiliary information in the ith sub-sample and β̂ZiXi
(i = 1, 2) are the sample

regression coefficients between Zi and Xi.
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The MSE for this estimator (II.63), correct up to the first order of approximation,

is given by

MSE(µ̂Areg) ≈
(
1− f1
n1

)[(
θ2

θ2 − θ1

)2

σ2
Z1

+
1

4
β2
Z1X

σ2
X1

−
(

θ2
θ2 − θ1

)
βZ1XσZ1X1

]
+

(
1− f2
n2

)[(
θ1

θ2 − θ1

)2

σ2
Z2

+
1

4
β2
Z2X

σ2
X2

+

(
θ1

θ2 − θ1

)
βZ2XσZ2X2

]
,

(II.64)

where, θ1 ̸= θ2 and

σ2
Zi

= σ2
Y +Wσ2

Si
+ θ2iW (1−W ), i = 1, 2 and

βZiX =
σZiX

σ2
X

=
σY X

σ2
X

=
ρY XσY

σX

, i = 1, 2.

Also, σZiXi
= σY Xi

σY X = ρY XσY σX , σ2
Xi

= σ2
X and ρZiX = ρY XσY

σZi
for i = 1, 2.

Therefore, the MSE for the regression estimator shown in equation (II.63), correct up

to the first order of approximation, can be re-written as

MSE(1)(µ̂Areg) ≈
1

(θ2 − θ1)2

[
θ22

(
1− f1
n1

)
σ2
Z1

+ θ21

(
1− f2
n2

)
σ2
Z2

]
+

ρ2Y Xσ
2
Y

4
α− ρ2Y Xσ

2
Y β, (II.65)

where θ1 ̸= θ2, α =

(
1−f1
n1

)
+

(
1−f2
n2

)
and β =

(
1−f1
n1

)(
θ2

θ2−θ1

)
−
(

1−f2
n2

)(
θ1

θ2−θ1

)
.

The following can be noted regarding the performance of the regression estimator

given by equation (II.63):
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• The regression estimator proposed in equation (II.63) is more efficient than the

ordinary optional RRT estimator if

ρ2Y Xσ
2
Y

(
α

4
− β

)
< 0, (II.66)

• The regression estimator proposed in equation (II.63) is more efficient than the

optional RRT ratio estimator in equation (II.54) if

ρY X <
α

4β − α
when CY ≈ CX . (II.67)

These conditions are always true when the two sub-samples are of equal size i.e.

n1 = n2.

Generalized Estimators under RRT Models

Many researchers have proposed various combined generalizations of the ratio and

the regression estimators. Some of these works include Perri (2003), Kadilar and

Cingi (2004) and Nangsue (2009). Gupta et al. (2012)[23] also proposed a generalized

regression-cum-ratio estimator to see if one could improve any aspect of sensitive mean

estimation from the generalization of the regression estimators described previously.

This estimator was also proposed for a non-optional Pollock and Beck (1976)[50] model

and is given by

µ̂GRR = [k1z̄ + k2(µX − x̄)]

[
µX

x̄

]
, (II.68)

where k1 and k2 are unknown parameters. The bias for this estimator, accurate

up to the first-order approximation, is given by
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Bias(µ̂GRR) ≈ (k1 − 1)µZ + λk1µZ(C
2
X − ρZXCZCX) + λk2µXC

2
X . (II.69)

The optimal values of k1 and k2, and the corresponding minimum value of the

MSE of this estimator are given by

k1(opt) =
1− λC2

X

1− λ[C2
X − C2

Z(1− ρ2ZX)]
, (II.70)

k2(opt) =
µY

µX

[
1 + k1(opt)

(
ρZXCZ

CX

− 2

)]
, and (II.71)

MSE(µ̂GRR)min ≈ µ2
Y

λC2
Z(1− ρ2ZX)(1− λC2

X)

λC2
Z(1− ρ2ZX) + (1− λC2

X)
. (II.72)

The following can be noted regarding the performance of the regression estimator

given by equation (II.68) with minimum MSE:

• The generalized regression-cum-ratio estimator (II.68) is more efficient than the

ordinary RRT estimator if

λ(σ2
Y + σ2

S) > 0 (II.73)

• The generalized regression-cum-ratio estimator (II.68) is more efficient than the

RRT ratio estimator if

(
CX

CZ

− ρZX

)2

+
λC2

Z(1− ρ2ZX)

λC2
Z(1− ρ2ZX) + (1− λC2

X)
> 0. (II.74)

• The generalized regression-cum-ratio estimator (II.68) is more efficient than the
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RRT regression estimator if

λC2
Z(1− ρ2ZX) > 0. (II.75)

These conditions are always true. Therefore, the generalized regression-cum-ratio

estimator with optimal coefficients is always better than the ordinary RRT sample

mean, RRT regression and RRT ratio estimators.

Generalized RRT Estimator by Khalil et al. (2018)

Measurement errors are a type of non-sampling error that occurs quite commonly

in any survey. These can be a source of concern for researchers, especially when

the survey question is on a sensitive topic and the quality of the data collected

could get severely impacted by other elements such as social desirability bias (SDB)

and intentional misreporting. Hence Khalil et al. (2018)[32] proposed a generalized

estimator accounting for measurement errors on both the reported response Z and

the non-sensitive auxiliary variable X which is positively correlated with the sensitive

study variable Y . This work was done under the non-optional Pollock and Beck

(1976)[50] model and is given by

µ̂Z =
[
z̄ + k(µX − x̄)

](µD

d̄

)g

, (II.76)

where d̄ = λ(αx̄+ β) + (1− λ)(αµX + β) and µD = αµX + β. Here k and g are

suitable constants. λ is an unknown constant which is determined from the optimality

conditions. Further, α and β are known parameters of the auxiliary variable X.

Various series of estimators can be obtained by using different values of g, k, λ, α

and β. Using g = 1 will generate a series of ratio estimators and using g = −1 will
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generate a series of product estimators. It must be noted that we do not discuss

product estimators in this dissertation.

If we consider the scenario with no measurement errors on Z and X, then the

MSE of this generalized estimator(II.76) is given by

MSE∗(µ̂Z) ≈ θ[σ2
S + g2λ2R2σ2

X + k2σ2
X − 2gλRρZXσZσX + 2gλkRσ2

X ], (II.77)

where R = αµZ/(αµZ + β). By minimizing the MSE shown in equation (II.77),

the optimal value of λ is given by

λopt =
ρZXσZσX − kσ2

X

gRσ2
X

. (II.78)

Thus, the minimum value of MSE for this generalized estimator, obtained by

substituting the optimum value of λ is given by

MSE∗
min(µ̂Z) ≈ θ

[
σ2
Z − ρ2ZXσ

2
Zσ

2
X

σ2
X

]
= θσ2

Z(1− ρ2ZX). (II.79)

It can be noted that the minimum value of the MSE for this generalized estimator

when there are no measurement errors is the same as the approximate variance of the

linear regression estimator. The following can also be noted regarding the performance

of the generalized estimator given by equation (II.76) when it has minimum MSE

when λ = λopt:

• The generalized RRT estimator (II.76) is more efficient than the ordinary RRT

estimator if
ρ2ZXσ

2
Zσ

2
X

σ2
X

> 0 or ρ2ZXσ
2
Z > 0. (II.80)
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• The generalized RRT estimator (II.76) is more efficient than the RRT ratio

estimator as proposed by Sousa et al. (2010)[58] if

(RσX − ρZXσZ)
2 > 0. (II.81)
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Chapter III: Mixture Binary RRT Models with a

Unified Measure of Privacy and Efficiency

As discussed in Chapter I, researchers in social sciences often want to collect data

on sensitive topics through a survey. Since mail and telephone surveys have a poor

response rate, they often resort to in-person interviews for collecting their data.

However, asking sensitive questions, face-to-face could lead to a high non-response

rate and intentional misreporting, i.e. untruthful responses, due to social desirability

bias (SDB). One method to circumvent the SDB in such a survey is to implement an

appropriate RRT model such as Warner’s indirect question model[62] or the binary

unrelated question model[16]. However, Young et al. (2019)[67] showed that the

estimates of sensitive trait prevalence are negatively biased if respondents are not

convinced about their privacy being protected. This would occur since a lot less

proportion of respondents would admit to having engaged in the sensitive behaviour

because they may not be convinced about how well their response is protected from

the surveyor. In section II.1, two of the most common binary RRT models were

introduced. However, both these models assume that once the respondents know

that they are participating in an RRT survey, they have no reason to lie. However,

this may not be true. Although many more models have been proposed since for the

estimation of the sensitive trait prevalence, in this chapter, we primarily focus on
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Warner’s indirect question model[62], Greenberg’s unrelated question model[16] and

the modified unrelated question model based on the concept of accounting for lack

of trust. The idea of accounting for lack of trust was first proposed by Young et al.

(2019)[67] in the context of Greenberg’s unrelated question model (1969)[16].

In Section III.1, we first introduce a modified Greenberg et al. (1969)[16] model that

accounts for the lack of trust in the model. Next in Section III.2 the proposed Mixture

Binary RRT model will be introduced and its performance in terms of efficiency and

privacy will be summarized. Section III.3 will present the simulation results and

Section III.4 will provide concluding remarks for this Chapter1.

III.1 Accounting for Lack of Trust in RRT Models

One of the most common consequences of asking a sensitive question in a survey

is untruthful responses or misreporting. This means that sensitivity to a question

could make a survey participant give an answer that does not conform to their true

status with respect to that sensitive question, resulting in inaccurate answers, a

form of measurement error [65]. This could be both intentional and unintentional.

However, Tourangeau and Yan (2007)[61] argue that misreporting to sensitive questions

largely arises from survey respondents editing their answers prior to reporting them in

order to avoid embarrassing themselves. This behavior is a source of response errors

unique to sensitive questions. Tourangeau and Yan (2007)[61] summarized that survey

respondents tend to over-report socially desirable traits and behavior (volunteer work,

benevolent acts, participation in election voting, etc.) and they tend to under-report
1This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of

Communications in Statistics - Simulation and Computation on 24 April 2021, available online:
https://www.tandfonline.com/doi/full/10.1080/03610918.2021.1914092 and this chapter has a version
of this work.
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socially undesirable traits and behavior such as indulgence in illegal activities, drug &

alcohol abuse, etc.

Yet most of the traditional RRT models operate under the assumption that the

respondent is convinced about their privacy protection and trusts the model and hence

only responds truthfully. However, despite the additional privacy provided by RRT

models, some respondents may still provide an untruthful response [67]. Therefore,

the estimation of sensitive trait prevalence or mean estimation of sensitive variables in

a population while accounting for the level of untruthfulness is not as straightforward

as one might think.

Young et al. (2019)[67] studied the impact of untruthful responses and misreporting

in cases where the sensitive question has binary responses. They looked at this problem

in the context of Greenberg et al. (1969)[16] model. They showed that even if a small

proportion of respondents are providing untruthful responses in a survey, considerable

bias is introduced in the estimates. Following their work, we consider Greenberg et

al.(1969)[16] under the possible scenarios regarding the respondents’ trust in the RRT

model (Figure III.1).

Let πX be the true prevalence of the sensitive trait in the population and let πY

be the true prevalence of the non-sensitive unrelated trait in the population. If p

is the proportion of sample respondents that are asked the sensitive question under

the Unrelated Question model, then the probability of a "Yes" response (P ∗
y ) for the

model shown in Figure III.1 is given by

P ∗
y = pπxA+ (1− p)πy. (III.1)

Here A is the proportion of individuals that trust the model i.e. level of truthfulness.
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Figure III.1. Lack of Trust and Untruthfulness in Greenberg Model

If one ignores untruthfulness (i.e. A = 1), one would end up using the Greenberg et

al. (1969)[16] estimator given by

π̂∗
x =

P̂ ∗
y − (1− p)πy

p
. (III.2)

Therefore, if untruthful responding (i.e. A) is ignored

E(π̂∗
x) =

E(P̂ ∗
y )− (1− p)πy

p
=

pπxA+ (1− p)πy − (1− p)πy

p
= Aπx. (III.3)

This then leads to a bias in the estimator given by

Bias(π̂∗
x) = E[π̂∗

x]− πx = Aπx − πx = πx(A− 1). (III.4)
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Hence, according to Young et al. (2019)[67], when a researcher fails to account for

an untruthful response in the Greenberg et al.(1969) [16] model, a bias is introduced

into the estimator. In Lovig et al.(2021) [41], we examined the impact of untruthfulness

in the Greenberg’s Unrelated Question model[16] by running extensive simulations.

The results of this simulation study have been shown in Table III.1.

Table III.1. Estimates averaged over 10000 simulations with Greenberg model with
untruthfulness, n = 500, πx = 0.3, πy = 0.1

p 1− p A π̂x M̂SE MSE

0.5 0.5 1 0.29984 0.00128 0.00128
0.5 0.5 0.9 0.27023 0.00209 0.00128
0.5 0.5 0.8 0.23967 0.00478 0.00128
0.7 0.3 1 0.30023 0.00076 0.00075
0.7 0.3 0.9 0.27006 0.0016 0.00075
0.7 0.3 0.8 0.24035 0.00424 0.00075
0.9 0.1 1 0.30028 0.0005 0.0005
0.9 0.1 0.9 0.26992 0.00137 0.0005
0.9 0.1 0.8 0.23972 0.00407 0.0005

We noted that when A < 1, i.e. when respondents do not trust the model, our

estimates show significant errors. Therefore, some level of untruthful responses is

an important consideration and can significantly impact the reliability of the RRT

estimators.

Moreover, results by Young et al.(2019)[67] showed that when the sensitive trait

prevalence is high or when the proportion of people responding dishonestly is high,

their model demonstrates an efficiency higher than that for [16]. Further, they showed

that when the proportion of untruthful responses is high or the prevalence of the

sensitive trait is high, the proposed model can offer a large reduction in sample size

while achieving the same efficiency as other models.

Thus, Young et al.(2019)[67] established that even if only a small number of

57



respondents lie, a significant bias may be introduced to the model. A detailed

description and analysis has been presented in Chapters III, IV and VI, of our

proposed models that address the lack of trust in traditional binary and quantitative

RRT models. In Chapter III, we restrict our discussion to account for the lack of trust

in binary RRT models.

III.2 Proposed Mixture Binary RRT Model

In Chapter II, we described two binary RRT models - the Warner’s Indirect Question

Model[62] and Greenberg’s Unrelated Question model[16]. Of these two models, the

unrelated question model is more efficient if the proportion of respondents asked the

sensitive question, phrased directly, is greater than 1/3. Moreover, as few respondents

under the Greenberg model are faced with the sensitive question altogether, it can put

respondents more at ease. However, under the indirect question model, all respondents

have to address the sensitive question irrespective of whether it is phrased directly

or indirectly which puts more respondents in discomfort. Moreover, as stated earlier,

according to Young et al.(2019)[67], when a researcher fails to account for an untruthful

response in the Greenberg’s Unrelated Question model[16] model, a bias is introduced

into the estimator.

With this background, in Lovig et al.(2021)[41], we propose a model for asking a

sensitive question with a binary response in a survey. This proposed Mixture binary

RRT model (Figure III.2) uses the elements of both the Indirect Question model[62]

and the Unrelated Question model[16]. The work was done both with and without

accounting for untruthful responses.

Let πX be the true prevalence of the sensitive trait in the population and πY be
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Figure III.2. Mixture RRT Model

the true prevalence of the non-sensitive unrelated trait in the population. Let p and

q, respectively, denote the proportion of respondents asked the sensitive question

phrased directly and the proportion of respondents asked the sensitive question phrased

indirectly. Suppose A is the true proportion of survey participants who would respond

to the sensitive question truthfully because they truth the model.

III.2.1 Mixture Binary RRT Model with Unaccounted Un-

truthfulness

The probability of a "Yes" response PY for the model is shown in Figure III.2 is given

by

PY = πXA(p− q) + q + (1− p− q)πY . (III.5)

If a researcher erroneously does not account for the untruthfulness of the respon-
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dents then they would end up using the estimator based on

P ∗
Y = πX(p− q) + q + (1− p− q)πY . (III.6)

This wrong assumption can thus give us the incorrect estimator

π̂X
∗ =

P̂ ∗
Y − q − (1− p− q)πY

p− q
, p ̸= q. (III.7)

Here P̂Y ∗ is the proportion of "Yes" responses reported by the sample. This gives

us the following expected value and bias for the estimator

E(π̂X
∗) =

E(P ∗
Y )− q − (1− p− q)πY

p− q

=
E[πXA(p− q) + q + (1− p− q)πY ]− q − (1− p− q)πY

p− q

= πXA

(III.8)

and

Bias(π̂X
∗) = E(π̂X

∗)− πX = πX(A− 1). (III.9)

Note, there is no bias when A = 1.

III.2.2 Efficiency under Mixture Binary RRT Model with Un-

accounted Untruthfulness

For the erroneous estimator given by equation (III.7), the variance and the MSE are

respectively given by
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V ar(π̂X
∗) =

P ∗
Y (1− P ∗

Y )

(n− 1)(p− q)2
, p ̸= q (III.10)

and

MSE(π̂X
∗) = V ar(π̂X

∗) + [Bias(π̂X
∗)]2. (III.11)

III.2.3 Mixture Model Accounting for Untruthfulness

We noted in equation (III.5) for the mixture model that the correct probability of a

"Yes" response is given by

PY = πXA(p− q) + q + (1− p− q)πY . (III.5)

This equation involves two unknown parameters i.e. A and πX . Therefore, we use

a two-question approach to estimate these parameters. The two questions used are as

follows.

Question-1: Do you trust the model? (Using Greenberg Binary RRT Model)

Question-2: Do you have the sensitive trait? (Using Mixture Binary RRT Model)

Question-1: (With Greenberg Model) Do you trust the model?

The first question is used to estimate A using the traditional Greenberg et

al.(1969)[16] model and the second question is used to estimate the sensitive trait

prevalence. Let p0 be the proportion of respondents who were asked Question-1 directly

and πY0 be the proportion of respondents who were asked the unrelated question

instead of Question-1. Then the proportion of respondents who gave a "Yes" response,

i.e. PY0 , for this setup to estimate A is given by
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PY0 = p0A+ (1− p0)πY0 , (III.12)

The unbiased estimator for A and its expected value are given by

Â =
P̂Y0 − (1− p0)πY0

p0
, (III.13)

and

E(Â) = A;V ar(Â) =
Py0(1− PY0)

np20
. (III.14)

Question-2: (With Mixture Model) Do you have the sensitive trait?

The probability of a "Yes" response to Question-2 is given by

PY = πXA(p− q) + q + (1− p− q)πY . (III.15)

Then the estimator of the sensitive trait prevalence πX is given by

π̂X =
P̂Y − q − (1− p− q)πY

Â(p− q)
, p ̸= q. (III.16)

Note that

E(P̂Y ) = PY = πXA(p− q) + q + (1− p− q)πY ; V ar(P̂Y ) =
PY (1− PY )

n
. (III.17)

We use the first-order Taylor’s approximation to rewrite the estimator in (III.16).

Using the result
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f(x, y) ≈ f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b).

and taking x = P̂Y , y = Â, a = PY , b = A, π̂X can be approximated as

π̂X ≈ PY − q − (1− p− q)πY

A(p− q)
− (Â− A)

[
PY − q − (1− p− q)πY

A2(p− q)

]
+ (P̂Y − PY )

[
1

A(p− q)

]
, p ̸= q (III.18)

The expected value of this estimator is given by

E(π̂X) ≈ πX , (III.19)

Note that the estimator in equation (III.18) is asymptotically unbiased as the

expected values of the second and the third terms in equation (III.18) reduce to zero

(using (III.14) and (III.17)).

III.2.4 Efficiency under Mixture Binary RRT Model with Ac-

counted Untruthfulness

The efficiency of a model estimator, as established in Chapter II, is evaluated by the

mean square error for the estimator. The MSE for an estimator θ̂ for the parameter θ

is given by

MSE(θ̂) = V ar(θ̂) + [Bias(θ̂)]2

Therefore, when an estimator is unbiased, the variance alone can give us the

measure of the efficiency of an estimator. Since the proposed estimator given in
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equation (III.18) is approximately unbiased, we can compute the approximate variance

of this estimator to measure its efficiency. The variance for this approximated π̂X

from equation (III.18) is given by

V ar(π̂X) ≈
[
PY − q − (1− p− q)πY

A2(p− q)

]2
V ar(Â) +

[
1

A(p− q)

]2
V ar(P̂Y ), p ̸= q.

(III.20)

The values of V ar(Â) and V ar(P̂Y ) are given in equations (III.14) and (III.17)

respectively.

III.2.5 Introduction to Privacy under Binary RRT Models

Although in regular surveys, a researcher may prioritize estimation efficiency, when

the survey is on a sensitive topic, respondent privacy must also be ensured. If survey

participants are not convinced about their responses staying private, it is possible

they might refuse to participate, or worse, they might intentionally report untruthful

responses. Therefore, evaluating the privacy level offered under an RRT model is

equally important as evaluating the efficiency of the model estimator.

Lanke (1976)[38], proposed a measure for the privacy loss under a binary RRT

model as described below.

Let

P(S|Y) be probability someone has the sensitive trait given they reported a "Yes"

and

P(S|N) be probability someone has the sensitive trait given they reported a "No"

Then a measure of privacy loss δ is given by
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δ = Max(P (S|Y ), P (S|N)). (III.21)

One can transform this measure of privacy loss under a model such that it reflects

the primary protection offered by the same model. This can be achieved by using a

measure proposed by Fligner et al. (1977) [14] which is given by

PP =
1− δ

1− πX

. (III.22)

III.2.6 Privacy under Mixture Binary RRT Model with Ac-

counted Untruthfulness

Using the definition of this privacy loss measure given by equation (III.21) for the

model shown in Figure III.2 is given by

δ = Max(η1, η2) where,

η1 = P (S|Y ) =
pAπX + (1− p− q)πXπY + qπX(1− A)

πXA(p− q) + q + (1− p− q)πY

,

η2 = P (S|N) =
qAπX + (1− p− q)πX(1− πY ) + pπX(1− A)

πXA(q − p) + p+ (1− p− q)(1− πY )
.

Theorem III.1. The minimum value of δ is πx.

Proof. Let p = q, then

P (S|Y ) =
pAπX + (1− p− q)πXπY + qπX(1− A)

πXA(p− q) + q + (1− p− q)πY

= πx
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P (S|N) =
qAπX + (1− p− q)πX(1− πY ) + pπX(1− A)

πXA(q − p) + p+ (1− p− q)(1− πY )
= πx

Hence when p = q

η1 = η2 = Max(η1, eta2) = δ = πX .

Now assume δ < πx, which. implies ∃p and ∃q such that

P (S|Y ) < πx and P (S|N) < πx

⇒ P (S ∩ Y )

P (Y )
< πx;

P (S ∩N)

P (N)
< πx

⇒ P (S ∩ Y ) < πxP (Y ); P (S ∩N) < πxP (N)

⇒ P (S ∩ Y ) + P (S ∩N) < πxP (Y ) + πxP (N)

⇒ P (S) < πx

This creates a contradiction to the assumption, since P (S) = πx. Hence δ ≥ πx

and the minimum privacy loss under this model is attained when p = q. This result

implies that the closer p and q are to each other, the more privacy the proposed

mixture model would provide to the survey participants.

It must be noted that since δ ≥ πX , the proportion of the maximum primary

protection that can be achieved by a model is represented by the primary protection
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measure PP (equation III.22).

III.2.7 Unified Measure of Privacy and Efficiency

When one wants to evaluate the overall performance of an RRT model, both the model

efficiency and the privacy protection offered by the model. Often the model efficiency,

evaluated by the mean squared error of the estimator, worsens when the privacy level

is increased for that model. This can complicate the assessment of the overall model

performance. Gupta et al.(2018)[21] proposed a combined measure for quantitative

RRT models which is given by

M =
MSE(θ̂)

PL
, (III.23)

where PL is the privacy level of the model with the estimator θ̂ for estimating the

population parameter θ. The higher the value of PL, the more privacy is offered to

the survey participants under the model. Moreover, a researcher would also want to

minimise the MSE(θ̂).

We modified the combined measure of estimator quality in RRT models proposed

by Gupta et al. (2018) [21] and propose a new unified measure of privacy and efficiency

for binary RRT models. If πx is the true sensitive trait prevalence and δ is the measure

of privacy loss, then the proportion of the maximum primary protection that can be

achieved by the mixture model is given by

PP =
1− δ

1− πx

. (III.24)

The proposed unified measure of privacy and efficiency is then given by
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M =
PP a

MSEb
, (III.25)

where a and b are weights chosen by the researcher to account for the importance

of privacy and efficiency respectively. Note that a higher value of M is preferred since

that would correspond to a higher level of Privacy Protection, or a lower MSE, or

both.

III.3 Simulation Study

In this section, we examine the performance of the proposed Mixture Binary RRT

model and compare it to the performance of the Warner’s Indirect Question model[62]

and the Greenberg’s Unrelated Question model[16]. For this purpose, we evaluate

the performance of these three models in terms of MSE, the PP and the proposed

combined measure M . The combined measure M has been computed for both the

scenario where we account for the level of trust A (Scenario-2) and the scenario where

we do not account for it (Scenario-1).

We ran a simulation study with 10000 iterations with samples of size n = 500 in

each iteration. We assume the true sensitive trait prevalence in the population to

be πX = 0.4. Greenberg et al. (1969)[16] recommended that πY should be kept as

small as cooperation would allow if πX < 0.5. Therefore, the true prevalence of the

non-sensitive unrelated trait in the population is assumed to be πY = 0.1 for this

simulation study. We evaluate the model performance at varying levels of respondent

trust A in the model. A = 1 corresponds to the case where all survey participants

trust the model and hence all respondents respond truthfully in the RRT survey using

the proposed mixture model. Lower values of A correspond to a lower proportion of
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respondents trusting the proposed model in the survey.

These simulation results have been summarized in Table III.2. Subscript 1 refers to

the cases when untruthfulness is accounted for and subscript 2 refers to the cases when

untruthfulness is unaccounted for. In the cases where the proportion of individuals

who are asked the indirect question q = 0, the proposed model gets reduced to

Greenberg’s unrelated question model[16]. Similarly, in the cases where the proportion

of individuals who are asked the indirect question q = 1− p, the proposed model gets

reduced to Warner’s indirect question model[62].

Our simulation results for the mixture binary RRT model show that the Greenberg

model performs the best in terms of efficiency (i.e. MSE) and the Warner’s model

performs the best in terms of privacy. However, the mixture model outperforms both

models when the values for the proposed unified measure of privacy and efficiency

shown in (III.25) are compared. This unified measure allows the researcher to adjust

for the weights for the privacy protection level and the MSE simultaneously. Overall,

through our work, we established that the mixture model in fact outperforms both

the Greenberg’s Unrelated Question model and the Warner’s Indirect Question model

when privacy and efficiency are simultaneously factored in with equal weights.

In Table III.2, we can clearly note the impact of lack of truth and untruthful

responses under the model by comparing the columns for π̂x1 and π̂x2. We observe

that as the level of truth A in the model drops, and more respondents give untruthful

responses when one does not account for A, the estimates show considerable differences.

For instance, when A = 1 with p = 0.4 and q = 0.05, the two estimates are fairly

similar in value. However, the two estimates vary considerably as A drops. The impact

of untruthful responses on the efficiency can be noted by looking at the MSE1 and

MSE2 columns. It can be noted that the MSE values increase as the A value drops
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Table III.2. Theoretical (bold) and empirical values based on 10000 iterations n = 500,
πX = 0.4, πY = 0.1, πy0 = 0.1, p0 = 0.7

ppp qqq 1− p− q1− p− q1− p− q AAA π̂x1π̂x1π̂x1 MSE1MSE1MSE1 π̂x2π̂x2π̂x2 MSE2MSE2MSE2 PPPPPP M1M1M1 M2M2M2

0.4 0 0.6 1 0.4003 0.0023 0.4001 0.0021 0.2735 119.6437 127.8524
0.0023 0.0021 0.2727 119.7078 126.8912

0.4 0 0.6 0.9 0.4005 0.0027 0.3601 0.0036 0.2938 110.1171 80.5532
0.0027 0.0037 0.2941 109.2467 78.446

0.4 0 0.6 0.8 0.4003 0.0031 0.3198 0.0084 0.3195 101.9188 38.2897
Greenberg’s Model 0.0032 0.0085 0.3191 98.659 37.3304

0.4 0.05 0.5 1 0.4007 0.0031 0.4002 0.0028 0.4291 137.2452 144.4069
0.0032 0.003 0.4285 135.8376 141.6272

0.4 0.05 0.5 0.9 0.4005 0.0037 0.36 0.0045 0.4536 121.7742 101.0926
0.0038 0.0046 0.4545 120.6014 98.2577

0.4 0.05 0.5 0.8 0.4007 0.0046 0.3202 0.0092 0.4837 108.4597 52.7426
Mixture Model 0.0046 0.0094 0.4839 105.4075 51.3333

0.4 0.6 0 1 0.3982 0.0124 0.3977 0.0122 0.8341 67.4374 68.4523
0.0126 0.0125 0.8333 66.9597 66.64

0.4 0.6 0 0.9 0.4006 0.0157 0.3602 0.0141 0.8471 54.0927 59.9959
0.0156 0.0141 0.8474 54.3387 60.082

0.4 0.6 0 0.8 0.4023 0.0197 0.3215 0.0186 0.8621 43.8717 46.2804
Warner’s Model 0.0197 0.0189 0.8621 43.7237 45.6

0.55 0 0.45 1 0.4001 0.0014 0.3998 0.0013 0.1698 117.6022 130.5046
0.0014 0.0013 0.1698 119.6422 131.601

0.55 0 0.45 0.9 0.4009 0.0017 0.3604 0.0028 0.1862 111.2111 65.4519
0.0017 0.0029 0.1852 109.8513 64.0702

0.55 0 0.45 0.8 0.3998 0.0019 0.3195 0.0076 0.2046 110.5253 26.9
Greenberg’s Model 0.002 0.0077 0.2036 100.3351 26.4773

0.55 0.1 0.35 1 0.3995 0.0023 0.3993 0.0021 0.4285 189.8 201.6383
0.0023 0.0021 0.4286 189.2684 200.7001

0.55 0.1 0.35 0.9 0.3997 0.0027 0.3594 0.0037 0.4557 170.4568 122.8569
0.0027 0.0037 0.4545 166.3642 121.6865

0.55 0.1 0.35 0.8 0.4014 0.0032 0.3206 0.0083 0.4845 153.7125 58.7283
Mixture Model 0.0034 0.0085 0.4839 144.1011 56.69

0.55 0.45 0 1 0.3975 0.0509 0.3971 0.0507 0.9173 18 18.0905
0.0502 0.0501 0.9184 18.2908 18.3379

0.55 0.45 0 0.9 0.3988 0.0628 0.3587 0.0524 0.9252 14.73 17.6645
0.062 0.0517 0.9259 14.9379 17.9165

0.55 0.45 0 0.8 0.3937 0.0788 0.3145 0.0574 0.9322 11.8286 16.2399
Warner’s Model 0.0784 0.0565 0.9336 11.9041 16.5291

0.7 0 0.3 1 0.4001 0.001 0.3996 0.0008 0.0968 99.1116 114.5333
0.001 0.0009 0.0968 96.4091 110.623

0.7 0 0.3 0.9 0.3999 0.0011 0.3597 0.0025 0.1062 94.2058 43.204
0.0012 0.0025 0.1064 88.3861 42.9863

0.7 0 0.3 0.8 0.4003 0.0013 0.3198 0.0072 0.1178 88.582 16.3157
Greenberg’s Model 0.0015 0.0073 0.1181 80.9974 16.2355

0.7 0.15 0.15 1 0.4002 0.0017 0.3998 0.0016 0.4291 251.218 272.8059
0.0016 0.0016 0.4286 252.462 273.2205

0.7 0.15 0.15 0.9 0.4006 0.002 0.36 0.0031 0.4551 225.2544 144.796
0.0021 0.0032 0.4545 219.325 143.4535

0.7 0.15 0.15 0.8 0.4006 0.0025 0.3202 0.0079 0.4842 194.8597 61.2223
Mixture Model 0.0026 0.008 0.4839 188.0234 60.7222

0.7 0.3 0 1 0.4009 0.0033 0.4003 0.0031 0.6521 199.4005 211.1705
0.0032 0.0031 0.6522 201.276 209.62

0.7 0.3 0 0.9 0.4008 0.0039 0.3604 0.0046 0.6761 174.6029 147.0005
0.004 0.0047 0.6757 168.9802 143.4183

0.7 0.3 0 0.8 0.4008 0.0049 0.3201 0.0094 0.6998 143.7185 74.3188
Warner’s Model 0.005 0.0095 0.7009 139.1164 37.6955
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and they become worse if the level of truthfulness A is not accounted for. We also

observe the resultant impact of the untruthful responses on the proposed combined

measure M . When respondents are providing untruthful responses, i.e. A < 1, we

can note that M1 > M2. Based on the definition of the proposed unified measure as

shown in equation III.25, we can see that a higher value of M indicates an overall

better model performance. Note that for this study we assume the weight for this

unified measure to be a = 1 and b = 1. Therefore, based on our results, we can infer

that when respondents are providing untruthful responses due to a lack of trust in

the mixture model, the overall model performance can be considerably improved by

accounting for and estimating A. The bold entries in Table III.2 are the theoretical

values of the measures while the non-bold figures are the empirical values of the

various measures summarized in this table. Comparing the theoretical values with the

corresponding empirical values for the MSEs, PP s and the unified measures M1 and

M2, we can note that our theoretical results match with the corresponding empirical

results reasonably well.

In particular, it can be noted that the Greenberg model (q = 0) performs the

best in terms of efficiency, i.e. has the lowest MSE. The Warner’s model (q = 1− p)

performs the best in terms of Privacy Protection. However, when we consider the

efficiency and privacy protection, simultaneously with equal weights (a = 1, b = 1),

the proposed Mixture Binary RRT model performs the best, i.e. the proposed model

has the highest value for M .

For instance, consider the case with A = 0.8 (i.e. 20% untruthful responses)

corresponding to p = 0.7 and q = 0 (i.e. Greenberg’s Model). Here, the theoretical

MSE1 = 0.0015, theoretical PP = 0.1181 and the theoretical M1 = 80.9974. Similarly,

when A = 0.8, consider the case where p = 0.7 and q = 0.3 (i.e. Warner’s Model).
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Here, the theoretical MSE1 = 0.0050, theoretical PP = 0.7009 and the theoretical

M1 = 139.1164. Lastly, when A = 0.8, consider the case when p = 0.7 and q = 0.15.

Here, the theoretical MSE1 = 0.0026, theoretical PP = 0.4839 and the theoretical

M1 = 188.0234. When we compare these three cases, we observe that clearly the

Greenberg’s Model (i.e. p = 0.7 and q = 0) has the least MSE. We also note that

the Warner’s Model (i.e. p = 0.7 and q = 0.3) has the highest primary protection.

However, when we compare the unified measure of privacy and efficiency (i.e. M1) for

the three models, we note that the mixture model outperforms the other two models

(188.0234 vs. 80.9974, 139.1164). We also note that for the stated cases, theoretical

M2 is always lower than the theoretical M1.

III.3.1 Impact of untruthfulness on the unified measure

We can note from the results summarized in Table III.2 that not estimating A

always corresponds to a lower and less favorable value of the unified measure M .

For instance, the maximum value of M observed when A is not being estimated

is obtained when p = 0, q = 0.55. This maximum value of M = 144.3773 and

corresponds to MSE = 0.0052 and primary protection PP = 0.7542. However, when

A is estimated, the maximum value of M is observed when p = 0, q = 0.80. This

maximum value of M = 423.3382 and corresponds to MSE = 0.0011 and primary

protection PP = 0.4838. Hence we can note that not estimating A can give us a

higher bias and hence a higher MSE which results in a lower value for M . Based on

these results it is very clear that not estimating A is always the less efficient method

when even a small proportion of respondents are providing untruthful responses in

the survey.

When we plot the values of the unified measure M along with corresponding values
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Figure III.3. Unified Measure (M) for different choices of p and q πX = 0.3,πY = 0.1,
n = 500, A = 0.8, a = 1, b = 1 (a) Untruthfulness is not accounted for. (b)
Untruthfulness is accounted for.

of p and q (Figure III.3), we note that the most favorable values of M are obtained

when p or q get closer to 1, but are not too close to 1, and p+ q ̸= 1. In particular, we

can note that when we estimate A, we obtain a higher value for the unified measure

M near the tails (i.e. near p = 1 or q = 1) of the graph (FigureIII.3) (b)). However,

when we do not estimate A, the optimal value of the unified measure M is farther

away from the tails compared to the case where we estimate A. Thus, it would be fair

to infer that respondent cooperation becomes less of an issue when we account for

untruthfulness by estimating A. We must also note that the value of µY also impacts

the values of M . Therefore we follow the guideline from the work by Greenberg et al.

(1969)[16] as stated earlier in this section.

III.4 Concluding Chapter Remarks

In this chapter, the mixture binary RRT model was introduced along with the work

done by Young et al. (2019)[67]. The main contribution of this chapter is that we

first verify the work done by Young et al. (2019)[67] through a simulation study and

establish that most traditional RRT models make the assumption that under an RRT
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survey, the respondents have no longer have a reason to lie and since they completely

trust the model, there are no untruthful responses. However, it is possible that some

respondents may not be convinced and due to concerns for their privacy might still lie.

Through the simulation results, we demonstrate the impact of untruthful responses

under the traditional Greenberg et al. (1969) model.

Following this idea, and combining elements of Warner’s indirect question model[62]

and Greenberg’s unrelated question model[16] to reap the benefits of both, we introduce

the proposed mixture binary RRT model. We assess this proposed model in two

scenarios- when the untruthful responses are accounted for and when the untruthful

responses are not accounted for. Through both theoretical and empirical results, that

match reasonably well, we establish that the proposed mixture binary RRT model has

the best overall performance when both efficiency and privacy are factored in with

equal importance. Furthermore, the choice from three questions in the mixture model

helps improve the respondent participation as compared to when they have a choice

of two questions which is offered by the Warner’s indirect question model[62] and

Greenberg’s unrelated question model[16]. In particular, we also infer that research

utilizing the proposed mixture binary RRT model must choose a value of p such that

it results in a high level of cooperation, and still gives favorable value (i.e. a high

value) of the combined measure M .
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Chapter IV: Optional Mixture Binary RRT Model

with a Unified Measure of Privacy and Efficiency

Gupta et al. (2002)[19] proposed an alternative approach to RRT models known as

Optional RRT models. Such models allow respondents to report their unscrambled

responses if they do not find the question sensitive, and a scrambled response otherwise.

Various researchers have shown that optional models help improve the efficiency of

their corresponding non-optional counterparts. Some significant work on Optional

RRT models has been done by various researchers including Gupta et al. (2010)[22],

Kalucha et al. (2016)[30], Mehta and Aggarwal (2018)[42], Gupta et al. (2018b)[21],

Narjis and Shabbir (2020)[46], Narjis and Shabbir (2021)[45] Khalil et al. (2021)[33]

and Zhang et al. (2021)[69].

Gupta et al. (2002)[19] showed that forcing all sample participants to provide a

scrambled response, irrespective of whether they find the question sensitive or not,

adds unnecessary noise to the data collected from the sample surveyed. They proposed

an Optional RRT model where respondents who do not find the question sensitive are

asked to report their true response to the sensitive question while other respondents

who find the question sensitive are asked to follow the scrambling rules of the model.

Through their work, they show that giving respondents the option to report their true

response, unaltered, if they do not find the question sensitive helps improve model
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efficiency. Gupta et al. (2018)[21] established that the inclusion of the optionality

element in a model does not impact the privacy offered by the model as only those

people who do not have their responses protected and who do not find the question

sensitive, to begin with, and report an unscrambled response to the surveyor.

It is well established by Lovig et al. (2021)[41] that lack of trust in an RRT

model can be accounted for and that the mixture model successfully combines the

benefits of both the Warner (1965)[62] Indirect Question Model and the Greenberg et

al. (1969)[16] Unrelated Question model. Moreover, it has also been established in

the literature that integration of the optionality component helps improve the model

efficiency. In this paper, our main goal is to verify if the integration of optionality

helps improve the efficiency of the model proposed by Lovig et al. (2021)[41]. With

that in mind, in Chapter IV1, we present the Sapra et. al. (2022)[54] model where

we proposed an Optional Mixture binary RRT model to help mitigate the effect of

respondents’ lack of trust in binary RRT models while acknowledging that sensitivity

to a survey question is subjective.

IV.1 Proposed Optional Mixture Binary RRT Model

In this section, we propose an Optional Mixture Binary RRT Model (Figure IV.1) that

integrates the idea of optionality with a mixture of the Warner’s Indirect Question

Model[62] and the Unrelated Question model[16] to help combine their respective

strengths. Incorporating optionality helps us acknowledge that not all survey respon-

dents might find the survey question sensitive[19]. In this model, we also account for
1This work was first published in Journal of Statistical Theory and Practice, Volume 16, num-

ber 3, pages 51, 14 July 2022 by Springer Nature. The original article is available online at:
https://doi.org/10.1007/s42519-022-00279-3 and this chapter has a version of this work.

76



the lack of trust as suggested by Young et al. (2019)[67] and Lovig et al. (2021)[41].

In Sapra et al.(2022)[54], we integrate the aspect of optionality into the model

shown in Figure III.2, to obtain an Optional Mixture Binary RRT model which is

shown in Figure IV.1. We have also accounted for the lack of trust in the model.

Figure IV.1. Optional Mixture Binary RRT Model

Under this Optional Mixture Binary RRT model, the respondents who do not find

the question sensitive can directly respond to the sensitive question by providing unal-

tered true responses. However, if they find the question sensitive, the randomization

device would help them scramble their response using the mixture model. Here, the

true proportion of the individuals in the population that find the question sensitive

is called the sensitivity level of the question and is denoted by W . Further, p is the

proportion of sample respondents that are asked the sensitive question phrased directly

and q is the proportion of sample respondents that are asked the sensitive question

phrased indirectly. The total size of the sample drawn, using a simple random sample

77



without replacement, is denoted by n. The proportion of individuals who trust the

model and hence provide truthful responses is denoted by A.

Let πX be the true sensitive trait prevalence in the population and πY be the true

non-sensitive unrelated trait prevalence in the population. If for the model shown in

Figure IV.1, A denotes the true level of trust in the model, then the probability of a

"Yes" response is given by

Poy = P (Y es) = πx[(1−W ) +WA(p− q)] +W [q + (1− p− q)πy]. (IV.1)

However if one erroneously assumes that all respondents trust the model, i.e.

A = 1, when in fact they do not (i.e. A < 1), one would use the probability of a "Yes"

response given by

P ∗
oy = πx[(1−W ) +W (p− q)] +W [q + (1− p− q)πy], (IV.2)

and we would get the wrong estimator is given by

π̂∗
x =

P̂ ∗
oy − Ŵ [q + (1− p− q)πy]

[Ŵ (p− q) + (1− Ŵ )]
, (IV.3)

where P̂ ∗
oy is the proportion of "Yes" responses in the sample survey.

Using Taylor’s approximation, we can re-write the incorrect estimator under the

wrong assumption of A = 1, as follows.
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π̂∗
x ≈ πx[WA(p− q) + (1−W )]

[W (p− q) + (1−W )]
+ (P̂ ∗

oy − P ∗
oy)

1

[W (p− q) + (1−W )]

− (Ŵ −W )
[q + (1− p− q)πy + P ∗

oy(p− q − 1)]

[W (p− q − 1) + 1]2
. (IV.4)

Then the approximate expected value of this estimator is given by

E(π̂∗
x) ≈

πx[WA(p− q) + (1−W )]

[W (p− q) + (1−W )]
=

πx(Aα + β)

(α + β)
< πx(since A < 1), (IV.5)

where α = W (p− q) and β = (1−W ).

Then the approximate bias for the wrong estimator from equation (IV.3) is given

by

Bias(π̂∗
x) = E(π̂∗

x)− πx ≈ πxα(A− 1)

(α + β)
< 0 (since A < 1) (IV.6)

Hence if one wrongly assumes that there are no untruthful responses when re-

spondents do not trust the model, the estimates would have a considerable negative

bias.

In Table (IV.1), for fixed W and other model parameters, we can see that as the

level of trust (A) in the model declines, considerable bias is introduced in the estimates

computed using the incorrect estimator from equation (IV.3). This shows that if one

wrongly assumes no respondent is lying (i.e. A = 1) even when some respondents are

lying, we get poor estimates of the sensitive trait prevalence. Moreover, we note that

for fixed p and q the impact of A on the estimates is less adverse for lower W which
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Table IV.1. Simulation Results: Estimator performance when one wrongly assumes
A = 1 (N = 10000, n = 500, πx = 0.4)

p q 1− p− q W A π̂x
∗

0.55 0.1 0.35 0.8 1 0.399971
0.55 0.1 0.35 0.8 0.9 0.374264
0.55 0.1 0.35 0.8 0.8 0.348607
0.55 0.1 0.35 0.5 1 0.400160
0.55 0.1 0.35 0.5 0.9 0.387602
0.55 0.1 0.35 0.5 0.8 0.375218
0.55 0.1 0.35 0.3 1 0.399956
0.55 0.1 0.35 0.3 0.9 0.393404
0.55 0.1 0.35 0.3 0.8 0.386981
0.7 0.15 0.15 0.8 1 0.400318
0.7 0.15 0.15 0.8 0.9 0.372558
0.7 0.15 0.15 0.8 0.8 0.345072
0.7 0.15 0.15 0.5 1 0.400083
0.7 0.15 0.15 0.5 0.9 0.385786
0.7 0.15 0.15 0.5 0.8 0.371593
0.7 0.15 0.15 0.3 1 0.399777
0.7 0.15 0.15 0.3 0.9 0.392056
0.7 0.15 0.15 0.3 0.8 0.384447

shows that the inclusion of optionality is helpful in mitigating the lack of trust in the

model even when one wrongly assumes A = 1.

For instance, when p = 0.55 and q = 0.1, let us compare the worsening of the

negative bias of the value of the estimates π̂x
∗ when compared to the true πx = 0.4

for different values of W . When W = 0.3, at A = 1, 0.9 and 0.8, the corresponding

values of π̂x
∗ are 0.3999, 0.3934 and 0.3870. Although the bias worsens as A drops

for W = 0.3, it does not have a huge impact on the value of the estimates. When

W = 0.5, at A = 1, 0.9 and 0.8, the corresponding values of π̂x
∗ are 0.4002, 0.3876

and 0.3486. Again the bias worsens as A drops for W = 0.5, and has a moderately

more impact on the value of the estimates compared to what we observed for W = 0.3.

When W = 0.8, at A = 1, 0.9 and 0.8, the corresponding values of π̂x
∗ are 0.3999,

0.3743 and 0.3486. For W = 0.8 the impact of this bias is a lot more than what we
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saw for W = 0.3 and W = 0.5. It is very clear that the impact of the negative bias

shown theoretically in equation (IV.6), worsens as W increases. Therefore, the worst

possible bias would be observed at the maximum value of W i.e. at W = 1. Hence,

we can infer that the inclusion of optionality alone helps mitigate the bias introduced

by untruthful responses to some extent.

IV.1.1 Accounting for Lack of Trust in Optional Mixture RRT

Model

We have established that not accounting for lack of trust can introduce a negative

bias into our estimates. Therefore we account for the lack of trust using an estimate

of A and an estimate of the sensitivity level of the survey question W .

Suppose one correctly accounts for lack of trust, then using IV.1 leads to

π̂x =
P̂oy − Ŵ [q + (1− p− q)πy]

[Ŵ Â(p− q) + (1− Ŵ )]
, (IV.7)

where P̂oy is the proportion of "Yes" responses in the survey.

We can see that the estimator given in equation IV.7 relies on three unknown

parameters i.e. πx, A and W . We propose to estimate A and W separately using a

Greenberg et al. (1969)[16] model.

These estimates, Â and Ŵ can then further be used to estimate the sensitive trait

prevalence πx using the estimator given in equation IV.7. Using Taylor’s approximation

we can re-write the correct estimator from equation (IV.7) as follows.
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π̂x ≈ λ

[Aα + β]
+ (P̂oy − Poy)

1

[Aα + β]
− (Ŵ −W )

[Aα + β]γ + λ[A(p− q)− 1]

[Aα + β]2

− (Â− A)
αλ

[Aα + β]2
, (IV.8)

where α = W (p− q), β = (1−W ), γ = q + (1− p− q)πy and λ = Poy −Wγ.

Then the approximate expected value of the estimator is given by

E(π̂x) ≈
Poy −W [q + (1− p− q)πy]

[WA(p− q) + (1−W )]
= πx, (IV.9)

Since

E(Â) = A, (IV.10)

and

E(Ŵ ) = W. (IV.11)

Therefore, when we account for the lack of trust in the model, the estimator for

the proposed Optional Mixture RRT Model is asymptotically unbiased.

IV.1.2 Efficiency of Optional Mixture Binary RRT Model

The approximate variance for the estimator in equation (IV.7) is given by
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V ar(π̂x) ≈ V ar(P̂oy)

[
1

(Aα + β)2

]
+V ar(Ŵ )

[
[Aα + β]γ + [Poy − γW ][A(p− q)− 1]

(Aα + β)2

]2

+ V ar(Â)

[
α2λ2

(Aα + β)4

]
. (IV.12)

MSE(π̂x) ≈ V ar(π̂x), (IV.13)

where, V ar(P̂oy) is given by

V ar(P̂oy) =
Poy(1− Poy)

n
. (IV.14)

V ar(Â) and V ar(Ŵ ) will be the variance of the Greenberg et al. (1969)[16]

estimators for A and W which are given by

V ar(Â) =
PY a(1− PY a)

np2a
, (IV.15)

and

V ar(Ŵ ) =
PY w(1− PY w)

np2w
. (IV.16)

Here PY A and PYW are the probability of a "Yes" response for the two Greenberg

models used to estimate A and W respectively. Further, pA and pW denote the

proportions of individuals asked the direct question under the two Greenberg models

estimating A and W respectively.
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IV.1.3 Privacy of the Optional Mixture RRT Model

Using definition proposed by Lanke (1976)[38], privacy loss is given by

δ = Max(η1, η2), (IV.17)

where η1 and η2 are given by

η1 = P (S|Y ) =
W [qπx(1− A) + pπxA+ (1− p− q)πyπx] + (1−W )πx

Poy

, (IV.18)

η2 = P (S|N) =
W [qπxA+ pπx(1− A) + (1− p− q)(1− πy)πx]

1− Poy

. (IV.19)

Lovig et al. (2021)[41] showed that δ ≥ πx and Gupta et al. (2018)[21] showed

that optionality does not affect privacy. As optionality should not affect the value of

the privacy loss measure δ, it is fair to infer that δ ≥ πx for the proposed Optional

Mixture RRT Model as well.

Primary protection offered by the proposed model is given by

PP =
1− δ

1− πx

. (IV.20)

Here δ is the measure for privacy loss [38]. The combined measure of privacy and

efficiency as proposed by Lovig et al. (2021)[41] is given by

M =
PP a

MSEb
. (IV.21)
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A model with better overall performance would have a higher value of M as it

indicates a higher privacy level, a lower MSE, or both.

IV.2 Simulation Study on the Optional Mixture Bi-

nary RRT Model

We compare our theoretical results with empirical results generated by conducting a

simulation study with N = 10000 iterations each with a simple random sample of size

n = 500 drawn with replacement. The true sensitive trait prevalence πx is assumed to

be 0.4. The unrelated trait prevalence πy for the Optional Mixture Model is assumed

to be 0.1. The parameters for estimating A are πy0a = 0.15 and p0a = 0.75 and the

parameters for estimating W are πy0w = 0.1 and p0w = 0.7.

Both A and W have been estimated using samples of size 500 for each simulation.

However, one could use a sample size different from what we use to estimate sensitive

trait prevalence. In order to ensure the independence of A and W from πX , we

generate separate independent samples to simulate the use of pre-surveys for this

purpose.

The complete simulation results for the Optional Mixture RRT Model have been

given in Table (IV.2). The columns with subscript T are the theoretical values of

the listed measures for specified values of the model parameters. These have been

computed using the formulas introduced in the previous section. The columns with

subscript E are the corresponding empirical values.

In Table (IV.2), the cases highlighted in yellow are for the optional Greenberg’s [16]

Model cases (q = 0) and the cases highlighted in green are for the optional Warner’s

[62] Model cases (1− p− q = 0). The cases that have not been highlighted are for the
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proposed Optional Mixture RRT Model. It can be seen that all the theoretical values

and their corresponding empirical values match reasonably well. Although we show

results only for p = 0.55 and p = 0.7 with various values of q, we see similar results

for other choices of p and q as well.
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Table IV.2. Simulation Results Mixture ORRT: N=1000, n=500, πx = 0.4, πy = 0.1, πy0w = 0.1,
p0w = 0.7, πy0a = 0.15, p0a = 0.75

p q 1− p− q W A ŴE ÂE π̂XE MSE(π̂X)E MSE(π̂X)T PPE PPT ME MT

0.55 0 0.45 1 1 1.0003 1.0001 0.3984 0.0014 0.0015 0.1727 0.1698 126.04 115.92
0.55 0 0.45 1 0.9 1.0003 0.8999 0.4038 0.0016 0.0018 0.1884 0.1852 120.80 105.02
0.55 0 0.45 1 0.8 1.0003 0.8001 0.4049 0.0019 0.0022 0.2078 0.2036 110.75 94.33
0.55 0 0.45 0.9 1 0.9002 1.0010 0.3966 0.0012 0.0013 0.1711 0.1698 147.23 133.56
0.55 0 0.45 0.9 0.9 0.9002 0.9007 0.4002 0.0013 0.0015 0.1862 0.1852 146.29 124.66
0.55 0 0.45 0.9 0.8 0.9002 0.8006 0.4002 0.0015 0.0018 0.2049 0.2036 140.04 116.04
0.55 0 0.45 0.8 1 0.8000 1.0003 0.3972 0.0011 0.0011 0.1706 0.1698 161.93 152.40
0.55 0 0.45 0.8 0.9 0.8000 0.9005 0.4002 0.0011 0.0013 0.1854 0.1852 163.09 145.88
0.55 0 0.45 0.8 0.8 0.8000 0.8003 0.4003 0.0013 0.0015 0.2039 0.2036 159.03 139.76
0.55 0.1 0.35 1 1 1.0003 1.0001 0.3974 0.0022 0.0023 0.4329 0.4286 199.81 187.27
0.55 0.1 0.35 1 0.9 1.0003 0.8999 0.4028 0.0025 0.0028 0.4607 0.4545 181.69 163.58
0.55 0.1 0.35 1 0.8 1.0003 0.8001 0.4039 0.0031 0.0034 0.4922 0.4839 156.71 140.58
0.55 0.1 0.35 0.9 1 0.9002 1.0010 0.3970 0.0017 0.0018 0.4313 0.4286 251.63 234.83
0.55 0.1 0.35 0.9 0.9 0.9002 0.9007 0.4003 0.0019 0.0021 0.4577 0.4545 237.49 213.44
0.55 0.1 0.35 0.9 0.8 0.9002 0.8006 0.4003 0.0023 0.0025 0.4877 0.4839 215.64 192.43
0.55 0.1 0.35 0.8 1 0.8000 1.0003 0.3977 0.0015 0.0015 0.4314 0.4286 297.49 287.57
0.55 0.1 0.35 0.8 0.9 0.8000 0.9005 0.4004 0.0016 0.0017 0.4571 0.4545 289.16 269.60
0.55 0.1 0.35 0.8 0.8 0.8000 0.8003 0.4005 0.0018 0.0019 0.4869 0.4839 271.60 251.89
0.55 0.45 0 1 1 1.0003 1.0001 0.3751 0.0703 0.0508 1.0331 0.9184 14.71 18.09
0.55 0.45 0 1 0.9 1.0003 0.8999 0.4090 8.9664 0.0626 1.1250 0.9259 0.13 14.79
0.55 0.45 0 1 0.8 1.0003 0.8001 0.3777 0.8624 0.0791 0.1383 0.9336 0.16 11.80
0.55 0.45 0 0.9 1 0.9002 1.0010 0.3980 0.0145 0.0141 0.9597 0.9184 66.29 65.30
0.55 0.45 0 0.9 0.9 0.9002 0.9007 0.3986 0.0163 0.0155 0.9976 0.9259 61.24 59.84
0.55 0.45 0 0.9 0.8 0.9002 0.8006 0.3981 0.0184 0.0171 0.9974 0.9336 54.08 54.58
0.55 0.45 0 0.8 1 0.8000 1.0003 0.3997 0.0066 0.0065 0.9351 0.9184 142.04 141.94
0.55 0.45 0 0.8 0.9 0.8000 0.9005 0.4006 0.0069 0.0068 0.9441 0.9259 136.24 135.30
0.55 0.45 0 0.8 0.8 0.8000 0.8003 0.4007 0.0074 0.0072 0.9528 0.9336 128.96 128.78
0.7 0 0.3 1 1 1.0003 1.0001 0.3968 0.0009 0.0010 0.0980 0.0968 103.97 95.34
0.7 0 0.3 1 0.9 1.0003 0.8999 0.4019 0.0011 0.0012 0.1077 0.1064 102.47 86.53
0.7 0 0.3 1 0.8 1.0003 0.8001 0.4028 0.0012 0.0015 0.1198 0.1181 95.90 78.22
0.7 0 0.3 0.9 1 0.9002 1.0010 0.3961 0.0008 0.0009 0.0977 0.0968 115.38 104.61
0.7 0 0.3 0.9 0.9 0.9002 0.9007 0.3999 0.0009 0.0011 0.1071 0.1064 117.07 97.41
0.7 0 0.3 0.9 0.8 0.9002 0.8006 0.3999 0.0011 0.0013 0.1190 0.1181 112.76 90.69
0.7 0 0.3 0.8 1 0.8000 1.0003 0.3969 0.0008 0.0008 0.0972 0.0968 121.22 114.26
0.7 0 0.3 0.8 0.9 0.8000 0.9005 0.4002 0.0009 0.0010 0.1064 0.1064 124.12 108.91
0.7 0 0.3 0.8 0.8 0.8000 0.8003 0.4003 0.0010 0.0011 0.1182 0.1181 120.48 104.06
0.7 0.15 0.15 1 1 1.0003 1.0001 0.3958 0.0016 0.0017 0.4313 0.4286 263.58 252.88
0.7 0.15 0.15 1 0.9 1.0003 0.8999 0.4008 0.0019 0.0021 0.4588 0.4545 241.86 219.29
0.7 0.15 0.15 1 0.8 1.0003 0.8001 0.4015 0.0023 0.0026 0.4896 0.4839 210.87 187.35
0.7 0.15 0.15 0.9 1 0.9002 1.0010 0.3957 0.0014 0.0014 0.4287 0.4286 316.16 299.86
0.7 0.15 0.15 0.9 0.9 0.9002 0.9007 0.3992 0.0015 0.0017 0.4549 0.4545 296.96 269.64
0.7 0.15 0.15 0.9 0.8 0.9002 0.8006 0.3992 0.0018 0.0020 0.4847 0.4839 267.14 240.48
0.7 0.15 0.15 0.8 1 0.8000 1.0003 0.3969 0.0012 0.0012 0.4292 0.4286 360.02 351.05
0.7 0.15 0.15 0.8 0.9 0.8000 0.9005 0.3998 0.0013 0.0014 0.4548 0.4545 348.02 325.44
0.7 0.15 0.15 0.8 0.8 0.8000 0.8003 0.4000 0.0015 0.0016 0.4844 0.4839 322.06 300.47
0.7 0.3 0 1 1 1.0003 1.0001 0.3933 0.0033 0.0033 0.6542 0.6522 200.88 200.56
0.7 0.3 0 1 0.9 1.0003 0.8999 0.3982 0.0039 0.0040 0.6819 0.6757 176.67 168.81
0.7 0.3 0 1 0.8 1.0003 0.8001 0.3985 0.0048 0.0050 0.7098 0.7009 147.43 139.22
0.7 0.3 0 0.9 1 0.9002 1.0010 0.3962 0.0024 0.0024 0.6544 0.6522 276.39 267.57
0.7 0.3 0 0.9 0.9 0.9002 0.9007 0.3993 0.0028 0.0029 0.6800 0.6757 246.84 236.57
0.7 0.3 0 0.9 0.8 0.9002 0.8006 0.3992 0.0032 0.0034 0.7064 0.7009 217.42 206.90
0.7 0.3 0 0.8 1 0.8000 1.0003 0.3974 0.0018 0.0019 0.6545 0.6522 354.98 344.88
0.7 0.3 0 0.8 0.9 0.8000 0.9005 0.4001 0.0020 0.0021 0.6790 0.6757 331.92 316.42
0.7 0.3 0 0.8 0.8 0.8000 0.8003 0.4003 0.0023 0.0024 0.7050 0.7009 302.09 288.67
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We can make several critical observations about the performance of the proposed

model based on the results shown in Table (IV.2).

1. The impact of untruthfulness due to lack of trust in the model shown by Lovig

et al. (2021)[41] can be confirmed with these results for fixed values of A. We

observe that the Greenberg et al. (1969)[16] model (yellow) produces the best

results in terms of MSE and the Warner (1965)[62] model (green) produces

the best results in terms of PP . However, our optional mixture model (white)

performs the best in terms of the unified measure M .

2. The comparison of the three colored blocks in the MT column shows that the

overall performance of the model improves (i.e. higher M values) as W decreases.

This indicates the usefulness of the optional model and how it is an improvement

over the non-optional Lovig et al. (2021) model.

3. Further, for p = 0.7 and q = 0.15, within each of the three blocks highlighted in

the MT column, we note that for a fixed W , the model performance declines

(i.e. lower M values) as A goes down. However, this impact of A on M is less

adverse for lower values of W . For instance, for W = 1, we note a drop of 25.9%

in M as A drops from 1 to 0.8. Whereas the corresponding drop in values of M

for W = 0.9 and W = 0.8 is 19.8% and 14.4% respectively. This is yet another

piece of evidence that optionality is useful due to its ability to mitigate the effect

of a lack of trust on the overall model performance.
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IV.3 Concluding Chapter Remarks

In this chapter, a modified version of the model introduced in Chapter III was

introduced. The modification made was the inclusion of an optionality element. In

practice, this element allows respondents who find the question sensitive to provide a

scrambled response. However, if the respondents do not find the question sensitive,

they have the option to respond to the sensitive question directly. When we evaluate

the performance of this optional mixture binary RRT model, we note that the inclusion

of optionality does not harm the privacy offered by the Lovig et al. (2021)[41] model.

In addition to this, it always improves the model’s efficiency. This results in an overall

improvement in the model performance in terms of the unified measure M which was

proposed by Lovig et al. (2021)[41]. Therefore, the proposed optional binary RRT

model is an improvement over the non-optional mixture binary RRT model proposed

by Lovig et al. (2021)[41].
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Chapter V: Hybrid (Encryption + RRT) Model

In Chapter I, we introduced various techniques for sensitive data collection and their

background. Methods like the Bogus Pipeline method, SDB scale and the Unmatched

Count Technique have their limitations with respect to respondent privacy and the

extent to which they help mitigate the respondents’ social desirability bias. On the

other hand, RRT ensures complete privacy, barring a surveyor’s ability to guess a

respondent’s true status with respect to the sensitive survey question based on their

reported response. The measure of how tough or easy it could be for a surveyor to

guess a respondent’s true status is how we measure the amount of privacy loss that

can be expected on average under an RRT model. Although in terms of respondent

privacy, RRT does a good job, the improved privacy comes at the cost of estimation

accuracy. Asymmetric encryption is a method that allows one to collect and decrypt

secure and private data with absolutely no error. However, respondent privacy relies

completely on the level of security of the decryption key for the protocol. As long

as the key cannot be broken or retrieved through corrupt means, the privacy of all

respondents is protected. Hence neither RRT nor encryption is perfect as a sensitive

data collection method.

In this Chapter, we introduce a hybrid model that combines the elements of an

RRT model as well as the Paillier encryption protocol. The goal of this work was

to leverage the strengths of both methods to help improve the overall sensitive data
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collection through a sample survey.

V.1 Paillier Encryption Protocol

Paillier encryption technique is an asymmetric encryption technique. This means

that, unlike symmetric encryption where both the sender and the receiver of a private

message have the same key, one needs separate encryption and decryption keys. The

sender only has access to the public encryption key while the receiver has access to

the decryption key which allows them to decode the original message. The encrypted

information cannot be decoded unless one has access to the decryption key. The

general encryption-decryption process for any asymmetric encryption scheme has been

shown in Figure V.1.

There are three stages involved in a Paillier encryption protocol like any asymmetric

encryption system.

Key Generation > Encryption > ...*Data Transfer*.... > Decryption

The algorithms used in the Paillier encryption scheme at these three stages have

been presented below.

Stage-1 Paillier Key Generation Algorithm The following steps can be followed

to generate the public-private key pair for a Paillier encryption protocol (30)[34].

Step-1: Two large primes are selected, say p and q such that their greatest common

divisor is 1.

Step-2: Set n = pq

Step-3: Calculate λ(n) = lcm(p− 1, q − 1) (Here Carmichael function λ returns

the least common multiple of p− 1 and q − 1)
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Figure V.1. General Asymmetric Encryption Process

Step-4: Select a random integer g such that g ∈ Z∗
n2

Step-5: Define L(x) = x−1
n

Step-6: Ensure n divides the order of g by confirming the existence of the following

modular multiplicative inverse:

u = (L(gλ mod n2))−1 mod (n)

Step-7: Public Key = (n, g)

Step-8: Private Key = (λ, u)

Stage-2 Paillier Encryption Algorithm We can encrypt a message, say m, where

m ∈ Zn as follows:
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Step-1: Generate a random integer r such that r ∈ Z∗
n2

Step-2: Compute the ciphertext c such that c = (gm ∗ rn) mod (n2)

Stage-3 Evaluation Stage Addition can now be performed on the ciphertext if

needed and the sum of ciphertexts is then decrypted using the decryption algorithm

in the next stage. Note that since the plaintext is encrypted as an exponent (Step-2 in

Stage-2), a multiplication operation needs to be computed on the values of the same

base, which in this case is g [34].

If the encrypted sum is y, then it can be decrypted as:

dK(y) = [L(yλ mod n2)][L(gλ mod n2)]−1 mod n

Stage-4 Paillier Decryption Algorithm The encrypted message c, where c ∈ Z∗
n2 ,

can be decrypted using the following step.

Compute plaintext m = [L(Cλ mod (n2))× u] mod n

This protocol can be used on one respondent at a time in a survey that uses the

Paillier encryption scheme for sensitive data collection to help keep every respondent

secure from anyone who does not have the decryption key.

V.2 Additive Homomorphism Property of Paillier

Encryption Scheme

In Chapter II, we introduced a special property of the Paillier encryption scheme

[48]. Suppose that there are two respondents in a survey and their true responses to

the survey question are X1 and X2 respectively. These original responses, in their

unencrypted state, are referred to as the plaintexts. Suppose that the encryption
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function used for the Paillier scheme is denoted by En(.) and that when plaintext is

supplied o this function, the encrypted value is obtained as an output to this function.

Let En(X1) = Y1 and En(X2) = Y2 where Y1 and Y2 are the encrypted values of the

plaintext X1 and X2 respectively are also called ciphertexts. Then a special property

of Paillier encryption allows us to compute the sum of the original plaintexts X1 and

X2 even when all we have available is the product of ciphertexts Y1 and Y2 and the

decryption key. Note that this means, without having access to the plaintext or the

ciphertexts of individuals, we can still gauge the sum of responses on an aggregate

level.

Figure V.2. Simplified Paillier Encryption Process

This special property of Paillier encryption, which allows us to compute the sum of

plaintexts, by decrypting only the product of ciphertexts, is referred to as the additive

homomorphism of the Paillier encryption scheme. We can generalize and use this

property even when we have more than two respondents. The idea to implement

the Paillier encryption technique, in a survey with binary response questions, has

been depicted in Figure V.2. The respondents can encrypt their responses and once

a ciphertext is generated for their response, it is transmitted to a server for storage.

After the first encrypted response has been stored on the server, the next respondent’s
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ciphertext is multiplied by the previously stored cipher text and the new value that is

stored now is the product of the first two ciphertexts. Similarly, as more respondents

take part in the survey and transmit their responses as ciphertexts, they keep on

getting multiplied to the product of the previously transmitted ciphertexts. Once all

respondents go through this process, the server would finally just store the product of

all the ciphertexts for all the survey respondents. This product can then be decrypted

by a third-party organization to obtain the sum of responses from this survey. Note

that since we are implementing this method for a binary response question survey (i.e.

responses are either 1/"Yes" or 0/"No"), the sum of all responses would essentially be

the sum of all 1s or count of "Yes" responses in the survey. This sum can then be

utilized to obtain an estimate of a sensitive trait prevalence in the population.

Thus in a binary response survey, we can use the Paillier encryption method to

compute

D

((
Y1 × Y2 × Y3....× Yn

))
= Y = X1 +X2 + ..+Xn, (V.1)

where D(.) denotes the decryption function under the Paillier encryption protocol.

V.3 Example of Paillier Encryption Application

Paillier Encryption Application in E-Voting This technique is used in electronic

voting systems used in elections [6]. Suppose Adam, Bill and Chelsea are election

candidates and only 6 people can vote in the election. Their votes have been shown

in figure(V.3). Note that each candidate is assigned a certain number of bits during

the election. Adam was assigned "010000", Bill was assigned "000100" and Chelsea

was assigned "000001". These bit scores can then be converted from a binary number
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Figure V.3. Election Results

system to their equivalent in the decimal number system as follows:

• (010000)2 = (0 ∗ 25) + (1 ∗ 24) + (0 ∗ 23) + (0 ∗ 22) + (0 ∗ 21) + (0 ∗ 20) = (16)10.

• (000100)2 = (0 ∗ 25) + (0 ∗ 24) + (0 ∗ 23) + (1 ∗ 22) + (0 ∗ 21) + (0 ∗ 20) = (4)10.

• (000001)2 = (0 ∗ 25) + (0 ∗ 24) + (0 ∗ 23) + (0 ∗ 22) + (0 ∗ 21) + (1 ∗ 20) = (1)10.

Now, for a simple example to see how this method works, we use small prime

numbers to generate the keys. Suppose p = 5 and q = 7 [37]. Then,

n = p ∗ q = 5 ∗ 7 = 35 and n2 = 352 = 1225

λ = lcm(p− 1, q − 1) = lcm(4, 6) = 12

Let g, the random element of the public (encryption) key as described in step-4 of

the key generation, be chosen as 141.

Suppose, all the votes and the values of random integers denoted by x and r

respectively are shown below:

x r eK(x, r)

1 4 359
4 17 173
4 26 486
1 12 1088
16 11 541
1 32 163
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Here, the first vote is denoted by x1 = 1 and a random integer r1 was chosen as 4.

Then the ciphertext eK(x1, r1) = eK(1, 4) = (1411 ∗ 435) mod 1225.

To compute the result of the election, the sum of votes, we multiply the encrypted

data modulo n2 and then we decrypt the result as explained in the algorithm. This

can be done as shown here:

(359 ∗ 173 ∗ 486 ∗ 1088 ∗ 541 ∗ 163) mod 1225 = 983 = y(say)

This can be decrypted as:

L(yλ mod n2) = L(98312 mod 1225) = 36−1
35

= 1

L(gλ mod n2) = L(14112 mod 1225) = 456−1
35

= 13

Then decrypted sum dK(y) = (1 ∗ 13)−1 mod 35 = 27

Thus, a voter’s selection can be encrypted such that the ciphertext is incomprehen-

sible to anyone without the private key to decrypt it. The sum of all selections can

then be decrypted by the election administrators to evaluate election results without

having to decrypt every individual’s response thereby providing them with iron-clad

privacy with 100% accuracy in evaluating the population proportion, something that

can be visualized the same as sensitive trait prevalence.

V.4 Hybrid (Paillier + Warner RRT) Model

One may wonder why one should even consider an alternative such as RRT if we are

guaranteed essentially complete privacy and efficiency under the Paillier encryption

scheme. However, it is worth noting that such encryption protocols are extremely

expensive in terms of computation and their performance is not efficient enough to

be of practical use [40], [70], [64]. Another practical concern could be that the true
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privacy protection of the survey participants, in addition to the security level of the

private key, relies on the honesty of the surveyor, unlike the RRT where the surveyor’s

intentions cannot expose the respondents as the respondents are not forced to directly

disclose nor enter their true response to the sensitive survey question into a system.

Moreover, a system based only on (Paillier) encryption requires more resources to

deploy a large-scale data collection process.

Figure V.4. Hybrid Encryption-RRT Model

However, it is worth noting if researchers have the resources to allow a proportion

of their respondents to go through this process (Figure V.4), that would help boost the

overall efficiency of the estimation process by balancing out some of the uncertainty

brought in by methods (such as RRT) used to collect data from the remaining

respondents. Intuitively this should help as a greater portion of truthful responses

being collected during a survey should surely boost the overall estimation accuracy.

At the moment, there is no such hybrid protocol in the sample survey nor in the

encryption literature.
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V.4.1 Proposed Hybrid (Paillier + Warner RRT) Model

In this section, we propose a hybrid mixture model which has the elements of both the

Paillier encryption (1999)[48] and the Warner’s Indirect Question (1965)[62] model.

Although one could use any other binary RRT model such as the Greenberg et al.

(1969)[16] model, we choose Warner’s (1965)[62] model for this study as a special case.

The proposed hybrid model has been shown in Figure V.5.

Figure V.5. Hybrid Model using Paillier Encryption & Warner’s Indirect Question
RRT Model

Here π is the true prevalence of the sensitive trait in the population. Let α be the

mixing parameter for the hybrid model which denotes the proportion of respondents

that get randomly prompted to go through the Warner’s (1965)[62] segment while the

remaining (1− α) respondents go through the Paillier encryption scheme. Let p be
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the proportion of respondents that go through the Warner’s model segment and are

asked to respond to the sensitive survey question directly.

First, let us consider just the encryption segment of this model. Let n be the

number of respondents using Paillier’s Encryption approach and let Xi (i = 1, 2..., n)

be the true response of the respondent responding using Paillier’s encryption approach.

Note that Xi, (i = 1, 2..., n), can take values 0 ("No") or 1 ("Yes"). If En(.) denote

the Paillier encryption function and D(.) denotes the Paillier decryption function,

then we have

Xi ∼ Bernoulli(π) (V.2)

n∑
i=1

Xi ∼ Binomial(n, π). (V.3)

If P̂ye denotes the proportion of "Yes" responses in the sample (i.e. the proportion

of 1s in the sample) and Yi denotes the encrypted response of the respondent i.e.

Yi = En(Xi), (i = 1, 2, .., n) then

D

((
Y1 × Y2 × Y3....× Yn

))
= Y =

n∑
i=1

Xi, (V.4)

where Y ∼ Binomial(n, π). Therefore, an estimator for the true sensitive trait

prevalence in the population, using a Paillier-only model, would be given by

π̂e =
Y

n
=

∑
Xi

n
= P̂ye. (V.5)

The expected value of this estimator for the Paillier encryption segment is given by

100



E(π̂e) = E

(∑
Xi

n

)
=

1

n
E(y) = π. (V.6)

Therefore, the binomial estimator for the Paillier encryption segment is unbiased.

The variance/MSE for this estimator is given by

V ar(π̂e) = V ar(P̂ye) =
π(1− π)

n
. (V.7)

Now let’s shift our focus back to the hybrid model shown in Figure V.5. Suppose

that of an overall respondent group of size n, n1 respondents use the Warner’s RRT

method while the remaining n2 respondents use the Paillier encryption method. Here,

n = n1 + n2, α = n1

n
and (1− α) = n2

n
.

Then an overall estimator for the proposed Hybrid model can be given by

π̂H = απ̂w + (1− α)π̂e, (V.8)

where π̂w is the estimator for the Warner’s RRT segment and π̂e is the estimator

for the Paillier encryption segment.

The expected values for the proposed estimator π̂H is given by

E(π̂H) = αE(π̂w) + (1− α)E(π̂e) = π. (V.9)

101



The variance for the estimator for the proposed hybrid model is given by

V ar(π̂H) = α2V ar(π̂w) + (1− α)2V ar(π̂e)

=

(
n1

n

)2[
π(1− π)

n1

+
p(1− p)

n1(1− 2p)2

]
+

(
n2

n

)2[
π(1− π)

n2

]
=

π(1− π)

n
+

(
n1

n

)
p(1− p)

n(1− 2p)2

≤ π(1− π)

n
+

p(1− p)

n(1− 2p)2
. (V.10)

Thus,

V ar(π̂e) ≤ V ar(π̂H) ≤ V ar(π̂w). (V.11)

Hence this hybrid model is more efficient than a purely Warner’s Indirect Question

model[62].

Paillier encryption, like other encryption techniques, is known to offer a strong

security level which can be breached with a very low probability. Various algorithms

have been discovered that help in the prime factorization of the public key element n

and thus help crack the private decryption key[43]. One such algorithm that helps

one use the brute force method requires 2k−1 tries where the size of the key used is

k-bits. The optimized brute force method requires
√
n tries where n is an element

of the public key and is the composite number for which we are trying to find the

two large prime factors p and q. Note that these two numbers of tries needed can

be only used as a measure of privacy loss under the Paillier encryption protocol if

the researcher is honest and does not misuse the decryption key to retrieve private

individual responses.

However, there is no such respondent security if the researcher misuses the key.
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No such concern exists for Warner’s Indirect Question model (1965)[62]. Given this

background, we will only discuss the efficiency of the proposed hybrid model and not

its privacy.

V.5 Simulation Study on Hybrid Model

In this section, we examine the performance of the proposed Hybrid mixture of the

Paillier encryption[48] and the Warner’s Indirect question RRT model[62]. For this

purpose, we evaluate the performance of these three models in terms of MSE. Both

these measures were computed separately for the RRT and the encryption segments

and were then weighted by the mixing parameter α.

Following is an example of how the Paillier segment works in the algorithm for the

proposed Hybrid model.

V.5.1 Paillier Encryption Simulation-Example for Binary Re-

sponses

Following is a simulated example of what the responses of 10 respondents would look

like in one iteration of a binary response survey.

After obtaining the encrypted values (Y1, Y2, . . . .Yn) for corresponding true re-

sponses (X1, X2, ...Xn), we compute the value of (Y1 × Y2 × .....× Yn) mod n2 i.e. the

homomorphic sum of encrypted values (not the regular sum). We then decrypt the

above value which yields the sum of true responses i.e.

D[(Y1 ×Y2 × .....×Yn) mod n2] = X1 +X2 + ...+Xn = D(fPHE(Y1,Y2, .....,Yn))
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Here fPHE(.) takes the product of encrypted responses modulo n2. Here n = pq

which is obtained from the generated key such that p and q are large prime numbers.

For the example shown in Table V.1, we have:

Table V.1. Paillier Encryption Example for Binary Responses

Respondent True Response Xi ri En(Xi) = Yi (Encrypted Response)

April No 0 46 18273647684481185754109865909182305233
Ben No 0 42 84347934414081974223522853403565377586
Claire No 0 128 44958250010667899802127672378812964665
Damon Yes 1 33 106651239789784217596419352015012429788
Elaine Yes 1 123 99036718795626379744464842947865797060
Fred No 0 54 32069966204573729275393349676985967273
George No 0 31 40681553030871797221816149188510756919
Haley Yes 1 136 98741118859477276155232474347350506310
Iris Yes 1 74 81742470247885520347663703765259406647
Jay Yes 1 150 84073123487623974138763734415455667894

p = 3014225839 and q = 3236597281

n = 9755835154827343759 ; n2 = 95176319568165062373673905467556250081

Public (Encryption) Key= (n, g) ; Private (Decryption) Key = (λ, µ)

λ = lcm(p− 1, q − 1) ; µ =
[
L(gλ mod n2)

]−1
mod n;

Here, X1 +X2 + ...+Xn = 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 1 + 1 = 5

i.e. the number of “Yes” responses in the sample.

Y1 × Y2 × .....Yn = 647992918120109969281119839952895946998080285

081457822695076891077420094359066465232373433348096624735790288312

574883844124024456968473269496607728045690802323698547659686174825

0640708243892307697008417664714126960546416013312930859718457016940

72727143671979478629650726747433611452178680970873972489464116036720

511253800397593912749268763539841743287490431052204707526617776000

Thus, (Y1 × Y2 × .....Yn) mod n2 = 78559384731536776506688196137760672371

and
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D((Y1 × Y2 × .....Yn) mod n2) = 5 = X1 +X2 + ...+Xn i.e. the number of “Yes”

responses in the sample.

To study the performance of the proposed hybrid model, we ran a simulation

study with 10000 iterations with samples of size n = 500 in each iteration. We use

various values for α and p (Warner model parameter) to evaluate how it impacts the

performance of the proposed model. True sensitive trait prevalence is assumed to be

π = 0.3. The features of the encryption and the decryption keys generated during this

study (Stage-1) have been given below:

Public Encryption Key:

{

’g’: 14383665101757927738,

’n’: 14383665101757927737,

’nsquare’: 206889821759528897681108067328513941169,

’max_int’: 4794555033919309244

}

Private Decryption Key:

{

’p’: 3733593781,

’q’: 3852498677,

’psquare’: 13939722521521875961,

’qsquare’: 14841746056286750329,

’p_inverse’: 2266736745,

’hp’: 2196775372,

’hq’: 1585761932
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}

The simulation results from this study have been summarized in Table V.2. From

this table, we can note that when the values of α and p are fixed, the MSE for the

proposed hybrid model is always considerably better than that of the traditional

Warner’s Indirect question model (1965)[62]. For example, in the case when α = 0.1

and p = 0.75, the theoretical MSE for the estimator proposed by Warner (1965)[62]

and that for the proposed estimator are 0.00117 and 0.00057 respectively. However,

the MSE for the hybrid model worsens as α increases. For instance, consider the

case when p = 0.75 for varying values of α. As α varies from 0.1, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8 to 0.9, the theoretical MSE of the proposed estimator for the hybrid model

introduced in this chapter takes values 0.00057, 0.00087, 0.00102, 0.00117, 0.00132,

0.00147, 0.00162 and 0.00177 respectively. This happens because a higher value of α

represents a lower proportion of respondents going through the encryption segment

of the proposed hybrid model. This leads to more noise in the aggregate data thus

lowering the MSE. Therefore, it is recommended to keep the α values as low as possible.

We also observe that for a fixed level of α, as p decreases, the MSE for the proposed

estimator for the hybrid model increases. For instance, consider the case when α = 0.1.

When p changes from 0.85, 0.8, and 0.75, the theoretical values of the MSEH are

0.000472, 0.000509 and 0.000570 respectively. Hence, it would be advisable to use a

higher value of p. This recommendation aligns with the fact that the MSE for the

model worsens as p moves closer to 0.5 as stated in Warner (1965)[62].
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Table V.2. Simulation results for Hybrid model: Iterations =
10000, n = 500, π = 0.3 for various levels of mixture (α) and
the Warner’s model parameter (p).

α p π̂ MSEh −E MSEh −T MSEw −T MSEen −T

0.1 0.85 0.299966 0.000480 0.000472 0.000784 0.000420
0.1 0.8 0.299972 0.000532 0.000509 0.000953 0.000420
0.1 0.75 0.299959 0.000617 0.000570 0.001170 0.000420
0.3 0.85 0.299940 0.000594 0.000576 0.000784 0.000420
0.3 0.8 0.299938 0.000740 0.000687 0.000953 0.000420
0.3 0.75 0.299776 0.000970 0.000870 0.001170 0.000420
0.4 0.85 0.299992 0.000641 0.000628 0.000784 0.000420
0.4 0.8 0.300124 0.000822 0.000776 0.000953 0.000420
0.4 0.75 0.300015 0.001118 0.001020 0.001170 0.000420
0.5 0.85 0.300004 0.000688 0.000680 0.000784 0.000420
0.5 0.8 0.300061 0.000904 0.000864 0.000953 0.000420
0.5 0.75 0.300051 0.001276 0.001170 0.001170 0.000420
0.6 0.85 0.300381 0.000777 0.000732 0.000784 0.000420
0.6 0.8 0.300299 0.001025 0.000953 0.000953 0.000420
0.6 0.75 0.300287 0.001449 0.001320 0.001170 0.000420
0.7 0.85 0.299534 0.000819 0.000784 0.000784 0.000420
0.7 0.8 0.299315 0.001096 0.001042 0.000953 0.000420
0.7 0.75 0.299207 0.001584 0.001470 0.001170 0.000420
0.8 0.85 0.299601 0.000860 0.000836 0.000784 0.000420
0.8 0.8 0.299591 0.001181 0.001131 0.000953 0.000420
0.8 0.75 0.299403 0.001742 0.001620 0.001170 0.000420
0.9 0.85 0.299955 0.000909 0.000888 0.000784 0.000420
0.9 0.8 0.299770 0.001242 0.001220 0.000953 0.000420
0.9 0.75 0.299639 0.001829 0.001770 0.001170 0.000420

V.6 Concluding Chapter Remarks

In this chapter, we proposed a hybrid model that has elements of both the traditional

Warner’s Indirect Question model (1965)[62] as well as the partially homomorphic

Paillier encryption scheme (1999)[48]. We also compare the performance of the

proposed model with those of Warner’s Indirect Question model (1965)[62] and Paillier

encryption scheme (1999)[48]. Based on our results, we make various important

observations.

If one were to simply consider efficiency, the Paillier encryption method performs

the best. However, the respondent privacy under this method, in addition to the
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security level of the key, also relies on the honesty level of the surveyor. It must be

noted that the surveyor, who has the decryption key, could also potentially decrypt

individual responses if they wanted. Thus, there is no privacy in the case the surveyor

is dishonest. Since, under RRT models there is no such concern, a mixture such as

the model proposed in this chapter leads to better respondent cooperation.

Through this study, we were able to confirm that such a hybrid model could

potentially help give a huge boost to the efficiency of the survey model when the

survey question is on a sensitive topic. Prior to this work, no such hybrid mixture

model has ever been studied in the area of RRT. One could potentially improve upon

the efficiency and primary protection offered by the hybrid model by switching the

Warner’s Indirect Question model (1965)[62] segment with a method such as the

Greenberg’s Unrelated Question model (1969)[16] or with the Lovig et al. (2021)

Mixture binary RRT model[41]. Furthermore, the primary protection of the encryption

model can be modified to account for the damage to the respondents’ privacy due to

potential dishonesty or corruption of the surveyor.
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Chapter VI: Mitigating Lack of Trust in Quantitative

RRT Models

In Chapter II, we presented different types of RRT models. In particular, we discussed

how the type of responses possible for the sensitive question necessitates a different

scrambling mechanism to help protect respondent privacy. If the survey question

could result in binary responses such as "Yes" or "No", then we need a binary RRT

model. Binary RRT models can be helpful when the survey question might be "Have

you smoked marijuana in the last two weeks?". However, when the survey question

requires a quantitative response, we need to use quantitative RRT models. Such

models may be helpful when the survey question might be "How many times have

you smoked marijuana in the last two weeks?". In Section II.3, we introduced a few

traditional quantitative RRT models.

One of the first quantitative RRT models was also proposed by S L Warner, the

same researcher who presented the first ever RRT model, i.e. the Indirect Question

Binary model[62]. Warner (1971)[63] also proposed an RRT model for surveys where

the sensitive question has a quantitative response. Under this model, each respondent

is asked to scramble his/her true response with a random additive or multiplicative

noise before they report it. Gupta et al. (2002)[19] proposed an alternative RRT model

known as an Optional RRT model that allows respondents to report their unscrambled
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response if they do not find the question sensitive, and a scrambled response otherwise.

They have shown empirically and theoretically, that optional models tend to be more

efficient than their corresponding non-optional counterparts. Several other significant

RRT methods have been proposed over the past few decades by various researchers

including Diana and Perri (2011)[10], Kalucha et al. (2016)[30], Mehta and Aggarwal

(2018)[42], Narjis and Shabbbir (2021)[45], Khalil et al. (2021)[33] and Zhang et al.

(2021)[69].

Typically, one would think that RRT models can be trusted and hence the respon-

dent would have no reason to lie. However, in the area of binary RRT models, Young

et al. (2019)[67] first introduced the idea of respondents’ lack of respondent in RRT

models and showed how even a small proportion of respondents not trusting the RRT

model can lead to unreliable data and subsequently biased estimates. Lovig et al.

(2021)[41] also addressed the lack of respondent trust and accounted for untruthfulness

by introducing a Mixture Binary RRT Model. While accounting for lack of trust

has been addressed under binary RRT models, none of the quantitative RRT models

currently accounted for respondents’ lack of trust in the quantitative RRT models

prior to Zhang et al. (2022)[25].

In this Chapter1, we propose an Optional Enhanced Trust model that helps mitigate

the effect of respondents’ lack of trust in the quantitative RRT models. This model

mixes the elements of the Warner Additive Model (1971)[63] and the Diana and Perri

linear combination model (2011)[10] to mitigate respondent lack of trust.
1A portion of this chapter is based on an Accepted Manuscript of an article published by Taylor

& Francis in Journal of Communications in Statistics - Simulation and Computation on 3 June 2022,
available online: https://www.tandfonline.com/doi/full/10.1080/03610918.2022.2082477
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VI.1 Background for Optional Enhanced Trust Model

VI.1.1 Efficiency of RRT Models

Model efficiency is considered a measure of the quality of the model estimator, usually

measured through mean squared error (MSE). The MSE accounts for both the variance

and the bias associated with the estimator. This measure is used as a measure of

estimator efficiency for both binary and quantitative RRT models.

VI.1.2 Privacy Level in Quantitative RRT Models

Respondent privacy is crucial for the anonymity of respondents as well as the mitigation

of non-response and untruthfulness. According to Yan et al. (2008)[66], privacy level

for quantitative RRT models is given by

∇ = E[Z − Y ]2. (VI.1)

A higher value of ∇ is preferred as it indicates a higher average deviation from the

true response i.e. a higher privacy level.

VI.1.3 Combined Measure for Efficiency and Privacy

In order to choose an appropriate model, we need to consider both efficiency and

privacy levels simultaneously. Since there is usually a trade-off between these two

characteristics, Gupta et al. (2018)[21] proposed a combined measure of estimator

quality (δ) to simultaneously evaluate a model based on its efficiency as well as

respondent privacy. This combined measure for efficiency and privacy is given by
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δ =
MSE(µ̂Y )

▽
. (VI.2)

Here MSE(µ̂Y ) is the MSE for the estimator µ̂Y and ∇ is the privacy level for

the quantitative RRT model used in the survey. A lower value of δ is preferred as a

lower value of δ indicates a lower variance (i.e. greater efficiency), or a higher level of

privacy, or both.

VI.1.4 Warner Additive Model (1971)

In Chapter II, we introduced the following additive RRT model proposed by Warner

(1971)[63]. Let Y be the sensitive variable and Z be the reported response. Let S be

the additive scrambling variable with mean µS and variance σ2
S. Then the reported

response Z is given by

Z = Y + S, (VI.3)

If we assume that E(S) = 0, then

E(Z) = E(Y ) + E(S) = µY . (VI.4)

Then, an unbiased estimator for the mean of the sensitive variable can be given by

µ̂Y = Z̄. (VI.5)

For this estimator,

V ar(µ̂Y ) = V ar(Z̄) =
σ2
Z

n
=

1

n
(σ2

Y + σ2
S), (VI.6)
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where n is the sample size. Here, σ2
S

n
is the penalty for adding the scrambling noise

through the RRT model shown by equation (VI.3). The privacy level offered by this

model is given by

∇ = E[(Y + S)− Y ]2 = E[S]2 = σ2
S. (VI.7)

Therefore, the combined measure for privacy and efficiency, as defined by Gupta

et al. (2018)[21] is given by

δ =
1

n

(
σ2
Y + σ2

S

σ2
S

)
=

1

n

(
σ2
Y

σ2
S

+ 1

)
. (VI.8)

Under the model given by equation (VI.3), all subjects are required to scramble their

responses by adding the random noise they obtain as the outcome of a randomization

device that generates noise values from a distribution with known mean and variance.

From equations (VI.6, VI.7, VI.8) we note that using an additive scrambling variable

with larger variance worsens the model efficiency but it also simultaneously improves

the privacy level. The overall combined measure δ improves (i.e. becomes lower)

indicating that the researchers should not hesitate to use some extra noise.

VI.1.5 A Linear Combination Model (2011)

Diana and Perri (2011)[10] proposed a linear combination model which allows the

survey respondents to use a multiplicative noise as well as an additive noise to scramble

their response. Their goal was to optimize the model efficiency and privacy level

by leveraging the benefits of both additive and multiplicative scrambling techniques.

Since the respondents scramble their true responses before they report them, surveyors

cannot know the true answers of individual respondents.
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Let Y be the sensitive variable and Z be the reported response. Let S and T be

the scrambling variables with means µS, µT and variances σ2
S and σ2

T respectively.

Here, Y , T and S are mutually independent. Then the linear combination model

proposed by Diana and Perri (2011)[10] is given by

Z = TY + S. (VI.9)

If it is assumed that E[T ] = µT = 1 and E[S] = µS = 0, then the expected value

and the variance of the reported response would be given by

E(Z) = µY , (VI.10)

and

V ar(Z) = σ2
T [µ

2
Y + σ2

Y ] + σ2
Y + σ2

S. (VI.11)

Therefore, an unbiased estimator of µY given by

µ̂Y =
Z̄ − µS

µT

= Z̄. (VI.12)

The variance of the estimator shown in equation (VI.12) is given by

V ar(µ̂Y ) =
1

n
[σ2

T (µ
2
Y + σ2

Y ) + σ2
Y + σ2

S], (VI.13)

The privacy level for the model shown in equation (VI.9) and the combined measure

of privacy and efficiency δ[21] are given by

▽ = σ2
Tσ

2
Y + σ2

Tµ
2
Y + σ2

S, (VI.14)
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and

δ =
1

n
(
σ2
Tσ

2
Y + σ2

Tµ
2
Y + σ2

S + σ2
Y

σ2
Tσ

2
Y + σ2

Tµ
2
Y + σ2

S

) =
1

n
(1 +

σ2
Y

σ2
Tσ

2
Y + σ2

Tµ
2
Y + σ2

S

). (VI.15)

From equations (VI.13, VI.14, VI.15) we can see that introducing a multiplica-

tive noise with larger variance, σ2
T , worsens the efficiency of the model but it also

simultaneously improves the privacy level with an overall gain in model quality.

VI.2 Estimation of the Mean and Sensitivity Level

using Optional Enhanced Trust (OET) Model

In this section, we propose an Optional Enhanced Trust model (Figure VI.1), which

combines the elements of both the Warner’s additive model (1971)[63] and the Diana

and Perri (2011)[10] Linear Combination model. This model integrates the strengths

of optionality with an enhanced scrambling technique for respondents who do not

trust the Warner’s Additive model (1971)[63].

Let Y be the sensitive study variable and Z be the reported response. Let S and T

be the scrambling variables with means µS, µT and variances σ2
S and σ2

T respectively.

Moreover, let W represent the sensitivity level of the survey question meaning a

proportion (1−W ) of the respondents do not consider the question sensitive and hence

will provide an unscrambled response. Let A represent the proportion of respondents

that trust the Warner’s Additive model(1971)[63] and hence do not need additional

noise. Here, Y , T and S are assumed to be mutually independent.

The proposed Optional Enhanced Trust model mitigates the effect of respondents’
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Figure VI.1. Optional Enhanced Trust Model

lack of trust by allowing more noise to respondents who do not trust the Warner’s

Additive model (1971) [63]. The proposed model is an optional RRT model since it

allows respondents to simply report their true responses if they do not find the survey

question sensitive. However, if they do find the question sensitive they have the option

to scramble their response using either of the two scrambling techniques available to

them based on whether or not they trust the additive model. Under this model, the

reported response is given as shown in equation (VI.16).

Z =


Y with probability 1−W

Y + S with probability WA

TY + S with probability W (1− A).

(VI.16)

Respondents who trust Warner’s Additive model (1971)[63] simply use a random

additive noise to scramble their response before reporting it to the surveyor. The

respondents who do not trust the Warner’s Additive model (1971)[63] alone are allowed
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to use first a multiplicative noise and then an additive noise to scramble their true

response before they report it. This alternative scrambling technique is based on the

Diana and Perri (2011)[10] model. It helps in improving the respondent privacy level

which can help in lowering the level of untruthfulness. The surveyor would still just

have information about the reported response (Z) but has no idea about whether the

respondent reported their true response (Y ), or a scrambled response based on one of

the two scrambling schemes available to them as shown in equation (VI.16).

To estimate the sensitivity level W in addition to the sensitive mean µY , we assume

that E[S] = θ and E[T ] = 1. Then the expected value of the reported response Z

would be given by

E[Z] = (1−W )E[Y ] + (WA)E[Y + S] +W (1−A)E[TY + S] = µY +Wθ. (VI.17)

Note that equation (VI.17) is based on two unknown parameters, the unknown

mean µY and the unknown sensitivity level W . However, one could get around this

problem by using a Split-Sample approach as used in Gupta et al. (2010)[22]. In order

to implement the split-sample technique with the OET model, we split the complete

sample of size n into two sub-samples of size n1 and n2 such that n1 = n2 = n
2
.

Here the survey respondents in the ith sub-sample use scrambling variables T and

Si (i = 1, 2) with means µT and θi and variances σ2
T and σ2

Si
(i = 1, 2) respectively.

We may point out that an equal sample split is not necessary. We do so only for

convenience.

Under this model, the expected value and the variance of the reported response in

the ith sub-sample (i = 1, 2) is given by
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E[Zi] = µY +Wθi, (VI.18)

and

σ2
Zi

= V ar(Zi) = σ2
Y +W (1− A)(σ2

Tσ
2
Y + σ2

Tµ
2
Y ) +Wσ2

S +Wθ2i −W 2θ2i , . (VI.19)

Estimating E(Zi) by Zi, we get

Z1 = µ̂Y + Ŵθ1, (VI.20)

and

Z2 = µ̂Y + Ŵθ2. (VI.21)

Using equations (VI.20) and (VI.21), the estimators for the sensitive mean µY and

the sensitivity level W are given by

µ̂Y =
θ1Z2 − θ2Z1

θ1 − θ2
, (VI.22)

and

Ŵ =
Z1 − Z2

θ1 − θ2
. (VI.23)

The variances for the estimators in Equations (VI.22) and (VI.23) are given by
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V ar(µ̂Y ) =
(θ21 + θ22)(σ

2
Y +W (1− A)(σ2

Tσ
2
Y + σ2

Tµ
2
Y ) +Wσ2

S) +W (1−W )2θ21θ
2
2

ns(θ1 − θ2)2
,

(VI.24)

V ar(Ŵ ) =
2(σ2

Y +W (1− A)(σ2
Tσ

2
Y + σ2

Tµ
2
Y ) +Wσ2

S) + (W −W 2)(θ21 + θ22)

ns(θ1 − θ2)2
.

(VI.25)

Note that both (VI.24) and (VI.25) suggest using θ1 and θ2 that are not too close

to each other.

The privacy level and the combined measure of privacy and efficiency for the model

given in equation (VI.16) are given by

▽ = (1− A)(σ2
Tσ

2
Y + σ2

Tµ
2
Y ) + σ2

S +
θ21 + θ22

2
, (VI.26)

and

δ =
(θ21 + θ22)(σ

2
Y +W (1− A)(σ2

Tσ
2
Y + σ2

Tµ
2
Y ) +Wσ2

S) +W (1−W )2θ21θ
2
2

ns(θ1 − θ2)2((1− A)(σ2
Tσ

2
Y + σ2

Tµ
2
Y ) + σ2

S +
θ21+θ22

2
)

. (VI.27)

VI.3 Ratio Estimator of the Mean for the OET Model

In Subsection II.5.2, we presented a discussion on various types of sensitive mean

estimators that can be used in the presence of one non-sensitive auxiliary variable

which has a strong positive correlation with the sensitive study variable. The types of

estimators introduced were ratio, regression and generalized estimators in the presence
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of one non-sensitive auxiliary variable. Most of these estimators were either proposed

under the non-optional or optional versions of the Warner’s Additive model (1971)[63]

or the Pollock and Beck model (1976)[50] where the reported response Z is given by

Z = Y + S, (VI.28)

where S is random scrambling variable, usually with mean µS = 0 and variance σ2
S.

In this section, we will introduce a ratio estimator for the mean of the sensitive variable

Y when complete information is available for the non-sensitive auxiliary variable X

which has a strong positive correlation with Y .

In Subsection II.5.2, we introduced the additive ratio estimator proposed by Kalucha

et al. (2015)[29] under the optional version of Warner’s additive model (1971)[63].

Following this work, we propose an additive ratio estimator for the sensitive mean µY

under the Optional Enhanced Trust (OET) model introduced in Section VI.2.

Let Y be the sensitive study variable and X be the non-sensitive auxiliary variable

which has a strong positive correlation with Y . Let T and Si (i = 1, 2) be the

scrambling variables that are all assumed to be independent of both Y and X. Let

µT and σ2
T be the mean and the variance of T , and θi and σ2

Si
(i = 1, 2) be the

mean and the variance of the scrambling variables Si (i = 1, 2). Let µX = E(X),

µY = E(Y ), µZ1 = E(Z1) and µZ2 = E(Z2) be the population means for X, Y , Z1

and Z2 respectively where Zi (i = 1, 2) denote the reported responses from the two

sub-samples and are given by,

Zi =


Y with probability 1−W

Y + Si with probability WA

TY + Si with probability W (1− A),

(VI.29)
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where i = 1, 2. If a simple random sample of size n is drawn, without replacement,

then the additive ratio estimator of the sensitive mean µY is given by

µ̂ar =

[
z̄1θ2 − z̄2θ1
θ2 − θ1

][
µX

x̄1

+
µX

x̄2

](
1

2

)
. (VI.30)

Here n1 is the size of the first sub-sample and n2 is the size of the second sub-sample

such that n1 + n2 = n. For this study, although it is not required, we use n1 = n2 for

easier interpretation. Further, z̄i and x̄i (i = 1, 2) are the sub-sample means for the

reported response Z and the auxiliary variable X respectively.

Assume that a large sample is drawn so that |δZi
| < 1 and |δXi

| < 1 (i = 1, 2),

where δZ1 =
z̄1−µZ1

µZ1
, δZ2 =

z̄2−µZ2

µZ2
, δX1 =

x̄1−µX1

µX1
and δX2 =

x̄2−µX2

µX2
. Then the additive

ratio estimator from equation (VI.30) can be re-written as

µ̂ar =

(
1

2

)[
µY +

θ1
θ1 − θ2

δZ2µZ2−
θ2

θ1 − θ2
δZ1µZ1

][
(1+δX1)

−1+(1+δX2)
−1

]
(VI.31)

Under the assumptions of bivariate normality (Sukhatme et al. (1970))[59]:

E(δX1) = 0; E(δX2) = 0; E(δZ1) = 0; E(δZ2) = 0; E(δ2X1
) = (1−f1

n1
)C2

X1
; E(δ2X2

) =

(1−f2
n2

)C2
X2

; E(δ2Z1
) = (1−f1

n1
)C2

Z1
; E(δ2Z2

) = (1−f2
n2

)C2
Z2

; E(δX1δX2) = 0, E(δZ1δZ2) = 0;

E(δZ1δX2) = 0; E(δZ2δX1) = 0; E(δZ1δX1) = (1−f1
n1

)CZ1X1 ; E(δZ2δX2) = (1−f2
n2

)CZ2X2 ,

where f1 = n1

N
, f2 = n2

N
, CZ1X1 = ρZ1X1CZ1CX1 and CZ2X2 = ρZ2X2CZ2CX2 . Since

the two sub-samples come from the same population, the coefficients of variation

CX1 = CX2 = CX , and the correlations ρZ1X1 = ρZ1X and ρZ2X2 = ρZ2X .

Thus using the first-order Taylor’s approximation, the bias of the additive ratio

estimator under the OET model is given by
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Bias(µ̂ar) ≈
µY

2

[(
1− f1
n1

)
C2

X1
+

(
1− f2
n2

)
C2

X2

]

+
1

2
ρY XσYCX

[(
θ1

θ1 − θ2

)(
1− f2
n2

)
−
(

θ2
θ1 − θ2

)(
1− f1
n1

)]
(VI.32)

The expression for the MSE of the additive ratio estimator under the OET model,

correct up to the first order of approximation, is given by

MSE(µ̂ar) = E(µ̂ar − µY )
2

≈ µ2
Y

4
C2

X

[(
1− f1
n1

)
+

(
1− f2
n2

)]
+

(
θ1

θ1 − θ2

)2(
1− f2
n2

)
σ2
Z2

+

(
θ2

θ1 − θ2

)2(
1− f1
n1

)
σ2
Z1

+
1

θ1 − θ2
µY ρY XσYCX

[
θ2

(
1− f1
n1

)
− θ1

(
1− f2
n2

)]
(VI.33)

The privacy level offered under this scenario is given by

∇ = E[Z − Y ]2 = (1− A)(σ2
Tσ

2
Y + σ2

Tµ
2
Y ) + σ2

S +
θ21 + θ22

2
. (VI.34)

Note that, since the model used to compute the privacy level for the ordinary RRT

estimator under the OET model, given by equation (VI.22), has not changed, the

privacy level offered to the respondents would be the same whether auxiliary variable

X is available or not.

The combined measure for privacy and efficiency is given by
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δ =
MSE(µ̂ar)

∇
, (VI.35)

where ∇ is given by equation (VI.34).

VI.4 Regression Estimator of the Mean for the OET

Model

In Subsection II.5.2, we introduced the regression estimator proposed by Gupta et

al. (2012)[20] which estimates, the mean µY of the sensitive study variable Y and

the sensitivity level W , when the information about the non-sensitive and highly

correlated auxiliary variable X is available for each individual in the population. This

work was done under the optional version of Warner’s additive model (1971)[63] and

the Pollock and Beck (1976)[50] model.

Following this work, we propose a regression estimator for the sensitive mean while

simultaneously estimating the sensitivity level W , under the Optional Enhanced Trust

(OET) model introduced in Section VI.2.

Let Y be the sensitive study variable with mean µY and variance σ2
Y , and X be the

non-sensitive auxiliary variable, which has a strong positive correlation with Y , and

has a mean µX and variance σ2
X . Let T and Si (i = 1, 2) be the scrambling variables

that are all assumed to be independent of both Y and X. Let the µT and σ2
T be the

mean and the variance of T and θi and σ2
Si

(i = 1, 2) be the mean and the variance

of the scrambling variables Si (i = 1, 2). Let µZ1 = E(Z1) and µZ2 = E(Z2) be the

population means for Z1 and Z2 respectively where Zi (i = 1, 2) denote the reported

responses from the two sub-samples are given by,
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Zi =


Y with probability 1−W

Y + Si with probability WA

TY + Si with probability W (1− A),

(VI.36)

where i = 1, 2. If a simple random sample of size n is drawn, without replacement,

then a regression estimator of the sensitive mean µY under the OET model is given by

µ̂AReg =

[
z̄1θ2 − z̄2θ1
θ2 − θ1

]
+

[
β̂Z1X1(µX − x̄1) + β̂Z2X2(µX − x̄2)

](
1

2

)
, (VI.37)

where β̂ZiXi
=

szixi
σ2
Xi

(i = 1, 2) are the sample regression coefficients between Zi

and Xi respectively. Further, z̄i and x̄i (i = 1, 2) are the sub-sample means for the

reported response Z and the auxiliary variable X respectively. Again we define the

following error terms:

δz1 =
z̄1−µZ1

µZ1
; δz2 =

z̄2−µZ2

µZ2
; δz1 =

x̄1−µX1

µX1
; δx2 =

x̄2−µX2

µX2
;

δSx1
=

s2x1−σ2
X

σ2
X

; δSx2
=

s2x2−σ2
X

σ2
X

; δSz1x
=

s2z1x1−σZ1X

σZ1X
; δSz2x

=
s2z2x2−σZ2X

σZ2X

Here s2i is the sample variance for the auxiliary variable in the ith sub-sample and

szixi
is the sample covariance between the reported response and the auxiliary variable

response in the ith sub-sample (i = 1, 2). Since the two sub-samples were ultimately

drawn from the same population, µX = E(X) = E(X1) = E(X2) and σ2
X = σ2

X1
= σ2

X2
.

Let σZiX (i = 1, 2) be the population co-variances between Zi (i = 1, 2) and auxiliary

variable X. Then substituting the error terms defined above, the sample regression

coefficients can be re-written as
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β̂Z1X1 =
sz1x1

σ2
X1

=
sz1x1

σ2
X

=
σZ1X(1 + δSz1x

)

σ2
X

= βZ1X(1 + δSz1x
), (VI.38)

and

β̂Z2X2 =
sz2x2

σ2
X2

=
sz2x2

σ2
X

=
σZ2X(1 + δSz2x

)

σ2
X

= βZ2X(1 + δSz2x
). (VI.39)

Substituting the values of the regression coefficients as obtained in equations

(VI.38,VI.39) along with error terms defined earlier, the estimator given by equation

(VI.37) can be re-written as

µ̂AReg =

[
θ2(δz1µZ1 + µZ1)− θ1(δz2µZ2 + µZ2)

θ2 − θ1

]

+
1

2

[
βZ1X(1 + δz1x)(µX − x̄1) + βZ2X(1 + δz2x)(µX − x̄2)

]
(VI.40)

When we simplify the above expression, the estimator from equation (VI.37) is

given by

µ̂AReg =

[
θ2µZ1 − θ1µZ2

θ2 − θ1

]
+

(
θ2

θ2 − θ1

)
µZ1δz1 −

(
θ1

θ2 − θ1

)
µZ2δz2

− µX

2

[
βZ1Xδx1(1 + δSz1x

) + βZ2Xδx2(1 + δSz2x
)

]
(VI.41)

Substituting for µZ1 and µZ2 in the first term, on the right-hand-side, in equation

(VI.41) we get
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µ̂AReg−µY =

(
θ2

θ2 − θ1

)
µZ1δz1−

(
θ1

θ2 − θ1

)
µZ2δz2−

µX

2

[
βZ1Xδx1(1+δSz1x

)+βZ2Xδx2(1+δSz2x
)

]
(VI.42)

Under the assumptions of bivariate normality (Sukhatme et al. (1970))[59]:

E(δX1) = 0; E(δX2) = 0; E(δZ1) = 0; E(δZ2) = 0; E(δ2X1
) = (1−f1

n1
)C2

X1
; E(δ2X2

) =

(1−f2
n2

)C2
X2

; E(δ2Z1
) = (1−f1

n1
)C2

Z1
; E(δ2Z2

) = (1−f2
n2

)C2
Z2

; E(δX1δX2) = 0, E(δZ1δZ2) = 0;

E(δZ1δX2) = 0; E(δZ2δX1) = 0; E(δZ1δX1) = (1−f1
n1

)CZ1X1 ; E(δZ2δX2) = (1−f2
n2

)CZ2X2 ;

E(δx1δSx1
) = (1−f1

n1
)µ03

µ02

1
µX

; E(δx2δSx2
) = (1−f2

n2
)µ03

µ02

1
µX

; E(δx1δSz1x
) = (1−f1

n1
)µ12

µ11

1
µX

;

E(δx2δSz2x
) = (1−f2

n2
)µ12

µ11

1
µX

, where f1 = n1

N
, f2 = n2

N
, CZ1X1 = ρZ1X1CZ1CX1 and

CZ2X2 = ρZ2X2CZ2CX2 . Since the two sub-samples come from the same population,

the coefficients of variation CX1 = CX2 = CX , and the correlations ρZ1X1 = ρZ1X and

ρZ2X2 = ρZ2X .

Then the bias for the proposed regression estimator from equation (VI.37) is given

by

Bias(µ̂AReg) = E[µ̂AReg − µY ]

= −1

2

[
βZ1X

(
1− f1
n1

)
µ12

µ11

+ βZ2X

(
1− f2
n2

)
µ12

µ11

]
, (VI.43)

where µrs =
1

N−1

∑N
i=1

(
Zi − µZi

)r(
Xi − µX

)s
(r, s = 0, 1, 2, 3).

Squaring and taking the expectation of both sides of the equation (VI.42) and

retaining terms up to second order, the MSE of the proposed regression estimator can

be given by
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MSE(µ̂AReg) = E[µ̂AReg − µY ]
2

≈

(
1− f1
n1

)[(
θ2

θ2 − θ1

)2

σ2
Z1

+
1

4
β2
Z1X

σ2
X1

−
(

θ2
θ2 − θ1

)
βZ1XσZ1X1

]

+

(
1− f2
n2

)[(
θ1

θ2 − θ1

)2

σ2
Z2

+
1

4
β2
Z2X

σ2
X2

+

(
θ1

θ2 − θ1

)
βZ2XσZ2X2

]
,

(VI.44)

where θ1 ̸= θ2.

Here we use the following expressions to evaluate the approximate MSE of the

proposed regression estimator for the OET model.

σ2
Zi

= σ2
Y +W (1− A)[σ2

Tσ
2
Y + σ2

Tµ
2
Y ] +Wσ2

Si
+Wθ2i −W 2θ2i , (i = 1, 2). (VI.45)

Further, the population regression coefficients are given by

βZiX =
σZiX

σ2
x

=
σY X

σ2
X

=
ρY XσY σX

σ2
X

=
ρY XσY

σX

, i = 1, 2. (VI.46)

Further, the following equations hold true for the population covariances, correla-

tions and variances:

σZiXi
= σY Xi

= σY X = ρY XσY σX , (VI.47)

σ2
Xi

= σ2
X , (VI.48)
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and

ρZiX =
ρY XσY

σZi

(i = 1, 2). (VI.49)

Using equations (VI.47,VI.48,VI.49), we can re-write the MSE of the proposed

regression estimator under the OET model as

MSE(µ̂AReg) ≈

(
1− f1
n1

)[(
θ2

θ2 − θ1

)2

σ2
Z1

+ ρ2Y Xσ
2
Y

[
1

4
−
(

θ2
θ2 − θ1

)]]

+

(
1− f2
n2

)[(
θ1

θ2 − θ1

)2

σ2
Z21

+ ρ2Y Xσ
2
Y

[
1

4
−
(

θ1
θ2 − θ1

)]]
, (VI.50)

where θ1 ̸= θ2.

VI.5 Simulation Study

In this Chapter, we introduced an optional enhanced trust model (Figure VI.1) along

with the ordinary estimator (equation VI.22), an additive ratio estimator (equation

VI.30) and a regression estimator (equation VI.37) for the sensitive mean while

simultaneously estimating the sensitivity level W . In this section, the results of a

simulation study to evaluate and compare the performance of the ordinary RRT mean

estimator t0 = µ̂Y , the additive ratio estimator t1 = µ̂ar and the linear regression

estimator t2 = µ̂AReg. We also evaluate the performance of an unbiased estimator of

the sensitivity level denoted by Ŵ .

We conducted a simulation study with 10000 iterations with samples of size n = 500

each from a finite population of size N = 5000. We generate this finite population
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under two scenarios (i.e. a high and a moderate correlation between Y and X).

Scenario-1

We first generate the finite population from a bivariate normal distribution with

means and covariances of (X, Y ) given as follows:

µ =

 6

10

 ,Σ =

 8 10.1823

10.1823 16

 , ρY X = 0.9 (VI.51)

i.e. we first generate a sample of 5000 units by using

µX = 6, µY = 10, σ2
X = 8, σ2

Y = 16, ρY X = 0.9. (VI.52)

We treat this sample as our finite population of size N = 5000. Then from this

finite population, we repeatedly draw samples of size n = 500 using simple random

sampling without replacement (SRSWOR). Each of these samples is split into two

sub-samples of equal size n1 = n2 = 250 in every iteration. It must be noted that the

real parameters for the 5000 units in the generated finite population are quite close to

the assumed parameters, but are not exactly the same, and are given by

µX = 6.002015, µY = 9.995325, σ2
X = 7.95262, σ2

Y = 15.80488, ρY X = 0.8986312.

(VI.53)

For this simulation study, we used the parameters for the finite population from

equation (VI.53) and not the ones assumed to generate the finite population in equation

(VI.52).
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We assume the scrambling variables T and Si (i = 1, 2) to be normally distributed

with known means and variances (µT = 1 = E(T ), µS1 = θ1 = 2, µS2 = θ2 = 1, σ2
T =

0.5, σ2
Si

= V ar(Si) = 0.5σ2
X ; i = 1, 2). The empirical results have been averaged over

10000 iterations. The empirical MSE of the estimators µ̂j = tj were computed by

MSE(tj) =
1

10000

10000∑
i=1

(
µ̂i − µY

)2

. (VI.54)

Here µ̂j = tj can be µ̂Y = t0, µ̂ar = t1 and µ̂AReg = t2. Privacy level ∇ was

computed for the OET model by taking the mean squared difference between the

reported response Z and actual status for the sensitive study variable Y for only

those respondents that consider the question sensitive and choose to scramble their

responses. This mean squared difference in the report and the actual response is given

by

∇oet = E[Z − Y ]2. (VI.55)

Note that although we propose various estimators, they were all proposed under

the same model. Hence the value of ∇oet corresponding to all three estimators would

be the same since the privacy level is measured for the model being used and not the

estimators proposed under that model. Following this, we also compute the unified

measure of privacy and efficiency δ which was proposed by Gupta et al. (2018)[21]

and is given by

δ =
MSE(tj)

∇oet

, j = 0, 1, 2. (VI.56)

Here we use MSE instead of the variances of the estimators to effectively evaluate
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the efficiency of the biased estimators. The simulation results for Scenario-1 have

been summarized in Table VI.1. The theoretical values have been listed in bold while

the regular figures represent the empirical values of the various measures listed in the

table.

From Table VI.1, we can make a number of observations. For any fixed value of

A, we note that as W increases, MSE worsens for all estimators while the privacy

level remains the same. For example, consider the cases where A = 0.95. When W

varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical MSE for the ordinary RRT

mean estimator, t0 = µ̂Y , takes values 0.3456, 0.3728, 0.4091, 0.4199, and 0.4302

respectively. Further, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the additive ratio estimator, t1 = µ̂ar, takes values 0.3238, 0.3510, 0.3872,

0.3981, and 0.4083 respectively. Also, as W varies between 0.3, 0.5, 0.8, 0.9 and

1, the theoretical MSE for the linear regression estimator, t2 = µ̂AReg, takes values

0.3214, 0.3486, 0.3848, 0.3957, and 0.4059 respectively. Therefore, we can infer that

the efficiency of all three estimators is the worst at W = 1. Hence optionality element

of the proposed model leads to better efficiency for all three estimators introduced

and used under this model. Furthermore, based on this example, we can also note

that t2 has the best efficiency followed closely by t1 and both these estimators that

utilize auxiliary variable information X are more efficient than the ordinary RRT

mean estimator t0 that does not utilize the auxiliary information. The theoretical

privacy level is the same corresponding to all three estimators since the model is the

same for all three estimators. Therefore, the lowest δ values are corresponding to the

linear regression estimator t2 which is slightly lower than the values of δt1.

Another observation that can be made using Table VI.1 is that for fixed values of
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Table VI.1. Simulation results (for estimating sensitive mean µY and sensitivity level W
(Theoretical (bold) and Empirical Measures): Iterations = 10000, N = 5000, n = 500,
µY = 10, ρY X = 0.9 for various levels of trust (A) and the sensitivity level (W ).

A W Ŵ V ar(Ŵ ) MSE(t0) MSE(t1) MSE(t2) ∇oet δ(t0) δ(t1) δ(t2)

1 1 1.0007 0.1540 0.3814 0.3596 0.3581 6.4376 0.0592 0.0559 0.0556
0.1584 0.3751 0.3533 0.3509 6.4924 0.0578 0.0544 0.0540

1 0.9 0.8957 0.1588 0.3916 0.3709 0.3696 6.4339 0.0609 0.0576 0.0574
0.1570 0.3704 0.3485 0.3461 6.4924 0.0570 0.0537 0.0533

1 0.8 0.7966 0.1578 0.3878 0.3673 0.3657 6.4339 0.0603 0.0571 0.0568
0.1552 0.3650 0.3432 0.3408 6.4924 0.0562 0.0529 0.0525

1 0.5 0.4994 0.1503 0.3697 0.3465 0.3454 6.4397 0.0574 0.0538 0.0536
0.1474 0.3453 0.3235 0.3211 6.4924 0.0532 0.0498 0.0495

1 0.3 0.3005 0.1419 0.3512 0.3276 0.3262 6.4367 0.0546 0.0509 0.0507
0.1402 0.3291 0.3073 0.3049 6.4924 0.0507 0.0473 0.0470

0.95 1 0.9935 0.1833 0.4529 0.4321 0.4307 9.3115 0.0486 0.0464 0.0462
0.1816 0.4302 0.4083 0.4059 9.3905 0.0458 0.0435 0.0432

0.95 0.9 0.8905 0.1730 0.4299 0.4117 0.4090 9.3103 0.0462 0.0442 0.0439
0.1779 0.4199 0.3981 0.3957 9.3905 0.0447 0.0424 0.0421

0.95 0.8 0.7920 0.1689 0.4180 0.3993 0.3966 9.3110 0.0449 0.0429 0.0426
0.1737 0.4091 0.3872 0.3848 9.3905 0.0436 0.0412 0.0410

0.95 0.5 0.4938 0.1556 0.3848 0.3651 0.3624 9.3065 0.0413 0.0392 0.0389
0.1590 0.3728 0.3510 0.3486 9.3905 0.0397 0.0374 0.0371

0.95 0.3 0.2954 0.1445 0.3582 0.3388 0.3358 9.3142 0.0385 0.0364 0.0361
0.1472 0.3456 0.3238 0.3214 9.3905 0.0368 0.0345 0.0342

0.9 1 0.9955 0.2071 0.5154 0.4923 0.4913 12.1819 0.0423 0.0404 0.0403
0.2047 0.4852 0.4634 0.4610 12.2886 0.0395 0.0377 0.0375

0.9 0.9 0.8900 0.1932 0.4790 0.4612 0.4582 12.2000 0.0393 0.0378 0.0376
0.1987 0.4695 0.4476 0.4452 12.2886 0.0382 0.0364 0.0362

0.9 0.8 0.7908 0.1867 0.4608 0.4428 0.4397 12.2027 0.0378 0.0363 0.0360
0.1923 0.4531 0.4313 0.4289 12.2886 0.0369 0.0351 0.0349

0.9 0.5 0.4928 0.1674 0.4134 0.3939 0.3912 12.1821 0.0339 0.0323 0.0321
0.1706 0.4004 0.3785 0.3761 12.2886 0.0326 0.0308 0.0306

0.9 0.3 0.2961 0.1518 0.3764 0.3570 0.3540 12.1861 0.0309 0.0293 0.0291
0.1541 0.3622 0.3403 0.3379 12.2886 0.0295 0.0277 0.0275

0.85 1 0.9938 0.2324 0.5777 0.5560 0.5545 15.0673 0.0383 0.0369 0.0368
0.2279 0.5403 0.5185 0.5161 15.1866 0.0356 0.0341 0.0340

0.85 0.9 0.8904 0.2161 0.5335 0.5165 0.5135 15.0874 0.0354 0.0342 0.0340
0.2196 0.5190 0.4972 0.4948 15.1866 0.0342 0.0327 0.0326

0.85 0.8 0.7911 0.2073 0.5097 0.4923 0.4892 15.0931 0.0338 0.0326 0.0324
0.2108 0.4972 0.4753 0.4729 15.1866 0.0327 0.0313 0.0311

0.85 0.5 0.4941 0.1796 0.4433 0.4239 0.4213 15.0608 0.0294 0.0281 0.0280
0.1822 0.4279 0.4060 0.4037 15.1866 0.0282 0.0267 0.0266

0.85 0.3 0.2958 0.1592 0.3940 0.3749 0.3718 15.0707 0.0261 0.0249 0.0247
0.1611 0.3787 0.3568 0.3544 15.1866 0.0249 0.0235 0.0233

0.8 1 0.9956 0.2544 0.6316 0.6101 0.6083 17.9504 0.0352 0.0340 0.0339
0.2511 0.5954 0.5735 0.5711 18.0847 0.0329 0.0317 0.0316

0.8 0.9 0.8913 0.2365 0.5863 0.5675 0.5651 17.9817 0.0326 0.0316 0.0314
0.2404 0.5686 0.5467 0.5443 18.0847 0.0314 0.0302 0.0301

0.8 0.8 0.7916 0.2250 0.5559 0.5372 0.5346 17.9859 0.0309 0.0299 0.0297
0.2294 0.5412 0.5194 0.5170 18.0847 0.0299 0.0287 0.0286

0.8 0.5 0.4935 0.1898 0.4704 0.4503 0.4480 17.9704 0.0262 0.0251 0.0249
0.1938 0.4554 0.4336 0.4312 18.0847 0.0252 0.0240 0.0238

0.8 0.3 0.2950 0.1656 0.4108 0.3912 0.3882 17.9641 0.0229 0.0218 0.0216
0.1680 0.3952 0.3733 0.3710 18.0847 0.0219 0.0206 0.0205
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W , say W = 0.9, The efficiency of all estimators worsen as the level of trust A drops.

This is expected as fewer people trust the model, they would choose to go with a more

enhanced scrambling option. However, the gain in privacy due to enhanced scrambling

of responses more than compensates for the drop in efficiency when we consider the

unified measure of privacy and efficiency to assess the overall estimator performance.

For example, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt0 takes

values 0.3704, 0.4199, 0.4695, 0.5190, and 0.5686 respectively. Similarly, as A varies

between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt1 takes values 0.3485, 0.3981, 0.4476,

0.4972, and 0.5467 respectively. Also, as A varies between 1, 0.95, 0.9, 0.85, and 0.8,

theoretical δt2 takes values 0.3461, 0.3957, 0.4452, 0.4948, and 0.5443 respectively.

Although t1 and t2 have reasonably similar overall performances, t2 appears to be

slightly better.

Scenario-2

As shown in Scenario-1, we now generate the finite population of size N = 5000

from a bivariate normal distribution with means and covariances of (X, Y ) given as

follows:

µ =

 6

10

 ,Σ =

 8 6.788225

6.788225 16

 , ρY X = 0.6 (VI.57)

We have

µX = 6, µY = 10, σ2
X = 8, σ2

Y = 16, ρY X = 0.6. (VI.58)

Then from this finite population, we repeatedly draw samples of size n = 500 using
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simple random sampling without replacement (SRSWOR). It must be noted that the

real parameters for the 5000 units in the generated finite population are quite close to

these assumed parameters, but are not exactly the same, and are given by

µX = 6.006096, µY = 9.993591, σ2
X = 8.010827, σ2

Y = 15.79687, ρY X = 0.5967508.

(VI.59)

For this simulation study, we used the parameters for the finite population (VI.59)

and not the ones assumed to generate the finite population (VI.58). The only difference

between Scenario-1 and Scenario-2 is that we now use a considerably lower value for

ρY X to study how the performance of the three estimators gets affected. We again

assume the scrambling variables T and Si (i = 1, 2) to be normally distributed with

known means and variances (µT = 1 = E(T ), µS1 = θ1 = 2, µS2 = θ2 = 1, σ2
T =

0.5, σ2
Si

= V ar(Si) = 0.5σ2
X ; i = 1, 2). The empirical results have again been averaged

over 10000 iterations. The simulation results for Scenario-2 have been summarized in

Table VI.2. The theoretical values have been listed in bold while the regular figures

represent the empirical values of the various measures listed in the table.

From Table VI.2, we can make a number of observations. For any fixed value of

A, we note that as W increases, MSE worsens for all estimators while the privacy

level remains the same. For example, consider the cases where A = 0.95. When W

varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical MSE for the ordinary RRT

mean estimator, t0 = µ̂Y , takes values 0.3456, 0.3729, 0.4093, 0.4203, and 0.4306

respectively. Further, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the additive ratio estimator, t1 = µ̂ar, takes values 0.3453, 0.3726, 0.4090,

0.4199, and 0.4302 respectively. Also, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the
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Table VI.2. Simulation results (for estimating sensitive mean µY and sensitivity level
W : Iterations = 10000, N = 5000, n = 500, µY = 9, ρY X = 0.6 for various levels of
trust (A) and the sensitivity level (W ).

A W Ŵ V ar(Ŵ ) MSE(t0) MSE(t1) MSE(t2) ∇oet δ(t0) δ(t1) δ(t2)

1 1 1.0007 0.1543 0.3818 0.3801 0.3714 6.4666 0.0590 0.0588 0.0574
0.1585 0.3755 0.3752 0.3648 6.5216 0.0576 0.0575 0.0559

1 0.9 0.8955 0.1593 0.3936 0.3948 0.3851 6.4628 0.0609 0.0611 0.0596
0.1571 0.3707 0.3704 0.3600 6.5216 0.0568 0.0568 0.0552

1 0.8 0.7964 0.1583 0.3898 0.3912 0.3813 6.4629 0.0603 0.0605 0.0590
0.1553 0.3653 0.3650 0.3546 6.5216 0.0560 0.0560 0.0544

1 0.5 0.4992 0.1506 0.3708 0.3695 0.3607 6.4687 0.0573 0.0571 0.0558
0.1475 0.3454 0.3451 0.3347 6.5216 0.0530 0.0529 0.0513

1 0.3 0.3003 0.1422 0.3521 0.3505 0.3416 6.4657 0.0545 0.0542 0.0528
0.1402 0.3291 0.3288 0.3184 6.5216 0.0505 0.0504 0.0488

0.95 1 0.9931 0.1839 0.4549 0.4555 0.4460 9.3376 0.0487 0.0488 0.0478
0.1817 0.4306 0.4302 0.4199 9.4186 0.0457 0.0457 0.0446

0.95 0.9 0.8901 0.1734 0.4313 0.4355 0.4239 9.3364 0.0462 0.0466 0.0454
0.1780 0.4203 0.4199 0.4096 9.4186 0.0446 0.0446 0.0435

0.95 0.8 0.7916 0.1691 0.4190 0.4227 0.4112 9.3369 0.0449 0.0453 0.0440
0.1739 0.4093 0.4090 0.3986 9.4186 0.0435 0.0434 0.0423

0.95 0.5 0.4934 0.1559 0.3861 0.3895 0.3781 9.3333 0.0414 0.0417 0.0405
0.1590 0.3729 0.3726 0.3623 9.4186 0.0396 0.0396 0.0385

0.95 0.3 0.2949 0.1448 0.3595 0.3630 0.3513 9.3421 0.0385 0.0389 0.0376
0.1472 0.3456 0.3453 0.3350 9.4186 0.0367 0.0367 0.0356

0.9 1 0.9952 0.2076 0.5172 0.5161 0.5074 12.2061 0.0424 0.0423 0.0416
0.2049 0.4856 0.4853 0.4749 12.3156 0.0394 0.0394 0.0386

0.9 0.9 0.8896 0.1937 0.4807 0.4852 0.4733 12.2247 0.0393 0.0397 0.0387
0.1988 0.4698 0.4695 0.4591 12.3156 0.0381 0.0381 0.0373

0.9 0.8 0.7904 0.1871 0.4621 0.4661 0.4543 12.2274 0.0378 0.0381 0.0372
0.1924 0.4534 0.4531 0.4427 12.3156 0.0368 0.0368 0.0359

0.9 0.5 0.4923 0.1677 0.4148 0.4183 0.4069 12.2084 0.0340 0.0343 0.0333
0.1706 0.4005 0.4002 0.3898 12.3156 0.0325 0.0325 0.0316

0.9 0.3 0.2956 0.1521 0.3777 0.3809 0.3694 12.2127 0.0309 0.0312 0.0302
0.1541 0.3622 0.3619 0.3515 12.3156 0.0294 0.0294 0.0285

0.85 1 0.9935 0.2330 0.5795 0.5797 0.5702 15.0883 0.0384 0.0384 0.0378
0.2281 0.5406 0.5403 0.5300 15.2126 0.0355 0.0355 0.0348

0.85 0.9 0.8901 0.2166 0.5353 0.5404 0.5283 15.1098 0.0354 0.0358 0.0350
0.2197 0.5193 0.5190 0.5086 15.2126 0.0341 0.0341 0.0334

0.85 0.8 0.7908 0.2078 0.5113 0.5159 0.5039 15.1155 0.0338 0.0341 0.0333
0.2109 0.4974 0.4971 0.4867 15.2126 0.0327 0.0327 0.0320

0.85 0.5 0.4935 0.1798 0.4446 0.4481 0.4369 15.0858 0.0295 0.0297 0.0290
0.1822 0.4280 0.4277 0.4173 15.2126 0.0281 0.0281 0.0274

0.85 0.3 0.2952 0.1594 0.3951 0.3984 0.3869 15.0940 0.0262 0.0264 0.0256
0.1611 0.3787 0.3784 0.3680 15.2126 0.0249 0.0249 0.0242

0.8 1 0.9953 0.2548 0.6331 0.6324 0.6232 17.9700 0.0352 0.0352 0.0347
0.2513 0.5957 0.5954 0.5850 18.1096 0.0329 0.0329 0.0323

0.8 0.9 0.8909 0.2372 0.5881 0.5918 0.5806 18.0005 0.0327 0.0329 0.0323
0.2406 0.5689 0.5686 0.5582 18.1096 0.0314 0.0314 0.0308

0.8 0.8 0.7912 0.2256 0.5575 0.5610 0.5497 18.0043 0.0310 0.0312 0.0305
0.2295 0.5414 0.5411 0.5308 18.1096 0.0299 0.0299 0.0293

0.8 0.5 0.4929 0.1902 0.4718 0.4750 0.4640 17.9913 0.0262 0.0264 0.0258
0.1938 0.4555 0.4552 0.4448 18.1096 0.0252 0.0251 0.0246

0.8 0.3 0.2944 0.1659 0.4120 0.4152 0.4038 17.9821 0.0229 0.0231 0.0225
0.1680 0.3952 0.3949 0.3845 18.1096 0.0218 0.0218 0.0212
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theoretical MSE for the regression estimator, t2 = µ̂AReg, takes values 0.3350, 0.3623,

0.3986, 0.4096, and 0.4199 respectively. Therefore, we can infer that the efficiency

of all three estimators is the worst at W = 1. Hence optionality element of the

proposed model ensures optimal efficiency of any of the three estimators introduced

used under this model. Furthermore, based on this example, we can also note that t2

has the best efficiency followed by t1. Both these estimators which utilize auxiliary

variable information X are more efficient than the ordinary RRT mean estimator

t0 that does not utilize the auxiliary information. The theoretical privacy level is

the same corresponding to all three estimators since the model is the same for all

three estimators. Therefore, the lowest δ values are corresponding to the regression

estimator t2 which is slightly lower than the values of δt1.

Another observation that can be made using Table VI.2 is that for fixed values

of W , say W = 0.9, The efficiency of all estimators worsen as the level of trust A

drops. This is expected as fewer people trust the model, and the use of the choice to

go with the enhanced scrambling option will rise. However, the gain in privacy due to

enhanced scrambling of responses more than compensates for the drop in efficiency

when we consider the unified measure of privacy and efficiency to assess the overall

estimator performance. For example, as A varies between 1, 0.95, 0.9, 0.85, and 0.8,

theoretical δt0 takes values 0.0568, 0.0446, 0.0381, 0.0341, and 0.0314 respectively.

Similarly, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt1 takes values

0.0568, 0.0446, 0.0381, 0.0341, and 0.0314 respectively. Also, as A varies between 1,

0.95, 0.9, 0.85, and 0.8, theoretical δt2 takes values 0.0552, 0.0435, 0.0373, 0.0334, and

0.0308 respectively. Hence the best value of δ can be obtained even with considerably

lower values A using any of the three estimators. Considering the values of the unified

measure δ, t2 has the best overall performance, followed by t1 and then t0.
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On comparing the results from Table VI.1 and Table VI.2 we can note the MSE

for three estimators worsen when ρY X lowers. However, the MSE for t1 and t2 worsen

considerably more than that of t0 as the ordinary RRT mean estimator t0 does not rely

on the auxiliary variable X. Moreover, we also note that the performance of t1 worsens

so much that there is hardly any difference between the MSEs of t0 and t1. However,

t2 still performs the best of the three estimators. For instance, let us consider the case

when A = 0.9 and W = 0.8. When ρY X = 0.9, the theoretical MSE for t0, t1 and t2

are 0.4531, 0.4313 and 0.4289 respectively. However, when ρY X = 0.6, the theoretical

MSE for t0, t1 and t2 are 0.4532, 0.4531, and 0.44277 respectively. Further, when

ρY X = 0.9, the theoretical δ for t0, t1 and t2 are 0.0369, 0.0351, and 0.0349. However,

when ρY X = 0.6, the theoretical δ for t0, t1 and t2 are 0.0368, 0.0368, and 0.0359

respectively. Hence, we can see that the overall performance of the proposed additive

ratio estimator (t1) may not offer anything additional when compared to the overall

performance of ordinary RRT mean estimator (t0) when the correlation between the

sensitive study variable Y and the non-sensitive auxiliary variable is weak. Moreover,

we note that despite the weaker correlation, the proposed regression estimator (t2)

still outperforms the other two proposed estimators even when the correlation between

the sensitive study variable Y and the non-sensitive auxiliary variable is moderate or

weak.

From both Table VI.1 and Table VI.2, we can also note that the estimator W

performs reasonably well in estimating the value of the sensitivity level W . Furthermore,

the empirical and the theoretical values for all the measures listed in both tables are a

reasonable match which bolsters our theoretical findings.
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VI.6 Concluding Chapter Remarks

In this chapter, we proposed an Optional Enhanced Trust model that offers the

option for additional scrambling variables for further response protection of those

respondents who are not comfortable using the additive noise only. This method

allows us to account for the respondents’ lack of trust in the quantitative RRT model

being used in a sensitive question survey. Although Lovig et al. (2021)[41] proposed a

method to account for the lack of trust in the binary RRT models, such work had

not been accomplished in the area of quantitative RRT. We introduce estimators

for the sensitive mean that can be used in the absence as well in the presence of a

non-sensitive auxiliary variable. The primary finding of this chapter was that when the

auxiliary information is available for every population unit, using the linear regression

estimator introduced in this chapter, would have the best performance in terms of

efficiency as well as in terms of the unified measure of privacy and efficiency. When

the correlation between the sensitive study variable Y and the non-sensitive auxiliary

variable is strong, the performance of the proposed additive ratio estimator is only

slightly worse than the regression estimator and would be a more appropriate choice

when the relationship of sensitive study variable Y and auxiliary variable X goes

through the origin. However, if the correlation between the sensitive study variable Y

and the non-sensitive auxiliary variable is moderate or weak, the performance of the

proposed additive ratio estimator can be as bad as that of the ordinary RRT mean

estimator and the overall performance might even get slightly worse than that of the

ordinary RRT mean estimator.

Therefore, utilizing non-sensitive auxiliary information, whenever possible, can

considerably improve the sensitive mean estimation while simultaneously estimating
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the sensitivity level of the survey question. Various RRT researchers have tried to

propose generalizations of the estimators based on auxiliary variables. We attempt to

do something similar in the next Chapter. We will discuss a special case of the work

discussed in this chapter in Chapter VII.
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Chapter VII: Generalized Mean Estimator under the

Optional Enhanced Trust Model

In Chapter VI, we introduced an optional enhanced trust model FigureVI.1 which

helps account for respondents’ lack of trust in Warner’s additive model (1971)[63].

Using the method discussed in Chapter VI, one can simultaneously estimate the mean

of the sensitive variable (µY ) and the sensitivity level W . However, if one simply

wishes to estimate the sensitive mean µY , in the presence of unknown W , then the

work can be simplified significantly.

In this chapter1, we will discuss a special case of the optional enhanced trust model

Figure VI.1. It should be noted that a split-sample technique was used for the work

discussed in Chapter VI because we were simultaneously estimating both µY and W .

However, if we only need to estimate µY , we do not need the Split-Sample approach.
1A portion of this chapter is based on an Accepted Manuscript of an article published by Taylor

& Francis in Journal of Communications in Statistics - Simulation and Computation on 3 June 2022,
available online: https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2082477
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VII.1 Mean Estimation using the Optional Enhanced

Trust (OET) Model

Let Y be the sensitive study variable and Z be the reported response. Let S and T

be the scrambling variables with means µS, µT and variances σ2
S and σ2

T respectively.

Moreover, let W represent the sensitivity level of the survey question meaning a

proportion (1−W ) of the respondents do not consider the question sensitive and hence

will provide an unscrambled response. Let A represent the proportion of respondents

that trust the Warner’s Additive model(1971)[63] and hence do not need additional

noise. Here, Y , T and S are assumed to be mutually independent.

As stated in the previous chapter, the Optional Enhanced Trust model mitigates

the effect of respondents’ lack of trust by allowing respondents to simply report their

true responses if they do not find the survey question sensitive. However, if they do

find the question sensitive they have the option to scramble their response using either

of the two scrambling techniques available to them (i.e. additive noise or an additive

and a multiplicative noise) based on whether or not they trust the additive model.

Under this model, the reported response is given as shown in equation (VI.16).

Z =


Y with probability 1−W

Y + S with probability WA

TY + S with probability W (1− A).

(VII.1)

The alternative scrambling technique is based on the Diana and Perri (2011)[10]

model. It helps in improving the respondent privacy level which can help in lowering

the level of untruthfulness. The surveyor would still just have information about
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the reported response (Z) but has no idea about whether the respondent reported

their true response (Y ), or a scrambled response based on one of the two scrambling

schemes available to them as shown in equation (VII.1).

To estimate the sensitive mean µY , we assume that E[S] = 0 and E[T ] = 1. Then

the expected value of the reported response Z would be given by

E[Z] = (1−W )E[Y ] + (WA)E[Y + S] +W (1− A)E[TY + S] = µY . (VII.2)

Note that E(Z) is independent of W and A. Therefore, the sensitive mean µY can

be estimated by

µ̂Y = Z, (VII.3)

in the presence of A and W without requiring the estimation of A and W .

The variance of this unbiased estimator in equation (VII.3) is given by

V ar(µ̂Y ) =
1

n
[W (1− A)(σ2

Tσ
2
Y + σ2

Tµ
2
Y ) + σ2

Y +Wσ2
S]. (VII.4)

When W and A are unknown, this variance may be estimated by

V̂ ar(µ̂Y ) =
V̂ ar(Z)

n
=

s2Z
n
, (VII.5)

where s2Z is the sample variance of the reported responses.

Based on equations (VII.3) and (VII.5), both µY and V ar(µ̂Y ) can be estimated

in the presence of A and W without needing to estimate A or W .

We mention again that Gupta et al. (2018)[21] established that optionality does not
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compromise the privacy level since privacy is not a consideration for the respondents

who do not find the survey question sensitive. Thus the privacy level of the Optional

Enhanced Trust (OET) model is given by

∇oet = AE[S2] + (1− A)E[TY + S − Y ]2 = (1− A)(σ2
Tσ

2
Y + σ2

Tµ
2
Y ) + σ2

S. (VII.6)

The unified measure of privacy and efficiency, for the ordinary RRT mean estimator

µ̂Y , as defined by Gupta et al. (2018)[21] is given by

δ =
V ar(µ̂Y )

∇oet

, (VII.7)

where V ar(µ̂Y ) and ∇oet can be obtained from equations (VII.5,VII.6).

We can make two important observations about the effects of A and W on the

OET model. We can see from equation (VII.7) that as A decreases, i.e. as fewer

respondents trust Warner’s Additive Model (1971)[63], the unified measure for the

model improves. Although the enhanced scrambling option (TY + S) lowers model

efficiency, it still helps in improving the respondent privacy level. Further, we note

that when fewer respondents find the question sensitive (i.e. W decreases), the

unified measure improves as more individuals might be likely to report responses Y

unscrambled, thereby improving the model efficiency while the privacy level remains

constant as established by Gupta et al. (2018)[21].

In the following sections, we introduce a ratio and a regression estimator to improve

the efficiency of the estimator given by equation VII.3. We also introduce a generalized

estimator which utilizes information obtained from one auxiliary variable. We do so

without estimating W , and hence without using the Split-Sample approach.
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VII.2 Ratio Estimator of the Mean for the OET

Model

In Subsection II.5.2, we presented a discussion on various types of sensitive mean

estimators that can be used in the presence of one non-sensitive auxiliary variable

which is highly correlated with the sensitive study variable. The types of estimators

introduced were ratio, regression and generalized estimators in the presence of one

non-sensitive auxiliary variable under the non-optional or optional versions of the

Warner’s additive model (1971)[63] or the Pollock and Beck model (1976)[50] where

the reported response Z is given by

Z = Y + S. (VII.8)

S is a random scrambling variable, with mean µS = 0 and variance σ2
S.

In this section, we will introduce a ratio estimator for the mean of the sensitive

variable Y when complete information is available for the non-sensitive auxiliary

variable X which is highly correlated with Y .

In Subsection II.5.2, we introduced the ratio estimator proposed by Sousa et

al. (2010)[58] under the non-optional version of Warner’s additive model (1971)[63].

Following this work, we propose a ratio estimator for the sensitive mean µY under the

Optional Enhanced Trust (OET) model (Figure VI.1).

Let, Y be the sensitive study variable that can not be observed directly and X

be the non-sensitive auxiliary variable (positively correlated with Y ). Also, let S be

scrambling variable (independent of both X and Y ) with mean µS = 0 and variance

σ2
S. Let µX be the known true population mean and σ2

X be the known variance of the

144



non-sensitive auxiliary variable X. Let µY be the unknown true population mean and

σ2
Y be the unknown variance of the sensitive study variable Y . Then the proposed

ratio estimator for the optional enhanced trust model can be given by

µ̂r = z̄
µX

x̄
= µ̂Y

µX

x̄
, (VII.9)

where z̄ is the sample mean of reported responses and x̄ is the sample mean of

an auxiliary variable and µ̂Y is the ordinary RRT mean estimator given by equation

(VII.3). Note that explicit knowledge of W is not needed from the estimator µ̂Y

(equation VII.3).

A large sample size is assumed such that |δz| < 1 and |δx| < 1 where these error

terms are defined by

δx = x̄−µX

µX
and δz =

z̄−µZ

µZ

Using the error terms defined above, the re-written proposed ratio estimator is

given by

µ̂r = µZ(1 + δz)(1 + δx)
−1 = µY (1 + δz)(1 + δx)

−1 (VII.10)

Then subtracting µY from both sides in equation (VII.10), and using second order

Taylor’s approximation we get

µ̂r − µY ≈ µY [δz − δx + δ2x − δzδx]. (VII.11)

Under the assumption of bivariate normality (Sukhatme et al. (1970)[59]):

E(δx) = 0; E(δz) = 0; E(δ2x) =
1−f
n
C2

X ; E(δ2z) =
1−f
n
C2

Z ; E(δzδx) =
1−f
n
CZX ,

145



where f = n
N

, CZX = ρZXCZCX and CZ and CX are the coefficients of variation

of Z and X respectively.

Recognizing that µZ = µY , the bias for the ratio estimator µ̂r, correct up to the

first order of approximation, is given by

Bias(µ̂r) = E[µ̂r − µY ] ≈ µY

(
1− f

n

)[
C2

X − ρZXCZCX

]
, (VII.12)

where ρZX = ρY X
σY

σZ
.

Using equation (VII.10), the mean squared error (MSE) of the ratio estimator,

correct up to the first order of approximation, is given by

MSE(µ̂r) = E[µ̂r − µY ]
2 ≈ µ2

Y

(
1− f

n

)[
C2

Z + C2
X − 2ρZXCZCX

]
, (VII.13)

where ρZX = ρY X
σY

σZ
.

VII.3 Regression Estimator of the Mean for the OET

Model

In Subsection II.5.2, we introduced the regression estimator proposed by Gupta et al.

(2012)[23] which is used to estimate the mean of the sensitive study variable Y when

information is available on a non-sensitive but highly correlated auxiliary variable,

for every unit in the population. They presented this work under the non-optional

Pollock and Beck (1976)[50] model. Following this work, in this section, we will present
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a regression estimator, under the optional enhanced trust (OET) model given by

equation (VII.1).

Let Y be the sensitive study variable and X be the non-sensitive auxiliary variable

with has a strong positive correlation with Y . Also, let S be scrambling variable

(independent of both X and Y ) with mean µS = 0 and variance σ2
S. Let µX be the

known true population mean and σ2
X be the known variance of the non-sensitive

auxiliary variable X. Let µY be the unknown true population mean and σ2
Y be the

unknown variance of the sensitive study variable Y . Then the regression estimator for

the sensitive mean µY is given by

µ̂reg = z̄ + β̂ZX(µX − x̄) = µ̂Y + β̂ZX(µX − x̄), (VII.14)

where z̄ is the sample mean of reported responses and x̄ is the sample mean of

an auxiliary variable and µ̂Y is the ordinary RRT mean estimator given by equation

(VII.3). β̂ZX is the sample estimate of the regression coefficient between the reported

response Z and the auxiliary variable X. The true value of this regression coefficient

is given by

βZX =
σZX

σ2
X

= ρY X
σY

σX

, (VII.15)

where ρYX is the correlation coefficient between the sensitive study variable Y

and the non-sensitive auxiliary variable X. Further, a large sample size is assumed

such that |δz| < 1 and |δx| < 1 where we define the following error terms:

δx = x̄−µX

µX
; δz =

z̄−µZ

µZ

δS2
x
=

s2x−σ2
X

σ2
X

; δSzx = szx−σZX

σZX
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Using the error terms defined above, the re-written proposed regression estimator,

from equation (VII.14), is given by

µ̂reg = (µY + δzµY )−
[
βZXµX(δx + δxδSzx)

]
(VII.16)

Then subtracting µY from both sides in equation (VII.16) we get

µ̂reg − µY = δzµY − βZXµX

[
(δx + δxδSzx)

]
(VII.17)

Under the assumption of bivariate normality (Sukhatme et al. (1970)[59]):

E(δx) = 0; E(δz) = 0; E(δ2x) =
1−f
n
C2

X ; E(δ2z) =
1−f
n
C2

Z ; E(δzδx) =
1−f
n
CZX

E(δxδS2
x
) = 1−f

n
1
µX

µ03

µ02
; E(δxδSzx) =

1−f
n

1
µX

µ12

µ11
,

where f = n
N

, CZX = ρZXCZCX and CZ and CX are the coefficients of variation

of Z and X respectively. Also µrs =
1

N−1

∑N
i=1

(
Zi−µZi

)r(
Xi−µX

)s
(r, s = 0, 1, 2, 3).

Recognizing that µZ = µY , the bias for the proposed regression estimator µ̂reg, correct

up to the first order of approximation, is given by

Bias(µ̂reg) = E[µ̂r − µY ] ≈ βZX

(
1− f

n

)
µ12

µ11

. (VII.18)

Using equation (VII.16), the mean squared error (MSE) of the proposed regression

estimator µ̂reg, correct up to first order approximation, is given by

MSE(µ̂reg) = E[µ̂reg − µY ]
2 ≈

(
1− f

n

)[
µ2
YC

2
Z + β2

ZXσ
2
X − 2βZXσZX

]
, (VII.19)
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where σZX is the population covariance between Z and X.

VII.4 A Generalized Estimator of the Mean for the

OET Model

Several RRT researchers have proposed generalized estimators that combine elements

of both the ratio and the regression estimators. A couple of examples of such works

were discussed in Section II.5.

Khalil et al. (2018)[32] also proposed a generalized RRT estimator for the sensitive

study variable Y . Although they did their work both in the presence and in the

absence of measurement errors, under the non-optional Pollock and Beck (1976)[50]

model, we consider the case where there is no measurement error. Following from

their work, we propose a generalized RRT estimator for the sensitive mean µY , in the

presence of one non-sensitive but highly correlated auxiliary variable X.

Let Y be the sensitive study variable and X be the non-sensitive auxiliary variable

with has a strong positive correlation with Y . Also, let S be scrambling variable

(independent of both X and Y ) with mean µS = 0 and variance σ2
S. Let µX be the

known true population mean and σ2
X be the known variance of the non-sensitive

auxiliary variable X. Let µY be the unknown true population mean and σ2
Y be the

unknown variance of the sensitive study variable Y . Then the proposed generalized

estimator for the sensitive mean µY is given by

µ̂G =
[
z̄ + k(µX − x̄)

](µD

d̄

)g

=
[
µ̂Y + k(µX − x̄)

](µD

d̄

)g

, (VII.20)

where d̄ = λ(αx̄+ β) + (1− λ)(αµX + β) and µD = αµX + β. Here k and g are
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suitable constants. λ is an unknown constant which is determined from the optimality

conditions. Further, α and β are known parameters of auxiliary variable X such as

CX , kurtosis, ρZX , etc. Various series of estimators can be obtained by using different

values of g, k, λ, α and β. Using g = 1 will generate a series of ratio estimators while

using g = −1 will generate a series of product estimators.

We assume a large sample size such that |δz| > 1 and |δx| > 1 where we define the

following error terms:

δx = x̄−µX

µX
; δz =

z̄−µZ

µZ

Using the error terms defined above, and using the second-order Taylor’s approxi-

mation, the re-written proposed regression estimator is given by

µ̂G =
[
(µY + δzµZ)− kµXδx

][
1− g

λαδxµX

αµX + β
+

g(g + 1)

2

(
λαδxµX

αµX + β

)2
]

(VII.21)

Then subtracting µY from both sides in equation (VII.21) we get

µ̂G − µY ≈

[
− gλαµZµX

αµX + β
δx +

g(g + 1)

2
µZ

(
λαµX

αµX + β

)2

δ2x

]

+

[
µZδz −

gλαµzµx

αµX + β
δzδx +

g(g + 1)

2
µZ

(
λαµX

αµX + β

)2

δzδ
2
x

]

+

[
− kµXδx +

gkλαµ2
X

αµX + β
δ2x −

g(g + 1)

2
kµ3

X

(
λα

αµX + β

)2

δ3x

]
(VII.22)

Under the assumption of bivariate normality (Sukhatme et al. (1970)[59]):

E(δx) = 0; E(δz) = 0; E(δ2x) =
1−f
n
C2

X ; E(δ2z) =
1−f
n
C2

Z ; E(δzδx) =
1−f
n
CZX ,
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where f = n
N

, CZX = ρZXCZCX and CZ and CX are the coefficients of variation

of Z and X respectively.

Recognizing that µZ = µY , if we consider the scenario with no measurement errors

on Z and X, then the Bias of this generalized estimator(VII.20), correct up to first

order, is given by

Bias(µ̂G) = E[µ̂G − µY ]

≈
(
1− f

n

)[[
g(g + 1)

2

(
λαµX

αµX + β

)2

µY +
gkλαµ2

X

αµX + β

]
C2

X − gλα

αµX + β
σY X

]
. (VII.23)

If we consider the scenario with no measurement errors on Z and X, then the

MSE of this generalized estimator(VII.20) is given by

MSE(µ̂G) = E[µ̂G − µY ]
2

≈ Ω
[
σ2
Z + g2λ2R2σ2

X + k2σ2
X − 2gλRσZX − 2kσZX + 2gλkRσ2

X

]
, (VII.24)

where Ω = 1−f
n

is the finite population correction factor and R = αµY

αµX+β
and

µZ = µY . As mentioned earlier, λ is an unknown constant which is determined by

optimality conditions. We can obtain the optimal value of λ, i.e. λopt as follows:

dMSE(µ̂G)

dλ
≈ Ω

[
2λg2R2σ2

X − 2gRσZX + 2gkRσ2
X

]
= 0. (VII.25)

Using equation (VII.25), the optimal values of λ can be given by

λopt =

(
σZX − kσ2

X

)
gRσ2

X

. (VII.26)
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Hence the minimum MSE for the proposed generalized estimator, using the value

of λopt from equation (VII.26), can be given by

MSE(µ̂G)min ≈ Ωσ2
Z(1− ρ2ZX) =

(
1− f

n

)
σ2
Z(1− ρ2ZX). (VII.27)

Here ρZX = ρY X
σY

σZ
.

VII.5 Simulation Study

In this Chapter, we look at a special case of the optional enhanced trust model (Figure

VI.1) which was introduced in Chapter VI. Our goal is to simply estimate the mean

of the sensitive variable with A and W in the background but when we do not wish

to compute their estimates. In order to accomplish it, we consider that the mean of

the additive scrambling variable S is µY = 0 instead of µY = θ as we had assumed in

Chapter VI. As we only have one unknown we wish to estimate, i.e. the sensitive mean

µY , we do not use a split-sample technique for the work discussed in this Chapter.

Along with an ordinary estimator (equation VII.3), a ratio estimator (equation VII.9)

and a regression estimator (equation VII.14) and a generalized estimator (equation

VII.20) for the sensitive mean was proposed in this chapter. In this section, the results

of a simulation study to evaluate and compare the performance of the ordinary RRT

mean estimator t0 = µ̂Y , the ratio estimator t1 = µ̂r, the regression estimator t2 = µ̂reg

and the generalized estimator t3 = µ̂G.

We conducted a simulation study with 10000 iterations with samples of size n = 500

each from a finite population of size N = 5000. We generate this finite population

under two scenarios (i.e. high and moderate correlation between Y and X).

Scenario-1
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We first generate the finite population from a bivariate normal distribution with

means and covariances of (X, Y ) given as follows:

µ =

 6

10

 ,Σ =

 8 10.1823

10.1823 16

 , ρY X = 0.9 (VII.28)

i.e. we first generate a population of N = 5000 units by using

µX = 6, µY = 10, σ2
X = 8, σ2

Y = 16, ρY X = 0.9. (VII.29)

Then from this finite population, we repeatedly draw samples of size n = 500 using

simple random sampling without replacement (SRSWOR). It must be noted that the

real parameters for the 5000 units in the generated finite population are quite close to

these assumed parameters, but are not exactly the same, and are given by

µX = 6.002015, µY = 9.995325, σ2
X = 7.95262, σ2

Y = 15.80488, ρY X = 0.8986312.

(VII.30)

For this simulation study, we used the parameters for the finite population (VII.30)

and not the ones assumed to generate the finite population (VII.29). We assume

the scrambling variables T and S to be normally distributed with known means and

variances (µT = 1 = E(T ), µS = 0;σ2
T = 0.5, σ2

S = V ar(S) = 0.5σ2
X) . The empirical

results have been averaged over 10000 iterations. The empirical MSE of the estimators

µ̂j = tj j = 0, 1, 2, 3 were computed by

153



MSE(tj) =
1

10000

10000∑
i=1

(
µ̂i − µY

)2

. (VII.31)

Here µ̂j = tj can be µ̂Y = t0, µ̂r = t1, µ̂reg = t2 and µ̂G = t3. Privacy level ∇

was computed for the OET model by taking the mean squared difference between

the reported response Z and actual status for the sensitive study variable Y for only

those respondents that consider the question sensitive and choose to scramble their

responses. This mean squared difference in the report and the actual response is given

by

∇oet = E[Z − Y ]2. (VII.32)

Note that although we propose various estimators, they were all proposed under

the same model. Hence the value of ∇oet corresponding to all three estimators would

be the same as the privacy level is measured for the model being used and not the

estimators proposed under that model. Following this, we also compute the unified

measure of privacy and efficiency δ which was proposed by Gupta et al. (2018)[21]

and is given by

δ =
MSE(tj)

∇oet

, j = 0, 1, 2. (VII.33)

Here we use MSE instead of the variances of the estimators to effectively evaluate

the efficiency of the biased estimators. The simulation results for Scenario-1 have

been summarized in Table VII.1. The theoretical values have been listed in bold while

the regular figures represent the empirical values of the various measures listed in the

table.
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Table VII.1. Simulation results for estimating sensitive mean µY only (Theoretical
(bold) and Empirical Measures): Iterations = 10000, N = 5000, n = 500, µY = 10,
ρY X = 0.9, k = 1, g = 1, a = 1 and b = 0 for various levels of trust (A) and the
sensitivity level (W ).

A W MSE(t0) MSE(t1)e MSE(t2)e MSE(t3)e ∇e δ(t0)e δ(t1)e δ(t2)e δ(t3)e

1.00 1.00 0.0379 0.0176 0.0154 0.0158 3.9951 0.0095 0.0044 0.0038 0.0040
0.0396 0.0149 0.0129 0.0127 3.9924 0.0099 0.0037 0.0032 0.0032

1.00 0.90 0.0362 0.0159 0.0136 0.0141 4.0149 0.0090 0.0039 0.0034 0.0035
0.0388 0.0142 0.0122 0.0119 3.9924 0.0097 0.0036 0.0031 0.0030

1.00 0.80 0.0354 0.0149 0.0126 0.0131 4.0213 0.0088 0.0037 0.0031 0.0033
0.0380 0.0135 0.0115 0.0112 3.9924 0.0095 0.0034 0.0029 0.0028

1.00 0.50 0.0330 0.0125 0.0102 0.0107 4.0263 0.0082 0.0031 0.0025 0.0027
0.0356 0.0113 0.0093 0.0091 3.9924 0.0089 0.0028 0.0023 0.0023

1.00 0.30 0.0308 0.0103 0.0080 0.0085 3.9276 0.0078 0.0026 0.0020 0.0022
0.0340 0.0099 0.0076 0.0076 3.9924 0.0085 0.0025 0.0019 0.0019

0.95 1.00 0.0406 0.0200 0.0177 0.0182 6.4267 0.0063 0.0031 0.0028 0.0028
0.0454 0.0202 0.0179 0.0179 6.8905 0.0066 0.0029 0.0026 0.0026

0.95 0.90 0.0396 0.0189 0.0167 0.0171 6.5085 0.0061 0.0029 0.0026 0.0026
0.0440 0.0189 0.0167 0.0166 6.8905 0.0064 0.0027 0.0024 0.0024

0.95 0.80 0.0396 0.0190 0.0168 0.0173 6.6166 0.0060 0.0029 0.0025 0.0026
0.0426 0.0177 0.0154 0.0154 6.8905 0.0062 0.0026 0.0022 0.0022

0.95 0.50 0.0340 0.0129 0.0107 0.0112 5.9952 0.0057 0.0022 0.0018 0.0019
0.0385 0.0139 0.0115 0.0117 6.8905 0.0056 0.0020 0.0017 0.0017

0.95 0.30 0.0325 0.0115 0.0092 0.0096 6.2025 0.0052 0.0019 0.0015 0.0015
0.0357 0.0115 0.0090 0.0092 6.8905 0.0052 0.0017 0.0013 0.0013

0.90 1.00 0.0453 0.0246 0.0224 0.0229 8.5674 0.0053 0.0029 0.0026 0.0027
0.0512 0.0254 0.0231 0.0231 9.7886 0.0052 0.0026 0.0024 0.0024

0.90 0.90 0.0433 0.0227 0.0205 0.0210 8.2855 0.0052 0.0027 0.0025 0.0025
0.0492 0.0236 0.0213 0.0213 9.7886 0.0050 0.0024 0.0022 0.0022

0.90 0.80 0.0424 0.0220 0.0198 0.0203 8.4144 0.0050 0.0026 0.0024 0.0024
0.0473 0.0218 0.0196 0.0196 9.7886 0.0048 0.0022 0.0020 0.0020

0.90 0.50 0.0372 0.0158 0.0137 0.0141 8.2773 0.0045 0.0019 0.0017 0.0017
0.0414 0.0166 0.0141 0.0143 9.7886 0.0042 0.0017 0.0014 0.0015

0.90 0.30 0.0343 0.0130 0.0108 0.0111 9.0899 0.0038 0.0014 0.0012 0.0012
0.0375 0.0130 0.0105 0.0108 9.7886 0.0038 0.0013 0.0011 0.0011

0.85 1.00 0.0499 0.0288 0.0266 0.0271 11.2978 0.0044 0.0025 0.0024 0.0024
0.0570 0.0306 0.0283 0.0283 12.6866 0.0045 0.0024 0.0022 0.0022

0.85 0.90 0.0476 0.0266 0.0245 0.0249 10.9846 0.0043 0.0024 0.0022 0.0023
0.0544 0.0283 0.0260 0.0260 12.6866 0.0043 0.0022 0.0021 0.0021

0.85 0.80 0.0464 0.0255 0.0234 0.0238 11.0987 0.0042 0.0023 0.0021 0.0021
0.0519 0.0260 0.0237 0.0237 12.6866 0.0041 0.0021 0.0019 0.0019

0.85 0.50 0.0399 0.0182 0.0162 0.0165 11.1783 0.0036 0.0016 0.0014 0.0015
0.0443 0.0192 0.0167 0.0169 12.6866 0.0035 0.0015 0.0013 0.0013

0.85 0.30 0.0361 0.0147 0.0125 0.0129 11.8427 0.0030 0.0012 0.0011 0.0011
0.0392 0.0146 0.0121 0.0123 12.6866 0.0031 0.0012 0.0010 0.0010

0.80 1.00 0.0547 0.0333 0.0312 0.0316 14.1661 0.0039 0.0023 0.0022 0.0022
0.0628 0.0358 0.0333 0.0335 15.5847 0.0040 0.0023 0.0021 0.0022

0.80 0.90 0.0515 0.0303 0.0282 0.0286 13.6974 0.0038 0.0022 0.0021 0.0021
0.0597 0.0330 0.0306 0.0307 15.5847 0.0038 0.0021 0.0020 0.0020

0.80 0.80 0.0494 0.0284 0.0262 0.0267 14.0054 0.0035 0.0020 0.0019 0.0019
0.0565 0.0302 0.0278 0.0279 15.5847 0.0036 0.0019 0.0018 0.0018

0.80 0.50 0.0417 0.0200 0.0180 0.0183 13.4392 0.0031 0.0015 0.0013 0.0014
0.0472 0.0218 0.0192 0.0195 15.5847 0.0030 0.0014 0.0012 0.0013

0.80 0.30 0.0372 0.0156 0.0135 0.0138 13.9685 0.0027 0.0011 0.0010 0.0010
0.0410 0.0162 0.0136 0.0139 15.5847 0.0026 0.0010 0.0009 0.0009
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From Table VII.1, we can make a number of observations. For any fixed value of

A, we note that as W increases, MSE worsens for all estimators while the privacy

level remains the same. For example, consider the cases where A = 0.95. When W

varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical MSE for the ordinary RRT

mean estimator, t0 = µ̂Y , takes values 0.0357, 0.0385, 0.0426, 0.0440, and 0.0454

respectively. Further, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the ratio estimator, t1 = µ̂r, takes values 0.0115, 0.0139, 0.0177, 0.0189, and

0.0202 respectively. Also, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the regression estimator, t2 = µ̂reg, takes values 0.0090, 0.0115, 0.0154,

0.0167, and 0.0179 respectively. When W varies between 0.3, 0.5, 0.8, 0.9 and 1, the

theoretical MSE for the generalized estimator, t3 = µ̂G, takes values 0.0092, 0.0117,

0.0154, 0.0166, and 0.0179 respectively. Therefore, we can infer that the efficiency

of all four estimators is the worst possible at their maximum value, i.e. at W = 1.

Hence optionality element of the proposed model ensures optimal efficiency of any

of the three estimators introduced used under this model. Furthermore, based on

this example, we can also note that t3 has the best efficiency followed closely by t2

and and then t1. These three estimators that utilize auxiliary variable information

X are considerably more efficient than the ordinary RRT mean estimator t0 that

does not utilize the auxiliary information. The theoretical privacy level is the same

corresponding to all four estimators since the model is the same for all four estimators.

Therefore, the lowest δ values are corresponding to the generalized estimator t3 which

is fairly similar to the δ values corresponding to the regression estimator t2.

Another observation that can be made using Table VII.1 is that for fixed values

of W , say W = 0.9, The efficiency of all estimators worsens as the level of trust A

drops. This is expected as fewer people trust the model, they would choose to go with
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a more enhanced scrambling option. However, the gain in privacy due to enhanced

scrambling of responses more than compensates for the drop in efficiency when we

consider the unified measure of privacy and efficiency to assess the overall estimator

performance. For example, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical

δt0 takes values 0.0097, 0.0064, 0.0050, 0.0043, and 0.0038 respectively. Similarly,

as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt1 takes values 0.0036,

0.0027, 0.0024, 0.0022, and 0.0021 respectively. Also, as A varies between 1, 0.95, 0.9,

0.85, and 0.8, theoretical δt2 takes values 0.0031, 0.0024, 0.0022, 0.0021, and 0.0020

respectively. Finally, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt3

takes values 0.0030, 0.0024, 0.0022, 0.0021, and 0.0020 respectively. Hence the best

value of δ can be obtained even with considerably lower values A using any of the four

estimators. Although t3 and t2 have fairly similar overall performances, t1 is slightly

behind t3 and t2 with respect to overall performance evaluated by δ values. However,

it is noteworthy that t1, t2, and t3 perform considerably better than t0.

Scenario-2

As shown in Scenario-1, we now generate the finite population from a bivariate

normal distribution with means and covariances of (X, Y ) given as follows:

µ =

 6

10

 ,Σ =

 8 6.788225

6.788225 16

 , ρY X = 0.6 (VII.34)

i.e. we first generate a population containing 5000 units by using

µX = 6, µY = 10, σ2
X = 8, σ2

Y = 16, ρY X = 0.6. (VII.35)
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Then from this finite population, we repeatedly draw samples of size n = 500 using

simple random sampling without replacement (SRSWOR). It must be noted that the

real parameters for the 5000 units in the generated finite population are quite close to

these assumed parameters, but are not exactly the same, and are given by

µX = 6.006096, µY = 9.993591, σ2
X = 8.010827, σ2

Y 15.79687, ρY X = 0.5967508.

(VII.36)

For this simulation study, we used the parameters for the finite population (VII.36)

and not the ones assumed to generate the finite population (VII.35). The only

difference between Scenario-1 and Scenario-2 is that we now use a considerably lower

value for ρY X to study how the performance of the three estimators gets affected.

We assume the scrambling variables T and S to be normally distributed with known

means and variances (µT = 1 = E(T ), µS = 0;σ2
T = 0.5, σ2

S = V ar(S) = 0.5σ2
X). The

empirical results have again been averaged over 10000 iterations. The simulation

results for Scenario-2 have been summarized in Table VII.2. The theoretical values

have been listed in bold while the regular figures represent the empirical values of the

various measures listed in the table.

From Table VII.2, we can make a number of observations. For any fixed value of

A, we note that as W increases, MSE worsens for all estimators while the privacy

level remains the same. For example, consider the cases where A = 0.95. When W

varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical MSE for the ordinary RRT

mean estimator, t0 = µ̂Y , takes values 0.0357, 0.0385, 0.0427, 0.0440, and 0.0454

respectively. Further, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the ratio estimator, t1 = µ̂r, takes values 0.0319, 0.0344, 0.0381, 0.0394, and
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Table VII.2. Simulation results for estimating sensitive mean µY only (Theoretical
(bold) and Empirical Measures): Iterations = 10000, N = 5000, n = 500, µY = 10,
ρY X = 0.6, k = 1, g = 1, a = 1 and b = 0 for various levels of trust (A) and the
sensitivity level (W ).

A W MSE(t0) MSE(t1) MSE(t2) MSE(t3) ∇oet δ(t0) δ(t1) δ(t2) δ(t3)

1 1 0.0379 0.0378 0.0280 0.0281 4.0243 0.0094 0.0094 0.0070 0.0070
0.0396 0.0354 0.0257 0.0255 4.0216 0.0099 0.0088 0.0064 0.0064

1 0.9 0.0362 0.0358 0.0261 0.0263 4.0443 0.0090 0.0089 0.0065 0.0065
0.0388 0.0347 0.0250 0.0248 4.0216 0.0097 0.0086 0.0062 0.0062

1 0.8 0.0354 0.0348 0.0252 0.0253 4.0507 0.0087 0.0086 0.0062 0.0063
0.0380 0.0339 0.0243 0.0241 4.0216 0.0095 0.0084 0.0060 0.0060

1 0.5 0.0329 0.0327 0.0229 0.0230 4.0557 0.0081 0.0081 0.0056 0.0057
0.0356 0.0318 0.0221 0.0219 4.0216 0.0089 0.0079 0.0055 0.0055

1 0.3 0.0308 0.0306 0.0207 0.0209 3.9564 0.0078 0.0077 0.0052 0.0053
0.0340 0.0303 0.0205 0.0205 4.0216 0.0085 0.0075 0.0051 0.0051

0.95 1 0.0406 0.0399 0.0303 0.0304 6.4142 0.0063 0.0062 0.0047 0.0047
0.0454 0.0406 0.0307 0.0308 6.9186 0.0066 0.0059 0.0044 0.0044

0.95 0.9 0.0395 0.0388 0.0292 0.0294 6.4913 0.0061 0.0060 0.0045 0.0045
0.0440 0.0394 0.0296 0.0295 6.9186 0.0064 0.0057 0.0043 0.0043

0.95 0.8 0.0396 0.0390 0.0294 0.0295 6.5960 0.0060 0.0059 0.0045 0.0045
0.0427 0.0381 0.0283 0.0283 6.9186 0.0062 0.0055 0.0041 0.0041

0.95 0.5 0.0339 0.0331 0.0234 0.0236 6.0104 0.0056 0.0055 0.0039 0.0039
0.0385 0.0344 0.0244 0.0245 6.9186 0.0056 0.0050 0.0035 0.0035

0.95 0.3 0.0324 0.0317 0.0218 0.0221 6.2178 0.0052 0.0051 0.0035 0.0035
0.0357 0.0319 0.0219 0.0220 6.9186 0.0052 0.0046 0.0032 0.0032

0.9 1 0.0453 0.0447 0.0351 0.0352 8.5772 0.0053 0.0052 0.0041 0.0041
0.0512 0.0458 0.0360 0.0360 9.8156 0.0052 0.0047 0.0037 0.0037

0.9 0.9 0.0433 0.0427 0.0331 0.0333 8.2966 0.0052 0.0051 0.0040 0.0040
0.0493 0.0440 0.0342 0.0342 9.8156 0.0050 0.0045 0.0035 0.0035

0.9 0.8 0.0425 0.0420 0.0324 0.0325 8.4292 0.0050 0.0050 0.0038 0.0039
0.0473 0.0423 0.0324 0.0324 9.8156 0.0048 0.0043 0.0033 0.0033

0.9 0.5 0.0371 0.0361 0.0266 0.0268 8.2764 0.0045 0.0044 0.0032 0.0032
0.0414 0.0370 0.0271 0.0271 9.8156 0.0042 0.0038 0.0028 0.0028

0.9 0.3 0.0342 0.0335 0.0237 0.0239 9.0907 0.0038 0.0037 0.0026 0.0026
0.0375 0.0334 0.0235 0.0236 9.8156 0.0038 0.0034 0.0024 0.0024

0.85 1 0.0499 0.0489 0.0394 0.0396 11.3080 0.0044 0.0043 0.0035 0.0035
0.0570 0.0510 0.0411 0.0412 12.7126 0.0045 0.0040 0.0032 0.0032

0.85 0.9 0.0475 0.0465 0.0371 0.0373 10.9951 0.0043 0.0042 0.0034 0.0034
0.0545 0.0487 0.0389 0.0389 12.7126 0.0043 0.0038 0.0031 0.0031

0.85 0.8 0.0464 0.0455 0.0360 0.0362 11.1038 0.0042 0.0041 0.0032 0.0033
0.0519 0.0465 0.0366 0.0366 12.7126 0.0041 0.0037 0.0029 0.0029

0.85 0.5 0.0398 0.0385 0.0292 0.0294 11.1707 0.0036 0.0034 0.0026 0.0026
0.0443 0.0396 0.0296 0.0297 12.7126 0.0035 0.0031 0.0023 0.0023

0.85 0.3 0.0360 0.0351 0.0254 0.0256 11.8520 0.0030 0.0030 0.0021 0.0022
0.0392 0.0350 0.0250 0.0252 12.7126 0.0031 0.0028 0.0020 0.0020

0.8 1 0.0546 0.0533 0.0440 0.0442 14.1964 0.0038 0.0038 0.0031 0.0031
0.0628 0.0562 0.0462 0.0464 15.6096 0.0040 0.0036 0.0030 0.0030

0.8 0.9 0.0515 0.0501 0.0409 0.0411 13.7220 0.0038 0.0037 0.0030 0.0030
0.0597 0.0534 0.0434 0.0436 15.6096 0.0038 0.0034 0.0028 0.0028

0.8 0.8 0.0494 0.0483 0.0389 0.0391 14.0336 0.0035 0.0034 0.0028 0.0028
0.0566 0.0506 0.0406 0.0408 15.6096 0.0036 0.0032 0.0026 0.0026

0.8 0.5 0.0417 0.0403 0.0310 0.0312 13.4767 0.0031 0.0030 0.0023 0.0023
0.0472 0.0422 0.0322 0.0324 15.6096 0.0030 0.0027 0.0021 0.0021

0.8 0.3 0.0371 0.0360 0.0264 0.0266 14.0071 0.0026 0.0026 0.0019 0.0019
0.0410 0.0366 0.0265 0.0267 15.6096 0.0026 0.0023 0.0017 0.0017
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0.0406 respectively. Also, as W varies between 0.3, 0.5, 0.8, 0.9 and 1, the theoretical

MSE for the regression estimator, t2 = µ̂reg, takes values 0.0219, 0.0244, 0.0283,

0.0296, and 0.0307 respectively. When W varies between 0.3, 0.5, 0.8, 0.9 and 1, the

theoretical MSE for the generalized estimator, t3 = µ̂G, takes values 0.0220, 0.0245,

0.0283, 0.0295, and 0.0308 respectively. Therefore, we can infer that the efficiency

of all four estimators is the worst possible at their maximum value, i.e. at W = 1.

Hence optionality element of the proposed model ensures optimal efficiency of any

of the three estimators introduced used under this model. Furthermore, based on

this example, we can also note that t3 has the best efficiency followed closely by t2

and and then t1. These three estimators that utilize auxiliary variable information

X are considerably more efficient than the ordinary RRT mean estimator t0 that

does not utilize the auxiliary information. The theoretical privacy level is the same

corresponding to all four estimators since the model is the same for all four estimators.

Therefore, the lowest δ values are corresponding to the generalized estimator t3 which

is fairly similar to the δ values corresponding to the regression estimator t2.

Another observation that can be made using Table VII.2 is that for fixed values

of W , say W = 0.9, The efficiency of all estimators worsens as the level of trust A

drops. This is expected as fewer people trust the model, they would choose to go with

a more enhanced scrambling option. However, the gain in privacy due to enhanced

scrambling of responses more than compensates for the drop in efficiency when we

consider the unified measure of privacy and efficiency to assess the overall estimator

performance. For example, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical

δt0 takes values 0.0097, 0.0064, 0.0050, 0.0043, and 0.0038 respectively. Similarly,

as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt1 takes values 0.0086,

0.0057, 0.0045, 0.0038, and 0.0034 respectively. Also, as A varies between 1, 0.95, 0.9,
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0.85, and 0.8, theoretical δt2 takes values 0.0062, 0.0043, 0.0035, 0.0031, and 0.0028

respectively. Finally, as A varies between 1, 0.95, 0.9, 0.85, and 0.8, theoretical δt3

takes values 0.0062, 0.0043, 0.0035, 0.0031, and 0.0028 respectively. Hence the best

value of δ can be obtained even with considerably lower values A using any of the four

estimators. Although t3 and t2 have fairly similar overall performances, t1 is slightly

behind t3 and t2 with respect to overall performance evaluated by δ values. However,

it is noteworthy that t1, t2, and t3 perform considerably better than t0.

On comparing the results from Table VII.1 and Table VII.2 we can note the

MSE for t1, t2 and t3 worsens when ρY X lowers. However, the MSE for t1 worsens

considerably more than that of t2 and t3. The performance of t2 and t3 are practically

the same. However, t3 and t2 still perform the best of the four proposed estimators by

a reasonable margin. For instance, let’s consider the case when A = 0.9 and W = 0.8.

When ρY X = 0.9, the theoretical MSE for t0, t1 t2 and t3 are 0.0473, 0.0218, 0.0196,

and 0.0196 respectively. However, when ρY X = 0.6, the theoretical MSE for t0, t1 and

t2 are 0.0473, 0.0423, 0.0324, and 0.0324 respectively. Further, when ρY X = 0.9, the

theoretical δ for t0, t1, t2 and t3 are 0.0048, 0.0022, 0.0020, and 0.0020 respectively.

However, when ρY X = 0.6, the theoretical δ for t0, t1, t2 and t3 are 0.0048, 0.0043,

0.0033, and 0.0033 respectively. Hence, we can see that the overall performance of

the proposed additive ratio estimator (t1) worsens considerably when the correlation

between the sensitive study variable Y and the non-sensitive auxiliary variable is

weak. Moreover, we note that despite the weaker correlation, the proposed regression

estimator (t2) and the proposed generalized estimator still outperform the other two

proposed estimators, by a reasonable margin, even when the correlation between the

sensitive study variable Y and the non-sensitive auxiliary variable is moderate or

weak.
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Further, comparing the tables in Chapters VI and Chapter VII, we also note that

for the case when ρY X along with all other parameters are the same, the MSE values

obtained in Chapter VI tables were drastically higher compared to the corresponding

MSE values obtained in Chapter VII tables. For instance, consider the case when

A = 0.9 and W = 0.8. When ρY X = 0.9, the theoretical MSE values for t0, t1, and t2

are 0.4531, 0.4313, and 0.4289 respectively. However, when ρY X = 0.6, the theoretical

MSE values for t0, t1, and t2 are 0.0473, 0.0218, and 0.0196 respectively. This drastic

difference in MSE values can be attributed to whether or not the split-sample technique

was used in the study. Note that the results summarized in Tables (VI.1VI.2) have

been computed based on the split sample technique which uses two sub-samples of

size 250 each instead of a single sample of size 500 which was used to compute the

results summarized in Tables (VII.1, VII.2).

VII.6 Concluding Chapter Remarks

In this chapter, we looked at a special case of the Optional Enhanced Trust model

proposed in Chapter VI. We assume that the random additive noise available to the

respondents is from a population with a mean of 0 which means on an aggregate level

no random noise is being added in a way that would alter the statistical properties of

the reported response i.e. on an average the reported response is what the true response

to the sensitive question would be for each individual in the population (µZ = µY ).

We introduce estimators for the sensitive mean that can be used in the absence as

well in the presence of a non-sensitive auxiliary variable. The primary finding of this

chapter was that when the auxiliary information is available for every population

unit, using the generalized estimator or the regression estimator introduced in this
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chapter, would have the best performance in terms of efficiency as well as in terms of

the unified measure of privacy and efficiency. The performance of the ratio estimator

chapter is only slightly worse than the regression estimator and would be a more

appropriate choice when the relationship of sensitive study variable Y and auxiliary

variable X goes through the origin. These results hold even when the correlation

between the sensitive study variable Y and the non-sensitive auxiliary variable X is

moderate. Therefore, utilizing non-sensitive auxiliary information, whenever possible,

can considerably improve the sensitive mean estimation.
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Chapter VIII: Concluding Remarks and Future

Directions

VIII.1 General Discussion of Work and Remarks

In this dissertation, a discussion has been presented on accounting for respondents’

lack of trust in a survey using the randomized response technique (RRT) for sensitive

and private data collection. This work was done for cases when the survey question

has both binary and quantitative responses. A class of mixture models in both binary

and quantitative RRT areas were proposed in order to mitigate the lack of trust in

the traditional RRT models. The performance of the proposed models was evaluated

and compared with the performances of traditional models in the respective areas

with respect to estimation efficiency (i.e. using MSE), privacy loss or privacy level

of the model as appropriate for the type of model and using a unified measure for

privacy and efficiency to gauge the overall model performance.

In Chapter I, a background was presented for social desirability bias (SBD) and

various methods to help mitigate its effect in a sensitive question survey. In Chapter

II, various RRT models from the literature were introduced along with an introduction

to the concept of partially homomorphic encryption techniques and their potential

utility in the estimation of the sensitive trait prevalence in a population.
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In Chapter III, Chapter IV and Chapter V we propose mixture models and

methods for the case when the sensitive survey question only has a binary response

("Yes"/"No"). In Chapters VI and VII, we present an optional quantitative RRT

model and various estimators under the model both in the presence and in the absence

of a non-sensitive auxiliary variable which is highly correlated with the sensitive study

variable.

Through all the work summarized in this dissertation, we were able to make

some critical observations. We note that accounting for the respondents’ lack of

trust in the survey model is critical as not doing so could introduce a significant

negative bias in our estimates. This would happen as those respondents who do not

trust the survey method but have the sensitive trait would lie and report that they

do not have the sensitive trait. This would result in a less-than-accurate level of

reporting of the sensitive behavior prevalence which would invariably introduce a

negative bias. We observe a similar behavior when the goal is with the sensitive mean

estimation scenarios. Moreover, using optional models over non-optional models is

highly recommended as they improve the estimator efficiency by allowing respondents

who do not find the survey question sensitive to not add any unnecessary noise to

their response and thus capture more "truth". We also note that the optionality

element of an RRT model helps even when a researcher might erroneously ignore the

accounting of the respondent lack of trust in the survey method. A prominent finding

in the area of sensitive mean estimation was that the proposed ratio, regression and

generalized estimators perform better than the ordinary RRT estimators. This can

be attributed to the fact the proposed ratio, regression and generalized estimators

leverage the high correlation between the unknown sensitive study variable and the

non-sensitive auxiliary information which is available on every population unit.
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VIII.2 Future Directions

For future studies, one could extend the work done in the binary RRT area using

the Hybrid (Paillier + Warner RRT) model to define a more cohesive measure of

overall privacy protection under the proposed model that accounts for the threat

to respondent privacy due to surveyor dishonesty. In the quantitative area, one

could extend the presented work to account for various non-sampling errors such as

measurement errors and non-responses. In the sensitive mean estimation area, one

could also explore methods to make use of an auxiliary variable when it is no longer

assumed to be non-sensitive and/or when only partial information is available on the

auxiliary variable.
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