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Longitudinal data analysis assumes that scales meet the assumption of 

longitudinal measurement invariance (i.e., that scales function equivalently across 

measurement occasions). This simulation study examines the impact of violations to the 

assumption of longitudinal measurement invariance on growth models and whether 

modeling the invariance violations improves the outcomes of interest. The four 

conditions were varied in the study: percent of non-invariant items, magnitude of 

invariance violation, type of invariance violation, and test length. Six latent growth 

models (first- and second-order) were estimated to examine the impact of invariance 

violations under varying degrees of model misspecification. The results suggest that the 

proportion of non-invariant items and the size of intercept invariance violations have the 

most significant impact on results. In addition, modeling the partial measurement 

invariance did not improve growth model parameter recovery. Ultimately, researchers 

should use extreme caution when estimating growth models when measurement 

invariance violations are present as it may lead to spurious conclusions about change over 

time. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 Educational research is often focused on comparing student abilities between 

groups of individuals. Researchers may be interested in examining whether one group of 

students outperforms another group of students on a knowledge assessment. For example, 

a researcher may ask whether a class with an intensive math intervention has higher math 

scores than a similar class that did not receive the intervention. Longitudinal analyses are 

a special case of group comparison in which an individual’s performance is compared to 

their own performance at other measurement occasions. Instead of comparing across 

independent groups, longitudinal analyses compare individuals’ scores to their previous 

scores. In this sense, individuals act as their own control and each measurement occasion 

can be considered a different “group.” Often researchers are interested in how ability (or 

some other construct) changes over time or when a particular event occurs. Related to the 

math intervention example above, a researcher may want to examine the pattern of 

change in math scores throughout the course of a semester and whether the change is 

larger when the students receive an intensive math intervention. Students’ math abilities 

would be tested at multiple occasions throughout the semester and changes in their 

performances would be examined. The current study focuses on these types of 

longitudinal analyses. 
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The current chapter will begin with a brief sample of growth modeling examples 

in the educational research literature. This sample of studies includes a variety of models 

for longitudinal data and is intended to demonstrate the importance of growth models in 

educational research. Following the overview of longitudinal analyses in the literature, 

brief overviews of three common approaches to longitudinal analysis are presented in a 

general linear model (GLM) framework: repeated measures analysis of variance 

(ANOVA), hierarchical linear modeling (HLM), and structural equation modeling 

(SEM). This overview serves as a general introduction to the multitude of ways 

longitudinal data can be analyzed. Ultimately, SEM will be used for the study and a more 

thorough discussion of growth models in SEM is presented in chapter two. Measurement 

invariance is introduced as one of the necessary assumptions in growth modeling and an 

example of a construct that may violate the assumption of longitudinal measurement 

invariance is provided. Finally, the purpose and research questions for the current study 

are outlined. 

Growth Models in Educational Research 

 Studies involving longitudinal data are common in educational research. A few 

examples of longitudinal studies in educational research are provided in the following 

sections. This section serves to orient the reader to the types of questions answered by 

longitudinal data in practice and solidify the importance of longitudinal analyses in 

educational research contexts. The studies are organized based on typical research 

questions addressed by educational researchers.   
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 Educational researchers often examine how beliefs and attitudes change over 

time. Bible and Tadros (2014) examined how values change over time for business 

majors. The researchers were interested in determining whether ethics and values 

changed as students gained new experiences and more education. Results of the study 

suggested that values change for business majors over time. Specifically, business majors 

place more importance on values over time. The authors also reported differences in 

individual and higher order values between males and females. Jaakkola, Wang, Yli-

Piipari, and Liukkonen (2015) tested changes in motivational regulations in physical 

education during students’ transition from elementary through middle school. The 

authors were interested in individual and classroom level differences in motivational 

regulations change over time. The results suggested that some types of students’ 

motivational regulations in physical education developed at different rates over time, 

whereas other motivational regulations remained stable over time. The authors note that 

identified regulation increased across grades 6 through 9 and is influenced by 

environmental factors. Amotivation increased from grade 6 to grade 7 and change was 

due to individual factors rather than environmental factors.  King and McInerney (2014) 

examined how students’ English and math self-concepts changed over time. The authors 

also investigated whether initial self-concept and changes in self-concept over time 

differed by gender. Results suggested that students’ English self-concept increased over 

time, whereas math self-concept declined over time. The authors note that initial English 

and math self-concept differed between males and females. Males and females also 

differed in the extent to which their English and math self-efficacy changed over time. 
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Results of studies focused on student attitudes over time may help teachers plan 

interventions or simply feel better prepared for shifts in attitudes over time. 

 In addition to changes in beliefs and attitudes over time, educational researchers 

are frequently interested in how student ability or performance changes over time. Ryoo 

et al. (2014) investigated early math ability growth for high-, average-, and low-

performing children in two U.S. cities and China. The results of the study suggested that 

the students in China had higher initial math ability scores than the students in the two 

U.S. cities. Results also suggest differences between the student abilities in the two U.S. 

cities. The authors found that change in math ability over time is non-linear and depended 

on the location of the student. The authors discussed potential implications for math 

research and education. Ouweneel, Schaufeli, and Le Blanc (2013) examined whether 

changes in students’ self-efficacy were related to changes in student engagement and 

student performance. The results of the studies suggested that students’ self-efficacy was 

related to engagement and performance. Specifically, increases in self-efficacy were 

related to increases in study engagement and task performance. The authors note that 

examining changes in self-efficacy may be an important component for investigations of 

student performance over time. Lamote, Pincten, Van Den Noortgate, and Van Damme 

(2014) conducted a study in which they explored differences in growth between students 

who had and had not been retained.  The authors explored whether there were differences 

in language achievement and academic self-concept growth between the two groups. The 

results suggested that in the short-term (i.e., the year of retention) there was no effect on 

language acquisition and a positive effect on academic self-concept for individuals in the 
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retention group. In the long-term, however, the authors observed declines in achievement 

for the individuals in the retention group. The authors note that academic self-concept did 

not change in the long-term. The results of the study may help to inform decisions about 

whether or not retaining students would be beneficial or harmful. Generally, results from 

analyses predicting performance change over time may help develop more targeted 

interventions and make more informed decisions in practice. 

The studies presented above are a small sample of the literature examining change 

over time in educational contexts. Given the sizeable presence of these analyses in the 

literature, the types of models used to analyze the data and the assumptions made by the 

models are discussed in the following sections.  

Types of Longitudinal Analyses 

There are a multitude of approaches for analyzing longitudinal data. Methods 

range from observed variable approaches to latent variable approaches. In the current 

section, three analytic approaches are briefly described: repeated measures (ANOVA), 

HLM, and SEM. While item response theory (IRT) approaches do exist for growth 

models, they are not common in longitudinal educational research. Given the sparse use 

of IRT growth models in applied research, the discussion of latent variable growth 

models is limited to SEM approaches. The connections between IRT and SEM 

approaches will be briefly discussed in subsequent chapters. All models in the current 

section use continuous items and can be introduced under a general linear model (GLM) 

framework. This framework will allow for an easier transition to models that have 

dichotomous items. The transition to dichotomous items will be useful when IRT and 
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SEM connections are discussed in Chapter 3. Ultimately, all of these longitudinal models 

aim to examine changes in a construct across measurement occasions. The models also 

may explore whether change over time depends on covariates (e.g., gender). 

Linear Model. One of the first models students learn in introductory statistics 

courses is the linear model, in which an outcome variable (the dependent variable) is 

modeled by some set of predictor variables (the independent variables) and an error term. 

The error term represents the variability in the dependent variable unaccounted for by the 

independent variables. The linear model is also referred to as the general linear model. 

One of the most common examples of the linear model is multiple regression shown in 

Equation 1 below. 

  

0 1 1i i k ik iy X X            (1) 

 

Thus, the predicted value of the dependent variable for person i, yi, is a function 

of an intercept, β0, several predictor variables, Xi1 through Xik (weighted by the β1 through 

βk regression coefficients), and an error term for individual i, εi. The β coefficients are the 

relationship between each predictor variable, X, and the dependent variable, y, controlling 

for other variables in the model. These β coefficients are considered “fixed effects” and 

are assumed to be constant, or fixed, across all individuals. Thus, the relationships 

between the predictors and dependent variable are the same for all individuals. Fixed 

effects will be discussed in more detail in the section that introduces general linear mixed 

models. Notably, the predictors in the linear model can be either categorical or 
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continuous, but the dependent variable must be continuous. The general linear model can 

also be expressed in matrix form, as shown in Equation 2 below. 

 

 Y XB E        (2) 

 

In Equation 2 above, Y represents the vector of length i containing the scores on the 

dependent variable, where i represents the number of individuals. The X parameter 

represents an i by k matrix of observed values for the independent variables, where i is 

the number of individuals and k is the number of independent variables plus one (to 

include the intercept). Note that the first column in the X matrix is equal to one for every 

individual to represent the intercept. The B parameter is a vector of length k including the 

regression coefficients. The E parameter represents a vector of length i containing the 

error for each individual.  The GLM assumes that errors are uncorrelated with one 

another (i.e., observations are independent) and follow a multivariate normal distribution. 

Repeated Measures Analysis of Variance. The GLM can be extended to a 

general linear mixed model (GLMM) which includes both fixed and random effects. 

Fixed factors are variables (predictors) that are assumed to include all levels of interest. 

Fixed factors are often the main interest in the model and are chosen to make contrasts or 

represent conditions within a study (West, Welch, & Galecki, 2006). Fixed effects are the 

relationships between fixed factors and the dependent variables. Fixed effects are 

considered constant quantities, suggesting that the relationships between fixed factors and 

dependent variables are the same across all individuals within the sample. Random 

factors are variables that only include a sample from a larger population of levels of 
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interest, and are used to generalize to the entire population. Random effects are included 

to examine variation in the dependent variable across levels of the random factor and can 

be included to account for nesting within the data (West et al., 2006). Random effects are 

the relationships between random factors and the dependent variable. Longitudinal 

analyses contain random effects to account for the fact that the assumption of 

independent observations is violated. Longitudinal data cannot meet the assumption of 

independent observations because it contains multiple records from the same individual. 

Consequently, some records (i.e., two from the same person) are more related than others 

(i.e., two records from two different individuals).   

Often, repeated measures ANOVA is discussed in terms of partitioned variance, 

sums of squares, and F-statistics. The model can also be discussed as a general linear 

mixed model with categorical predictors (in this case, measurement occasions are the 

predictors), as will be the case in the current study. Repeated measures ANOVA is a type 

of GLMM in which the initial measurement (intercept) is random and the change over 

time is fixed.  

To demonstrate repeated measures ANOVA as a general linear mixed model, 

consider a scenario in which we were interested in student motivation throughout a 

semester. In this scenario, we measure student motivation at three measurement 

occasions. Equation 3 below can be used to model the repeated measures data. 

 

0 1 2 0
1 2

ti ti ti i ti
y t t u e            (3) 
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In the equation above, yti represents individual i’s predicted motivation score at time t. 

The t1ti and t2ti parameters are dummy codes for the three measurement occasions. The β0 

parameter represents the intercept. The intercept is the typical score across all individuals 

for the measurement occasion that is coded as the reference time point (i.e., the dummy 

codes are both zero). In longitudinal contexts, it may be useful to code the reference time 

point as the initial measurement occasion, thus making the intercept the average score at 

the initial time point. The β1 and β2 parameters are the typical score across all students at 

the two dummy coded measurement occasions. If the initial time point is coded as the 

reference time point, these values represent the second and third time points, respectively. 

The u0i parameter is the random effect, or the “person effect,” and indicates the extent to 

which individual i’s average score deviates from the overall average score. Including this 

parameter is what makes the equation a “repeated measures” analysis. Without the person 

effect, researchers are assuming that each observation is independent and an independent 

samples approach (i.e., traditional ANOVA) would be appropriate. The eti parameter is 

the difference between individual i’s observed and predicted scores (including the person 

effect) at time t.  

In sum, an individual’s score is best predicted by the average score at each 

measurement occasion (β0, β1, and β2), the individual’s disposition (u0i), and other random 

sources of error (eti). A more general parameterization of the GLMM is presented in 

Equation 4 below.  

 

Y = XB + ZU +E       (4) 
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In the equation above, Y is a vector of length i containing the scores on the dependent 

variable. The X matrix is an i by p design matrix for the fixed effects, where p represents 

the number of fixed effects.  If an intercept is modeled, the number of fixed effects, p, 

would be the number of independent variables plus one. The B parameter is a vector of 

length p containing the estimated parameters for the fixed effects. The Z matrix is an i by 

r design matrix for the random effects in the model, where r represents the number of 

random effects. If the intercept is modeled and all variables are considered random, the 

number of random effects, r, is the number of independent variables plus one. The U 

parameter is a vector of length r that includes the estimated effects of the random effects. 

The E parameter is a vector of length i containing the residuals (or error) for each 

individual. Thus, the β parameters from Equation 3 are contained in the B matrix, the t 

design codes are contained in the X matrix, the u parameter is contained in the U matrix, 

and the e parameter is contained in the E matrix. Repeated measures ANOVA is 

considered a “random-intercepts” model, therefore the Z matrix is simply a vector of 

ones (i.e., only the intercept randomly varies across individuals). Notably, the mixed 

model approach to repeated measures ANOVA allows for more relaxed assumptions (i.e., 

does not require sphericity), but the model can be constrained to equal the results of a 

traditional repeated measures ANOVA analysis.  

Hierarchical Linear Modeling. HLM is typically used with data that violates the 

assumption of independent observations (i.e., nested data). Often nested data is discussed 

in terms of “levels” of nesting. With longitudinal data, measurement occasions (level 

one) are considered nested within individuals (level two) (Singer & Willett, 2003). The 
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first level contains information about individuals’ predicted scores at each measurement 

occasion. The parameters at level one include an individual intercept and an individual 

slope as well as within-person variation (i.e., error). The intercept represents the 

individual’s score when time equals zero (typically coded as the first measurement 

occasion). The slope represents the change in an individual’s score for each unit increase 

in time. Within-person variation refers to the variability of individuals’ scores around 

their own predicted trajectory. The second level contains information about the predicted 

scores across the entire sample (intercept and slope) as well as information regarding 

between-person variability. The intercept at the second level describes the typical score, 

across all individuals, when time is equal to zero (typically coded as the first 

measurement occasion). The slope at level two describes the typical change, across all 

individuals, for each unit increase in time. The between-person variability parameters 

describe the variability in intercepts and slopes around the overall intercept and slope, 

respectively.  

HLM is another form of the general linear mixed model. HLM is often expressed 

as a hierarchical general linear model (HGLM), and although the literature tends to 

discuss the HGLM and the GLMM separately, they are incredibly similar. The difference 

between the HGLM and GLMM is that the HGLM models nested data with several 

simpler equations using different “levels” corresponding to each level of nesting (Setzer, 

2008). Ultimately, the HGLM and the GLMM have the same capabilities, but the HGLM 

may make it more straightforward to include predictors into the different levels. One 
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possible two-level model for growth (specified as an HGLM) is provided in Equations 5 

and 6 below. 

 

0 1ti i i ti tiy t e                  (5) 
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Equation 5 is the level one model. The value of yti is the predicted score for 

individual i at time t, π0i is the individual’s intercept. The intercept represents an 

individual’s score when time is equal to zero. Notably, the coding of time can change the 

interpretation of the intercept value. For example, if the initial time point is set to 0, then 

the intercept would equal an individual’s score at the initial time point. The π1i term is the 

slope for each individual. The slope indicates the amount of change in in dependent 

variable for each unit change in time. Again, the coding of time (e.g., days, months, 

years) can alter the interpretation of the slope parameter. The value of eti is the residual, 

or the deviation of each individual’s observed score from their predicted score. The 

residual indicates the amount of the within-person variation left unexplained by time. If 

there is a sizeable amount of unexplained variance, other models that include additional 

time-varying predictors may help to explain the remaining variation.  

The second level of the model is presented in Equation 6. Note that the dependent 

variables at the second level are the intercept and slope parameters from level one. The 

β00 parameter is the overall intercept and represents the average initial score (assuming 

the initial score is coded as zero) across all individuals. The residual for this equation, u0j, 



13 

indicates how much an individual’s intercept deviates from the overall intercept. The 

between-person variation in intercepts can also be estimated and is often represented by 

τ00. The variation in intercepts describes how similarly (or differently) individuals score 

at the initial time point. The second equation estimates an overall slope, which indicates, 

on average, the extent to which participants’ scores change per unit change in time. The 

residual for this equation, u1j, indicates how much an individual’s slope differs from the 

average slope. The between-person variation in slopes can also be estimated and is often 

represented by τ11.  The variation in slopes describes how similarly (or differently) 

individuals change over time. Notably, this parameter is not modeled in repeated 

measures ANOVA. HLM allows for more interpretive power compared to repeated 

measured ANOVA with regard to how individual’s vary in their change over time. In 

addition, the covariance between the intercept and slope parameters can be estimated and 

is often represented by τ10. This covariance describes the extent to which an individual’s 

score at the initial time point is related to how the individual changes over time. This 

parameter is also not estimated in repeated measures ANOVA.  

Several variations of the model presented in Equations 5 and 6 can be made 

depending on the scenario and underlying theory. Predictors can be added to either level 

to explain variability in scores above and beyond what can be explained by time. At the 

first level, predictors would be those that vary over the measurement occasions. For 

example, researchers may want to model measurement occasions in which students were 

and were not receiving an intervention. Including the intervention as a time-varying 

predictor allows researchers to examine whether the predicted scores differed between 
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intervention measurement occasions and control measurement occasions. Predictors at 

the second level help to explain between-person variability in intercepts and slopes. For 

example, researchers may be interested in whether intercepts and/or slopes differ between 

males and females, treatment conditions, etc. Another variation on the model presented in 

Equations 5 and 6 would be to constrain the random effects. For example, the residual 

terms for the intercept and/or slope equations at the second level could be constrained to 

be zero. Constraining the intercept residual to be zero postulates that every individual has 

the exact same score at the initial time point. A constrained slope parameter would 

suggest that all individuals change the same way over time. Notably, constraining the 

random effect for the slope parameter to be zero would result in a model resembling 

repeated measures ANOVA. The next section delineates connections between HLM and 

repeated measures ANOVA.  

Connections Between HLM and Repeated Measures ANOVA. As previously 

noted, the slope random effect in Equation 6 can be constrained to zero, as shown in 

Equation 7 below. 
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Note that Equation 5 and Equation 7 can be written as one equation by substituting the 

level 2 (Equation 7) equations into the level 1 (Equation 5) equation. Notably, this allows 

the HLM model previously expressed as an HGLM to be expressed as a GLMM. The 

resulting equation (with some slight reorganization) is shown below. 
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00 10 0ti ti i tiy t u e                   (8) 

 

Note that Equation 8 looks very similar to the one for repeated measures ANOVA shown 

in Equation 3. The distinction between the model presented in Equation 8 and the model 

in Equation 3 is that the time variable (t) is treated as continuous in Equation 8 and as 

categorical in Equation 3. The β00 parameter represents the overall score on the dependent 

variable when time is equal to zero. This HLM parameter is analogous to the β0 

parameter in repeated measures ANOVA when the first measurement occasion is coded 

as the reference measurement occasion. The u0i parameter represents the random effect 

for intercepts in both models. The variability of the u0i parameter provides an estimate of 

between person variability. Omitting the u0i parameter suggests that there is no “person 

effect” that needs to be included in the model and that each observation is independent 

(i.e., one-way ANOVA). The eti parameter in both equations represents the individual 

residual. The variance of this term represents the within person variability.  The general 

parameterization of the HLM for modeling change over time looks identical to Equation 

4. 

Structural Equation Modeling. The specifications for latent growth models 

(LGM) in the SEM approach mirror the specifications in the HLM approach described 

above. As with HLM, the LGM can be expressed as an HGLM or a GLMM. In this 

context, I will present it as an HGLM to help make clear connections to HLM and to 

allow for clearer transition to second-order LGMs in Chapter 3. In SEM, change over 

time is often characterized by two factors: initial status and slope. Thus, an individual’s 
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observed score can be represented based on the two latent variables and error, as shown 

in Equation 9 below. 

 

0 0 1 1ti i i tiy e                 (9) 

 

In the equation above, yti represents the observed score for individual i at time t. The 

individual estimates for the latent variables, initial status and slope, are represented by η0i 

and η1i, respectively. The β values are fixed to constants. For β0, all values are fixed to 

one to represent the intercept. For β1, the values are fixed to constants that represent 

changes in time. For example, with 4 measurement occasions the values might be 

specified to 0, 1, 2, and 3 to represent the initial status (time 0), time 1, time 2, and time 

3, respectively. This approach to coding time assumes that all individuals have the same 

data collection schedule and that measurement occasions are equally spaced. The 

estimated values on the latent variable for each individual can be represented by an 

overall mean and each individual’s deviation from the overall mean, as shown in 

Equations 10 below. 
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In the equations above, the α0 and α1 values represent the overall means for the initial 

status and slope latent variables, respectively. Thus, α0 describes the typical score for 

individuals when time is equal to zero (typically the initial measurement occasion). The 

α1 parameter represents the typical change in score per unit increase in time. The ζ0i 



17 

parameter represents the difference between an individual’s score at the initial status and 

the typical initial status across all individuals. The ζ1i parameter represents the difference 

between an individual’s slope and the overall slope.  

Connections Between SEM and HLM. The parameters in the SEM and HLM 

approaches are parallel. Note that Equation 5 and Equation 9 look very similar. Both 

equations predict the observed scores for an individual with an intercept, or initial status, 

and slope. The intercept and slope (π0i and π1i) parameters in Equation 5 are analogous to 

the intercept and slope (η0i and η1i) parameters in Equation 9. The tti parameter in 

Equation 5 corresponds to the β1 parameter in Equation 9. Both parameters describe time 

in the models. Note that the β0 parameter in Equation 9 is a vector of ones. While the 

parameter is not explicitly stated in Equation 5, it could easily be included (it would 

simply multiply the π0i parameter by one). Equation 6 and Equation 10 are also 

analogous. In both approaches the individual intercept and slope parameters at the first 

level are modeled at the second level by an overall estimate of the intercept and slope 

across all individuals and an individual residual. The β00 parameter from Equation 6 and 

the α0 parameter from Equation 10 both represent the overall intercept across all 

individuals. The u0i and ζ0i parameters from Equation 6 and Equation 10, respectively, 

represent the difference between an individual’s intercept and the overall intercept. The 

β10 parameter from Equation 6 and the α1 parameter from Equation 10 both represent the 

typical slope across all individuals. The u1i and ζ1i parameters from Equation 6 and 

Equation 10, respectively, represent the difference between an individual’s slope and the 
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overall slope. Again, the general parameterization of the SEM growth model is equivalent 

to Equation 4.  

Raudenbush and Bryk (2002) note that the HLM shown in Equations 5 and 6 can 

be considered a specific “covariance structure” model and is able to be estimated by 

standard SEM software. Willett and Sayer (1994) demonstrate how longitudinal HLM 

can be rewritten as a structural equation model (referred to as a covariance structure 

model in the paper) and estimated in LISREL. Chou, Bentler, and Pentz (1998) provide a 

summary of the similarities and differences between growth models in SEM and HLM 

contexts. They note that when the β0 and β1 parameters are fixed to the aforementioned 

constants in SEM, the results between the two models are analogous. Specifically, the 

regression coefficients (β in HLM and α in SEM) are equivalent. The estimates’ standard 

errors, the variances of the factors (initial status/intercept and slope), and covariances 

between initial status and slope are slightly different between the two models. The 

authors note that this difference is likely due to different estimation methods used in the 

programs they chose rather than true differences between the models. Ultimately, the 

constrained LGM and the longitudinal HLM presented in the above sections are 

equivalent models. 

Summary. Each of the aforementioned approaches has their own set of strengths 

and weaknesses. One advantage of repeated measures ANOVA is the simplicity of the 

analysis. Results of repeated measures ANOVA may be easier to convey to individuals 

without a strong statistical background. One of the disadvantages of repeated measures 

ANOVA is the inability to disattenuate the parameters in the model for measurement 
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error. In addition, repeated measures ANOVA only models overall initial status and slope 

and does not allow for individual variation in the slope parameter. In other words, 

repeated measures ANOVA makes the assumption that all individuals change the same 

way over time. Finally, repeated measures ANOVA makes more strict assumptions about 

the data (i.e., sphericity) than HLM and SEM. One disadvantage of HLM is that, like 

repeated measures ANOVA, the model does not easily allow for the parameters to be 

disattenuated for measurement error. One advantage of an HLM approach is the ability to 

handle data in which the data collection schedule differs across individuals. HLM allows 

for individuals to have varying time lengths between measurement occasions, making 

longitudinal data collection more feasible. HLM is advantageous over repeated measures 

ANOVA such that it relaxes the assumption of sphericity and allows for individuals to 

vary in their intercept and slope parameters. One potential drawback of SEM is that 

varying measurement schedules (i.e., varying time between measurement occasions 

across individuals) may be difficult to include in the model. One advantage of SEM is the 

ability to easily include a measurement model for the scores at each measurement 

occasion. In traditional LGMs, the observed total score at each time point is included in 

the model as the observed score for each measurement occasion. Instead, observed item 

responses can be modeled with a measurement model and the factor scores can be used in 

a second-order model to examine change over time in scores that have been disattenuated 

for measurement error (Ferrer, Balluerka, & Widaman, 2008). For the current study, an 

SEM approach will be used due to the ability to easily incorporate a second-order factor 

model. Notably, measurement models can be indirectly included in repeated measures 
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ANOVA and HLM. To include these models, researchers would first estimate factor 

scores using an item response theory (IRT) or confirmatory factor analysis (CFA) model 

and then use those scores as input for the repeated measures ANOVA or HLM. This two-

step process, however, does not allow for the entire model (including the measurement 

model) to be estimated at the same time.   

Given the wide-spread use of models for longitudinal data, the assumptions 

associated with the model(s) being used must be considered. The assumption of 

measurement invariance is essential to all longitudinal analyses. This assumption is 

further discussed in the subsequent section. 

Measurement Invariance 

Comparing scores across measurement occasions relies on the assumption that the 

scores can be interpreted consistently at each measurement occasion. The scales must 

function equivalently across all measurement occasions. This assumption is often called 

the assumption of measurement invariance, though it may be called factorial invariance 

or measurement equivalence in the literature. For simplicity, I will use the term 

“measurement invariance” to denote examination of scale comparability across 

measurement occasions. Deviations from measurement invariance suggest that the scores 

from an assessment may have different interpretations depending on the measurement 

occasion from which the score originated. In other words, a violation of measurement 

invariance suggests that scores from one measurement occasion represent something 

different than those from another measurement occasion.  Notably, the IRT literature 

often terms invariance violations as differential item functioning (DIF). The terms 
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“measurement invariance violation” and “DIF” will be used interchangeably throughout 

the study. 

SEM literature distinguishes between “measurement invariance” and “structural 

invariance.” Measurement invariance examines equality of item intercepts, factor 

loadings, and error/uniqueness variances across measurement occasions (or groups). 

There are several levels of measurement invariance discussed in the literature. Configural 

invariance is the most lenient level of invariance and only assumes that the pattern of 

items loading on factors is the same across measurement occasions. Weak invariance 

adds the additional assumption that the factor loadings for each item are the same across 

measurement occasions. Strong invariance assumes that, in addition to equivalent factor 

loadings, the item intercepts are equivalent across measurement occasions. Strict 

invariance adds the assumption that the error variances across measurement occasions are 

equivalent. A more thorough discussion of each level of invariance is provided in a later 

section. Structural invariance explores the equality of factor means, factor variances, and 

factor covariances across measurement occasions (Byrne, Shavelson, & Muthén, 1989). 

Generally, examinations of measurement invariance determine equality of constructs 

across measurement occasions, whereas examinations of structural invariance tend to 

provide answers to more substantive questions. For the current study, I will focus 

exclusively on issues related to violations of measurement invariance.  

Longitudinal Measurement Invariance. Measurement invariance is most often 

tested in independent group comparison contexts using manifest grouping variables such 

as gender or ethnicity. The current body of research on invariance tends to focus on 
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cross-group comparisons with independent groups and continuous observed variables. 

Generally, examinations of measurement invariance are fairly uncommon. Borsboom 

(2006) notes that, “often, measurement invariance is tacitly assumed rather than 

investigated” (p. S178).  

Situations in which longitudinal data is used to examine change over time have 

been largely ignored in measurement invariance literature. Pentz and Chou (1994) note 

that, “Virtually no studies have applied systematic tests of measurement invariance to 

longitudinal data in the context of evaluating intervention effects on multiple groups.” 

More recently, Schmitt and Kuljanin (2008)  conducted a review of invariance studies 

between 2000 and 2008 and only 18% of the studies made any mention of examining 

invariance across time (i.e., age, cohort, retest). In longitudinal situations measurement 

invariance is often overlooked completely and researchers assume scales function 

equivalently across measurement occasions. The lack of investigations into longitudinal 

measurement invariance is concerning given that there are several instances in which a 

construct’s operational definition is predicted to change over time (Wirth, 2008). Wirth 

(2008) notes that anxiety, temperament, reading ability, aspects of personality, and 

antisocial behaviors are theorized to change in their manifestation throughout 

development. 

Second language literature contains examples of scales that change across 

measurement occasions. Hulstijn (2001) provides a general overview of second language 

vocabulary learning. The author notes that coding new vocabulary words may be more or 

less difficult depending on a learner’s prior phonetic knowledge. Consider a situation 
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where the researcher is interested in measuring a second language learner’s ability to 

acquire new vocabulary in an introductory language course. In the beginning of the 

course, item responses on a vocabulary exam may depend on two constructs: actual 

vocabulary knowledge and familiarity with the phonetics. This secondary construct 

(phonetics) can be considered unintended multidimensionality and may hinder accurate 

measurement  of vocabulary knowledge (Ackerman, 1992). As the course progresses, 

phonetic language becomes more automatic and have less of an impact on vocabulary 

acquisition. Thus, scores on a vocabulary test later in the year may only depend on one 

construct: actual vocabulary knowledge. In this scenario, differences across the 

measurement occasions represent differences in vocabulary knowledge and phonetic 

knowledge. If the researcher is only interested in vocabulary growth, inferences about 

score changes without acknowledging the role of phonetic knowledge in early 

measurement occasions would be inappropriate.  

Another approach to conceptualizing changes in scales across time is that the item 

parameters are “drifting” over time. Item parameter drift is defined as changes in item 

parameters over measurement occasions due to factors other than sampling error 

(Goldstein, 1983). Comparing scores that are not invariant across measurement occasions 

is akin to comparing apples and oranges. If the assumption of measurement invariance is 

not met, researchers should be extremely cautious when interpreting comparisons across 

measurement occasions.  
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Purpose  

Growth models are often used in educational contexts to examine changes over 

time in students’ knowledge or attitudes. Repeated measurements assume that the scale is 

invariant across measurement occasions. Given that measurement invariance is often 

assumed rather than explicitly tested, researchers need to consider the implications 

violations of measurement invariance may have on growth model parameters. In 

situations where measurement invariance is explicitly tested, researchers often allow for 

small violations of measurement invariance (i.e., partial measurement invariance), but 

little research has been conducted to determine what constitutes a “small” violation of 

invariance. Widaman, Ferrer, and Conger (2010) note that, “Few guidelines have been 

developed for comparing and interpreting models that have partial measurement 

invariance, even though partial invariance is not unexpected.” The purpose of the current 

study is to examine how varying degrees of longitudinal measurement invariance 

violations impact growth model parameters.  The results of this study will help to 

determine the extent to which growth models are robust to violations of measurement 

invariance. The study will examine the impact varying levels of invariance violations 

have on growth model parameters (i.e., the estimated intercept, slope, and variance 

components), and the estimated shape of change over time (i.e., linear vs. quadratic). In 

addition, the study will examine whether explicitly modeling the invariance violations 

(i.e., modeling partial measurement invariance) allows researchers to accurately model 

growth. The overarching goal of the study is to determine whether or not violations of 

measurement invariance compromise the validity of results from growth models. Thus, 
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this study is meant to establish whether or not measurement invariance violations in 

growth models are an issue, not how to solve the issue. 

Organization of Study 

 The remaining chapters provide a review of the literature, study methodology, 

results, and a summative discussion. Chapter two reviews the relevant literature. The 

chapter begins with an overview of potential growth models in SEM contexts. Next, 

measurement invariance concepts are more thoroughly discussed. A review of the 

literature examining the impact of invariance violations and the research questions for the 

current study are also provided. Chapter three focuses on the methods used to answer the 

research questions. The connections between SEM and IRT models are briefly discussed 

as they relate to data generation and the interpretation of results. The third chapter also 

describes the data simulation design, modeling approach, and criteria by which the results 

are evaluated. Chapter four displays the results of the study. The final chapter provides a 

general discussion of the results, implications for researchers, study limitations, and 

potential future directions. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

Growth Modeling in SEM 

 Growth modeling in an SEM context was briefly described in chapter one. Latent 

growth models (LGM) are often similar to the one presented in Equations 9 and 10 such 

that they use total scores at each measurement occasion. Typically, models in SEM are 

presented in a path diagram. An example path diagram for a traditional growth model 

such as the one presented in Equations 9 and 10 is presented in Figure 1. To maintain a 

clear figure, item intercepts and factor variances are omitted from the path diagram and 

all other path diagrams in the current chapter.  
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Figure 1. Path Diagram for a First-Order LGM 

 

 

As previously noted, another approach to growth modeling in SEM would be to 

include a measurement model for each measurement occasion. This approach is often 

called a second-order LGM and allows researchers to use factor scores as input for the 

growth component of the model. Including a measurement model and using factor scores 

for the growth model allows researchers to examine both change over time and the 

measurement invariance across measurement occasions. To illustrate the second-order 
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LGM consider a scenario with a three item scale measured at several time points. The 

second-order LGM can be estimated using Equations 11, 12, and 13 below. 
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Note that Equations 12 and 13 are identical to those described in chapter one. 

Note that in this instance, however, yti is a factor score (i.e., latent variable) rather than 

the observed total score at each measurement occasion. The distinction is the inclusion of 

Equation 11. In Equation 11, Xti, Wti, and Zti represent individual i’s responses to item X, 

Y, and Z, respectively, at measurement occasion t. The τ parameters represent the 

intercepts for each item and the λ parameters represent the loadings for each item. The 

subscript t on the τ and λ parameters suggests that item intercepts and slopes can differ 

across measurement occasions. Often intercepts and slopes are constrained to be 

equivalent across measurement occasions but, as will be further discussed later, these 

parameters can be freely estimated for each measurement occasion if measurement 

invariance does not hold. As previously noted, yti is the factor score for person i at 

measurement occasion t. The general equation for Equations 12 and 13 were presented in 
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Equation 4. The general equation for the measurement model (Equation 11) is presented 

in Equation 14 below. 

 

W = Τ + ΛY + E     (14) 

 

In Equation 14 above, the T matrix contains the item intercepts for each item. The Λ 

matrix contains the item loadings for each item. The Y matrix contains the factor scores 

and the E matrix contains the residual item variance for each item. Note that this 

measurement model is another parameterization of a general linear mixed model in which 

fixed effects (item characteristics) and random effects (individual factor scores) predict 

responses to items. The path diagram for the second-order growth model presented in 

Equations 11, 12, and 13 is presented in Figure 2 below. 
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Figure 2. Path Diagram for Second-Order LGM. 
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SEM context. In a non-linear LGM, additional slope parameters are included to capture 

non-linear changes in scores over time. If researchers wanted to model quadratic change, 

a parameter for the linear slope and a parameter for the quadratic slope are included.  

Equations 15 and 16 display a first-order non-linear LGM with a quadratic slope. 
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      (16) 

 

In Equation 15, the yti parameter represents individual i’s observed score at time t. The β 

parameters are fixed and represent time. The β0 parameter is the intercept and is fixed to a 

vector of one’s. The β1 parameter is the linear slope and is fixed to the units of time (e.g., 

0, 1, 2, and 3). The linear slope in a non-linear model represents the slope of the line at 

the intercept. The β2 parameter is fixed to the squared values of the time scores in the β1 

vector (e.g., 0, 1, 4, and 9). The η0i, η1i, and η2i parameters represent the intercept, linear 

slope, and quadratic slope for individual i. In Equation 16, the first equation models the 

individual intercept, η0i, as a function of the overall intercept, α0, and the difference 

between the individual’s intercept and the overall intercept, ζ0i. The second equation 

models the individual linear slope, η1i, as a function of the overall linear slope, α1, and the 

difference between the individual’s linear slope and the overall linear slope, ζ1i. The final 

equation models the quadratic slope for each individual, η2i, as a function of the overall 

quadratic slope, α2, and the deviation of the individual’s quadratic slope from the overall 
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quadratic slope, ζ2i. The model for the first-order non-linear LGM with a quadratic slope 

is presented in the path diagram in Figure 3. 

 

 

Figure 3. Path Diagram for First-Order Non-Linear LGM with Quadratic Slope 
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each measurement occasion and a quadratic slope is presented in Equations 17, 18, and 

19 below.  
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Note that Equations 18 and 19 look identical to Equations 15 and 16. Including the 

measurement models in Equation 17 distinguishes the first-order model from the second-

order model. Including the measurement models in Equation 17 means that the yti 

parameter in Equation 18 is interpreted as a factor score for individual i at time t. The 

path diagram for the second-order non-linear LGM with a quadratic slope is presented in 

Figure 4. 
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Figure 4. Path Diagram for Second-Order Non-Linear LGM with a Quadratic Slope. 
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 As with the addition of a second slope for quadratic change over time, a third 

slope parameter can be added to model cubic change over time. The non-linear LGM 

with a cubic slope will not be presented as it is not the focus of the current study. In 

addition, predictors can be added to all of the models described above to help explain 

individual variability in intercepts and slopes. Adding predictors helps researchers to 

better understand individual variations in how people change over time. Despite the 

utility, the current study will not focus on models that have predictors of intercepts and 

slopes and thus, further description of adding predictors to the model is not provided. As 

will be shown in the next section, a dichotomous confirmatory factor analysis (CFA), like 

the one at the first level of the 2LGM, is equivalent to a 2 parameter logistic (2PL) IRT 

model. The choice of framework (SEM/CFA vs. IRT) can be used at the discretion of the 

researcher. In this case, the SEM framework is more common for longitudinal analyses 

and thus, allows us to model growth in the same way most researchers would approach 

growth modeling 

Connections between SEM and IRT Models 

 SEM approaches are commonly used to examine measurement invariance in 

longitudinal models and to model longitudinal data. SEM is typically used with 

continuous, normally distributed observed variables, whereas IRT is typically used with 

binary or categorical observed variables. Notably, modern approaches to SEM allow for 

the analysis of discrete data, but IRT is still the preferred method with unidimensional 

constructs. There are several IRT models commonly used in practice, but for the current 

study the focus will be on the two-parameter logistic (2PL) model.  The 2PL predicts 
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item responses (i.e., the probability of a correct response) as a function of item difficulty 

and item discrimination. Equation 20 shows a traditional 2PL model. 
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In Equation 20 above, P(Yi = 1|θ) represents the probability of a correct response for item 

i, after controlling for ability, θ. In the equation, 1.7 is used as a scaling factor to 

approximate the normal ogive. The ai parameter is the discrimination for item i. The θj 

parameter is the ability estimate for individual j. The difficulty estimate for item i is 

represented by the bi parameter.   

 Different vocabulary is used in the SEM and IRT literatures to discuss item 

characteristics. In SEM, the term “factor,” represented as η in the current manuscript, is 

often used to reference the construct of interest. In IRT, the construct is often referred to 

as “ability” and is represented by θ in the current manuscript. The parameter that 

represents the relationship between each item and the construct of interest is called a 

“factor loading” (often represented by λ) in SEM and “item discrimination” (often 

represented by a) in IRT. The expected item response when the construct is equal to zero 

is called the “item intercept” (often represented by τ) in SEM and the “item difficulty” 

(often represented by b) in IRT. In IRT, the b parameter represents the point on the ability 

scale at which a respondent had a 50% chance of a correct response. The current study 

will examine longitudinal measurement invariance violations in dichotomous observed 

variables, making IRT the first choice for analysis. Because growth models are most 
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often estimated in practice within a SEM framework, however, the current study will use 

a SEM framework in order to most closely approximate real world scenarios. Ultimately, 

some SEM and IRT models are equivalent and thus, the framework in which the models 

are estimated should have minimal impact on the results. The subsequent paragraphs 

demonstrate the equivalencies between confirmatory factor analysis (CFA) in SEM and 

the 2PL in IRT. 

 Recall that the measurement component of the LGM was presented in terms of 

the general linear mixed model. The general linear mixed model is appropriate when the 

dependent variable is continuous and normally distributed. When the dependent variable 

is categorical, in this case dichotomous, the generalized linear mixed model most 

appropriately models the data. The generalized linear mixed model is simply an extension 

of the general linear mixed model. Specifically, it allows for continuous and categorical 

dependent variables. Thus, the general linear mixed model can be considered a special 

case of the generalized linear mixed model in which a continuous dependent variable is 

used.  Notably, when categorical (nominal or ordinal) data are modeled using the linear 

model, it is possible to obtain predicted values outside of the plausible range. For 

example, if a dichotomous outcome variable (e.g., right=1/wrong=0) is modeled with a 

linear model, it is possible to obtain predicted values less than 0 and/or greater than 1.  

 In order to appropriately model categorical dependent variables, the generalized 

linear mixed model uses a link function. A link function transforms the expected value of 

the dependent variable so that a linear relationship can be modeled between the 

independent and dependent variables. There are several different link function options 
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depending on the type of dependent variable. For dichotomous data, the logit (a.k.a., log-

odds) link function is often used (Raudenbush & Bryk, 2002). The HGLM described in 

chapter one can be used to model dichotomous item response data. Kamata (2001) 

highlights that item response data is considered nested such that items are repeated 

measurements within an individual. Thus, items, modeled at level 1, are nested within 

people, modeled at level 2. In order to model a linear relationship between the 

dichotomous responses and predictors (person ability and item parameters), a logit link 

function can be used. To obtain the log-odds of a correct response, we can first calculate 

the odds of a correct response.  The odds of a correct response is defined as the 

probability of getting and item correct divided by the probability of getting an item 

incorrect. The calculation of the odds of a correct response for the 2PL model is shown in 

Equation 21.  

 
1.7 ( )

1.7 ( )

1.7 ( )

1.7 ( )

1.7 ( )

1
11

1

1

i j i

i j i

i j i

i j i

i j i

a b

a b

a b

a b

a b

e

e

e

e

e

























   
 







      (21) 

 

In order to model the log-odds (or logit) of a correct response, the log can be taken for 

both sides of Equation 21 as shown in Equation 22. 
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The equation above may not initially look like the equation for the measurement model in 

SEM, but the parameters are comparable. The first component of the equation, -1.7aibi, 

represents the item intercept and is analogous to τ in the SEM measurement models. The 

second part of the equation, 1.7aiθj, multiplies the item discrimination by the individual’s 

score on the factor. This component is analogous to the factor loading (λ) multiplied by 

the factor score (η) in the SEM measurement models. Takane and de Leeuw (1987) 

demonstrate the equivalence between CFA and the normal ogive model in IRT. The 

addition of the 1.7 scaling factor to the 2PL makes the logistic model practically 

equivalent to the normal ogive (Hambleton & Swaminathan, 1985). Brown (2006) notes 

that to calculate SEM factor loadings from IRT discrimination parameters, Equation 23 

below can be used.  
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To obtain SEM item intercepts, Equation 24 below can be used. 
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Muthén (2012) notes that often the differences between IRT and categorical CFA are due 

to estimator differences rather than true model differences. Specifying a unidimensional, 

dichotomous CFA in SEM is equivalent to specifying a 2PL model in IRT. One 

advantage of specifying the model in the SEM framework is the ability to seamlessly 

incorporate the measurement model into a full structural model. This advantage allows 

for a categorical CFA (i.e., 2PL) model to be incorporated into a second-order LGM. 

Because of this possibility, the current study will be conducted in an SEM framework.  

As noted in chapter one, all longitudinal models assume that the scales function 

equivalently across measurement occasions. The following section provides a more 

thorough overview of measurement invariance concepts and how to test for different 

types of measurement invariance. 

Measurement Invariance 

As noted in chapter one, examinations of measurement invariance in SEM 

literature are often categorized into structural invariance and measurement invariance.  

Measurement invariance can be further categorized into configural, weak, strong, and 

strict measurement invariance (Millsap & Meredith, 2004). Configural invariance refers 

to the equivalence of the factor pattern matrices across measurement occasions. If 

configural invariance holds, the pattern of zero and non-zero loadings across 

measurement occasions is equivalent (i.e., the same items measure the same factor(s) 

across all measurement occasions). Weak measurement invariance implies that the values 

within the factor pattern matrix are equivalent across measurement occasions. In other 

words, weak measurement invariance examines whether the relationship between each 
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item and the factor is the same across measurement occasions. If weak measurement 

invariance is tenable, the loadings for each item on a given factor are the same for all 

measurement occasions. Because factors are often defined or named by the items that 

have the highest loadings, weak measurement invariance is particularly important from a 

substantive perspective. Strong measurement invariance posits that, in addition to 

configural and weak measurement invariance, the item intercepts for all measurement 

occasions are equal. Strong measurement invariance relies on the assumption that item 

difficulty is equal for all measurement occasions. If strong measurement invariance 

holds, the pattern, loadings, and intercepts are equivalent across all measurement 

occasions. Strict measurement invariance builds upon strong measurement invariance to 

include the equivalence of uniquenesses (i.e., error variances) across all measurement 

occasions (Millsap & Meredith, 2004). Note that for all four conditions of measurement 

invariance, the previous condition must be met before continuing with more stringent 

invariance tests (i.e., configural invariance must hold before testing for weak 

measurement invariance). Notably, some researchers argue that small departures from 

invariance, often referred to as partial measurement invariance, may permit researchers to 

assess more constrained invariance conditions (Byrne et al., 1989; Millsap & Meredith, 

2004). There is little research that provides guidelines to define “small” departures of 

invariance. Partial measurement invariance will be further discussed later in this chapter. 

The goals of a given study define the level of measurement invariance necessary 

for researchers to be confident in the interpretations of the results. For situations in which 

researchers are only interested in the measurement of the factor variance-covariance 
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structures, only the factor loadings need to be invariant across the groups. That is, weak 

measurement invariance must hold if researchers are interested in the relationships 

between factors or the variability of factor scores. For situations in which factor means 

are of interest, the factor loadings and intercepts must be equivalent across groups (Byrne 

et al., 1989). Thus, to compare means across measurement occasions (i.e., examining 

whether scores change over time) and have confidence in the interpretations, strong 

measurement invariance must hold. 

Tests of measurement invariance are conducted with latent variable (confirmatory 

factor analysis; CFA, and item response theory; IRT), or observed variable (i.e., Mantel-

Haenszel) approaches. For the current study, I will focus on describing test of invariance 

for latent variable approaches. For clarity, CFA literature often refers to the examination 

of measurement invariance as measurement or factorial invariance testing. The IRT 

literature tends to refer to these analyses as examinations of DIF or bias (i.e., lack of 

invariance). CFA and IRT literature bases also use different terms for the different levels 

of measurement invariance. IRT typically focuses on unidimensional scales and thus, 

configural invariance is rarely discussed in the IRT literature. Table 1 provides common 

vocabulary to describe different levels of measurement invariance in the CFA and IRT 

literature bases.  
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Table 1 

Vocabulary Used to Describe Levels of Measurement Invariance 

Millsap & 

Meredith 

(2007) 

CFA 

Literature 

IRT 

Literature 

Description  

(Equivalence 

Constraint Across 

Time) 

Notation 

Configural Configural -- Pattern matrix  

Weak Metric 
Non-uniform 

DIF 

Loadings 

(a-parameters) 
(ΛTime1 = ΛTime2) 

Strong Scalar Uniform DIF 
Intercepts 

(b-parameters) 
(ΛTime1 = ΛTime2 and ΤTime1 = ΤTime2) 

Strict Strict N/A Error variance (ΛTime1 = ΛTime2 and ΤTime1 = ΤTime2 and ETime1= ETime2) 
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The current study will use the terminology outlined in Millsap and Meredith (2007) (i.e., 

configural, weak, strong, strict) to describe levels of measurement invariance. While the 

general definitions of invariance are the same for all modeling approaches, the methods 

for assessing invariance differ. One of the largest differences between the methods is the 

assumptions the models make on the data. For example, in traditional CFA methods, the 

models assume that the observed variables are continuous and multivariate normally 

distributed. Traditional IRT models, on the other hand, assume that the observed 

variables are categorical and do not need to be multivariate normal. Because there are 

many different approaches to assessing invariance with many different assumptions, 

assessing how different analytic approaches impact detection of measurement invariance 

is difficult (Borsboom, 2006). For a more thorough description of the similarities and 

differences in assessing measurement invariance between CFA and IRT see Raju, 

Laffitte, and Byrne (2002). Ultimately, both IRT and CFA approaches to identifying DIF 

examine the magnitude of the differences in item parameters between measurement 

occasions to determine whether they are significant.  

 Given that an SEM framework will be used for this study and that the 2PL is 

equivalent to a categorical CFA model, SEM approaches to identifying measurement 

invariance violations are briefly described here. Nested model comparisons are the most 

common approach to examining weak, strong, and strict invariance violations in SEM. 

To test for weak measurement invariance, two models are estimated. The first model 

allows all item loadings to be freely estimated across measurement occasions. The second 

model constrains corresponding item loadings to be equivalent across measurement 
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occasions and represents a model in which the assumption of weak measurement 

invariance holds. The second model is considered nested within the first model such that 

constraining the item loadings in the first model leads to the second model. The two 

models can be statistically compared through a chi-squared difference test and fit indices 

to determine whether constraining the item loadings (i.e., assuming weak invariance) 

results in significantly worse fit. If the constrained model has significantly worse fit, the 

assumption of weak measurement invariance is violated. If weak measurement invariance 

holds, strong measurement invariance can be tested. Similar approaches are used to test 

strong and strict measurement invariance. For strong measurement invariance, a model 

with equal item loadings, but freely estimated item intercepts is compared with a model 

that constrains item loadings and item intercepts to be equivalent across measurement 

occasions. If strong measurement invariance holds, strict measurement invariance can be 

tested. For strict measurement invariance, a model with equal item loadings, equal item 

intercepts, and freely estimated item residuals is compared with a model that constrains 

item loadings, intercepts, and residuals across measurement occasions. If the constrained 

model fits significantly worse than the less constrained model with which it is being 

compared, that level of measurement invariance cannot be assumed. In these situations, 

researchers may further explore partial measurement invariance, as is described in the 

next section. 

Partial Measurement Invariance. Partial measurement invariance was 

introduced by Byrne, Shavelson, and Muthén (1989) and allows non-invariant item 

parameters to be freely estimated between groups (or measurement occasions). 
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Steenkamp and Baumgartner (1998) note that full measurement invariance may be 

unlikely in tests of weak, strong, and, especially, strict measurement invariance. Further, 

Horn (1991, as cited by Steenkamp & Baumgartner, 1998) suggests that metric 

invariance is “a reasonable ideal...a condition to be striven for, not one expected to be 

fully realized.” Overall, partial measurement invariance at the weak, strong, and strict 

levels seems to be a common occurrence and, generally, well accepted in the literature. 

Some researchers caution against the use of empirically derived partial measurement 

invariance with little or no theoretical basis for freeing parameters across groups (Byrne, 

Shavelson, & Muthén, 1989).  Given the prevalence of partial measurement invariance, 

researchers may want to consider how partial measurement invariance is handled in CFA 

and IRT approaches to measurement.  

In the CFA approach, partial measurement invariance is often included in the 

model and thus, is accounted for when interpreting values on the latent variable. In the 

IRT literature, there is little discussion of partial measurement invariance. The lack of 

discussion in IRT contexts may be because DIF is often examined in educational testing 

scenarios where exam scores are often used to make high stakes decisions at the 

individual level. DIF may be problematic in many situations, but in scenarios involving 

individual-level decision making, DIF is particularly problematic. In an Educational 

Testing Service (ETS) research report on DIF procedures, Zwick (2012) describes the 

current system used by ETS to classify DIF. Items are classified into three groups: A 

(negligible or non-significant DIF), B (slight to moderate DIF), or C (moderate to large 

DIF). The article notes that the reasoning behind the cutoffs used to classify items into 
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the A, B, or C categories is that small values are undesirable, but tolerable, whereas 

larger values should be avoided. Notably, this suggests that some small violations of 

invariance are tolerable (i.e., partial measurement invariance), but other, more severe 

cases of invariance violations should be excluded from scoring and other analyses. The 

article goes on to examine the performance of the current classification system to 

accurately classify items with DIF. The author suggests devising more effective rules for 

identifying DIF and notes that, “the first step should be to reconsider the issue of minimal 

DIF magnitude that is of concern (and is therefore important to detect) as well as the level 

of false positives that can be tolerated.” (p. 10). The discussion of minimal DIF 

magnitude of concern suggests that some “small” instances of partial measurement 

invariance is tolerated in IRT contexts. Notably, if an item displays small amounts of DIF 

(i.e. a “tolerable” amount), it is typically included in the assessment, but is treated as if it 

were invariant. Thus, small amounts of DIF are typically ignored in IRT contexts. As 

small amounts of DIF (i.e., partial measurement invariance) may be common in IRT 

contexts, researchers should ensure that the models we use in practice are robust to these 

“small” violations of measurement invariance.  

The examination of model performance under partial measurement invariance is 

the focus of the current study. For the current study, dichotomous items will be modeled 

within a SEM framework to examine IRT invariance violations on growth models. 

Grounding the current study in IRT, but modeling the data in a SEM framework provides 

several benefits. The SEM framework allows for comparison between models with partial 

measurement invariance included and models in which invariance violations are ignored.  



48 

Invariance Testing in the Literature 

Borsboom (2006) describes situations in which measurement invariance is 

necessary for valid interpretations across groups and situations in which measurement 

invariance is less of a necessity. Ultimately, a violation of measurement invariance is 

always an issue; however, there may be some scenarios in which measurement invariance 

violations are less of a concern. Borsboom describes a situation in which an invariance 

violation is an order of magnitude smaller than the targeted effect size in between-group 

comparisons. When the invariance violation is small in relation to the anticipated effect, 

there may be less serious concern. This scenario assumes that researchers can accurately 

predict the effect size, which is often unrealistic in applied research. Several researchers 

have examined the impact of invariance violations on results.  

Vandenberg and Lance (2000) provide a representative summary of applied 

studies in which measurement invariance was tested using CFA approaches in 

conjunction with a substantive hypothesis. The authors identified 67 studies that report 

some form of invariance testing before investigating substantive hypotheses. The authors 

note a variety of motivations driving examinations of measurement invariance (e.g., to 

supplement and extend traditional examinations of validity, to examine cross cultural 

generalizability of a scale). Of the 67 studies identified, 88% of the studies included a test 

of configural invariance. Tests for weak (i.e., metric) invariance were reported in 99% of 

the studies. Fewer studies reported tests for strict invariance (i.e., uniquenesses) (49%), 

factor variances (33%), factor covariances (58%), latent mean differences (21%), and 

strong (i.e., scalar) invariance (12%). Notably, strong invariance is necessary for analyses 
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of latent mean differences, however, strong invariance was tested less frequently than 

latent mean differences. 

Schmitt and Kuljanin (2008) provide an update to the review of measurement 

invariance applications using CFA completed by Vandenberg and Lance (2000). The 

authors identified 75 articles published after 2000 that conducted empirical analyses of 

measurement invariance with CFA models. The authors note that most of the papers 

investigate measurement invariance to support the use of the instrument across groups 

(e.g., gender, ethnicity). All of the articles reported testing configural and weak 

measurement invariance. This is consistent with the high occurrence of configural and 

weak measurement invariance found in Vandenberg and Lance (2000). Unlike the 

Vandenberg and Lance article that reported a 12% occurrence of strong measurement 

invariance testing, Schmitt and Kuljanin found that 54% of the articles reported tests of 

strong invariance. This suggests an increase in strong measurement invariance testing 

between the times of the articles included in the Vandenberg and Lance summary and the 

articles included in the Schmitt and Kuljanin summary. The authors note that this 

increase may be due to researchers becoming more aware of the latent mean testing 

available or the Vandenberg and Lance review that outlined best practices for group 

comparison.  

The Vandenberg and Lance review did not mention the prevalence of partial 

measurement invariance testing. Schmitt and Kuljanin found that 50% of the studies 

included tests of partial measurement invariance. The Schmitt and Kuljanin article 

suggests that allowing for partial measurement invariance is fairly common in practice. 
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The measurement invariance reviews conducted by Vandenberg and Lance (2000) and 

Schmitt and Kuljanin (2008) focus on examinations of measurement invariance from a 

CFA approach and most studies focused on independent group comparisons rather than 

longitudinal comparisons.  

Impact of Invariance Violations 

A large body of research exists surrounding the detection of non-invariant item 

parameters, whereas fewer studies have examined the consequences of specifying a 

model that ignores non-invariant items. Researchers may be interested in examining how 

failing to model partial invariance affects longitudinal research results. Currently, there is 

no consensus on how to proceed under conditions of partial measurement invariance in 

longitudinal (or multi-group) analyses. This lack of consensus is likely due to the 

generally sparse body of research investigating the impact of invariance violations under 

controlled circumstances (i.e., simulation-based research). The research on invariance 

violations can be categorized into studies using real data (i.e., applied approaches) and 

studies using simulated data.  

Applied Studies. Several researchers have examined the impact of invariance 

violations in varying situations. Schmitt and Kuljanin (2008) summarize measurement 

invariance literature and provide a small study with real data examining the impact 

violations of strong invariance have on factor mean estimates. The authors found that five 

item intercepts on a scale were not invariant and fit three multiple group models 

(unconstrained, constraining all intercepts to be equal, and allowing the five intercepts to 

be estimated freely) to examine the impact of non-invariance on factor mean estimates. 
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The results suggest that there is little impact on the factor means regardless of the model 

used. The authors note that had the differences in intercepts been in the same direction or 

larger, there may have been a more notable bias in factor means. This study suggests that 

in the presence of some invariance violations there is minimal impact on group 

comparisons.  

 Schmitt, Golubovich, and Leong (2011) examined the relationship college and 

high school GPAs have with career interest and personality constructs in models that do 

and do not account for lack of measurement invariance. The authors specified a partially 

invariant model that modeled differences in item parameters across groups and a fully 

invariant model that constrained item parameters to be equivalent across groups. The 

authors found minimal differences in factor correlations between the partially invariant 

and fully invariant models. The results also suggested minimal differences in factor 

means for both modeling approaches. Only one of the latent mean estimates was notably 

different across the two modeling approaches. The authors note that, while this difference 

is not statistically significant, it is practically significant and should be avoided, if 

possible. The differences for the regression slopes between models were also non-

significant. Schmitt et al. conclude that, because the differences between subgroups were 

practically significant, modeling partial measurement invariance is important. Notably, 

the authors used item parcels in their models which may have masked larger violations of 

invariance in the measures.  

 Fleishman, Spector, and Altman (2002) examined the differences in group 

comparison results between models that did and did not account for DIF. The authors 
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focused on differences in functional disability between gender and age groups. The 

authors first examined differences between groups using a multiple-indicator/multiple-

cause (MIMIC) model without taking into account intercept DIF across groups. Results 

suggested that, without accounting for intercept DIF, young women, middle-aged 

women, and middle-aged men were significantly less functionally disabled than elderly 

men. Notably, young men were not significantly less disabled than elderly men. In 

addition, young women were significantly less disabled than young men, and middle-

aged women were significantly less disabled than middle-aged men. When the authors 

accounted for DIF, results suggested that there was no significant difference in functional 

disability when middle-aged men and women were compared to elderly men. In addition, 

the results with adjustments for DIF suggested that the young women and young men 

were significantly less disabled than elderly men. Finally, the results for the model 

accounting for DIF suggest that the differences between genders (young men compared 

to young women and middle-aged men compared to middle-aged women) were not 

significant. The authors also examined the results when the two items with the largest 

DIF were removed from the analysis. Results suggested that an adjustment for DIF was 

still necessary for valid interpretations of group differences. Ultimately, the results of this 

study suggest that failing to account for DIF can drastically impact the results of group 

comparisons.  

 Jones and Gallo (2002) studied the effects of DIF on education and gender 

differences in the Mini-Mental State Examination (MMSE). The authors used a MIMIC 

model to compare differences in MMSE scores between levels of education and between 
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males and females when DIF was and was not included in the model. The results suggest 

that observed differences between educational levels is minimally impacted by DIF. 

Conversely, gender differences were heavily impacted by the presence of DIF. When DIF 

is ignored, results suggest that there are significant differences in cognitive dysfunction 

between males and females. When DIF was included in the model, the differences 

between males and females were not significant. This study suggests that the impact of 

DIF on group comparisons may or may not be problematic. This conclusion makes it 

difficult for researchers to know whether their group comparisons can be trusted when 

there is DIF present and unmodeled.  

 Ferrer, Balluerka, and Widaman (2008) examined measurement invariance using 

second-order growth models. As previously discussed, second-order growth models 

include a measurement model for each time point. The authors used real data to examine 

the impact of using different indicators to identify the latent variable. The authors used 

two sets of data for the study. For one dataset the scale was invariant across measurement 

occasions. For the second dataset, neither weak nor strong factorial invariance held. The 

authors first examined the fit of second-order growth models when different reference 

indicators were used.  The results of the study suggest that if measurement invariance 

does not hold (i.e., in the second dataset), the interpretation of the results may drastically 

differ depending on which item is used to set the scale for the factor. Specifically, the 

predicted trajectories for individuals when measurement invariance was violated were 

notably different depending on which item was chosen as the reference indicator.  When 

measurement invariance held (i.e., in the first dataset), the trajectories were essentially 
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the same regardless of the reference indicator chosen.  The authors also compared the 

trajectories between a first-order LGC (in which measurement invariance is ignored) and 

a second-order LGC (in which item intercepts and loadings are freely estimated). For the 

dataset in which measurement invariance held (the first dataset), the trajectories were 

essentially the same for the two models. For the dataset in which measurement invariance 

was violated (the second dataset), the trajectories (both intercept and slope) differed 

between the two models. These results suggest that ignoring the measurement invariance 

violations may alter the estimated trajectory of a traditional (first-order) growth model. 

The lack of consensus among applied research studies suggests the need for a 

more systematic approach to examining the impact of invariance violations. The next 

section describes the simulation studies that have been conducted to systematically 

examine the impact of violating the assumption of measurement invariance 

Simulation Studies. Several researchers have examined the impact of invariance 

violations on substantive comparisons under controlled situations, such as a simulation 

study. Few of these researchers conducted these controlled studies in relation to 

longitudinal analyses (e.g., using a LGM). Millsap and Meredith (2004) indicate that 

researchers may ignore violations of measurement invariance (i.e., allow for partial 

measurement invariance) if the size of the violations and the number of non-invariant 

items are small. The authors also note that researchers have very little information for 

defining a “small” violation or a “small” number of invariant items. Several researchers 

have called for a more thorough examination of the impact of partial measurement 
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invariance on substantive tests (Schmitt & Kuljanin, 2008; Vandenberg & Lance, 2000). 

Simulation studies can help provide such information. 

Chen (2008) conducted a series of studies to examine the impact of invariance 

violations across groups on regression slopes and factor means. The authors’ first study 

examined the impact of weak factorial invariance violations (for predictors) on regression 

slopes. The author varied the proportion of non-invariant items (87.5%, 75%, 50%, and 

25%), the pattern of invariance (same direction vs. mixed), and the ratio of the sample 

sizes across groups (equal vs. 4 to 1). The authors also examined scenarios in which the 

dependent variable lacked invariance. When the criterion lacked weak factorial 

invariance and the direction was the same for all non-invariant items, the regression 

slopes were overestimated for the reference group and underestimated for the focal 

group. The authors note that this creates a pseudo-interaction between the predictor and 

the grouping variable. For conditions in which the direction of bias was mixed, the bias 

was reduced.  

Chen (2008) included a second and third study examining the impact of weak and 

strong factorial invariance violations on factor means. The model for this study was a one 

factor measurement model with no predictors. The conditions for the second study were 

the same as those in the first study. Artificial group differences in factor means were 

created when the factor loadings differed across groups. In addition, as the proportion of 

non-invariant items increased, bias in mean estimates increased. The conditions changed 

slightly for study three such that the proportion of non-invariant items was set to 100%, 

75%, 50% and 25%. Note that in this simulation the factor loadings were invariant, but 
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the intercepts were not. The results suggest that factor mean bias depends on the 

proportion of non-invariant items and the ratio of the sample sizes between groups. The 

bias in means was notably lower for the conditions in which the direction of bias in the 

intercepts differed across items, suggesting that some of the bias cancelled out. 

Steinmetz (2013) conducted a simulation study to examine whether violations of 

invariance could lead to erroneous differences between groups when compared on 

composite means (i.e., when invariance violations were ignored). The author varied the 

number of non-invariant item intercepts, number of non-invariant item factor loadings, 

sample size per group, the total number of items in the composite, and whether or not 

there were true group differences on the latent mean. The results suggested that 

invariance violations in factor loadings had minimal impact on composite mean 

differences. Non-invariant intercepts, however, substantially impact the differences in 

composite means and, in turn, the probability of significant composite mean differences. 

Olivera-Aguilar (2013) conducted a simulation study to examine the impact of 

longitudinal measurement invariance violations on latent growth models and 

autoregressive quasi-simplex models. The author varied the sample size per group, total 

number of items, proportion of non-invariant items, magnitude of non-invariance in item 

factor loadings, and magnitude of non-invariance in item intercepts. The patterns of non-

invariance included conditions in which both intercepts and factor loadings were 

invariant, conditions with invariant intercepts and non-invariant factor loadings, and 

conditions with non-invariant intercepts and invariant factor loadings. Conditions with 

non-invariant intercepts and non-invariant factor loadings were not examined. Item 
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response data for continuous items was simulated for five measurement occasions and 

composite values at each measurement occasion were created. The composite values 

were used in the LGM and autoregressive quasi-simplex model. The results of the study 

suggested that in conditions with non-invariant factor loadings, absolute relative bias for 

the slope factor mean, the slope factor variance, and the intercept-slope covariance were 

larger than the suggested cutoff value (0.05). In the conditions with non-invariant 

intercepts, only the slope factor mean had an absolute relative bias value larger than the 

suggested cutoff value. Relative bias increased with increases in the proportion of non-

invariant items and the magnitude of non-invariance.  

Leite (2007) examined the ability of the LGM to recover parameter estimates, 

standard errors, chi-square statistics, and adequate fit indices when composites of the 

observed variables (i.e., mean scores) are used as input variables. The author compared 

the performance of traditional LGM, LGM with fixed error variances, and a second-order 

LGM (which he refers to as the “curve-of-factors model”). The author varied the number 

of measurement occasions, the number of items, sample size, item types (i.e., essentially 

congeneric or essentially tau-equivalent), reliability, and level of non-invariance. For the 

levels of non-invariance configural, weak, or strict invariance was simulated.  The 

univariate LGMs generally produced biased parameter estimates, but unbiased standard 

errors. The curve-of-factors models produced unbiased estimates in all conditions, but 

required larger sample sizes for accurate chi-square and fit indices.  

Wirth (2008) conducted a study examining the roles of measurement invariance in 

studying stability and growth. The author varied sample size, time-adjacent unique factor 
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correlations, the patterns of non-invariance (e.g., invariant loadings and intercepts, 

invariant loadings and non-invariant intercepts, etc.). Mean score and factor score models 

were used to examine the impact of invariance violations on LGMs. For the mean score 

models, the observed mean for the variables at each measurement occasion was used as 

input for the LGM. For the factor score models, factor scores were calculated (regression-

based or constrained-covariance) and used as input for the LGM. In addition, the LGMs 

were either specified to have linear growth (i.e., the loadings for the slope factor were 

constrained) or to have freely estimated growth (i.e., loadings for the slope factor were 

freely estimated). The results suggest that non-invariant measurement structures 

consistently led to biased estimates of almost all parameters for both mean score and 

factor score approaches. In addition, the author noted that the presence of non-invariance 

led to estimates of non-linear growth trajectories. Finally, the author found that the use of 

factor scores in LGMs led to biased fit statistics.  

In sum, the research suggests that ignoring measurement invariance tends to lead 

to biased estimates and fit statistics. While some of the applied studies suggest minimal 

impact on substantive results when invariance is violated, all of the simulation studies 

found that invariance violations may have an impact on substantive results. Results 

suggest that intercept invariance violations had more of an impact on composite mean 

differences than loading invariance violations. Ultimately, the research on the impact of 

invariance violations is relatively scant. Within the realm of invariance violations 

research there are even fewer studies examining invariance violations for dichotomously 

scored data in longitudinal contexts. The current study aims to add to this body of 
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literature and help provide guidelines for handling longitudinal measurement invariance 

violations.  

Current Study 

The current study aims to examine the impact varying levels of measurement 

invariance has on LGMs. This simulation study adds a systematic investigation of the 

impact invariance violations have on LGMs to a relatively small body of research. A 

simulation study allows researchers to know and vary truth to clearly observe the 

situations in which invariance violations may and may not be problematic. In addition, 

unlike the study by Olivera-Aguilar (2013), the current study examines the impact of 

invariance violations with dichotomous items, reflecting common measurement practice 

in educational settings. Chen (2008) noted that the impact of measurement invariance 

violations on substantive tests has not been thoroughly examined in categorical or 

dichotomous variables. Similar to Wirth (2008), the current study examines the potential 

for invariance violations to impact the estimated shape of change over time (i.e., linear 

vs. quadratic).  

This study investigates the potential issues that may arise if partial measurement 

invariance is ignored and observed total scores (without modeling the invariant 

parameters) at each measurement occasion are used in a latent growth model. Several 

models are specified to examine the impact of varying degrees of longitudinal 

measurement invariance violations. Two first-order LGMs, two second-order LGMs, and 

two second-order non-linear latent growth models (NLGM) were specified. The first 

order models use observed scores to model change. One second-order LGM and one 



60 

second-order NLGM constrain item parameters to be equivalent across measurement 

occasions (i.e., assuming strong measurement invariance). The other second-order LGM 

and NLGM allow non-invariant item parameters to be freely estimated across 

measurement occasions (i.e., explicitly modeling partial measurement invariance). As 

many researchers feel that small violations of measurement invariance (i.e. partial 

measurement invariance) are acceptable, the current study aims to examine how much 

measurement non-invariance is too much and whether modeling it provides more 

accurate estimates of growth. The type of invariance violation (weak or strong), the 

proportion of non-variant items, the size of the invariance violation, and the total length 

of the assessment will be varied to examine if and under which conditions growth models 

are robust to invariance violations. The study aims to answer five general research 

questions outlined below. 

Research Questions 

1. To what extent do varying degrees of strong measurement invariance violations 

impact the estimated parameters of a latent growth model? 

2. To what extent do varying degrees of weak measurement invariance violations 

impact the estimated parameters of a latent growth model? 

3. To what extent do varying degrees of strong measurement invariance violations 

impact the shape of the growth curve (i.e., linear, quadratic) in a latent growth 

model? 
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4. To what extent do varying degrees of weak measurement invariance violations 

impact the shape of the growth curve (i.e., linear, quadratic) in a latent growth 

model? 

5. Does modeling invariance violations (i.e., modeling partial measurement 

invariance) result in more accurate results than those observed in Research 

Question #1 – Research Question #4? 
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CHAPTER III 

 

METHODS 

 

 

 The current study aims to examine the extent to which varying degrees of 

longitudinal measurement invariance violations impact growth model parameters. The 

current section outlines the data simulation design, including each of the conditions 

examined. The models estimated are presented. Finally, the criteria by which the results 

were evaluated are described.  

Simulation Design 

 A first-order LGM was used to simulate individual theta values. The theta values 

for the first measurement occasion (the intercept of the growth model) follow a normal 

distribution with a mean of -1.0 and a variance of 1, N(-1.0,1.0). The growth parameters 

were simulated such that the linear growth was normally distributed with a mean of 0.5 

and a variance of 0.2, N(0.5, 0.2). Muthén and Muthén (2002) note that the ratio between 

the intercept and slope variance is commonly 5 to 1. Given that the intercept variance was 

set to 1.0, the slope variance was set to 0.2. To simulate variance around individual 

trajectories, a normally distributed error term with a mean of 0.0 and a variance of 1.5, 

N(0.0,1.5), was added to each individual’s simulated theta value at each time point. The 

intercept, magnitude of growth, and variability in growth and intercept parameters did not 

vary across conditions. Item level responses for the thetas were then generated from a 

2PL IRT model. Data were simulated for 3000 simulees on a dichotomously scored 
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assessment at four measurement occasions. Simulating data for 3000 individuals allowed 

for accurate and precise estimation of parameters, thus any errors should be attributable 

to model misfit, rather than sampling error. Four measurement occasions allowed for 

linear and non-linear (i.e., quadratic) slopes to be estimated for the LGM. Invariant item 

intercept parameters were drawn from a uniform distribution ranging from -2.0 to 2.0. 

Item loading parameters were drawn from a uniform distribution ranging from 0.6 to 1.5. 

These values represent typical IRT item parameter values and ensure that the addition of 

DIF will not result in extreme item parameters. Twenty-five replications within each 

condition were simulated. The conditions varied within the study are outlined in Table 2 

below. 

 

Table 2 

Conditions Varied in the Study 

Condition Levels 

Percent of non-invariant items 0%, 15%, 30%, 45% 

Magnitude of invariance violation Loading: 0.2, 0.3, 0.4 

Intercept: 0.4, 0.7, 1.0 

Type of invariance violation Loading, Intercept, Both 

Test length Short (20 items), Long (40 items) 

 

 

The conditions above are similar to those from several other studies examining 

the impact of invariance violations.  The literature has explored several conditions that 

may influence the impact of invariance violations in group comparisons or latent growth 

models. The conditions previously explored include sample size (Chen, 2008; Leite, 

2007; Olivera-Aguilar, 2013; Steinmetz, 2013; Wirth, 2008), number of items on the 

assessment (Leite, 2007; Olivera-Aguilar, 2013; Steinmetz, 2013), proportion of non-
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invariant items (Chen, 2008; Olivera-Aguilar, 2013; Steinmetz, 2013), magnitude of 

invariance violations in intercepts (Olivera-Aguilar, 2013; Steinmetz, 2013), magnitude 

of invariance violations in loadings (Olivera-Aguilar, 2013), and patterns of invariance 

violations (Chen, 2008; Wirth, 2008).  Many of these studies, however, examined the 

impact of invariance violations using continuous variables. Little work has considered the 

impact of invariance violations in dichotomous indicators on growth models. In addition, 

only two studies examined how violations of invariance in intercepts and loadings 

simultaneously influence the estimation of growth models(Leite, 2007; Wirth, 2008). 

Several studies have tangentially examined test information changes on group 

comparisons and growth models. While no study explicitly examined changes in test 

information, several of the studies examined systematically decreasing loadings and 

intercepts, which may also be interpreted as systematic decreases in information. Given 

the limitations in the literature related to invariance, other factors were given less 

emphasis in the current research. Instead, the focus was placed on the impact of various 

invariance violation scenarios. 

Proportion of Non-Invariant Items. Several studies have included the 

proportion of non-invariant items in their investigation of invariance violations (Chen, 

2008; Olivera-Aguilar, 2013; Steinmetz, 2013). The results of the studies suggest that the 

proportion of non-invariant items impacts comparisons between groups and growth 

models. Notably, the studies generally used a small number of continuous items, ranging 

between 4 and 15, more commonly seen in psychology literature. In the current study, the 

levels for the proportion of non-invariant items condition are 0%, 15%, 30%, or 45%. 
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While one study did note that 26 of the 97 comparisons in the author’s literature review 

had 90% or more of the loadings higher for one group than another, this did not seem to 

be a realistic condition for an educational assessment context.   

Magnitude of Invariance Violations. Item loadings and intercepts were 

simulated to either be invariant across measurement occasions, or to have some 

proportion of items with small, medium, or large violations of invariance across 

measurement occasions. Olivera-Aguilar (2013) described a process to calculate 

systematic decreases in item intercepts over time. In this process, the total amount of 

change in a parameter (i.e., the degree of the invariance violation) is divided by the 

number of measurement occasions. This approach represents a gradual change in item 

parameters across time.  In this study, the difference between the first and fourth 

measurement occasion will equal the small, medium, or large invariance violation 

specified. Nye (2011) outlined small, medium, and large values of DIF for item intercepts 

and slopes based on previous simulation research. Based on his results, the small, 

medium, and large DIF magnitudes for item intercepts were simulated to be 0.4, 0.7, and 

1.0 logits, respectively. Small, medium, and large DIF magnitudes for item slopes were 

0.2, 0.3, and 0.4, respectively.  

Type of Invariance Violation. Researchers have examined the impact of weak 

(i.e., item loading) and strong (i.e., item intercept) invariance violations, separately 

(Olivera-Aguilar, 2013; Steinmetz, 2013). These studies tend to suggest that violations of 

strong (intercept differences only) measurement invariance are more detrimental than 

violations of weak (loading differences only) measurement invariance violations. Only 
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two studies included a condition in which intercepts and loadings were non-invariant 

across measurement occasions (Leite, 2007; Wirth, 2008).  Wirth (2008) notes that when 

all items are constrained to be equal, despite partially invariance loadings and intercepts, 

the observed trajectories were non-linear. The type of invariance violation condition 

included weak, strong, and a combination of weak and strong invariance violations to 

further examine the relative importance of the type of violation in growth modeling 

contexts.  

Test Length. Several researchers have examined invariance violations with 

varying test lengths (Leite, 2007; Olivera-Aguilar, 2013; Steinmetz, 2013). Leite (2007) 

found that with more items some fit indices suggested a relatively well-fitting model, 

regardless of invariance violations. Steinmetz (2013) found that having fewer items may 

increase the chance of finding spurious differences. Notably, in the studies discussed, the 

total number of items is related to the proportion of non-invariant items. In these studies, 

the number of non-invariant items was fixed. Fixing the number of non-invariant items 

and varying the test length effectively changes the proportion of non-invariant items. The 

current study includes a preliminary investigation of whether having more items in total, 

but an equivalent proportion of non-invariant items, leads to differences in growth model 

results. Test lengths of 20 items and 40 items were chosen such that they represent typical 

test lengths for academic assessments and allow for integer values when combined with 

the proportion of non-invariant items condition. The 20 item exam was crossed with all 

conditions. Time constraints on estimation limited the number of conditions for which the 
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40 item exam could be examined. The conditions in which we examined the 40 item 

exam were chosen based on the results of the 20 item exam. 

Modeling Approaches 

All analyses were estimated in Mplus and results were summarized in R. Six 

modeling approaches were used in the proposed study. For four approaches a second-

order LGM was estimated. The first model constrained the intercepts and loadings to be 

equal across all measurement occasions (2LGMC). This model suggests a situation in 

which the latent variables are used in the LGM without testing for invariance across 

measurement occasions. Second, a second-order LGM was specified such that non-

invariant item parameters are freely estimated and invariant item parameters were 

constrained to be equivalent across measurement occasions (2LGMF). This model 

simulates a situation in which measurement invariance has been examined and partial 

measurement invariance is incorporated into the model. This model is the “true” model 

and would, ideally, perform best. Third, a non-linear (quadratic) second-order LGM was 

estimated. In this model, like the first model, the item parameters were constrained to be 

equivalent across measurement occasions (2NLGMC). Wirth (2008) found that the 

presence of invariance violations may lead to spurious non-linear trajectories. This model 

allows for further examination of this phenomenon. Finally, the fourth model estimated 

was a non-linear (quadratic) second-order LGM in which non-invariant item parameters 

were freely estimated and invariant item parameters were constrained to be equivalent 

across measurement occasions (2NLGMF). To identify the second-order models, the 

mean of the growth intercept factor and the variance of the time one measurement model 
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factor were set to their true values (-1.0 and 1.5, respectively). Other forms of model 

identification were possible and perhaps more traditional. This form of identification was 

chosen because it allowed for interpretation of results on the metric of the simulation and 

did not change overall model fit from what would have been found with alternative forms 

of identification. A summary of the four second-order modeling approaches is provided 

in Table 3 below.   

 

Table 3 

Summary of Second-Order Latent Growth Model Approaches 

    Item Constraints 

    All Items Equal 
Invariant Equal, 

Non-Invariant Free 

Trajectory 
Linear Model 1 Model 2 

Quadratic Model 3 Model 4 

 

 

In addition to the four second-order LGMs specified above, two first-order LGMs were 

estimated. The first model estimated linear growth (LGM), whereas the second estimated 

non-linear (quadratic) growth (NLGM). Identifying the second-order models with the 

growth intercept mean and time one factor variance made it difficult to replicate in the 

first-order models. In order to ensure the first-order models were identified and scaled 

commensurate with the second-order models, the sum score at each time point was 

treated as the single indicator for a time factor, as shown in Figure 5. The loadings and 

intercepts for the sum score on each time factor were constrained to be equal. The 

residual variance of each single indicator was constrained to be zero (i.e., all the 

variability in the sum score is explained by the time factor). As in the second order 
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models, the intercept factor mean and time one factor variance were fixed to their true 

values (-1.0 and 1.5, respectively). Specifying the first order models this way allows the 

first order models to be directly compared to the second-order models. In addition, the fit 

of the single-indicator factor model fits identically to a first-order growth model with the 

observed sum score at each time point (Figure 1). Table 4 displays the fit statistics for 

one replication of each first-order model specification approach and demonstrates the 

equivalency across the two approaches. All second-order models were estimated using 

weighted least squares means and variance adjusted (WLSMV) and first-order models 

were estimated with maximum likelihood (ML). 
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Figure 5. Single Indicator Latent Growth Model. 
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Table 4 

Fit for Observed Sum Score and Single-Indicator Factor Specifications of First-Order 

Model 

  
Χ

2 Degrees of 

Freedom 
p-value RMSEA CFI 

Observed Sum Score 8.652 5 0.1238 0.016 0.998 

Single-Indicator Factor 8.652 5 0.1238 0.016 0.998 

 

 

Evaluation Criteria 

 Several measures were used to judge the acceptability of model results from the 

six modeling approaches within each condition. Model fit was assessed using a 

combination of model fit criteria. Several model fit indices were used to evaluate model 

fit. Each index was chosen because it adds a unique perspective as to how well the model 

fits the data. Taken together, the indices provide a relatively holistic view of model-data 

fit. The first index is the χ
2
 statistic. The χ

2
 statistic examines the exact differences 

between the observed and model-implied covariance matrices. A non-significant χ
2
 

would indicate that the model fits the data well and that the model-implied covariance 

matrix is not significantly different than the observed covariance matrix. Notably, the χ
2
 

statistic is sensitive to sample size and thus may reject models with small differences 

between the observed and reproduced covariance matrices due to the large sample.  

 The root mean square error of approximation (RMSEA) is an absolute fit index 

sensitive to misspecification of factor loadings and detects misfit solely due to model 

misspecification, not due to random sampling error. It provides an estimate of model 

misspecification per degree of freedom, and values of 0.06 or less are encouraging (Hu & 
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Bentler, 1999). The comparative fit index (CFI) compares the fit of the proposed model 

to a baseline, or null, model in which all paths are set to be zero. In other words, the CFI 

indicates how much model fit improves when our model is compared to no model. This 

index ranges from 0 to 1 but is different than the other indices as larger values, 0 .95 or 

greater, indicate adequate model-data fit (Hu & Bentler, 1999). 

 Fit was compared between nested models. Nested models are constrained versions 

of another model. For example, Model 1 is nested within Model 2 such that if the non-

invariant parameters in Model 2 were constrained to be equal within item across 

measurement occasions, Model 2 would equal Model 1. For nested models, the chi-

square test can be used to examine whether the more complex model provides significant 

improvement in model fit.   

To examine the extent to which model parameters are accurately and precisely 

recovered, relative bias and root mean square error (RMSE) were evaluated for the 

growth model factor means (i.e., intercept and slope) and variances. The variance for the 

intercept factor represents whether all individuals score similarly at the initial time point 

or whether they vary in their scores. The slope variance describes whether individuals 

change similarly (i.e., little to no variability) or differently (i.e., a fair amount of 

variability). Relative bias is calculated by subtracting the true value from the estimated 

value and dividing the resulting difference by the true value, as shown in Equation 25 

below (Hoogland & Boomsma, 1998). Relative bias puts the bias on a percentage metric 

and makes comparing across conditions straightforward. Hoogland and Boomsma (1998) 
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suggest that, for parameter estimates, relative bias values of 0.05 or less are considered 

acceptable.   

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =  
𝜂̂−𝜂

𝜂
     (25) 

 

In Equation 25, 𝜂 represents the true value and 𝜂̂represents the estimated value. The 

RMSE takes into account the bias and variability of estimates and is calculated using the 

formula in Equation 26 below.  

 

𝑅𝑀𝑆𝐸 =  √(𝜂̂ − 𝜂)2      (26) 

 

 Finally, to examine the parameters estimated in the over-parameterized models 

(i.e., the non-linear models), the significance tests for the incorrectly modeled parameters 

were examined. A significant estimate for a parameter that was not included in the 

generating model (e.g., a quadratic slope) would suggest that the model provided results 

that could lead to incorrect conclusions about growth (i.e., Type I error).  

The type, size, and proportion of non-invariant items impact the information 

function for the assessment across measurement occasions. These changes in information 

should be considered when evaluating the results. While the issue of test information 

cannot be untangled from the conditions varied in the study, it can help add context to the 

results. 
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CHAPTER IV 

 

RESULTS 

 

 

Convergence 

Each replication was checked for convergence before analyzing results. A 

summary of convergence issues is provided in Table 5. None of the linear growth models 

(LGM, 2LGMC, and 2LGMF) had issues converging on a solution. All of the non-linear 

growth models (NLGM, 2NLGMC, and 2NLGMF), however, frequently had 

convergence issues. More specifically, most of the convergence issues were due to a non-

positive definite PSI matrix. Convergence concerns were prevalent in all conditions for 

the non-linear models and were seemingly unrelated to any particular condition varied in 

the study.  
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Table 5 

Summary of Non-Convergence Issues Across All Six Growth Modeling Approaches 

Loading 

DIF 

Intercept 

DIF 

Percent 

of DIF 
LGM NLGM 2LGMC 2NLGMC 2LGMF 2NLGMF 

None None N/A 0 11 0 14 0 14 

None Small 15% 0 11 0 13 0 13 

None Small 30% 0 10 0 13 0 13 

None Small 45% 0 10 0 12 0 11 

None Medium 15% 0 11 0 14 0 14 

None Medium 30% 0 9 0 11 0 11 

None Medium 45% 0 6 0 8 0 9 

None Large 15% 0 9 0 13 0 13 

None Large 30% 0 8 0 13 0 14 

None Large 45% 0 7 0 12 0 12 

Small None 15% 0 11 0 12 0 12 

Small None 30% 0 12 0 13 0 13 

Small None 45% 0 16 0 18 0 17 

Small Small 15% 0 9 0 13 0 12 

Small Small 30% 0 10 0 16 0 16 

Small Small 45% 0 12 0 16 0 16 

Small Medium 15% 0 11 0 13 0 13 

Small Medium 30% 0 11 0 13 0 13 

Small Medium 45% 0 10 0 16 0 16 

Small Large 15% 0 10 0 12 0 12 

Small Large 30% 0 8 0 11 0 10 

Small Large 45% 0 13 0 18 0 18 

Medium None 15% 0 10 0 13 0 13 

Medium None 30% 0 10 0 13 0 13 

Medium None 45% 0 14 0 17 0 17 

Medium Small 15% 0 9 0 10 0 10 

Medium Small 30% 0 7 0 8 0 7 

Medium Small 45% 0 10 0 12 0 12 

Medium Medium 15% 0 14 0 18 0 18 

Medium Medium 30% 0 13 0 18 0 18 

Medium Medium 45% 0 9 0 12 0 12 

Medium Large 15% 0 14 0 16 0 16 

Medium Large 30% 0 8 0 10 0 11 

Medium Large 45% 0 9 0 13 0 13 

Large None 15% 0 14 0 16 0 16 

Large None 30% 0 9 0 15 0 15 

Large None 45% 0 12 0 14 0 15 

Large Small 15% 0 6 0 11 0 11 

Large Small 30% 0 12 0 13 0 13 

Large Small 45% 0 13 0 17 0 18 

Large Medium 15% 0 14 0 16 0 16 
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Large Medium 30% 0 10 0 14 0 15 

Large Medium 45% 0 11 0 13 0 13 

Large Large 15% 0 12 0 13 0 13 

Large Large 30% 0 13 0 17 0 17 

Large Large 45% 0 12 0 15 0 15 

 

Model Fit 

 Model fit statistics were used to examine how well each model fit the data. The 

chi-squared statistic, RMSEA, and CFI estimates are presented for each modeling 

approach in the graphs below. In addition, nested model chi-squared statistics are 

presented.  

Chi-Squared. A significant chi-squared p-value suggests that the model-implied 

covariance matrix is significantly different than the observed covariance matrix. A 

significant difference between the two matrices suggests that the model does not 

adequately fit the data. The p-values for the chi-squared statistics are presented in Figures 

6-11. A red line at 0.05 represents the typical critical value to which chi-squared p-values 

are compared. The mean and standard deviation values for the p-values are included in 

Appendix A. For the first order linear model, results exhibited a wide range of p-values 

within all conditions. The chi-square p-values for the first-order linear model were more 

variable in conditions where there is a small percent of DIF and/or small intercept DIF. 

Conditions with a small percent of DIF and/or small intercept DIF had several p-values 

that suggested that the chi-square was non-significant (i.e., the model fit the data). 

Aggregating across the loading DIF size levels, the chi-squared p-values for the condition 

with 15% of items with small intercept DIF were significant 65% of the time. 

Conversely, conditions with substantial (in proportion and size) intercept DIF 
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consistently had chi-squared values that suggested the model did not fit the data well. 

Aggregating across the loading DIF size levels, the chi-squared p-values for the condition 

with 45% of items with large intercept DIF were significant 95% of the time. For the 

second-order linear modeling approaches, the median chi-squared p-values all suggested 

that the models did not fit the data (i.e., p< 0.05). The chi-squared p-values for the first-

order non-linear model were unrelated to the conditions varied in the study and were 

often not significant, suggesting the model fit the data well. On average, across all levels 

of all conditions, the chi-squared p-value for the first-order non-linear model was only 

significant 11% of the time. For the second-order non-linear modeling approaches, the 

median chi-squared p-values all suggested that the models did not fit the data (i.e., p< 

0.05). Notably, the chi-squared statistic is known to be sensitive to sample size and 

should be interpreted with caution. 
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Figure 6. Chi-Squared p-Values for the First-Order Latent Growth Model. 
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Figure 7. Chi-Squared p-Values for the Constrained Second-Order Latent Growth Model. 
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Figure 8. Chi-Squared p-Values for the Free Second-Order Latent Growth Model. 
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Figure 9. Chi-Squared p-Values for the First-Order Non-Linear Latent Growth Model. 
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Figure 10. Chi-Squared p-Values for the Constrained Second-Order Non-Linear Latent 

Growth Model. 
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Figure 11. Chi-Squared p-Values for the Free Second-Order Non-Linear Latent Growth 

Model. 

 

 

Root Mean Square Error of Approximation. The RMSEA estimates for all 

modeling approaches are presented in Figures 12-17. A red line at 0.06 represents the 

typical value to which RMSEA values are compared. The mean and standard deviation 

values for the RMSEA are included in Appendix B. As a reminder, lower RMSEA values 
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represent better model-data fit. For all modeling approaches and all conditions, the 

RMSEA values were below the suggested cutoff for RMSEA suggesting that all models 

fit the data well. The RMSEA values for all modeling approaches and all conditions had 

very little variability. The first-order models (linear and non-linear) were more variable 

than the second-order models.  

 

 

Figure 12. RMSEA Values for the First-Order Latent Growth Model. 
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Figure 13. RMSEA Values for the Constrained Second-Order Latent Growth Model. 



86 

 

Figure 14. RMSEA Values for the Free Second-Order Latent Growth Model. 
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Figure 15. RMSEA Values for the First-Order Non-Linear Latent Growth Model. 
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Figure 16. RMSEA Values for the Constrained Second-Order Non-Linear Latent Growth 

Model. 
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Figure 17. RMSEA Values for the Free Second-Order Non-Linear Latent Growth Model. 

 

 

Comparative Fit Index. The CFI estimates for all modeling approaches are 

presented in Figures 18-23. A red line at 0.95 represents the typical value to which CFI 

values are compared. The mean and standard deviation values for the CFI are included in 

Appendix C. As a reminder, higher CFI values represent better model-data fit. The CFI 

values for all modeling approaches and all conditions were well above the cutoff value of 
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0.95 suggesting that all models fit the data well. In addition, the CFI values had very little 

variability across replications.  

 

 

Figure 18. CFI Values for the First-Order Latent Growth Model. 



91 

 

Figure 19. CFI Values for the Constrained Second-Order Latent Growth Model. 
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Figure 20. CFI Values for the Free Second-Order Latent Growth Model. 
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Figure 21. CFI Values for the First-Order Non-Linear Latent Growth Model. 
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Figure 22. CFI Values for the Constrained Second-Order Non-Linear Latent Growth 

Model. 
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Figure 23. CFI Values for the Free Second-Order Non-Linear Latent Growth Model. 

 

 

Nested Model Comparison.  Three nested model comparisons were conducted to 

determine whether the addition of parameters to a less constrained (i.e., less 

parsimonious) model significantly improved model fit. The first chi-squared difference 

test compared the nested first-order models. The second and third chi-square difference 

tests compared nested models to the “true” model (i.e., the second-order free latent 
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growth model). The results of the chi-squared difference tests are presented in Figures 

24-26. The mean and standard deviation values for the chi-squared difference tests are 

included in Appendix D. 

The first nested model comparison was between the first-order linear growth 

model and the first-order non-linear growth model. This chi-square difference test 

examined whether the addition of the non-linear slope, non-linear slope variance, and the 

corresponding covariances significantly improved model fit over the first-order linear 

model. The p-values for the chi-squared difference tests between the first-order linear and 

non-linear model are presented in Figure 24. Notably, because some of the non-linear 

models did not converge to a solution, there were fewer replications per condition than 

originally planned. The results suggested that the addition of the non-linear slope (and the 

associated variance and covariance parameters) often significantly improved model fit. 

The variability and range of the p-values decreased as the proportion of DIF items and 

the size of intercept DIF increased. Thus, as the proportion of non-invariant items and the 

size of intercept invariance violations increased, the chi-squared difference tests more 

consistently suggested that the addition of the non-linear parameters significantly 

improved model fit. Marginalizing across the loading DIF conditions, the chi-square 

difference test was significant 86% of the time for the condition with 45% of items with 

large intercept DIF, 91% of the time for the condition with 45% of items with medium 

intercept DIF, and 90% of the time for the condition with 30% of items with large 

intercept DIF. 
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Figure 24. Chi-Squared Difference Test p-Value Comparing the First-Order Linear and 

Non-Linear Models 

 

 

 The second chi-squared difference test compared the second-order free latent 

growth model and the second-order free non-linear latent growth model. This 

comparison, much like the first-order comparisons, examined whether adding the non-

linear item parameters (i.e., non-linear slope, non-linear variance, and the associated 
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covariances) significantly improved model fit over the linear model. As with the first-

order model comparison, many of the non-linear models did not converge and results 

should be interpreted with caution as there are fewer replications than intended. The p-

values for the chi-squared difference test between the second-order free linear model and 

the second-order free non-linear model are presented in Figure 25. The median p-value 

was often below the 0.05 cutoff suggesting that many of the comparisons identified the 

non-linear model as a significant improvement on model fit. Notably, the p-values for the 

chi-squared comparisons had the least variability in the conditions with 45% of items 

with DIF, large intercept DIF, and large or medium loading DIF. In the condition with 

45% of items with large intercept and large loading DIF, the chi-squared difference test 

found significant model fit improvement when the non-linear parameters were added 

80% of the time.  
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Figure 25. Chi-Squared Difference Test p-Value Comparing the Second-Order Linear 

Free and Non-Linear Free Models 

 

 

 The third chi-squared difference test compared the second-order free linear model 

with the second-order constrained linear model. This comparison examined whether 

freely estimating the non-invariant item parameters significantly improved model fit. The 

results suggested that for almost all replications in all conditions, modeling the invariance 
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violations significantly improved model fit. The p-values were slightly more variable in 

conditions with a small proportion of items with DIF, but overall suggested that the 

model fit significantly better when the invariance violations were explicitly modeled. 

 

 

Figure 26. Chi-Squared Difference Test p-Value Comparing the Second-Order Linear 

Constrained and Linear Free Models 
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Parameter Recovery 

 Bias and RMSE were calculated to examine parameter recovery for the intercept 

variance, slope, and slope variance growth parameters. Bias and RMSE results are 

presented graphically for each of the six modeling approaches. 

Intercept Variance. The relative bias estimates for the intercept variance 

parameter are presented in Figures 27-32. The two vertical red lines are plotted at -0.05 

and 0.05 to outline the acceptable range. The mean and standard deviation values for the 

relative bias of the intercept variance are included in Appendix E. The relative bias in 

intercept variance was seemingly unrelated to the size of loading DIF, intercept DIF, or 

the proportion of DIF.  Intercept variance parameter recovery, however, did seem to be 

related to the modeling approach used to model the growth. All of the linear models 

(LGM, 2LGMC, and 2LGMF) performed moderately well in recovering the intercept 

variance parameter value. The relative bias for the first-order linear model was within the 

acceptable range approximately 36% of the time (aggregated across all conditions). The 

estimates for both second-order linear models (2LGMC and 2LGMF) tended to be 

slightly overestimated and were often just out of the acceptable range for relative bias 

(across all conditions, the values were outside the range approximately 80% and 77% of 

the time for the 2LGMC and 2LGMF, respectively). The three non-linear models 

(NLGM, 2NLGMC, and 2NLGMF) performed similarly to one another in terms of 

intercept variance bias; however the number of iterations was small given that many of 

the non-linear models did not converge. The range of intercept variance relative bias was 

much larger for the non-linear models than the linear models. Across all conditions, 87%, 
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82%, and 83% of the intercept variance relative bias values fell outside of the acceptable 

range for the NLGM, 2NLGMC, and 2NLGMF, respectively. 

 

Figure 27. Intercept Variance Relative Bias for the First-Order Latent Growth Model.  
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Figure 28. Intercept Variance Relative Bias for the Constrained Second-Order Latent 

Growth Model. 
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Figure 29. Intercept Variance Relative Bias for the Free Second-Order Latent Growth 

Model. 
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Figure 30. Intercept Variance Relative Bias for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 31. Intercept Variance Relative Bias for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 32. Intercept Variance Relative Bias for the Free Second-Order Non-Linear Latent 

Growth Model. 

 

 

 The RMSE estimates for the intercept variance parameter are presented in Figures 

33-38. The mean and standard deviation values for the RMSE of the intercept variance 

are included in Appendix F. The RMSE values for the intercept variance parameter in the 

LGM, 2LGMC, and 2LGMF modeling approaches were relatively similar across all 



108 

conditions varied in the study. As with the linear models, the intercept variance RMSE 

values for the non-linear models (NLGM, 2NLGMC, and 2NLGMF) did not depend on 

the conditions in the study. The values were more variable for the non-linear models. 

 

 

Figure 33. Intercept Variance Root Mean Square Error for the First-Order Latent Growth 

Model. 
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Figure 34. Intercept Variance Root Mean Square Error for the Constrained Second-Order 

Latent Growth Model. 
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Figure 35. Intercept Variance Root Mean Square Error for the Free Second-Order Latent 

Growth Model. 
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Figure 36. Intercept Variance Root Mean Square Error for the First-Order Non-Linear 

Latent Growth Model. 



112 

 

Figure 37. Intercept Variance Root Mean Square Error for the Constrained Second-Order 

Non-Linear Latent Growth Model. 
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Figure 38. Intercept Variance Root Mean Square Error for the Free Second-Order Non-

Linear Latent Growth Model. 

 

 

Slope. The bias estimates for the slope parameter are presented in Figures 39-44. 

The two vertical red lines are plotted at -0.05 and 0.05 to outline the acceptable range. 

The mean and standard deviation values for the relative bias of the slope are included in 

Appendix G. The relative bias of the slope parameter was modestly related to intercept 
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DIF size and the percent of DIF. In the linear modeling (LGM, 2LGMC, and 2LGMF) 

approaches the relative bias was generally within the acceptable range when the percent 

of DIF was 15%. In the 30% DIF conditions, the relative bias was within acceptable 

conditions except for when there was large intercept DIF. In the conditions with 45% 

DIF, the relative bias exceeded the acceptable range when the intercept DIF was medium 

or large. These findings were more pronounced for the second-order modeling 

approaches, particularly the 2LGMF modeling approach for which 100% of the slope 

relative bias estimates fell outside of the acceptable range. The non-linear modeling 

approaches (NLGM, 2NLGMC, and 2NLGMF) should be interpreted with caution as 

there are fewer replications per condition. Of the replications that converged, the pattern 

of relative slope bias in the non-linear models was similar to the patterns in the 2LGMF 

modeling approach. The conditions where 30-45% of items had large intercept DIF had 

notably larger relative bias (100% fell outside of the acceptable range) than other 

conditions for all non-linear modeling approaches. The relative bias in the problematic 

conditions (i.e., conditions in which 30-45% of items had large intercept DIF) for the 

non-linear models was notably larger than the relative bias in the corresponding linear 

models. 
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Figure 39. Slope Relative Bias for the First-Order Latent Growth Model. 
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Figure 40. Slope Relative Bias for the Constrained Second-Order Latent Growth Model. 
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Figure 41. Slope Relative Bias for the Free Second-Order Latent Growth Model. 
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Figure 42. Slope Relative Bias for the First-Order Non-Linear Latent Growth Model. 
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Figure 43. Slope Relative Bias for the Constrained Second-Order Non-Linear Latent 

Growth Model. 
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Figure 44. Slope Relative Bias for the Free Second-Order Non-Linear Latent Growth 

Model. 

 

 

The RMSE estimates for the intercept variance parameter are presented in Figures 

45-50. The mean and standard deviation values for the RMSE of the slope are included in 

Appendix H. Most of the slope RMSE values for the linear modeling approaches (LGM, 

2LGMC, and 2LGMF) were essentially zero. In the conditions with 45% large intercept 
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DIF, the values were slightly larger compared to the other conditions, but were small in 

an absolute sense. The RMSE values for the non-linear models (NLGM, 2NLGMC, and 

2NLGMF) were larger than their linear modeling counterparts and tended to increase as 

the proportion of DIF and the size of intercept DIF increased. 

 

 

Figure 45. Slope Root Mean Square Error for the First-Order Latent Growth Model. 
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Figure 46. Slope Root Mean Square Error for the Constrained Second-Order Latent 

Growth Model. 
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Figure 47. Slope Root Mean Square Error for the Free Second-Order Latent Growth 

Model. 
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Figure 48. Slope Root Mean Square Error for the First-Order Non-Linear Latent Growth 

Model. 



125 

 

Figure 49. Slope Root Mean Square Error for the Constrained Second-Order Non-Linear 

Latent Growth Model. 
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Figure 50. Slope Root Mean Square Error for the Free Second-Order Non-Linear Latent 

Growth Model. 

 

 

Slope Variance. The bias estimates for the slope variance parameter are 

presented in Figures 51-56. The two vertical red lines are plotted at -0.05 and 0.05 to 

outline the acceptable range. Note that the range of the x-axis for the slope variance 

charts needed to be changed to be able to plot the residual bias values. The mean and 
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standard deviation values for the relative bias of the slope variance are included in 

Appendix I. The slope variance parameter had the largest relative bias across all 

modeling approaches and all conditions. The relative bias for the slope variance 

parameter in the linear modeling approaches (LGM, 2LGMC, and 2LGM) were the 

smallest across all modeling approaches, but were not within the acceptable range for any 

of the conditions. The relative bias for the linear modeling approaches was unrelated to 

the conditions varied in the study. Compared to the linear models, the non-linear 

modeling approaches (NLGM, 2NLGMC, and 2NLGMF) had much larger and more 

variable relative bias estimates for the slope variance parameter.  The relative bias for the 

non-linear modeling approaches were seemingly unrelated to the conditions varied in the 

study. 
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Figure 51. Slope Variance Relative Bias for the First-Order Latent Growth Model. 
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Figure 52. Slope Variance Relative Bias for the Constrained Second-Order Latent 

Growth Model. 
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Figure 53. Slope Variance Relative Bias for the Free Second-Order Latent Growth 

Model. 
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Figure 54. Slope Variance Relative Bias for the First-Order Non-Linear Latent Growth 

Model. 
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Figure 55. Slope Variance Relative Bias for the Constrained Second-Order Non-Linear 

Latent Growth Model. 
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Figure 56. Slope Variance Relative Bias for the Free Second-Order Non-Linear Latent 

Growth Model. 

 

 

The RMSE estimates for the intercept variance parameter are presented in Figures 

57-62. The mean and standard deviation values for the relative bias of the slope variance 

are included in Appendix J. The slope variance RMSE values for the linear modeling 

approaches (LGM, 2LGMC, and 2LGMF) were near zero for all conditions varied in the 
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study. The non-linear modeling approaches (NLGM, 2NLGMC, and 2NLGMF) had 

larger RMSE values and had more variability in the slope variance RMSE values. As 

with the linear models, the values were not related to the conditions varied in the study. 

 

Figure 57. Slope Variance Root Mean Square Error for the First-Order Latent Growth 

Model. 
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Figure 58. Slope Variance Root Mean Square Error for the Constrained Second-Order 

Latent Growth Model. 
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Figure 59. Slope Variance Root Mean Square Error for the Free Second-Order Latent 

Growth Model. 
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Figure 60. Slope Variance Root Mean Square Error for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 61. Slope Variance Root Mean Square Error for the Constrained Second-Order 

Non-Linear Latent Growth Model. 
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Figure 62. Slope Variance Root Mean Square Error for the Free Second-Order Non-

Linear Latent Growth Model. 

 

 

Incorrectly Specified Growth Parameters 

 There were several parameters modeled in the modeling approaches that were not 

included in the generating model. To investigate whether the models correctly recovered 

these parameters the p-values and estimates were examined. Ideally the parameter 
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estimates that were not included in the generating model should be zero, thus a 

significant p-value would indicate poor parameter recovery (i.e., Type I error). For the 

linear models, the only parameter that was set to zero in the generating model was the 

covariance between the intercept and slope. For the non-linear models, the quadratic 

slope, quadratic slope variance, and covariances (intercept with slope, intercept with 

quadratic slope, and slope with quadratic slope) were all zero in the generating model. 

Intercept-Slope Covariance. The p-values associated with the estimate of the 

intercept-slope covariance are presented in Figures 63-68. A red line is drawn at 0.05 to 

represent the critical value with which the p-value is often compared to determine 

statistical significance. The mean and standard deviation values for the p-value of the 

intercept-slope covariance are included in Appendix K. The p-values for the first-order 

linear model were often non-significant in the conditions with a small proportion of DIF 

and no intercept DIF, but still had a larger Type I error than typically acceptable (41% for 

the conditions with no intercept DIF and a small number of items with all sizes of loading 

DIF). In the conditions with 30% of items with DIF and small, medium, or large intercept 

DIF often had significant p-values associated with the covariance between the intercept 

and slope. In the conditions with 45% of items with DIF, the variability in p-values 

decreased as the size of the intercept DIF increased. The Type I error rate for the 

condition with 45% of items with large intercept DIF, aggregated across all loading DIF 

sizes, was 73%. The p-values for the second-order linear models (2LGMC and 2LGMF) 

suggested that the estimate for the intercept-slope covariance was often statistically 

significant (81% across all conditions in the 2LGMC and 83% across all conditions in the 
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2LGMF). The p-values for the second-order linear models were slightly less variable 

when the size of intercept DIF was large and when there was a large percent of DIF 

items. The p-values for non-linear models (NLGM, 2NLGMC, and 2NLGMF) suggested 

that the estimate for the intercept-slope parameter was typically not significant. The Type 

I error rate for the covariance between the intercept and slope was 0.4%, 1%, and 1% 

across all conditions for the NLGM, 2NLGMC, and 2NLGMF, respectively. Thus, the 

non-linear models did a markedly better job recovering the intercept-slope covariance 

parameter than the linear models. 
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Figure 63. Intercept-Slope Covariance p-Value for the First-Order Latent Growth Model. 
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Figure 64. Intercept-Slope Covariance p-Value for the Constrained Second-Order Latent 

Growth Model. 
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Figure 65. Intercept-Slope Covariance p-Value for the Free Second-Order Latent Growth 

Model. 
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Figure 66. Intercept-Slope Covariance p-Value for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 67. Intercept-Slope Covariance p-Value for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 68. Intercept-Slope Covariance p-Value for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

The estimated values for the intercept-slope covariance parameter are presented in 

Figures 69-74. The mean and standard deviation values for the intercept-slope covariance 

estimates are included in Appendix L. Although the p-values for the linear models often 

suggested that the covariance between the intercept and slope was often statistically 
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significant, the estimated values were near zero for all conditions. The linear model 

results suggested that the covariance parameter was estimated as statistically, but not 

practically, significant. The median values for the first-order non-linear model was also 

near zero, but were more variable than in the linear conditions. The median values for the 

second-order non-linear models (2NLGMC and 2NLGMF) were slightly larger in 

magnitude than the linear models, and were notably more variable. For the linear and 

non-linear models, the covariance between the intercept and slope was often estimated as 

negative. 
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Figure 69. Intercept-Slope Covariance Estimates for the First-Order Latent Growth 

Model. 
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Figure 70. Intercept-Slope Covariance Estimates for the Constrained Second-Order 

Latent Growth Model. 
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Figure 71. Intercept-Slope Covariance Estimates for the Free Second-Order Latent 

Growth Model. 
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Figure 72. Intercept-Slope Covariance Estimates for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 73. Intercept-Slope Covariance Estimates for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 74. Intercept-Slope Covariance Estimates for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

Intercept-Quadratic Slope Covariance. The p-values associated with the 

estimate of the intercept-quadratic slope covariance are presented in Figures 75-77. A red 

line is drawn at 0.05 to represent the critical value with which the p-value is often 

compared to determine statistical significance. The mean and standard deviation values 
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for the p-values of the intercept-quadratic slope covariance are included in Appendix M. 

For non-linear models, the p-values suggested that the intercept-quadratic slope estimate 

was almost always non-significant (2%, 0.4%, and 0.4% Type I error rate for the NLGM, 

2NLGMC, and 2NLGMF, respectively). Thus, the non-linear models did an adequate job 

recovering the non-significant estimate for the intercept-quadratic slope covariance 

parameter.  
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Figure 75. Intercept-Quadratic Slope Covariance p-Value for the First-Order Non-Linear 

Latent Growth Model. 
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Figure 76. Intercept-Quadratic Slope Covariance p-Value for the Constrained Second-

Order Non-Linear Latent Growth Model. 
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Figure 77. Intercept-Quadratic Slope Covariance p-Value for the Free Second-Order 

Non-Linear Latent Growth Model. 

 

 

The estimated values for the covariance between the intercept and quadratic slope 

are presented in Figures 78-80. The mean and standard deviation values for the intercept-

quadratic slope covariance estimates are included in Appendix N. As suggested by the 
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non-significant p-values, the estimates for the intercept-quadratic slope covariance were 

near zero for all non-linear models across all conditions.  

 

 

Figure 78. Intercept-Quadratic Slope Covariance for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 79. Intercept-Quadratic Slope Covariance for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 80. Intercept-Quadratic Slope Covariance for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

Slope-Quadratic Slope Covariance. The p-values associated with the estimate of 

the slope-quadratic slope covariance are presented in Figures 81-83. The mean and 

standard deviation values for the p-values for the slope-quadratic slope covariance are 

included in Appendix O. A red line is drawn at 0.05 to represent the critical value with 
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which the p-value is often compared to determine statistical significance. As with the 

other covariance estimates, the p-values suggested that the non-linear models recovered 

the slope-quadratic slope parameter well. The p-values were almost all non-significant 

suggesting that the estimated value for the slope-quadratic slope covariance estimate was 

not significantly different than zero. The Type I error rate across all conditions for the 

NLGM, 2NLGMC, and 2NLGMF was 10%, 6%, and 6%, respectively.  
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Figure 81. Slope-Quadratic Slope Covariance p-Value for the First-Order Non-Linear 

Latent Growth Model. 
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Figure 82. Slope-Quadratic Slope Covariance p-Value for the Constrained Second-Order 

Non-Linear Latent Growth Model. 
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Figure 83. Slope-Quadratic Slope Covariance p-Value for the Free Second-Order Non-

Linear Latent Growth Model. 

 

 

The estimated parameters for the covariance between the linear slope and the 

quadratic slope are presented in Figures 84-86. The mean and standard deviation values 

for the slope-quadratic slope covariance estimates are included in Appendix P. As with 

the other covariance parameters in the non-linear models, the estimated values were near 
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zero. The small magnitude was unsurprising given the non-significant p-values associated 

with the slope-quadratic slope covariance estimates.  

 

 

Figure 84. Slope-Quadratic Slope Covariance for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 85. Slope-Quadratic Slope Covariance for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 86. Slope-Quadratic Slope Covariance for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

Quadratic Slope. The p-values associated with the estimate of the quadratic slope 

estimate are presented in Figures 87-89. A red line is drawn at 0.05 to represent the 

critical value with which the p-value is often compared to determine statistical 

significance. The mean and standard deviation values for the p-value for the quadratic 
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slope are included in Appendix Q. For all non-linear models (NLGM, 2NLGMC, and 

2NLGMF), the p-values suggested that the quadratic slope was often statistically 

significant. For the first-order non-linear model, the median p-values in the conditions 

with a low proportion of DIF and/or small intercept DIF were frequently non-significant. 

The variability in p-values for all models was much smaller in the conditions with 45% of 

items containing medium or large intercept DIF. For these conditions, the quadratic slope 

was almost always statistically significant. The Type I error rate was 71% in the 

condition with 45% of items with large intercept DIF. For the second-order models, the 

quadratic slope parameter was often estimated as statistically significant. For the 

conditions with 45% of items with large intercept DIF, the Type I error rate was 89% for 

the 2NLGMC and 100% for the 2NLGMF. 
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Figure 87. Quadratic Slope Estimate p-Value for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 88. Quadratic Slope Estimate p-Value for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 89. Quadratic Slope Estimate p-Value for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

The estimated quadratic slope parameters for the non-linear models are presented 

in Figures 90-92. The mean and standard deviation values for the quadratic slope 

estimates are included in Appendix R. For all non-linear models, the estimated value of 

the quadratic slope parameter was essentially zero across all conditions. Whereas the p-
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values suggested that the quadratic slope was statistically significant in the conditions 

with a large percent of large intercept DIF, the estimated values are not practically 

significant. 

 

 

Figure 90. Quadratic Slope Estimate for the Constrained Second-Order Non-Linear 

Latent Growth Model. 
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Figure 91. Quadratic Slope Estimate for the Constrained Second-Order Non-Linear 

Latent Growth Model. 
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Figure 92. Quadratic Slope Estimate for the Free Second-Order Non-Linear Latent 

Growth Model. 

 

 

Quadratic Slope Variance. The p-values associated with the estimate of the 

quadratic slope variance estimate are presented in Figures 93-95. A red line is drawn at 

0.05 to represent the critical value with which the p-value is often compared to determine 

statistical significance. The mean and standard deviation values for the p-values for the 
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quadratic slope variance are included in Appendix S. Across all conditions the p-values 

for the non-linear models (NLGM, 2NLGMC, and 2NLGMF) suggested that the 

quadratic slope variance was typically estimated to be non-significant. The variability in 

p-values was relatively large, but almost all p-values for all conditions were above the 

0.05 critical value. Across all conditions, the Type I error rate for the NLGM, 2NLGMC, 

and 2NLGMF was 10%, 5%, and 5%, respectively. 
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Figure 93. Quadratic Slope Variance Estimate p-Value for the First-Order Non-Linear 

Latent Growth Model. 
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Figure 94. Quadratic Slope Variance Estimate p-Value for the Constrained Second-Order 

Non-Linear Latent Growth Model. 
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Figure 95. Quadratic Slope Variance Estimate p-Value for the Free Second-Order Non-

Linear Latent Growth Model. 

 

 

The estimates for the quadratic slope variance parameter in the non-linear models 

are presented in Figures 96-98. The mean and standard deviation values for the quadratic 

slope variance estimates are included in Appendix T. The estimates for all non-linear 
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models were essentially zero in all conditions. This result was not surprising given that 

the p-values suggested that the estimates were not significant. 

 

 

Figure 96. Quadratic Slope Variance Estimate for the First-Order Non-Linear Latent 

Growth Model. 
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Figure 97. Quadratic Slope Variance Estimate for the Constrained Second-Order Non-

Linear Latent Growth Model. 
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Figure 98. Quadratic Slope Variance Estimate for the Free Second-Order Non-Linear 

Latent Growth Model. 

 

 

Preliminary Examination of Test Length 

Based on the results of the 20-item conditions, two conditions were prioritized for 

examination with a 40-item exam. The results of the 20-item exam suggested that the size 

of loading DIF often had little to no impact on the results. The proportion of items with 
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DIF and the size of intercept DIF often had an impact that increased as the proportion of 

items and size of DIF increased. Based on these results, two conditions were examined 

with a 40-item exam: 15% of items with large intercept DIF and no loading DIF, and 

30% of items with large intercept DIF and no loading DIF. Due to estimation time 

constraints, 5 replications of each condition were simulated and estimated for the 2LGMF 

and 2LGMC modeling approaches. 

Results for the limited number of replications for the 40-item conditions looked 

very similar to the 20-item exam. The 2LGMC and 2LGMF results for the selected 20- 

and 40-item conditions are presented in Appendix U and V, respectively. The fit indices, 

parameter recovery, and the incorrectly specified non-linear growth parameters were all 

comparable to the corresponding 20-item exam results. These results suggest that type of 

DIF and proportion of DIF items have a large impact, but that the length of the test itself 

does not seem to be an important factor. 
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CHAPTER V 

 

DISCUSSION 

 

 

 The purpose of the current study was to examine the impact of longitudinal 

measurement invariance violations on growth models. Six longitudinal growth models 

were fit to data with varying degrees of measurement invariance violations. A first-order 

linear growth model was fit to examine the impact of ignoring invariance violations using 

a summated score. A second-order linear growth model that constrained all item 

parameters to be equivalent across measurement occasions allowed the examination of 

invariance violations when item parameters were modeled with a 2PL. This model differs 

from the first-order model such that invariance violations can be examined when the 

items are allowed to be weighted by their factor loadings (a-parameter). A second-order 

linear growth model in which invariant item parameters were fixed to be equivalent 

across time and non-invariant item parameters were allowed to be freely estimated was 

also fit to the data. This model examined the effect of modeling the invariance violation 

(i.e., allowing for partial measurement invariance). In addition to the three linear growth 

models described, analogous non-linear growth models were estimated. The non-linear 

models examined whether invariance violations influence the estimated shape of growth.  

 Model convergence, model fit, growth model parameter recovery, and the shape 

of growth were evaluated. All of the linear models converged to a solution, whereas 

many of the non-linear models did not converge. This is likely due to the fact that the 
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non-linear models are grossly misspecified (Diallo, Morin, & Parker, 2014). Notably, the 

non-convergence of the non-linear models should be an indicator to researchers that the 

model may be misspecified.  

 The model fit was evaluated using three fit indices: chi-squared, RMSEA, and 

CFI. For the first-order linear growth model, the chi-squared values were often 

significant, suggesting that the model does not fit the data well. The chi-squared values 

were most consistently significant in the conditions with a moderate or large proportion 

of DIF and/or moderate or large intercept DIF. The RMSEA and CFI values for the first-

order linear growth model all suggest that the model fits the data well. The fit statistics 

for the first-order non-linear models all suggest that the non-linear growth model 

adequately fits the data across all conditions. Thus, the traditional fit indices provided no 

indication of model misspecification in the evaluation of overall growth model fit. The fit 

statistics for all of the second-order models, both linear and non-linear, all followed the 

same pattern. The chi-squared values were unrelated to the conditions varied in the study 

and suggested that none of the second-order models fit the data well. The RMSEA and 

CFI were also unrelated to the conditions in the study and all suggested that the second-

order models sufficiently fit the data. The traditional fit indices were not able to identify 

the invariance violations or that the second-order free latent growth model was the true 

model. 

 Three nested model comparisons were conducted to examine whether a chi-

squared difference test could detect differences between nested models. The first model 

comparison examined whether the addition of a non-linear slope (and the accompanying 



186 

variance components) significantly improved model fit in the first-order models. The 

results suggested that the non-linear model often suggested that the non-linear parameters 

significantly improved model fit over the linear model. As the proportion of DIF and the 

size of the intercept DIF increased, the chi-squared difference test more consistently 

suggested that the non-linear model significantly improved fit. In addition to the 

traditional fit indices, the chi-squared difference test also suggested that the non-linear 

model is the best fitting model to the data. This is consistent with the results found in 

Wirth (2008) that suggest DIF may lead to incorrect conclusions about the shape of 

growth. The second model comparison also examined the differences between a linear 

and non-linear model, but used the second-order models. This comparison provided 

insight about whether the inclusion of a measurement model (with the non-invariant item 

parameters freely estimated) could alleviate the shape of growth issues created by 

invariance violations and identify the true (i.e., 2LGMF) model. The results of the chi-

squared difference test between the second-order free linear model and the second-order 

free non-linear model suggested that the non-linear model often significantly improved 

model fit over the linear model. This finding was more prevalent in conditions with a 

large proportion of items with large intercept and loading DIF. The inclusion of the 

measurement model may have marginally alleviated the shape of growth issues caused by 

invariance violations as the number of significant chi-squared difference tests for the 

second-order models was slightly lower than the first-order models. The results, however, 

still suggest that when DIF is present a researcher would often choose a non-linear model 

over the true linear model based on the results of the chi-squared difference tests. The 
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final model comparison examined the differences between the second-order free and 

second-order constrained models. This comparison provided insight regarding whether 

modeling partial measurement invariance significantly improved model fit. The results 

suggested that modeling the partial measurement invariance almost always significantly 

improved model fit. Thus, the chi-squared difference test was able to identify the true 

model (i.e., 2LGMF). Overall, the nested model comparisons suggest that researchers 

may be able to correctly model partial measurement invariance, but that DIF may cause 

researchers to come to erroneous conclusions about the shape of growth, regardless of 

whether partial measurement invariance is modeled. 

 The intercept variance, slope, and slope variance parameters were examined to 

determine how well each model recovered the growth model parameters. The pattern of 

parameter recovery was similar across all three linear models (LGM, 2LGMC, and 

2LGMF). The intercept variance parameter was modestly recovered by all three linear 

growth models for all conditions. For the second-order models, the intercept parameter 

was often slightly overestimated. The slope parameter was recovered well by the linear 

models in some of the conditions. The slope parameter was overestimated in the 

conditions with 30% of items with large intercept DIF, 45% of items with moderate 

intercept DIF, and 45% of items with large intercept DIF. This finding was most 

prominent in the second-order free latent growth model, which is the “true” model. This 

finding suggests that researchers estimating growth models in situations where the 

measure contains longitudinal measurement invariance violations could be misled about 

the magnitude of growth. In the case where items get easier over time, growth is 
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overestimated. The reverse is presumably true, although it was not addressed in the 

current research. The slope variance was not well recovered by any of the linear models 

across all conditions. As with the linear models, the pattern of parameter recovery was 

similar across the three non-linear models (NLGM, 2NLGMC, and 2NLGMF). Notably, 

many of the non-linear models did not converge so the results should be interpreted with 

caution. The range of intercept variance parameters was notably larger than in the linear 

models. The slope parameter was overestimated in the non-linear models. The 

overestimation was most severe in conditions with 30% of items with moderate intercept 

DIF, 30% of items with large intercept DIF, 45% of items with moderate intercept DIF, 

and 45% of items with large intercept DIF. As with the linear models, the results suggest 

that, when longitudinal measurement invariance violations are present, researchers may 

make inaccurate conclusions about the magnitude of change over time. Again, in this 

study the growth was overestimated, but varying DIF directions were not examined. The 

slope variance parameter was not recovered well by any of the non-linear models in any 

of the conditions. As with the intercept variance, the slope variance estimates were far 

more variable in the non-linear models compared to the linear models.  

 The model parameters estimated in the growth model that were not included in 

the generating model (i.e., factor covariances, non-linear growth) were examined to 

investigate how well the models recover the, ideally, non-significant parameters. The 

covariance between the intercept and slope is the only parameter examined across all six 

modeling approaches. For the first-order linear modeling approach, the intercept-slope 

covariance had a wide range of p-values, but was consistently estimated near zero. The p-
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values were less variable as the proportion of DIF and size of intercept DIF increased. 

The pattern of recovery for the intercept-slope covariance in the second-order linear 

models was similar. The p-values for the parameter were often significant, but the 

estimated values were near zero. The linear model results tend to suggest a statistically, 

but not practically, significant covariance between the intercept and slope factors. For all 

three non-linear models, the p-values typically suggested a non-significant intercept slope 

covariance across all conditions. The intercept-slope covariance estimates for the non-

linear models were near zero and had a wider range than their linear model counterparts. 

The additional covariance parameters for the non-linear models (intercept-quadratic 

slope, slope-quadratic slope) followed the same pattern as the intercept-slope covariance 

for the non-linear models. Thus, the p-values correctly identified the parameters as non-

significant and the estimate was near zero for all three non-linear models across all 

conditions. The quadratic slope p-values for the first-order non-linear model were often 

non-significant, but were related to the conditions varied in the study. The p-values were 

more consistent and lower (i.e., significant) as the amount of DIF and the size of intercept 

DIF increased. The estimate of the quadratic slope was consistently near zero. The first-

order non-linear growth model may suggest a statistically, but not practically significant 

quadratic slope parameter in contexts with a large amount of large intercept DIF. For 

both second-order non-linear models, the p-values suggested that the quadratic slope was 

statistically significant, whereas the near-zero estimates suggested that the quadratic 

slope was not practically significant across most conditions. The quadratic slope variance 

was estimated as statistically and practically non-significant for all three non-linear 
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models. Overall, the nested model comparisons and quadratic slope significance tests 

may lead researchers to choose non-linear models over linear models, particularly when a 

large amount of intercept DIF is present. The magnitude of the estimate, however, should 

provide evidence that, while statistically significant, the non-linear model does not add 

any practical significance above and beyond the linear model. 

  In summary, substantial longitudinal item invariance violations may be 

problematic when estimating growth models. If the model converges to a solution, 

traditional fit indices may not identify a misspecified model. Interestingly, the first-order 

non-linear model often had a non-significant chi-squared value despite a large sample 

size. In addition, chi-squared difference tests often suggest a non-linear model fits 

significantly better than a linear model. Thus, in growth models, particularly in first-order 

models, DIF may manifest as a non-linear slope parameter. The slope and slope variance 

parameters, which are arguably the most important parameters of interest in a growth 

model, were often not recovered well, regardless of the type of model used. The 

proportion of items with DIF and the size of the intercept DIF had the largest impact on 

the parameter recovery. The size of DIF in item loadings had essentially no impact on 

how well each model recovered the true growth model parameters.  Practitioners should 

also take care to consider the statistical and practical significance of the growth model 

parameters. For several of the parameters modeled that were not included in the 

generating model, the p-values suggested statistical significance, whereas the actual 

estimate was likely not practically significant. Most notably, the second-order free latent 

growth model, the true model which allowed for partial measurement invariance, did not 
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alleviate the issues caused by the item invariance violations. In fact, the slope parameter 

recovery was worst for the models that freely estimated the non-invariant item 

parameters. This result suggests that modeling the partial measurement invariance does 

not sufficiently alleviate the concerns with invariance violations. Practitioners should 

take care to examine longitudinal measurement invariance before interpreting the results 

of a growth model. Ultimately, the results of this study suggest that if item parameters are 

not invariant across measurement occasions, growth modeling is not appropriate. 

Limitations and Future Directions  

There are several limitations and potential future directions for this research. One 

limitation of the study is the fact that several of the non-linear models did not converge. 

This resulted in fewer replications per condition in the non-linear modeling approaches. 

Because there are fewer replications per condition, the results of the non-linear models 

should all be interpreted with caution as they may be less stable. In addition, the common 

features of the non-converged results are unknown and thus, the results of the non-linear 

models may be biased in unknown ways. Because the only results able to be interpreted 

for the non-linear models were the replications that were able to converge to a solution 

even when the model was grossly misspecified, the non-linear results may be biased (i.e., 

may include the most extreme results). Future studies may want to run more replications 

in order to ensure a sufficient number of replications per condition.  

Another limitation is that the 40-item condition, which would have allowed 

researchers to examine whether the impact of DIF was mitigated by having more items 

overall, was dropped due to long estimation times. The preliminary results suggested that 
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there was minimal difference between the 20- and 40-item exams. Future research may 

want to investigate whether the impact of longitudinal measurement invariance violations 

are related to the total number of items on an exam.  

The current study limited the examination of parameter recovery to the growth 

model parameters. These are often the parameters of interest for researchers. The results 

of the study suggested that the second-order models fit the data well, regardless of 

whether they were the correct model, but the growth model parameters were often not 

well recovered. Future studies may want to examine the recovery of item parameters to 

determine how item parameter recovery is related to growth model parameter recovery. 

An additional limitation is that the current study is only one version of the 

potential issues with invariance violations in growth models. This study examined a 

variety of factors that may impact growth models, but was certainly not a comprehensive 

examination of all possible factors. Future studies should examine a variety of additional 

factors. One additional factor that could be examined in future studies is sample size and 

whether invariance violation issues are exacerbated with smaller sample sizes. Another 

factor that could be further explored is the type of invariance violation. This study 

examined invariance violations when the violations for all items occurred in the same 

direction and were the same size (within a condition). Future studies could examine the 

impact of DIF on growth models when the size and direction are varied within a 

condition. A third factor that could be examined in future studies is the type of model 

specifications. In this study we examined whether DIF impacted the shape of growth (i.e., 

quadratic slope). Future studies may want to examine the impact of DIF on predictors of 
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growth, growth comparisons across groups, etc. Another specification approach could be 

to examine the impact of modeling partial invariance incorrectly (i.e., freeing invariant 

items and constraining non-invariant items).  

This study provided a preliminary investigation of growth modeling concerns in 

the presence of longitudinal measurement invariance violations. The results suggest that 

the proportion of non-invariant items and the size of intercept invariance violations have 

the most significant impact on results. Researchers should use extreme caution when 

estimating growth models when DIF is present as it may lead to spurious conclusions 

about change over time. 
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APPENDIX A 

 

 CHI-SQUARED RESULTS 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.110 0.031 0.003 0.003 

(0.177) (0.077) (0.006) (0.009) 

Medium 
0.058 0.040 0.018 0.003 

(0.093) (0.108) (0.069) (0.015) 

Small 
0.131 0.050 0.025 0.023 

(0.262) (0.083) (0.050) (0.060) 

None 
-- 0.030 0.017 0.012 

-- (0.046) (0.041) (0.027) 

30% 

Large 
0.107 0.055 0.021 0.002 

(0.156) (0.101) (0.054) (0.003) 

Medium 
0.126 0.082 0.033 0.020 

(0.201) (0.187) (0.089) (0.049) 

Small 
0.029 0.089 0.057 0.010 

(0.063) (0.145) (0.092) (0.038) 

None 
-- 0.061 0.043 0.029 

-- (0.136) (0.117) (0.087) 

15% 

Large 
0.064 0.109 0.085 0.023 

(0.088) (0.175) (0.183) (0.056) 

Medium 
0.092 0.045 0.097 0.050 

(0.222) (0.093) (0.164) (0.133) 

Small 
0.090 0.086 0.078 0.102 

(0.171) (0.169) (0.099) (0.215) 

None 
0.147 0.098 0.071 0.078 

(0.173) (0.153) (0.150) (0.133) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.000 0.000 0.000 0.000 

(0.001) (0.000) (0.000) (0.000) 

None 
-- 0.000 0.000 0.000 

-- (0.000) (0.000) (0.000) 

30% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.000 0.000 0.000 0.000 

(0.001) (0.000) (0.001) (0.000) 

None 
-- 0.001 0.001 0.000 

-- (0.002) (0.004) (0.000) 

15% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.000 0.000 0.000 0.000 

(0.001) (0.000) (0.001) (0.000) 

None 
0.001 0.001 0.006 0.000 

(0.003) (0.004) (0.027) (0.000) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.001 0.000 0.000 0.000 

(0.002) (0.000) (0.000) (0.000) 

Small 
0.018 0.003 0.002 0.000 

(0.060) (0.008) (0.006) (0.001) 

None 
-- 0.002 0.005 0.001 

-- (0.006) (0.011) (0.002) 

30% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.001) (0.000) (0.000) (0.000) 

Small 
0.001 0.000 0.004 0.000 

(0.004) (0.001) (0.018) (0.000) 

None 
-- 0.004 0.003 0.000 

-- (0.010) (0.014) (0.000) 

15% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.001 0.000 0.000 0.000 

(0.004) (0.000) (0.001) (0.000) 

None 
0.002 0.002 0.017 0.000 

(0.006) (0.003) (0.080) (0.000) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.372 0.395 0.416 0.302 

(0.310) (0.367) (0.328) (0.267) 

Medium 
0.580 0.367 0.471 0.393 

(0.314) (0.315) (0.335) (0.278) 

Small 
0.443 0.433 0.332 0.375 

(0.336) (0.215) (0.373) (0.285) 

None 
-- 0.295 0.409 0.350 

-- (0.267) (0.261) (0.298) 

30% 

Large 
0.502 0.378 0.342 0.425 

(0.279) (0.253) (0.286) (0.294) 

Medium 
0.484 0.386 0.246 0.239 

(0.275) (0.368) (0.256) (0.249) 

Small 
0.391 0.443 0.330 0.542 

(0.272) (0.349) (0.251) (0.249) 

None 
-- 0.310 0.283 0.360 

-- (0.272) (0.264) (0.306) 

15% 

Large 
0.519 0.476 0.429 0.504 

(0.325) (0.366) (0.282) (0.336) 

Medium 
0.458 0.316 0.456 0.223 

(0.314) (0.284) (0.251) (0.194) 

Small 
0.280 0.444 0.491 0.415 

(0.226) (0.286) (0.287) (0.323) 

None 
0.598 0.356 0.477 0.496 

(0.282) (0.346) (0.377) (0.343) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

None 
#N/A 0.000 0.000 0.000 

#N/A (0.000) (0.000) (0.000) 

30% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.002 0.000 0.000 0.000 

(0.006) (0.000) (0.000) (0.000) 

None 
#N/A 0.000 0.000 0.000 

#N/A (0.000) (0.001) (0.000) 

15% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.001 0.000 0.000 0.000 

(0.004) (0.001) (0.000) (0.000) 

None 
0.000 0.001 0.001 0.000 

(0.000) (0.002) (0.001) (0.000) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.001 0.000 0.000 

(0.001) (0.002) (0.000) (0.000) 

Small 
0.026 0.022 0.002 0.000 

(0.035) (0.063) (0.004) (0.000) 

None 
-- 0.011 0.009 0.000 

-- (0.023) (0.021) (0.000) 

30% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.004 0.000 0.000 0.000 

(0.005) (0.001) (0.000) (0.000) 

None 
-- 0.002 0.002 0.000 

-- (0.003) (0.008) (0.000) 

15% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.002 0.000 0.000 0.000 

(0.006) (0.001) (0.000) (0.000) 

None 
0.000 0.001 0.001 0.000 

(0.000) (0.002) (0.002) (0.000) 
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APPENDIX B 

 

 ROOT MEAN SQUARE ERROR OF APPROXIMATION RESULTS 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.024 0.030 0.036 0.042 

(0.013) (0.010) (0.010) (0.011) 

Medium 
0.028 0.031 0.036 0.041 

(0.012) (0.012) (0.011) (0.008) 

Small 
0.022 0.029 0.032 0.032 

(0.011) (0.013) (0.012) (0.010) 

None 
-- 0.029 0.034 0.036 

-- (0.011) (0.011) (0.013) 

30% 

Large 
0.022 0.029 0.030 0.038 

(0.012) (0.013) (0.009) (0.010) 

Medium 
0.020 0.026 0.032 0.030 

(0.011) (0.012) (0.011) (0.008) 

Small 
0.026 0.022 0.026 0.036 

(0.006) (0.010) (0.011) (0.010) 

None 
-- 0.028 0.030 0.031 

-- (0.012) (0.011) (0.011) 

15% 

Large 
0.024 0.023 0.023 0.031 

(0.009) (0.012) (0.009) (0.010) 

Medium 
0.024 0.028 0.023 0.030 

(0.010) (0.011) (0.011) (0.012) 

Small 
0.024 0.024 0.023 0.027 

(0.011) (0.011) (0.012) (0.014) 

None 
0.018 0.024 0.024 0.026 

(0.010) (0.012) (0.009) (0.013) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.012 0.012 0.012 0.014 

(0.002) (0.002) (0.002) (0.002) 

Medium 
0.009 0.009 0.010 0.011 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.007 0.007 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.007 0.007 0.008 

-- (0.001) (0.001) (0.001) 

30% 

Large 
0.011 0.011 0.011 0.012 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.008 0.008 0.009 0.010 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.007 0.007 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.007 0.007 0.009 

-- (0.001) (0.001) (0.001) 

15% 

Large 
0.009 0.009 0.010 0.010 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.007 0.008 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.007 0.007 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
0.006 0.006 0.006 0.008 

(0.001) (0.001) (0.001) (0.001) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.010 0.010 0.010 0.011 

(0.002) (0.002) (0.002) (0.002) 

Medium 
0.007 0.008 0.008 0.008 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.006 0.006 0.007 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.006 0.006 0.006 

-- (0.001) (0.001) (0.001) 

30% 

Large 
0.011 0.010 0.011 0.012 

(0.002) (0.002) (0.002) (0.002) 

Medium 
0.008 0.008 0.009 0.010 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.007 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.006 0.007 0.008 

-- (0.001) (0.001) (0.001) 

15% 

Large 
0.009 0.009 0.010 0.010 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.007 0.007 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.007 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
0.006 0.006 0.006 0.008 

(0.001) (0.001) (0.001) (0.001) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.012 0.014 0.010 0.018 

(0.014) (0.015) (0.016) (0.025) 

Medium 
0.004 0.012 0.009 0.010 

(0.007) (0.014) (0.012) (0.013) 

Small 
0.010 0.004 0.018 0.012 

(0.013) (0.008) (0.016) (0.019) 

None 
-- 0.015 0.008 0.015 

-- (0.015) (0.012) (0.017) 

30% 

Large 
0.005 0.008 0.012 0.008 

(0.009) (0.011) (0.012) (0.012) 

Medium 
0.007 0.014 0.020 0.018 

(0.014) (0.016) (0.018) (0.014) 

Small 
0.009 0.010 0.015 0.004 

(0.015) (0.012) (0.020) (0.008) 

None 
-- 0.015 0.015 0.015 

-- (0.017) (0.014) (0.017) 

15% 

Large 
0.006 0.011 0.006 0.010 

(0.009) (0.015) (0.009) (0.020) 

Medium 
0.008 0.015 0.005 0.020 

(0.011) (0.017) (0.008) (0.023) 

Small 
0.013 0.009 0.006 0.010 

(0.013) (0.016) (0.010) (0.015) 

None 
0.003 0.017 0.012 0.009 

(0.007) (0.018) (0.019) (0.014) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.012 0.013 0.013 0.014 

(0.002) (0.003) (0.001) (0.002) 

Medium 
0.009 0.009 0.010 0.011 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.007 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

None 
#N/A 0.007 0.008 0.009 

#N/A (0.001) (0.001) (0.001) 

30% 

Large 
0.012 0.011 0.012 0.013 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.008 0.008 0.009 0.010 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.007 0.008 0.009 

(0.001) (0.001) (0.001) (0.001) 

None 
#N/A 0.006 0.007 0.009 

#N/A (0.001) (0.001) (0.001) 

15% 

Large 
0.010 0.010 0.011 0.011 

(0.002) (0.002) (0.001) (0.002) 

Medium 
0.007 0.008 0.008 0.009 

(0.001) (0.001) (0.002) (0.001) 

Small 
0.006 0.007 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
0.007 0.006 0.006 0.008 

(0.001) (0.001) (0.001) (0.001) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.010 0.011 0.010 0.011 

(0.002) (0.002) (0.002) (0.002) 

Medium 
0.007 0.007 0.008 0.008 

(0.002) (0.001) (0.001) (0.001) 

Small 
0.005 0.005 0.006 0.007 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.005 0.006 0.007 

-- (0.001) (0.001) (0.001) 

30% 

Large 
0.011 0.011 0.011 0.012 

(0.002) (0.003) (0.002) (0.001) 

Medium 
0.008 0.008 0.009 0.009 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.006 0.006 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
-- 0.006 0.007 0.008 

-- (0.001) (0.002) (0.001) 

15% 

Large 
0.010 0.010 0.011 0.011 

(0.003) (0.002) (0.002) (0.002) 

Medium 
0.007 0.007 0.008 0.009 

(0.001) (0.001) (0.002) (0.001) 

Small 
0.006 0.007 0.007 0.008 

(0.001) (0.001) (0.001) (0.001) 

None 
0.007 0.006 0.006 0.007 

(0.001) (0.001) (0.001) (0.001) 
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APPENDIX C 

 

COMPARATIVE FIT INDEX RESULTS 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.995 0.993 0.991 0.987 

(0.004) (0.004) (0.005) (0.007) 

Medium 
0.994 0.993 0.991 0.988 

(0.004) (0.005) (0.005) (0.004) 

Small 
0.996 0.993 0.992 0.993 

(0.003) (0.006) (0.006) (0.004) 

None 
-- 0.993 0.992 0.990 

-- (0.005) (0.005) (0.008) 

30% 

Large 
0.996 0.993 0.993 0.990 

(0.003) (0.005) (0.003) (0.005) 

Medium 
0.997 0.994 0.993 0.993 

(0.003) (0.004) (0.004) (0.003) 

Small 
0.995 0.996 0.995 0.991 

(0.002) (0.003) (0.004) (0.005) 

None 
-- 0.994 0.993 0.993 

-- (0.004) (0.004) (0.004) 

15% 

Large 
0.996 0.996 0.996 0.993 

(0.003) (0.004) (0.002) (0.004) 

Medium 
0.996 0.994 0.996 0.993 

(0.003) (0.004) (0.003) (0.004) 

Small 
0.996 0.996 0.996 0.994 

(0.003) (0.003) (0.005) (0.005) 

None 
0.997 0.995 0.996 0.995 

(0.002) (0.004) (0.003) (0.004) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.995 0.995 0.994 0.992 

(0.002) (0.002) (0.002) (0.002) 

Medium 
0.997 0.997 0.996 0.996 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.998 0.998 0.998 0.997 

(0.000) (0.000) (0.001) (0.001) 

None 
-- 0.998 0.998 0.998 

-- (0.000) (0.001) (0.001) 

30% 

Large 
0.996 0.996 0.995 0.995 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.998 0.998 0.997 0.996 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.998 0.998 0.998 0.997 

(0.000) (0.000) (0.001) (0.001) 

None 
-- 0.999 0.998 0.998 

-- (0.000) (0.001) (0.001) 

15% 

Large 
0.997 0.997 0.997 0.996 

(0.001) (0.001) (0.001) (0.001) 

Medium 
0.998 0.998 0.998 0.998 

(0.001) (0.000) (0.001) (0.001) 

Small 
0.999 0.998 0.998 0.998 

(0.001) (0.000) (0.001) (0.001) 

None 
0.999 0.999 0.999 0.998 

(0.000) (0.001) (0.000) (0.000) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.996 0.996 0.996 0.995 

(0.001) (0.002) (0.002) (0.002) 

Medium 
0.998 0.998 0.998 0.998 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.999 0.999 0.999 0.998 

(0.000) (0.000) (0.001) (0.001) 

None 
-- 0.999 0.999 0.999 

-- (0.000) (0.001) (0.001) 

30% 

Large 
0.996 0.996 0.996 0.995 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.998 0.998 0.997 0.997 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.999 0.999 0.998 0.998 

(0.001) (0.000) (0.001) (0.001) 

None 
-- 0.999 0.999 0.998 

-- (0.000) (0.001) (0.001) 

15% 

Large 
0.997 0.997 0.997 0.996 

(0.001) (0.001) (0.001) (0.001) 

Medium 
0.998 0.998 0.998 0.998 

(0.001) (0.000) (0.001) (0.001) 

Small 
0.999 0.998 0.998 0.998 

(0.001) (0.000) (0.001) (0.001) 

None 
0.999 0.999 0.999 0.998 

(0.000) (0.001) (0.000) (0.000) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
1.000 0.999 1.000 0.999 

(0.001) (0.001) (0.001) (0.002) 

Medium 
1.000 1.000 1.000 1.000 

(0.000) (0.001) (0.001) (0.000) 

Small 
1.000 1.000 0.999 0.999 

(0.001) (0.000) (0.001) (0.001) 

None 
-- 0.999 1.000 0.999 

-- (0.001) (0.001) (0.001) 

30% 

Large 
1.000 1.000 1.000 1.000 

(0.000) (0.000) (0.001) (0.001) 

Medium 
1.000 0.999 0.999 0.999 

(0.001) (0.001) (0.001) (0.001) 

Small 
1.000 1.000 0.999 1.000 

(0.001) (0.000) (0.002) (0.000) 

None 
-- 0.999 0.999 0.999 

-- (0.001) (0.001) (0.001) 

15% 

Large 
1.000 1.000 1.000 0.999 

(0.000) (0.001) (0.000) (0.001) 

Medium 
1.000 0.999 1.000 0.999 

(0.000) (0.001) (0.000) (0.003) 

Small 
1.000 1.000 1.000 1.000 

(0.001) (0.001) (0.000) (0.001) 

None 
1.000 0.999 0.999 1.000 

(0.000) (0.001) (0.001) (0.001) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.995 0.993 0.994 0.993 

(0.002) (0.004) (0.002) (0.002) 

Medium 
0.997 0.997 0.996 0.996 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.999 0.998 0.998 0.997 

(0.000) (0.000) (0.000) (0.001) 

None 
#N/A 0.999 0.998 0.997 

#N/A (0.000) (0.000) (0.000) 

30% 

Large 
0.995 0.995 0.995 0.994 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.998 0.998 0.997 0.997 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.999 0.998 0.998 0.997 

(0.000) (0.000) (0.000) (0.001) 

None 
#N/A 0.999 0.998 0.998 

#N/A (0.000) (0.001) (0.000) 

15% 

Large 
0.996 0.997 0.996 0.996 

(0.002) (0.001) (0.001) (0.001) 

Medium 
0.998 0.998 0.998 0.998 

(0.000) (0.001) (0.001) (0.001) 

Small 
0.999 0.999 0.998 0.998 

(0.000) (0.000) (0.001) (0.000) 

None 
0.999 0.999 0.999 0.998 

(0.000) (0.000) (0.001) (0.000) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.997 0.995 0.996 0.996 

(0.001) (0.003) (0.001) (0.002) 

Medium 
0.998 0.998 0.998 0.998 

(0.001) (0.001) (0.000) (0.001) 

Small 
0.999 0.999 0.999 0.998 

(0.000) (0.000) (0.000) (0.000) 

None 
-- 0.999 0.999 0.998 

-- (0.000) (0.000) (0.000) 

30% 

Large 
0.996 0.996 0.996 0.995 

(0.002) (0.002) (0.002) (0.001) 

Medium 
0.998 0.998 0.997 0.997 

(0.001) (0.001) (0.001) (0.001) 

Small 
0.999 0.999 0.998 0.998 

(0.000) (0.000) (0.000) (0.001) 

None 
-- 0.999 0.999 0.998 

-- (0.000) (0.001) (0.000) 

15% 

Large 
0.997 0.997 0.996 0.996 

(0.002) (0.001) (0.001) (0.001) 

Medium 
0.998 0.998 0.998 0.998 

(0.000) (0.001) (0.001) (0.001) 

Small 
0.999 0.999 0.998 0.998 

(0.000) (0.000) (0.001) (0.000) 

None 
0.999 0.999 0.999 0.998 

(0.000) (0.000) (0.001) (0.000) 
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APPENDIX D 

 

NESTED MODEL COMPARISON RESULTS 

 

 

First-Order Linear vs. First-Order Non-Linear 

Percent of 

DIF 

Loading  

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.008 0.037 0.005 0.007 

(0.014) (0.043) (0.009) (0.025) 

Medium 
0.105 0.016 0.019 0.012 

(0.136) (0.042) (0.066) (0.047) 

Small 
0.208 0.042 0.039 0.030 

(0.333) (0.050) (0.065) (0.063) 

None 
-- 0.053 0.021 0.023 

-- (0.078) (0.062) (0.037) 

30% 

Large 
0.090 0.039 0.028 0.002 

(0.176) (0.096) (0.063) (0.004) 

Medium 
0.154 0.071 0.072 0.020 

(0.213) (0.129) (0.178) (0.043) 

Small 
0.032 0.115 0.084 0.009 

(0.059) (0.204) (0.144) (0.032) 

None 
-- 0.048 0.022 0.036 

-- (0.109) (0.046) (0.093) 

15% 

Large 
0.042 0.118 0.100 0.038 

(0.062) (0.151) (0.280) (0.072) 

Medium 
0.066 0.026 0.108 0.093 

(0.168) (0.044) (0.201) (0.219) 

Small 
0.074 0.057 0.071 0.099 

(0.153) (0.097) (0.126) (0.168) 

None 
0.137 0.074 0.109 0.056 

(0.176) (0.122) (0.168) (0.092) 
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Second-Order Linear vs. Second-Order Non-Linear 

Percent of 

DIF 

Loading  

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.036 0.145 0.050 0.062 

(0.064) (0.172) (0.081) (0.131) 

Medium 
0.181 0.124 0.084 0.029 

(0.156) (0.191) (0.200) (0.039) 

Small 
0.304 0.104 0.101 0.177 

(0.324) (0.131) (0.110) (0.210) 

None 
-- 0.145 0.101 0.136 

-- (0.182) (0.138) (0.130) 

30% 

Large 
0.157 0.089 0.173 0.083 

(0.231) (0.199) (0.210) (0.110) 

Medium 
0.181 0.102 0.053 0.144 

(0.216) (0.163) (0.065) (0.227) 

Small 
0.072 0.155 0.131 0.040 

(0.120) (0.213) (0.154) (0.041) 

None 
-- 0.145 0.162 0.084 

-- (0.191) (0.145) (0.096) 

15% 

Large 
0.096 0.174 0.135 0.031 

(0.114) (0.185) (0.152) (0.033) 

Medium 
0.037 0.115 0.133 0.139 

(0.045) (0.156) (0.253) (0.159) 

Small 
0.073 0.055 0.147 0.235 

(0.101) (0.066) (0.145) (0.224) 

None 
0.208 0.166 0.202 0.161 

(0.159) (0.171) (0.186) (0.206) 
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Second-Order Free vs. Second-Order Constrained 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Small 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

None 
-- 0.000 0.000 0.000 

-- (0.002) (0.000) (0.000) 

30% 

Large 
0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Medium 
0.000 0.000 0.001 0.000 

(0.000) (0.000) (0.003) (0.000) 

Small 
0.017 0.003 0.002 0.001 

(0.044) (0.006) (0.007) (0.003) 

None 
-- 0.001 0.008 0.000 

-- (0.002) (0.036) (0.001) 

15% 

Large 
0.045 0.023 0.040 0.010 

(0.071) (0.038) (0.079) (0.031) 

Medium 
0.051 0.098 0.038 0.036 

(0.088) (0.213) (0.064) (0.108) 

Small 
0.023 0.065 0.071 0.007 

(0.044) (0.153) (0.155) (0.015) 

None 
0.082 0.057 0.013 0.016 

(0.155) (0.187) (0.022) (0.024) 
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APPENDIX E 

 

INTERCEPT VARIANCE PARAMETER BIAS ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.033 -0.028 -0.030 -0.028 

(0.099) (0.090) (0.084) (0.084) 

Medium 
-0.013 -0.019 -0.025 -0.014 

(0.098) (0.090) (0.103) (0.091) 

Small 
-0.054 -0.026 -0.017 0.015 

(0.091) (0.093) (0.096) (0.094) 

None 
-- -0.043 -0.018 -0.005 

-- (0.094) (0.113) (0.103) 

30% 

Large 
-0.045 -0.043 -0.004 0.012 

(0.108) (0.106) (0.116) (0.101) 

Medium 
-0.046 -0.034 -0.067 -0.037 

(0.122) (0.089) (0.096) (0.120) 

Small 
-0.034 -0.040 -0.002 0.017 

(0.095) (0.068) (0.089) (0.104) 

None 
-- -0.032 -0.048 -0.018 

-- (0.106) (0.095) (0.083) 

15% 

Large 
-0.053 0.001 -0.007 -0.036 

(0.122) (0.133) (0.126) (0.117) 

Medium 
-0.047 -0.043 -0.024 -0.063 

(0.095) (0.080) (0.106) (0.108) 

Small 
-0.037 -0.024 -0.036 -0.014 

(0.102) (0.118) (0.125) (0.091) 

None 
0.009 -0.043 -0.027 -0.012 

(0.096) (0.100) (0.121) (0.078) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.121 0.105 0.105 0.098 

(0.102) (0.095) (0.090) (0.092) 

Medium 
0.157 0.127 0.118 0.113 

(0.096) (0.120) (0.118) (0.104) 

Small 
0.091 0.112 0.106 0.124 

(0.111) (0.108) (0.096) (0.090) 

None 
-- 0.098 0.106 0.094 

-- (0.109) (0.122) (0.114) 

30% 

Large 
0.117 0.107 0.143 0.162 

(0.132) (0.121) (0.138) (0.108) 

Medium 
0.109 0.122 0.075 0.083 

(0.131) (0.104) (0.108) (0.123) 

Small 
0.125 0.106 0.123 0.165 

(0.114) (0.084) (0.093) (0.119) 

None 
-- 0.117 0.079 0.099 

-- (0.125) (0.102) (0.086) 

15% 

Large 
0.104 0.153 0.138 0.119 

(0.143) (0.146) (0.137) (0.133) 

Medium 
0.112 0.123 0.120 0.070 

(0.107) (0.095) (0.119) (0.121) 

Small 
0.126 0.132 0.110 0.122 

(0.128) (0.153) (0.143) (0.108) 

None 
0.168 0.104 0.113 0.128 

(0.112) (0.114) (0.133) (0.100) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.105 0.090 0.087 0.074 

(0.103) (0.096) (0.088) (0.085) 

Medium 
0.133 0.108 0.092 0.095 

(0.096) (0.116) (0.113) (0.099) 

Small 
0.067 0.096 0.086 0.110 

(0.104) (0.105) (0.095) (0.089) 

None 
-- 0.085 0.097 0.084 

-- (0.110) (0.117) (0.111) 

30% 

Large 
0.110 0.095 0.133 0.150 

(0.130) (0.120) (0.135) (0.107) 

Medium 
0.103 0.114 0.063 0.074 

(0.132) (0.107) (0.110) (0.125) 

Small 
0.117 0.096 0.116 0.153 

(0.111) (0.082) (0.090) (0.120) 

None 
-- 0.108 0.073 0.096 

-- (0.119) (0.104) (0.084) 

15% 

Large 
0.102 0.149 0.135 0.114 

(0.143) (0.146) (0.138) (0.133) 

Medium 
0.109 0.119 0.116 0.068 

(0.106) (0.094) (0.118) (0.122) 

Small 
0.122 0.130 0.105 0.122 

(0.126) (0.150) (0.143) (0.107) 

None 
0.166 0.104 0.113 0.127 

(0.113) (0.115) (0.133) (0.099) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.038 -0.062 -0.046 -0.023 

(0.229) (0.208) (0.161) (0.218) 

Medium 
0.002 -0.070 0.018 -0.149 

(0.286) (0.213) (0.243) (0.258) 

Small 
0.002 -0.110 -0.141 -0.076 

(0.277) (0.199) (0.203) (0.195) 

None 
-- -0.041 -0.115 -0.096 

-- (0.249) (0.232) (0.234) 

30% 

Large 
-0.027 -0.032 -0.044 -0.036 

(0.173) (0.220) (0.153) (0.161) 

Medium 
-0.041 -0.046 -0.095 -0.001 

(0.246) (0.241) (0.240) (0.295) 

Small 
-0.057 -0.098 -0.030 0.065 

(0.240) (0.171) (0.269) (0.280) 

None 
-- -0.050 -0.024 0.018 

-- (0.260) (0.213) (0.177) 

15% 

Large 
-0.108 0.019 -0.013 0.000 

(0.261) (0.248) (0.293) (0.197) 

Medium 
0.080 -0.022 -0.145 -0.014 

(0.201) (0.209) (0.183) (0.219) 

Small 
-0.030 -0.048 -0.102 -0.159 

(0.335) (0.243) (0.211) (0.177) 

None 
0.069 -0.087 -0.029 0.069 

(0.330) (0.169) (0.289) (0.229) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.271 0.203 0.141 0.163 

(0.277) (0.240) (0.213) (0.298) 

Medium 
0.311 0.146 0.203 0.048 

(0.362) (0.257) (0.278) (0.336) 

Small 
0.203 0.051 -0.039 0.168 

(0.346) (0.184) (0.179) (0.251) 

None 
-- 0.141 0.099 0.102 

-- (0.333) (0.273) (0.292) 

30% 

Large 
0.120 0.133 0.166 0.158 

(0.195) (0.250) (0.179) (0.168) 

Medium 
0.193 0.163 0.157 0.225 

(0.303) (0.293) (0.218) (0.372) 

Small 
0.167 0.126 0.182 0.289 

(0.245) (0.166) (0.344) (0.401) 

None 
-- 0.191 0.224 0.205 

-- (0.291) (0.233) (0.194) 

15% 

Large 
0.098 0.257 0.174 0.176 

(0.247) (0.315) (0.275) (0.214) 

Medium 
0.305 0.181 0.104 0.223 

(0.252) (0.235) (0.259) (0.257) 

Small 
0.240 0.157 0.103 0.023 

(0.398) (0.303) (0.281) (0.218) 

None 
0.218 0.066 0.192 0.260 

(0.351) (0.220) (0.362) (0.281) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.267 0.217 0.133 0.169 

(0.279) (0.237) (0.207) (0.284) 

Medium 
0.304 0.155 0.222 0.060 

(0.341) (0.263) (0.291) (0.331) 

Small 
0.193 0.054 -0.027 0.187 

(0.307) (0.174) (0.181) (0.267) 

None 
-- 0.158 0.112 0.107 

-- (0.322) (0.280) (0.298) 

30% 

Large 
0.125 0.140 0.177 0.174 

(0.198) (0.249) (0.197) (0.174) 

Medium 
0.194 0.166 0.160 0.240 

(0.298) (0.281) (0.215) (0.367) 

Small 
0.170 0.134 0.187 0.290 

(0.235) (0.174) (0.342) (0.385) 

None 
-- 0.185 0.226 0.198 

-- (0.288) (0.235) (0.197) 

15% 

Large 
0.103 0.257 0.177 0.174 

(0.251) (0.311) (0.271) (0.217) 

Medium 
0.307 0.179 0.106 0.225 

(0.254) (0.226) (0.261) (0.257) 

Small 
0.243 0.180 0.104 0.022 

(0.395) (0.302) (0.279) (0.218) 

None 
0.215 0.073 0.196 0.264 

(0.341) (0.225) (0.371) (0.286) 
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APPENDIX F 

 

INTERCEPT VARIANCE PARAMETER ROOT MEAN SQUARE ERROR 

ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.083 0.080 0.062 0.066 

(0.061) (0.049) (0.064) (0.058) 

Medium 
0.084 0.077 0.084 0.071 

(0.050) (0.049) (0.062) (0.057) 

Small 
0.089 0.076 0.078 0.070 

(0.055) (0.058) (0.056) (0.064) 

None 
-- 0.076 0.091 0.085 

-- (0.068) (0.067) (0.056) 

30% 

Large 
0.091 0.089 0.092 0.076 

(0.071) (0.070) (0.069) (0.065) 

Medium 
0.096 0.075 0.090 0.101 

(0.086) (0.057) (0.074) (0.071) 

Small 
0.080 0.063 0.070 0.078 

(0.060) (0.046) (0.053) (0.069) 

None 
-- 0.092 0.087 0.067 

-- (0.060) (0.058) (0.051) 

15% 

Large 
0.115 0.106 0.097 0.102 

(0.064) (0.077) (0.078) (0.064) 

Medium 
0.084 0.077 0.088 0.098 

(0.063) (0.047) (0.061) (0.076) 

Small 
0.088 0.076 0.095 0.069 

(0.061) (0.093) (0.086) (0.058) 

None 
0.077 0.084 0.098 0.062 

(0.056) (0.068) (0.072) (0.047) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.125 0.109 0.121 0.109 

(0.098) (0.089) (0.066) (0.078) 

Medium 
0.157 0.130 0.127 0.130 

(0.096) (0.117) (0.108) (0.081) 

Small 
0.116 0.134 0.123 0.135 

(0.082) (0.079) (0.072) (0.072) 

None 
-- 0.124 0.128 0.124 

-- (0.077) (0.099) (0.078) 

30% 

Large 
0.150 0.121 0.157 0.172 

(0.091) (0.105) (0.121) (0.091) 

Medium 
0.145 0.122 0.107 0.123 

(0.086) (0.104) (0.075) (0.081) 

Small 
0.144 0.109 0.131 0.169 

(0.089) (0.080) (0.081) (0.113) 

None 
-- 0.134 0.108 0.103 

-- (0.105) (0.069) (0.081) 

15% 

Large 
0.128 0.170 0.161 0.140 

(0.121) (0.125) (0.108) (0.110) 

Medium 
0.120 0.127 0.137 0.115 

(0.098) (0.088) (0.098) (0.077) 

Small 
0.137 0.135 0.158 0.145 

(0.115) (0.150) (0.085) (0.073) 

None 
0.168 0.131 0.141 0.128 

(0.112) (0.080) (0.102) (0.100) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.114 0.100 0.108 0.091 

(0.093) (0.086) (0.058) (0.066) 

Medium 
0.133 0.114 0.105 0.113 

(0.095) (0.110) (0.101) (0.076) 

Small 
0.096 0.122 0.109 0.121 

(0.077) (0.071) (0.066) (0.073) 

None 
-- 0.114 0.122 0.118 

-- (0.078) (0.089) (0.072) 

30% 

Large 
0.144 0.114 0.149 0.162 

(0.088) (0.102) (0.117) (0.087) 

Medium 
0.143 0.114 0.102 0.118 

(0.085) (0.106) (0.074) (0.083) 

Small 
0.137 0.100 0.125 0.157 

(0.084) (0.077) (0.078) (0.114) 

None 
-- 0.126 0.105 0.100 

-- (0.100) (0.070) (0.080) 

15% 

Large 
0.129 0.167 0.159 0.135 

(0.119) (0.124) (0.108) (0.110) 

Medium 
0.118 0.124 0.134 0.115 

(0.095) (0.087) (0.096) (0.077) 

Small 
0.134 0.134 0.153 0.144 

(0.112) (0.147) (0.086) (0.073) 

None 
0.166 0.132 0.141 0.127 

(0.113) (0.080) (0.102) (0.099) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.193 0.176 0.139 0.167 

(0.116) (0.117) (0.086) (0.134) 

Medium 
0.193 0.196 0.172 0.271 

(0.203) (0.099) (0.167) (0.108) 

Small 
0.241 0.206 0.215 0.189 

(0.106) (0.082) (0.113) (0.073) 

None 
-- 0.224 0.222 0.210 

-- (0.099) (0.128) (0.132) 

30% 

Large 
0.143 0.175 0.131 0.119 

(0.094) (0.129) (0.084) (0.109) 

Medium 
0.208 0.203 0.194 0.232 

(0.125) (0.129) (0.162) (0.173) 

Small 
0.178 0.172 0.211 0.216 

(0.164) (0.088) (0.159) (0.183) 

None 
-- 0.217 0.174 0.152 

-- (0.142) (0.117) (0.085) 

15% 

Large 
0.228 0.215 0.245 0.175 

(0.154) (0.113) (0.141) (0.075) 

Medium 
0.153 0.165 0.204 0.135 

(0.150) (0.122) (0.105) (0.167) 

Small 
0.225 0.200 0.183 0.205 

(0.242) (0.137) (0.142) (0.117) 

None 
0.264 0.154 0.216 0.183 

(0.197) (0.106) (0.185) (0.148) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.309 0.243 0.212 0.199 

(0.229) (0.193) (0.134) (0.273) 

Medium 
0.311 0.198 0.223 0.243 

(0.362) (0.216) (0.261) (0.225) 

Small 
0.299 0.139 0.152 0.204 

(0.251) (0.123) (0.088) (0.219) 

None 
-- 0.282 0.187 0.247 

-- (0.216) (0.219) (0.175) 

30% 

Large 
0.170 0.223 0.201 0.202 

(0.148) (0.166) (0.135) (0.100) 

Medium 
0.250 0.224 0.218 0.321 

(0.253) (0.247) (0.144) (0.287) 

Small 
0.198 0.163 0.269 0.323 

(0.218) (0.125) (0.276) (0.373) 

None 
-- 0.252 0.249 0.227 

-- (0.235) (0.204) (0.167) 

15% 

Large 
0.186 0.326 0.237 0.232 

(0.181) (0.237) (0.215) (0.144) 

Medium 
0.308 0.219 0.189 0.246 

(0.248) (0.197) (0.194) (0.233) 

Small 
0.285 0.228 0.258 0.163 

(0.365) (0.249) (0.132) (0.139) 

None 
0.254 0.169 0.293 0.293 

(0.323) (0.148) (0.277) (0.243) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.308 0.254 0.202 0.192 

(0.228) (0.189) (0.132) (0.267) 

Medium 
0.304 0.201 0.237 0.238 

(0.341) (0.226) (0.279) (0.228) 

Small 
0.266 0.132 0.150 0.216 

(0.237) (0.119) (0.091) (0.240) 

None 
-- 0.283 0.206 0.252 

-- (0.212) (0.216) (0.181) 

30% 

Large 
0.176 0.222 0.216 0.217 

(0.149) (0.172) (0.147) (0.105) 

Medium 
0.248 0.221 0.221 0.335 

(0.250) (0.237) (0.137) (0.275) 

Small 
0.193 0.170 0.272 0.322 

(0.214) (0.133) (0.273) (0.356) 

None 
-- 0.245 0.252 0.215 

-- (0.235) (0.205) (0.177) 

15% 

Large 
0.188 0.327 0.237 0.230 

(0.186) (0.230) (0.213) (0.150) 

Medium 
0.309 0.215 0.193 0.246 

(0.251) (0.189) (0.194) (0.234) 

Small 
0.287 0.246 0.259 0.164 

(0.361) (0.247) (0.129) (0.137) 

None 
0.251 0.171 0.304 0.299 

(0.313) (0.157) (0.280) (0.245) 
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APPENDIX G 

 

SLOPE PARAMETER BIAS ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.068 0.021 0.069 0.169 

(0.067) (0.093) (0.089) (0.108) 

Medium 
-0.050 0.017 0.083 0.162 

(0.100) (0.088) (0.100) (0.104) 

Small 
-0.052 0.038 0.122 0.193 

(0.062) (0.082) (0.091) (0.109) 

None 
-- 0.026 0.119 0.179 

-- (0.081) (0.121) (0.090) 

30% 

Large 
-0.085 -0.024 0.060 0.056 

(0.077) (0.088) (0.087) (0.104) 

Medium 
-0.071 0.003 0.041 0.113 

(0.085) (0.078) (0.106) (0.063) 

Small 
-0.062 0.016 0.071 0.081 

(0.082) (0.093) (0.092) (0.097) 

None 
-- -0.004 0.041 0.124 

-- (0.080) (0.089) (0.080) 

15% 

Large 
-0.054 -0.029 0.009 -0.015 

(0.088) (0.077) (0.073) (0.095) 

Medium 
-0.072 -0.052 0.016 0.026 

(0.076) (0.074) (0.089) (0.083) 

Small 
-0.073 -0.005 -0.005 0.021 

(0.069) (0.084) (0.093) (0.073) 

None 
-0.033 -0.042 0.015 0.038 

(0.046) (0.063) (0.087) (0.068) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.066 0.023 0.074 0.151 

(0.042) (0.052) (0.049) (0.047) 

Medium 
-0.046 0.027 0.091 0.161 

(0.062) (0.050) (0.055) (0.055) 

Small 
-0.048 0.044 0.117 0.185 

(0.042) (0.046) (0.044) (0.051) 

None 
-- 0.038 0.125 0.192 

-- (0.047) (0.063) (0.042) 

30% 

Large 
-0.069 -0.013 0.052 0.069 

(0.048) (0.048) (0.052) (0.055) 

Medium 
-0.067 0.009 0.046 0.095 

(0.058) (0.049) (0.063) (0.037) 

Small 
-0.051 0.011 0.063 0.100 

(0.050) (0.052) (0.052) (0.050) 

None 
-- 0.013 0.054 0.119 

-- (0.049) (0.046) (0.036) 

15% 

Large 
-0.046 -0.027 0.002 0.001 

(0.056) (0.046) (0.046) (0.058) 

Medium 
-0.058 -0.031 0.009 0.022 

(0.047) (0.038) (0.049) (0.040) 

Small 
-0.056 -0.007 -0.005 0.026 

(0.042) (0.056) (0.052) (0.041) 

None 
-0.029 -0.025 0.014 0.038 

(0.028) (0.042) (0.053) (0.036) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.101 0.087 0.183 0.300 

(0.056) (0.064) (0.077) (0.077) 

Medium 
-0.060 0.096 0.206 0.330 

(0.077) (0.060) (0.063) (0.070) 

Small 
-0.064 0.101 0.230 0.362 

(0.045) (0.069) (0.053) (0.074) 

None 
-- 0.115 0.271 0.399 

-- (0.055) (0.076) (0.043) 

30% 

Large 
-0.080 -0.001 0.087 0.119 

(0.048) (0.061) (0.056) (0.064) 

Medium 
-0.075 0.028 0.076 0.150 

(0.070) (0.066) (0.069) (0.059) 

Small 
-0.056 0.038 0.103 0.168 

(0.056) (0.055) (0.057) (0.061) 

None 
-- 0.037 0.101 0.186 

-- (0.056) (0.050) (0.046) 

15% 

Large 
-0.043 -0.022 0.011 0.009 

(0.056) (0.048) (0.051) (0.058) 

Medium 
-0.060 -0.027 0.017 0.036 

(0.050) (0.038) (0.053) (0.042) 

Small 
-0.059 -0.005 0.001 0.041 

(0.042) (0.057) (0.053) (0.043) 

None 
-0.031 -0.022 0.024 0.053 

(0.033) (0.039) (0.058) (0.041) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.108 0.179 0.285 0.413 

(0.098) (0.080) (0.113) (0.089) 

Medium 
0.044 0.162 0.271 0.333 

(0.067) (0.107) (0.095) (0.113) 

Small 
0.046 0.160 0.262 0.333 

(0.053) (0.099) (0.081) (0.076) 

None 
-- 0.160 0.260 0.372 

-- (0.115) (0.083) (0.068) 

30% 

Large 
0.022 0.138 0.192 0.295 

(0.075) (0.084) (0.087) (0.113) 

Medium 
-0.005 0.122 0.191 0.267 

(0.112) (0.089) (0.086) (0.109) 

Small 
0.055 0.084 0.167 0.299 

(0.114) (0.080) (0.133) (0.098) 

None 
-- 0.123 0.210 0.262 

-- (0.112) (0.096) (0.125) 

15% 

Large 
0.018 0.113 0.114 0.125 

(0.086) (0.075) (0.101) (0.091) 

Medium 
0.067 0.082 0.135 0.196 

(0.105) (0.096) (0.081) (0.119) 

Small 
-0.019 0.063 0.089 0.118 

(0.093) (0.071) (0.069) (0.108) 

None 
0.059 0.076 0.088 0.165 

(0.078) (0.084) (0.124) (0.112) 

 

  



235 

Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.164 0.222 0.310 0.427 

(0.096) (0.098) (0.115) (0.099) 

Medium 
0.088 0.200 0.319 0.381 

(0.054) (0.107) (0.117) (0.126) 

Small 
0.118 0.202 0.295 0.359 

(0.070) (0.097) (0.102) (0.086) 

None 
-- 0.210 0.325 0.442 

-- (0.144) (0.080) (0.064) 

30% 

Large 
0.066 0.185 0.244 0.326 

(0.079) (0.097) (0.094) (0.113) 

Medium 
0.084 0.180 0.249 0.322 

(0.105) (0.094) (0.104) (0.113) 

Small 
0.119 0.127 0.204 0.353 

(0.117) (0.072) (0.128) (0.122) 

None 
-- 0.195 0.285 0.339 

-- (0.118) (0.085) (0.129) 

15% 

Large 
0.069 0.206 0.163 0.165 

(0.087) (0.072) (0.077) (0.095) 

Medium 
0.136 0.145 0.189 0.265 

(0.119) (0.091) (0.093) (0.125) 

Small 
0.067 0.124 0.150 0.164 

(0.100) (0.071) (0.084) (0.106) 

None 
0.113 0.139 0.185 0.208 

(0.073) (0.097) (0.120) (0.110) 

 

  



236 

Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.168 0.343 0.525 0.731 

(0.092) (0.120) (0.126) (0.107) 

Medium 
0.109 0.337 0.531 0.655 

(0.044) (0.117) (0.151) (0.130) 

Small 
0.122 0.328 0.477 0.616 

(0.050) (0.124) (0.098) (0.092) 

None 
-- 0.329 0.506 0.687 

-- (0.131) (0.093) (0.084) 

30% 

Large 
0.068 0.224 0.297 0.412 

(0.078) (0.097) (0.104) (0.113) 

Medium 
0.094 0.220 0.319 0.421 

(0.103) (0.099) (0.115) (0.126) 

Small 
0.117 0.167 0.267 0.459 

(0.113) (0.079) (0.122) (0.124) 

None 
-- 0.236 0.360 0.410 

-- (0.125) (0.093) (0.116) 

15% 

Large 
0.077 0.216 0.178 0.187 

(0.095) (0.072) (0.078) (0.097) 

Medium 
0.137 0.154 0.205 0.286 

(0.123) (0.089) (0.103) (0.128) 

Small 
0.068 0.143 0.165 0.184 

(0.096) (0.073) (0.093) (0.105) 

None 
0.111 0.148 0.200 0.231 

(0.079) (0.104) (0.129) (0.114) 
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APPENDIX H 

 

SLOPE PARAMETER ROOT MEAN SQUARE ERROR ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.037 0.041 0.047 0.085 

(0.029) (0.023) (0.031) (0.053) 

Medium 
0.043 0.035 0.052 0.086 

(0.035) (0.027) (0.039) (0.043) 

Small 
0.031 0.035 0.064 0.096 

(0.026) (0.028) (0.041) (0.055) 

None 
-- 0.034 0.074 0.092 

-- (0.024) (0.040) (0.040) 

30% 

Large 
0.047 0.032 0.042 0.048 

(0.033) (0.032) (0.032) (0.034) 

Medium 
0.046 0.029 0.043 0.057 

(0.030) (0.025) (0.037) (0.031) 

Small 
0.042 0.038 0.048 0.053 

(0.029) (0.026) (0.032) (0.034) 

None 
-- 0.031 0.037 0.063 

-- (0.024) (0.031) (0.040) 

15% 

Large 
0.043 0.035 0.028 0.040 

(0.028) (0.021) (0.022) (0.026) 

Medium 
0.045 0.037 0.036 0.037 

(0.025) (0.025) (0.026) (0.022) 

Small 
0.040 0.030 0.037 0.030 

(0.030) (0.028) (0.027) (0.022) 

None 
0.023 0.032 0.036 0.033 

(0.017) (0.020) (0.024) (0.019) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.033 0.022 0.039 0.076 

(0.021) (0.017) (0.020) (0.023) 

Medium 
0.031 0.022 0.046 0.080 

(0.022) (0.018) (0.027) (0.028) 

Small 
0.025 0.024 0.059 0.092 

(0.019) (0.020) (0.022) (0.025) 

None 
-- 0.026 0.064 0.096 

-- (0.015) (0.029) (0.021) 

30% 

Large 
0.037 0.018 0.031 0.037 

(0.021) (0.017) (0.019) (0.024) 

Medium 
0.037 0.019 0.029 0.047 

(0.023) (0.016) (0.025) (0.018) 

Small 
0.030 0.022 0.033 0.050 

(0.018) (0.014) (0.024) (0.025) 

None 
-- 0.020 0.029 0.059 

-- (0.015) (0.021) (0.018) 

15% 

Large 
0.031 0.023 0.018 0.023 

(0.019) (0.014) (0.014) (0.016) 

Medium 
0.034 0.020 0.020 0.020 

(0.016) (0.013) (0.015) (0.010) 

Small 
0.028 0.020 0.021 0.021 

(0.020) (0.019) (0.015) (0.011) 

None 
0.015 0.020 0.023 0.021 

(0.013) (0.014) (0.015) (0.015) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.050 0.044 0.091 0.150 

(0.028) (0.031) (0.039) (0.039) 

Medium 
0.040 0.053 0.103 0.165 

(0.028) (0.021) (0.031) (0.035) 

Small 
0.032 0.051 0.115 0.181 

(0.022) (0.033) (0.026) (0.037) 

None 
-- 0.058 0.136 0.200 

-- (0.028) (0.038) (0.022) 

30% 

Large 
0.042 0.021 0.045 0.059 

(0.020) (0.022) (0.025) (0.032) 

Medium 
0.043 0.030 0.041 0.075 

(0.027) (0.020) (0.031) (0.029) 

Small 
0.032 0.027 0.051 0.084 

(0.023) (0.019) (0.028) (0.031) 

None 
-- 0.025 0.051 0.093 

-- (0.022) (0.025) (0.023) 

15% 

Large 
0.028 0.022 0.019 0.024 

(0.020) (0.015) (0.017) (0.016) 

Medium 
0.034 0.020 0.022 0.024 

(0.018) (0.012) (0.016) (0.014) 

Small 
0.030 0.021 0.021 0.027 

(0.020) (0.019) (0.015) (0.013) 

None 
0.018 0.018 0.025 0.029 

(0.014) (0.012) (0.018) (0.017) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.060 0.089 0.143 0.206 

(0.040) (0.040) (0.056) (0.045) 

Medium 
0.031 0.082 0.136 0.166 

(0.025) (0.051) (0.048) (0.057) 

Small 
0.025 0.080 0.131 0.167 

(0.025) (0.050) (0.040) (0.038) 

None 
-- 0.081 0.130 0.186 

-- (0.055) (0.041) (0.034) 

30% 

Large 
0.029 0.072 0.096 0.147 

(0.025) (0.038) (0.043) (0.057) 

Medium 
0.046 0.063 0.096 0.133 

(0.030) (0.042) (0.041) (0.054) 

Small 
0.045 0.047 0.085 0.150 

(0.043) (0.034) (0.064) (0.049) 

None 
-- 0.067 0.105 0.131 

-- (0.049) (0.048) (0.062) 

15% 

Large 
0.034 0.057 0.060 0.065 

(0.026) (0.037) (0.047) (0.041) 

Medium 
0.047 0.052 0.068 0.098 

(0.040) (0.035) (0.041) (0.059) 

Small 
0.037 0.041 0.045 0.065 

(0.029) (0.024) (0.034) (0.047) 

None 
0.034 0.042 0.052 0.082 

(0.035) (0.038) (0.055) (0.056) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.082 0.111 0.155 0.213 

(0.048) (0.049) (0.057) (0.049) 

Medium 
0.044 0.100 0.159 0.191 

(0.027) (0.053) (0.059) (0.063) 

Small 
0.059 0.101 0.147 0.179 

(0.035) (0.049) (0.051) (0.043) 

None 
-- 0.105 0.162 0.221 

-- (0.072) (0.040) (0.032) 

30% 

Large 
0.040 0.092 0.122 0.163 

(0.032) (0.048) (0.047) (0.057) 

Medium 
0.048 0.090 0.124 0.161 

(0.046) (0.047) (0.052) (0.056) 

Small 
0.064 0.065 0.102 0.176 

(0.053) (0.031) (0.064) (0.061) 

None 
-- 0.098 0.143 0.169 

-- (0.059) (0.043) (0.065) 

15% 

Large 
0.044 0.103 0.082 0.083 

(0.033) (0.036) (0.038) (0.047) 

Medium 
0.070 0.075 0.094 0.132 

(0.057) (0.040) (0.046) (0.062) 

Small 
0.046 0.062 0.075 0.082 

(0.038) (0.035) (0.042) (0.053) 

None 
0.056 0.069 0.092 0.104 

(0.036) (0.049) (0.060) (0.055) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.084 0.172 0.262 0.366 

(0.046) (0.060) (0.063) (0.054) 

Medium 
0.054 0.168 0.266 0.327 

(0.022) (0.058) (0.075) (0.065) 

Small 
0.061 0.164 0.239 0.308 

(0.025) (0.062) (0.049) (0.046) 

None 
-- 0.165 0.253 0.343 

-- (0.066) (0.047) (0.042) 

30% 

Large 
0.042 0.112 0.148 0.206 

(0.029) (0.049) (0.052) (0.056) 

Medium 
0.051 0.110 0.160 0.210 

(0.047) (0.050) (0.057) (0.063) 

Small 
0.066 0.083 0.133 0.229 

(0.048) (0.039) (0.061) (0.062) 

None 
-- 0.118 0.180 0.205 

-- (0.062) (0.047) (0.058) 

15% 

Large 
0.047 0.108 0.089 0.093 

(0.037) (0.036) (0.039) (0.048) 

Medium 
0.072 0.078 0.103 0.143 

(0.058) (0.042) (0.051) (0.064) 

Small 
0.046 0.072 0.082 0.092 

(0.036) (0.036) (0.046) (0.053) 

None 
0.055 0.074 0.100 0.116 

(0.039) (0.052) (0.065) (0.057) 
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APPENDIX I 

 

SLOPE VARIANCE PARAMETER BIAS ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.178 -0.207 -0.204 -0.155 

(0.098) (0.142) (0.155) (0.187) 

Medium 
-0.102 -0.188 -0.179 -0.162 

(0.169) (0.124) (0.155) (0.175) 

Small 
-0.154 -0.126 -0.136 -0.116 

(0.135) (0.161) (0.171) (0.199) 

None 
-- -0.112 -0.098 -0.138 

-- (0.163) (0.249) (0.163) 

30% 

Large 
-0.189 -0.184 -0.123 -0.167 

(0.138) (0.156) (0.143) (0.165) 

Medium 
-0.124 -0.125 -0.138 -0.098 

(0.183) (0.139) (0.192) (0.133) 

Small 
-0.129 -0.085 -0.092 -0.136 

(0.162) (0.180) (0.180) (0.172) 

None 
-- -0.100 -0.136 -0.090 

-- (0.163) (0.193) (0.206) 

15% 

Large 
-0.149 -0.074 -0.098 -0.188 

(0.178) (0.184) (0.164) (0.162) 

Medium 
-0.132 -0.145 -0.058 -0.140 

(0.137) (0.145) (0.180) (0.164) 

Small 
-0.134 -0.070 -0.077 -0.137 

(0.147) (0.228) (0.207) (0.121) 

None 
-0.063 -0.155 -0.076 -0.068 

(0.139) (0.145) (0.175) (0.158) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.265 -0.260 -0.250 -0.232 

(0.103) (0.100) (0.101) (0.096) 

Medium 
-0.186 -0.232 -0.226 -0.216 

(0.091) (0.121) (0.088) (0.115) 

Small 
-0.236 -0.196 -0.224 -0.198 

(0.104) (0.107) (0.095) (0.076) 

None 
-- -0.173 -0.176 -0.188 

-- (0.097) (0.116) (0.106) 

30% 

Large 
-0.226 -0.227 -0.200 -0.180 

(0.116) (0.095) (0.127) (0.105) 

Medium 
-0.208 -0.190 -0.211 -0.197 

(0.116) (0.106) (0.103) (0.104) 

Small 
-0.199 -0.200 -0.200 -0.151 

(0.100) (0.110) (0.096) (0.103) 

None 
-- -0.152 -0.190 -0.179 

-- (0.115) (0.093) (0.118) 

15% 

Large 
-0.211 -0.165 -0.185 -0.220 

(0.128) (0.140) (0.127) (0.111) 

Medium 
-0.190 -0.178 -0.169 -0.224 

(0.087) (0.104) (0.097) (0.091) 

Small 
-0.182 -0.165 -0.178 -0.205 

(0.106) (0.149) (0.112) (0.099) 

None 
-0.151 -0.201 -0.180 -0.149 

(0.103) (0.106) (0.104) (0.120) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.325 -0.319 -0.313 -0.309 

(0.101) (0.099) (0.096) (0.086) 

Medium 
-0.244 -0.284 -0.285 -0.268 

(0.089) (0.111) (0.083) (0.104) 

Small 
-0.279 -0.233 -0.264 -0.235 

(0.097) (0.099) (0.092) (0.073) 

None 
-- -0.186 -0.185 -0.201 

-- (0.098) (0.114) (0.104) 

30% 

Large 
-0.251 -0.256 -0.226 -0.210 

(0.113) (0.092) (0.122) (0.102) 

Medium 
-0.226 -0.210 -0.232 -0.219 

(0.116) (0.106) (0.105) (0.105) 

Small 
-0.215 -0.217 -0.214 -0.171 

(0.096) (0.109) (0.094) (0.104) 

None 
-- -0.161 -0.197 -0.184 

-- (0.109) (0.092) (0.120) 

15% 

Large 
-0.215 -0.172 -0.192 -0.229 

(0.128) (0.138) (0.126) (0.112) 

Medium 
-0.197 -0.184 -0.175 -0.229 

(0.087) (0.103) (0.096) (0.092) 

Small 
-0.189 -0.169 -0.184 -0.208 

(0.105) (0.147) (0.112) (0.097) 

None 
-0.153 -0.202 -0.180 -0.151 

(0.106) (0.106) (0.103) (0.118) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
1.372 0.776 1.062 1.282 

(0.919) (0.943) (0.827) (1.178) 

Medium 
1.080 0.858 1.606 0.887 

(1.393) (1.004) (1.200) (0.879) 

Small 
1.191 0.794 0.596 0.895 

(1.328) (0.837) (0.656) (1.183) 

None 
-- 1.207 1.087 0.854 

-- (1.109) (1.110) (0.823) 

30% 

Large 
0.957 1.234 1.024 0.953 

(0.785) (0.891) (0.905) (0.873) 

Medium 
0.761 1.249 1.081 1.370 

(0.746) (1.231) (0.799) (1.286) 

Small 
1.219 1.039 1.119 1.693 

(1.103) (0.965) (1.361) (1.170) 

None 
-- 1.196 1.483 1.443 

-- (1.210) (0.963) (1.096) 

15% 

Large 
1.004 1.193 1.109 1.400 

(1.037) (0.959) (1.252) (1.094) 

Medium 
1.743 1.312 0.700 1.443 

(1.083) (0.848) (0.771) (0.980) 

Small 
1.545 1.223 0.948 0.374 

(1.526) (1.142) (1.083) (0.696) 

None 
1.118 0.883 1.104 1.689 

(1.108) (1.070) (1.189) (1.251) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
1.565 1.077 0.885 1.221 

(0.976) (1.103) (0.933) (1.296) 

Medium 
1.510 0.890 1.297 0.703 

(1.861) (1.126) (1.242) (1.109) 

Small 
1.176 0.728 0.400 1.001 

(1.531) (0.611) (0.836) (1.410) 

None 
-- 1.033 0.995 0.865 

-- (1.331) (1.094) (0.811) 

30% 

Large 
0.867 1.216 0.879 1.162 

(0.630) (1.156) (0.926) (0.751) 

Medium 
0.772 1.195 1.337 1.355 

(0.675) (1.254) (0.529) (1.385) 

Small 
1.231 1.049 1.115 1.776 

(1.061) (1.090) (1.412) (1.339) 

None 
-- 1.295 1.590 1.489 

-- (1.297) (0.900) (1.109) 

15% 

Large 
1.095 1.365 0.899 1.323 

(1.078) (1.152) (1.379) (1.142) 

Medium 
1.905 1.287 0.915 1.502 

(1.107) (0.971) (1.078) (1.075) 

Small 
1.724 1.272 0.963 0.298 

(1.581) (1.440) (1.262) (0.787) 

None 
1.008 0.675 1.138 1.570 

(1.179) (1.220) (1.201) (1.490) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
1.468 1.143 0.865 1.193 

(0.947) (1.087) (0.922) (1.216) 

Medium 
1.438 0.879 1.326 0.722 

(1.767) (1.110) (1.275) (1.093) 

Small 
1.049 0.724 0.423 1.031 

(1.381) (0.589) (0.889) (1.427) 

None 
-- 1.069 1.092 0.866 

-- (1.279) (1.083) (0.819) 

30% 

Large 
0.871 1.213 0.943 1.200 

(0.636) (1.147) (0.957) (0.753) 

Medium 
0.765 1.165 1.333 1.328 

(0.658) (1.209) (0.491) (1.414) 

Small 
1.235 1.058 1.118 1.731 

(1.032) (1.095) (1.403) (1.296) 

None 
-- 1.262 1.586 1.362 

-- (1.279) (0.908) (1.022) 

15% 

Large 
1.108 1.359 0.903 1.305 

(1.090) (1.132) (1.347) (1.134) 

Medium 
1.906 1.270 0.915 1.502 

(1.098) (0.943) (1.087) (1.074) 

Small 
1.731 1.332 0.960 0.291 

(1.573) (1.397) (1.260) (0.786) 

None 
0.995 0.700 1.152 1.582 

(1.142) (1.237) (1.224) (1.507) 
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APPENDIX J 

 

SLOPE VARIANCE PARAMETER ROOT MEAN SQUARE ERROR 

ESTIMATES 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.036 0.042 0.042 0.040 

(0.018) (0.027) (0.029) (0.027) 

Medium 
0.033 0.039 0.042 0.039 

(0.022) (0.023) (0.022) (0.026) 

Small 
0.036 0.036 0.033 0.036 

(0.020) (0.019) (0.028) (0.029) 

None 
-- 0.032 0.044 0.035 

-- (0.023) (0.029) (0.025) 

30% 

Large 
0.038 0.043 0.030 0.038 

(0.027) (0.021) (0.023) (0.027) 

Medium 
0.035 0.031 0.039 0.027 

(0.027) (0.021) (0.025) (0.019) 

Small 
0.035 0.034 0.032 0.037 

(0.021) (0.020) (0.024) (0.024) 

None 
-- 0.030 0.039 0.038 

-- (0.024) (0.027) (0.023) 

15% 

Large 
0.042 0.032 0.031 0.042 

(0.018) (0.023) (0.023) (0.026) 

Medium 
0.033 0.034 0.030 0.034 

(0.018) (0.022) (0.023) (0.027) 

Small 
0.035 0.035 0.036 0.030 

(0.019) (0.032) (0.024) (0.021) 

None 
0.026 0.038 0.032 0.029 

(0.016) (0.019) (0.021) (0.019) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.053 0.052 0.050 0.046 

(0.021) (0.020) (0.020) (0.019) 

Medium 
0.037 0.047 0.045 0.045 

(0.018) (0.023) (0.018) (0.019) 

Small 
0.047 0.039 0.045 0.040 

(0.021) (0.021) (0.018) (0.015) 

None 
-- 0.035 0.038 0.038 

-- (0.018) (0.018) (0.021) 

30% 

Large 
0.046 0.045 0.041 0.036 

(0.022) (0.019) (0.023) (0.021) 

Medium 
0.042 0.039 0.042 0.040 

(0.023) (0.020) (0.021) (0.020) 

Small 
0.040 0.040 0.040 0.032 

(0.020) (0.022) (0.019) (0.018) 

None 
-- 0.032 0.038 0.039 

-- (0.021) (0.019) (0.018) 

15% 

Large 
0.045 0.038 0.040 0.045 

(0.020) (0.021) (0.021) (0.020) 

Medium 
0.038 0.036 0.035 0.045 

(0.017) (0.020) (0.018) (0.018) 

Small 
0.038 0.039 0.036 0.041 

(0.019) (0.022) (0.021) (0.020) 

None 
0.032 0.040 0.036 0.032 

(0.017) (0.021) (0.021) (0.021) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.065 0.064 0.063 0.062 

(0.020) (0.020) (0.019) (0.017) 

Medium 
0.049 0.057 0.057 0.054 

(0.018) (0.022) (0.017) (0.021) 

Small 
0.056 0.047 0.053 0.047 

(0.019) (0.020) (0.018) (0.015) 

None 
-- 0.038 0.040 0.040 

-- (0.019) (0.018) (0.021) 

30% 

Large 
0.050 0.051 0.046 0.042 

(0.022) (0.018) (0.022) (0.020) 

Medium 
0.045 0.042 0.046 0.044 

(0.023) (0.020) (0.021) (0.021) 

Small 
0.043 0.043 0.043 0.035 

(0.019) (0.022) (0.019) (0.019) 

None 
-- 0.033 0.039 0.040 

-- (0.021) (0.018) (0.018) 

15% 

Large 
0.046 0.039 0.041 0.047 

(0.020) (0.021) (0.021) (0.020) 

Medium 
0.039 0.037 0.035 0.046 

(0.017) (0.021) (0.018) (0.018) 

Small 
0.039 0.039 0.038 0.042 

(0.019) (0.021) (0.021) (0.019) 

None 
0.033 0.040 0.036 0.032 

(0.018) (0.021) (0.021) (0.021) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.274 0.175 0.215 0.266 

(0.184) (0.169) (0.161) (0.224) 

Medium 
0.221 0.198 0.339 0.180 

(0.274) (0.172) (0.213) (0.173) 

Small 
0.254 0.172 0.136 0.192 

(0.249) (0.153) (0.113) (0.225) 

None 
-- 0.241 0.217 0.179 

-- (0.222) (0.222) (0.155) 

30% 

Large 
0.214 0.253 0.206 0.207 

(0.121) (0.168) (0.179) (0.153) 

Medium 
0.173 0.253 0.232 0.274 

(0.122) (0.243) (0.133) (0.257) 

Small 
0.244 0.208 0.241 0.339 

(0.221) (0.193) (0.256) (0.234) 

None 
-- 0.256 0.297 0.289 

-- (0.223) (0.193) (0.219) 

15% 

Large 
0.209 0.240 0.251 0.285 

(0.199) (0.191) (0.218) (0.212) 

Medium 
0.349 0.262 0.147 0.299 

(0.217) (0.170) (0.146) (0.179) 

Small 
0.329 0.245 0.209 0.095 

(0.281) (0.228) (0.197) (0.126) 

None 
0.229 0.212 0.235 0.341 

(0.216) (0.176) (0.222) (0.245) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.313 0.231 0.185 0.250 

(0.195) (0.202) (0.178) (0.253) 

Medium 
0.303 0.231 0.288 0.175 

(0.371) (0.165) (0.212) (0.194) 

Small 
0.270 0.146 0.122 0.226 

(0.271) (0.121) (0.136) (0.258) 

None 
-- 0.234 0.202 0.185 

-- (0.241) (0.215) (0.147) 

30% 

Large 
0.193 0.255 0.190 0.232 

(0.089) (0.216) (0.169) (0.150) 

Medium 
0.175 0.244 0.267 0.272 

(0.103) (0.246) (0.106) (0.276) 

Small 
0.246 0.219 0.245 0.355 

(0.212) (0.208) (0.261) (0.268) 

None 
-- 0.275 0.318 0.302 

-- (0.241) (0.180) (0.216) 

15% 

Large 
0.231 0.274 0.245 0.272 

(0.201) (0.229) (0.212) (0.219) 

Medium 
0.383 0.257 0.196 0.313 

(0.218) (0.194) (0.201) (0.194) 

Small 
0.353 0.258 0.236 0.106 

(0.306) (0.284) (0.208) (0.129) 

None 
0.207 0.201 0.240 0.332 

(0.231) (0.188) (0.226) (0.276) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.294 0.244 0.181 0.241 

(0.189) (0.196) (0.176) (0.240) 

Medium 
0.288 0.225 0.291 0.178 

(0.353) (0.167) (0.222) (0.190) 

Small 
0.228 0.145 0.128 0.233 

(0.259) (0.118) (0.146) (0.260) 

None 
-- 0.237 0.218 0.183 

-- (0.233) (0.217) (0.152) 

30% 

Large 
0.192 0.254 0.203 0.240 

(0.094) (0.215) (0.174) (0.151) 

Medium 
0.173 0.239 0.267 0.267 

(0.102) (0.236) (0.098) (0.282) 

Small 
0.247 0.215 0.245 0.346 

(0.206) (0.215) (0.260) (0.259) 

None 
-- 0.268 0.317 0.272 

-- (0.239) (0.182) (0.204) 

15% 

Large 
0.236 0.272 0.244 0.268 

(0.201) (0.226) (0.206) (0.217) 

Medium 
0.381 0.254 0.197 0.313 

(0.220) (0.189) (0.202) (0.194) 

Small 
0.354 0.272 0.234 0.105 

(0.305) (0.273) (0.210) (0.128) 

None 
0.205 0.203 0.243 0.334 

(0.222) (0.194) (0.231) (0.280) 
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APPENDIX K 

 

INTERCEPT-SLOPE COVARIANCE PARAMETER P-VALUE 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.185 0.137 0.087 0.076 

(0.265) (0.236) (0.139) (0.203) 

Medium 
0.137 0.173 0.069 0.072 

(0.224) (0.265) (0.119) (0.136) 

Small 
0.272 0.140 0.134 0.045 

(0.297) (0.259) (0.179) (0.055) 

None 
-- 0.186 0.111 0.110 

-- (0.223) (0.152) (0.228) 

30% 

Large 
0.149 0.160 0.088 0.061 

(0.227) (0.246) (0.137) (0.104) 

Medium 
0.235 0.173 0.248 0.143 

(0.301) (0.242) (0.349) (0.199) 

Small 
0.233 0.240 0.127 0.079 

(0.289) (0.333) (0.179) (0.160) 

None 
-- 0.094 0.178 0.165 

-- (0.108) (0.266) (0.222) 

15% 

Large 
0.170 0.162 0.154 0.172 

(0.252) (0.239) (0.210) (0.226) 

Medium 
0.222 0.195 0.174 0.198 

(0.260) (0.291) (0.216) (0.282) 

Small 
0.211 0.202 0.177 0.168 

(0.284) (0.250) (0.221) (0.239) 

None 
0.161 0.179 0.198 0.185 

(0.198) (0.247) (0.243) (0.243) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.020 0.018 0.028 0.013 

(0.030) (0.026) (0.062) (0.029) 

Medium 
0.009 0.025 0.023 0.034 

(0.020) (0.042) (0.047) (0.098) 

Small 
0.072 0.041 0.032 0.018 

(0.122) (0.082) (0.044) (0.031) 

None 
-- 0.060 0.065 0.075 

-- (0.122) (0.110) (0.160) 

30% 

Large 
0.037 0.027 0.040 0.017 

(0.075) (0.051) (0.102) (0.035) 

Medium 
0.052 0.020 0.069 0.045 

(0.127) (0.030) (0.140) (0.117) 

Small 
0.061 0.034 0.041 0.021 

(0.137) (0.053) (0.103) (0.040) 

None 
-- 0.040 0.068 0.047 

-- (0.103) (0.130) (0.065) 

15% 

Large 
0.053 0.041 0.031 0.050 

(0.101) (0.079) (0.055) (0.093) 

Medium 
0.032 0.042 0.022 0.083 

(0.042) (0.072) (0.035) (0.141) 

Small 
0.033 0.041 0.068 0.073 

(0.059) (0.076) (0.166) (0.198) 

None 
0.022 0.082 0.093 0.038 

(0.040) (0.169) (0.216) (0.055) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.006 0.005 0.009 0.006 

(0.009) (0.008) (0.019) (0.019) 

Medium 
0.005 0.013 0.011 0.020 

(0.011) (0.025) (0.023) (0.067) 

Small 
0.055 0.034 0.024 0.011 

(0.094) (0.071) (0.037) (0.019) 

None 
-- 0.067 0.065 0.073 

-- (0.128) (0.113) (0.143) 

30% 

Large 
0.024 0.021 0.032 0.011 

(0.048) (0.042) (0.086) (0.024) 

Medium 
0.045 0.016 0.064 0.038 

(0.113) (0.023) (0.130) (0.102) 

Small 
0.057 0.031 0.037 0.020 

(0.129) (0.049) (0.095) (0.041) 

None 
-- 0.043 0.072 0.046 

-- (0.111) (0.138) (0.066) 

15% 

Large 
0.052 0.040 0.030 0.048 

(0.099) (0.078) (0.054) (0.089) 

Medium 
0.031 0.041 0.021 0.079 

(0.040) (0.072) (0.033) (0.133) 

Small 
0.031 0.041 0.069 0.071 

(0.055) (0.073) (0.174) (0.192) 

None 
0.022 0.085 0.095 0.035 

(0.041) (0.177) (0.224) (0.051) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.553 0.591 0.574 0.600 

(0.289) (0.324) (0.157) (0.242) 

Medium 
0.622 0.603 0.524 0.376 

(0.314) (0.303) (0.256) (0.176) 

Small 
0.503 0.580 0.588 0.485 

(0.333) (0.251) (0.286) (0.328) 

None 
-- 0.562 0.518 0.594 

-- (0.282) (0.296) (0.244) 

30% 

Large 
0.642 0.502 0.577 0.619 

(0.206) (0.235) (0.156) (0.213) 

Medium 
0.553 0.601 0.495 0.519 

(0.271) (0.269) (0.293) (0.324) 

Small 
0.683 0.586 0.534 0.584 

(0.305) (0.209) (0.241) (0.291) 

None 
-- 0.451 0.541 0.583 

-- (0.205) (0.247) (0.240) 

15% 

Large 
0.472 0.496 0.535 0.510 

(0.271) (0.285) (0.292) (0.227) 

Medium 
0.520 0.573 0.586 0.557 

(0.245) (0.274) (0.278) (0.273) 

Small 
0.560 0.524 0.539 0.515 

(0.272) (0.229) (0.329) (0.220) 

None 
0.536 0.556 0.585 0.480 

(0.268) (0.192) (0.279) (0.233) 

 

  



259 

Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.405 0.454 0.575 0.527 

(0.260) (0.248) (0.305) (0.293) 

Medium 
0.466 0.539 0.494 0.527 

(0.302) (0.271) (0.290) (0.271) 

Small 
0.455 0.677 0.674 0.502 

(0.351) (0.260) (0.239) (0.339) 

None 
-- 0.478 0.614 0.561 

-- (0.310) (0.289) (0.279) 

30% 

Large 
0.583 0.497 0.545 0.539 

(0.202) (0.311) (0.286) (0.243) 

Medium 
0.546 0.599 0.515 0.417 

(0.265) (0.319) (0.279) (0.270) 

Small 
0.591 0.632 0.530 0.519 

(0.265) (0.320) (0.293) (0.333) 

None 
-- 0.532 0.400 0.462 

-- (0.315) (0.211) (0.256) 

15% 

Large 
0.552 0.447 0.522 0.497 

(0.316) (0.337) (0.275) (0.286) 

Medium 
0.379 0.554 0.552 0.348 

(0.279) (0.302) (0.226) (0.139) 

Small 
0.458 0.552 0.458 0.645 

(0.237) (0.328) (0.268) (0.245) 

None 
0.628 0.575 0.538 0.477 

(0.326) (0.250) (0.294) (0.324) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.386 0.415 0.555 0.478 

(0.225) (0.285) (0.310) (0.291) 

Medium 
0.427 0.541 0.464 0.538 

(0.274) (0.284) (0.290) (0.283) 

Small 
0.447 0.673 0.671 0.506 

(0.289) (0.272) (0.260) (0.367) 

None 
-- 0.477 0.586 0.563 

-- (0.296) (0.287) (0.274) 

30% 

Large 
0.577 0.495 0.494 0.497 

(0.222) (0.320) (0.275) (0.229) 

Medium 
0.540 0.587 0.508 0.427 

(0.254) (0.304) (0.278) (0.294) 

Small 
0.585 0.626 0.519 0.512 

(0.267) (0.332) (0.287) (0.330) 

None 
-- 0.539 0.402 0.492 

-- (0.310) (0.212) (0.262) 

15% 

Large 
0.546 0.442 0.523 0.506 

(0.318) (0.335) (0.273) (0.294) 

Medium 
0.386 0.550 0.547 0.349 

(0.293) (0.296) (0.219) (0.136) 

Small 
0.459 0.527 0.458 0.638 

(0.248) (0.328) (0.261) (0.246) 

None 
0.626 0.567 0.539 0.473 

(0.324) (0.249) (0.300) (0.316) 
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APPENDIX L 

 

INTERCEPT-SLOPE COVARIANCE PARAMETER ESTIMATE 

 

 

First-Order Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.050 -0.063 -0.064 -0.071 

(0.036) (0.035) (0.028) (0.029) 

Medium 
-0.056 -0.058 -0.063 -0.070 

(0.033) (0.034) (0.029) (0.034) 

Small 
-0.040 -0.061 -0.056 -0.069 

(0.026) (0.034) (0.031) (0.025) 

None 
-- -0.052 -0.057 -0.070 

-- (0.030) (0.025) (0.033) 

30% 

Large 
-0.054 -0.056 -0.062 -0.075 

(0.033) (0.030) (0.042) (0.031) 

Medium 
-0.047 -0.054 -0.052 -0.054 

(0.032) (0.030) (0.035) (0.034) 

Small 
-0.044 -0.047 -0.056 -0.074 

(0.033) (0.037) (0.027) (0.032) 

None 
-- -0.060 -0.053 -0.054 

-- (0.027) (0.028) (0.030) 

15% 

Large 
-0.048 -0.058 -0.056 -0.051 

(0.039) (0.038) (0.035) (0.031) 

Medium 
-0.046 -0.051 -0.054 -0.042 

(0.032) (0.034) (0.031) (0.027) 

Small 
-0.051 -0.048 -0.048 -0.051 

(0.034) (0.034) (0.028) (0.030) 

None 
-0.053 -0.049 -0.049 -0.056 

(0.029) (0.032) (0.037) (0.032) 
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Second-Order Constrained Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.087 -0.088 -0.088 -0.095 

(0.029) (0.032) (0.031) (0.029) 

Medium 
-0.096 -0.083 -0.086 -0.088 

(0.024) (0.032) (0.025) (0.032) 

Small 
-0.071 -0.086 -0.078 -0.083 

(0.030) (0.031) (0.026) (0.023) 

None 
-- -0.076 -0.074 -0.073 

-- (0.029) (0.033) (0.029) 

30% 

Large 
-0.086 -0.084 -0.094 -0.097 

(0.033) (0.030) (0.038) (0.032) 

Medium 
-0.083 -0.086 -0.078 -0.081 

(0.033) (0.027) (0.032) (0.031) 

Small 
-0.077 -0.080 -0.080 -0.092 

(0.030) (0.027) (0.029) (0.031) 

None 
-- -0.086 -0.071 -0.074 

-- (0.031) (0.026) (0.028) 

15% 

Large 
-0.081 -0.091 -0.088 -0.078 

(0.037) (0.041) (0.036) (0.033) 

Medium 
-0.077 -0.080 -0.086 -0.069 

(0.026) (0.028) (0.029) (0.029) 

Small 
-0.082 -0.084 -0.080 -0.074 

(0.030) (0.045) (0.033) (0.027) 

None 
-0.088 -0.074 -0.077 -0.084 

(0.030) (0.030) (0.035) (0.033) 
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Second-Order Free Latent Growth Model 

Percent of 

DIF 
Loading DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.096 -0.098 -0.096 -0.104 

(0.028) (0.032) (0.028) (0.029) 

Medium 
-0.101 -0.088 -0.090 -0.093 

(0.024) (0.031) (0.024) (0.031) 

Small 
-0.073 -0.088 -0.080 -0.086 

(0.029) (0.030) (0.026) (0.022) 

None 
-- -0.073 -0.072 -0.072 

-- (0.028) (0.032) (0.029) 

30% 

Large 
-0.089 -0.086 -0.096 -0.099 

(0.033) (0.030) (0.038) (0.031) 

Medium 
-0.085 -0.088 -0.079 -0.082 

(0.033) (0.028) (0.032) (0.031) 

Small 
-0.077 -0.080 -0.081 -0.092 

(0.029) (0.026) (0.028) (0.031) 

None 
-- -0.084 -0.070 -0.073 

-- (0.030) (0.026) (0.028) 

15% 

Large 
-0.081 -0.091 -0.088 -0.078 

(0.037) (0.041) (0.036) (0.033) 

Medium 
-0.077 -0.080 -0.086 -0.070 

(0.026) (0.028) (0.029) (0.029) 

Small 
-0.082 -0.084 -0.079 -0.074 

(0.030) (0.045) (0.033) (0.026) 

None 
-0.088 -0.074 -0.077 -0.084 

(0.030) (0.030) (0.035) (0.033) 
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First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.096 -0.025 -0.029 -0.084 

(0.161) (0.160) (0.115) (0.151) 

Medium 
-0.074 -0.017 -0.081 0.034 

(0.234) (0.141) (0.177) (0.183) 

Small 
-0.091 -0.001 0.045 -0.011 

(0.197) (0.145) (0.122) (0.191) 

None 
-- -0.045 0.019 0.004 

-- (0.163) (0.159) (0.145) 

30% 

Large 
-0.059 -0.070 -0.020 -0.037 

(0.098) (0.153) (0.115) (0.103) 

Medium 
-0.023 -0.050 -0.006 -0.068 

(0.171) (0.165) (0.163) (0.200) 

Small 
-0.029 0.009 -0.027 -0.097 

(0.174) (0.128) (0.174) (0.165) 

None 
-- -0.029 -0.076 -0.078 

-- (0.171) (0.141) (0.131) 

15% 

Large 
-0.016 -0.080 -0.026 -0.060 

(0.165) (0.177) (0.176) (0.156) 

Medium 
-0.129 -0.072 0.017 -0.073 

(0.147) (0.150) (0.152) (0.161) 

Small 
-0.057 -0.036 -0.012 0.064 

(0.225) (0.177) (0.170) (0.111) 

None 
-0.077 -0.008 -0.039 -0.108 

(0.204) (0.128) (0.163) (0.169) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.222 -0.177 -0.127 -0.175 

(0.184) (0.171) (0.140) (0.203) 

Medium 
-0.243 -0.108 -0.162 -0.063 

(0.264) (0.164) (0.184) (0.222) 

Small 
-0.177 -0.085 -0.018 -0.156 

(0.230) (0.114) (0.106) (0.210) 

None 
-- -0.123 -0.097 -0.110 

-- (0.218) (0.173) (0.167) 

30% 

Large 
-0.110 -0.143 -0.128 -0.140 

(0.093) (0.173) (0.125) (0.088) 

Medium 
-0.132 -0.148 -0.158 -0.198 

(0.160) (0.194) (0.122) (0.245) 

Small 
-0.130 -0.114 -0.144 -0.209 

(0.179) (0.122) (0.221) (0.231) 

None 
-- -0.151 -0.206 -0.182 

-- (0.182) (0.126) (0.151) 

15% 

Large 
-0.118 -0.204 -0.109 -0.136 

(0.166) (0.216) (0.187) (0.162) 

Medium 
-0.240 -0.155 -0.105 -0.201 

(0.175) (0.146) (0.190) (0.184) 

Small 
-0.195 -0.132 -0.110 -0.028 

(0.256) (0.210) (0.190) (0.125) 

None 
-0.144 -0.057 -0.149 -0.201 

(0.212) (0.158) (0.193) (0.196) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.220 -0.205 -0.137 -0.194 

(0.179) (0.166) (0.138) (0.195) 

Medium 
-0.251 -0.124 -0.185 -0.079 

(0.250) (0.163) (0.191) (0.219) 

Small 
-0.179 -0.093 -0.031 -0.173 

(0.204) (0.106) (0.111) (0.219) 

None 
-- -0.128 -0.104 -0.111 

-- (0.209) (0.178) (0.170) 

30% 

Large 
-0.117 -0.153 -0.143 -0.154 

(0.094) (0.171) (0.131) (0.088) 

Medium 
-0.135 -0.151 -0.162 -0.201 

(0.160) (0.186) (0.121) (0.247) 

Small 
-0.132 -0.122 -0.149 -0.209 

(0.172) (0.125) (0.221) (0.221) 

None 
-- -0.148 -0.206 -0.171 

-- (0.180) (0.126) (0.152) 

15% 

Large 
-0.121 -0.205 -0.111 -0.137 

(0.168) (0.216) (0.185) (0.163) 

Medium 
-0.241 -0.154 -0.107 -0.202 

(0.173) (0.141) (0.190) (0.182) 

Small 
-0.197 -0.143 -0.111 -0.026 

(0.254) (0.207) (0.190) (0.125) 

None 
-0.141 -0.059 -0.150 -0.202 

(0.207) (0.162) (0.197) (0.199) 
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APPENDIX M 

 

INTERCEPT-QUADRATIC SLOPE COVARIANCE PARAMETER P-VALUE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.583 0.517 0.603 0.594 

(0.257) (0.296) (0.299) (0.279) 

Medium 
0.511 0.442 0.520 0.277 

(0.291) (0.217) (0.296) (0.256) 

Small 
0.477 0.433 0.475 0.406 

(0.285) (0.217) (0.298) (0.269) 

None 
-- 0.504 0.453 0.412 

-- (0.280) (0.305) (0.203) 

30% 

Large 
0.704 0.498 0.565 0.698 

(0.218) (0.240) (0.245) (0.289) 

Medium 
0.557 0.536 0.539 0.454 

(0.305) (0.268) (0.304) (0.289) 

Small 
0.573 0.518 0.505 0.588 

(0.268) (0.225) (0.309) (0.265) 

None 
-- 0.476 0.636 0.613 

-- (0.316) (0.283) (0.280) 

15% 

Large 
0.514 0.468 0.475 0.490 

(0.310) (0.227) (0.261) (0.283) 

Medium 
0.534 0.629 0.447 0.606 

(0.177) (0.221) (0.267) (0.270) 

Small 
0.563 0.481 0.478 0.443 

(0.291) (0.273) (0.319) (0.284) 

None 
0.528 0.503 0.520 0.538 

(0.279) (0.271) (0.251) (0.231) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.557 0.624 0.574 0.583 

(0.281) (0.317) (0.196) (0.265) 

Medium 
0.597 0.530 0.521 0.390 

(0.311) (0.248) (0.261) (0.254) 

Small 
0.446 0.721 0.576 0.445 

(0.333) (0.215) (0.214) (0.272) 

None 
-- 0.427 0.603 0.623 

-- (0.227) (0.256) (0.298) 

30% 

Large 
0.768 0.462 0.595 0.722 

(0.151) (0.186) (0.197) (0.185) 

Medium 
0.632 0.625 0.636 0.499 

(0.236) (0.260) (0.223) (0.327) 

Small 
0.631 0.635 0.531 0.597 

(0.273) (0.212) (0.255) (0.278) 

None 
-- 0.545 0.517 0.579 

-- (0.250) (0.212) (0.322) 

15% 

Large 
0.569 0.423 0.577 0.492 

(0.257) (0.251) (0.284) (0.243) 

Medium 
0.466 0.683 0.624 0.451 

(0.243) (0.280) (0.387) (0.255) 

Small 
0.532 0.453 0.520 0.580 

(0.259) (0.216) (0.314) (0.217) 

None 
0.654 0.497 0.566 0.540 

(0.233) (0.218) (0.276) (0.274) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.602 0.578 0.592 0.587 

(0.272) (0.297) (0.203) (0.262) 

Medium 
0.598 0.540 0.529 0.418 

(0.311) (0.244) (0.285) (0.272) 

Small 
0.528 0.735 0.561 0.434 

(0.361) (0.190) (0.187) (0.274) 

None 
-- 0.452 0.590 0.630 

-- (0.227) (0.259) (0.312) 

30% 

Large 
0.763 0.470 0.591 0.708 

(0.144) (0.182) (0.196) (0.193) 

Medium 
0.653 0.636 0.650 0.500 

(0.257) (0.250) (0.238) (0.338) 

Small 
0.631 0.632 0.530 0.594 

(0.267) (0.213) (0.258) (0.262) 

None 
-- 0.551 0.520 0.618 

-- (0.244) (0.210) (0.330) 

15% 

Large 
0.567 0.422 0.585 0.491 

(0.261) (0.257) (0.288) (0.234) 

Medium 
0.471 0.684 0.618 0.451 

(0.239) (0.276) (0.381) (0.253) 

Small 
0.524 0.451 0.516 0.580 

(0.254) (0.210) (0.307) (0.231) 

None 
0.641 0.495 0.555 0.539 

(0.230) (0.224) (0.267) (0.274) 
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APPENDIX N 

 

INTERCEPT-QUADRATIC SLOPE COVARIANCE PARAMETER ESTIMATE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.003 -0.013 -0.015 -0.001 

(0.035) (0.036) (0.025) (0.034) 

Medium 
0.001 -0.018 -0.001 -0.030 

(0.055) (0.034) (0.039) (0.041) 

Small 
0.008 -0.016 -0.027 -0.017 

(0.046) (0.036) (0.027) (0.046) 

None 
-- -0.004 -0.022 -0.021 

-- (0.038) (0.037) (0.034) 

30% 

Large 
-0.004 -0.002 -0.014 -0.011 

(0.021) (0.034) (0.027) (0.024) 

Medium 
-0.011 -0.004 -0.015 -0.002 

(0.036) (0.037) (0.033) (0.048) 

Small 
-0.005 -0.017 -0.011 -0.001 

(0.041) (0.029) (0.041) (0.036) 

None 
-- -0.012 0.003 0.000 

-- (0.039) (0.031) (0.033) 

15% 

Large 
-0.012 0.004 -0.013 -0.002 

(0.036) (0.043) (0.038) (0.039) 

Medium 
0.015 0.001 -0.018 0.005 

(0.036) (0.031) (0.037) (0.039) 

Small 
0.002 -0.008 -0.012 -0.029 

(0.054) (0.041) (0.038) (0.023) 

None 
0.000 -0.015 -0.004 0.007 

(0.046) (0.031) (0.037) (0.038) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.028 0.021 0.005 0.020 

(0.040) (0.039) (0.032) (0.045) 

Medium 
0.037 0.002 0.018 -0.006 

(0.063) (0.039) (0.043) (0.051) 

Small 
0.025 0.000 -0.013 0.019 

(0.055) (0.024) (0.025) (0.053) 

None 
-- 0.013 0.007 0.010 

-- (0.050) (0.039) (0.040) 

30% 

Large 
0.004 0.015 0.008 0.016 

(0.018) (0.041) (0.031) (0.017) 

Medium 
0.007 0.014 0.017 0.026 

(0.034) (0.043) (0.029) (0.057) 

Small 
0.015 0.007 0.014 0.027 

(0.043) (0.030) (0.053) (0.050) 

None 
-- 0.011 0.033 0.027 

-- (0.041) (0.029) (0.040) 

15% 

Large 
0.009 0.030 0.001 0.013 

(0.037) (0.053) (0.041) (0.041) 

Medium 
0.038 0.018 0.005 0.031 

(0.043) (0.033) (0.047) (0.045) 

Small 
0.028 0.012 0.008 -0.009 

(0.061) (0.050) (0.044) (0.028) 

None 
0.013 -0.006 0.019 0.027 

(0.049) (0.037) (0.042) (0.048) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.024 0.024 0.004 0.022 

(0.037) (0.038) (0.031) (0.043) 

Medium 
0.037 0.004 0.021 -0.005 

(0.059) (0.037) (0.044) (0.049) 

Small 
0.024 0.001 -0.011 0.021 

(0.049) (0.022) (0.026) (0.055) 

None 
-- 0.013 0.008 0.009 

-- (0.048) (0.040) (0.041) 

30% 

Large 
0.004 0.016 0.012 0.017 

(0.018) (0.040) (0.030) (0.017) 

Medium 
0.007 0.014 0.017 0.025 

(0.034) (0.041) (0.028) (0.057) 

Small 
0.015 0.008 0.015 0.027 

(0.042) (0.030) (0.052) (0.048) 

None 
-- 0.011 0.033 0.024 

-- (0.040) (0.029) (0.041) 

15% 

Large 
0.009 0.031 0.001 0.013 

(0.037) (0.053) (0.041) (0.041) 

Medium 
0.038 0.018 0.005 0.031 

(0.042) (0.033) (0.047) (0.045) 

Small 
0.028 0.014 0.008 -0.009 

(0.060) (0.048) (0.044) (0.028) 

None 
0.012 -0.005 0.019 0.027 

(0.048) (0.038) (0.042) (0.048) 
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APPENDIX O 

 

SLOPE-QUADRATIC SLOPE COVARIANCE PARAMETER P-VALUE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.255 0.418 0.315 0.286 

(0.199) (0.261) (0.156) (0.258) 

Medium 
0.393 0.411 0.221 0.291 

(0.246) (0.310) (0.244) (0.158) 

Small 
0.367 0.397 0.431 0.446 

(0.294) (0.255) (0.229) (0.293) 

None 
-- 0.294 0.298 0.396 

-- (0.180) (0.229) (0.262) 

30% 

Large 
0.348 0.256 0.375 0.383 

(0.240) (0.208) (0.241) (0.298) 

Medium 
0.453 0.289 0.337 0.299 

(0.241) (0.169) (0.278) (0.191) 

Small 
0.274 0.399 0.381 0.218 

(0.213) (0.281) (0.283) (0.223) 

None 
-- 0.348 0.228 0.276 

-- (0.297) (0.222) (0.202) 

15% 

Large 
0.350 0.332 0.401 0.251 

(0.236) (0.256) (0.297) (0.211) 

Medium 
0.232 0.236 0.459 0.226 

(0.223) (0.152) (0.237) (0.147) 

Small 
0.265 0.332 0.404 0.501 

(0.275) (0.250) (0.282) (0.251) 

None 
0.370 0.406 0.372 0.265 

(0.248) (0.283) (0.269) (0.214) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.252 0.373 0.441 0.348 

(0.180) (0.235) (0.215) (0.267) 

Medium 
0.374 0.461 0.328 0.440 

(0.258) (0.338) (0.292) (0.238) 

Small 
0.447 0.430 0.517 0.515 

(0.370) (0.135) (0.279) (0.366) 

None 
-- 0.437 0.394 0.429 

-- (0.295) (0.260) (0.232) 

30% 

Large 
0.372 0.353 0.462 0.314 

(0.209) (0.296) (0.267) (0.209) 

Medium 
0.475 0.372 0.280 0.367 

(0.189) (0.207) (0.104) (0.213) 

Small 
0.297 0.390 0.433 0.254 

(0.202) (0.305) (0.292) (0.203) 

None 
-- 0.381 0.243 0.313 

-- (0.304) (0.185) (0.256) 

15% 

Large 
0.373 0.317 0.482 0.312 

(0.281) (0.229) (0.325) (0.260) 

Medium 
0.218 0.321 0.429 0.261 

(0.202) (0.195) (0.260) (0.170) 

Small 
0.266 0.379 0.440 0.593 

(0.233) (0.293) (0.287) (0.289) 

None 
0.424 0.525 0.396 0.351 

(0.263) (0.325) (0.279) (0.284) 

 

  



275 

Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.248 0.317 0.420 0.325 

(0.179) (0.214) (0.209) (0.246) 

Medium 
0.367 0.457 0.322 0.421 

(0.249) (0.344) (0.299) (0.240) 

Small 
0.467 0.420 0.510 0.505 

(0.344) (0.133) (0.280) (0.368) 

None 
-- 0.431 0.359 0.427 

-- (0.278) (0.229) (0.222) 

30% 

Large 
0.363 0.347 0.428 0.302 

(0.207) (0.291) (0.264) (0.201) 

Medium 
0.468 0.375 0.275 0.374 

(0.184) (0.205) (0.097) (0.211) 

Small 
0.294 0.386 0.430 0.264 

(0.198) (0.299) (0.288) (0.201) 

None 
-- 0.389 0.245 0.331 

-- (0.310) (0.186) (0.249) 

15% 

Large 
0.371 0.315 0.479 0.313 

(0.282) (0.225) (0.324) (0.260) 

Medium 
0.216 0.321 0.430 0.261 

(0.197) (0.195) (0.263) (0.170) 

Small 
0.265 0.367 0.440 0.594 

(0.231) (0.286) (0.286) (0.288) 

None 
0.423 0.525 0.395 0.351 

(0.262) (0.328) (0.280) (0.285) 
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APPENDIX P 

 

SLOPE-QUADRATIC SLOPE COVARIANCE PARAMETER ESTIMATE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.087 -0.060 -0.071 -0.088 

(0.043) (0.042) (0.039) (0.057) 

Medium 
-0.073 -0.065 -0.103 -0.072 

(0.066) (0.050) (0.055) (0.037) 

Small 
-0.079 -0.060 -0.054 -0.064 

(0.061) (0.035) (0.032) (0.061) 

None 
-- -0.083 -0.083 -0.062 

-- (0.055) (0.056) (0.039) 

30% 

Large 
-0.066 -0.084 -0.069 -0.066 

(0.035) (0.043) (0.047) (0.046) 

Medium 
-0.053 -0.083 -0.072 -0.085 

(0.030) (0.057) (0.036) (0.058) 

Small 
-0.086 -0.068 -0.075 -0.105 

(0.053) (0.048) (0.068) (0.060) 

None 
-- -0.079 -0.097 -0.088 

-- (0.054) (0.048) (0.054) 

15% 

Large 
-0.073 -0.077 -0.074 -0.095 

(0.050) (0.045) (0.060) (0.054) 

Medium 
-0.099 -0.088 -0.052 -0.094 

(0.050) (0.043) (0.036) (0.045) 

Small 
-0.102 -0.080 -0.067 -0.047 

(0.070) (0.056) (0.052) (0.034) 

None 
-0.071 -0.067 -0.074 -0.096 

(0.045) (0.050) (0.055) (0.059) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.094 -0.072 -0.059 -0.083 

(0.042) (0.046) (0.043) (0.059) 

Medium 
-0.091 -0.064 -0.087 -0.060 

(0.086) (0.053) (0.057) (0.044) 

Small 
-0.077 -0.054 -0.049 -0.067 

(0.069) (0.022) (0.041) (0.073) 

None 
-- -0.073 -0.072 -0.060 

-- (0.065) (0.053) (0.033) 

30% 

Large 
-0.063 -0.081 -0.062 -0.077 

(0.027) (0.056) (0.049) (0.037) 

Medium 
-0.052 -0.075 -0.080 -0.080 

(0.025) (0.056) (0.024) (0.059) 

Small 
-0.084 -0.074 -0.072 -0.106 

(0.047) (0.053) (0.069) (0.065) 

None 
-- -0.078 -0.097 -0.089 

-- (0.056) (0.042) (0.054) 

15% 

Large 
-0.076 -0.086 -0.065 -0.090 

(0.051) (0.048) (0.068) (0.057) 

Medium 
-0.106 -0.082 -0.063 -0.094 

(0.049) (0.048) (0.046) (0.048) 

Small 
-0.106 -0.082 -0.067 -0.041 

(0.071) (0.068) (0.056) (0.038) 

None 
-0.067 -0.057 -0.075 -0.091 

(0.051) (0.059) (0.055) (0.071) 

 

  



278 

Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.092 -0.077 -0.060 -0.082 

(0.043) (0.045) (0.042) (0.056) 

Medium 
-0.089 -0.064 -0.088 -0.062 

(0.082) (0.052) (0.058) (0.044) 

Small 
-0.070 -0.055 -0.050 -0.068 

(0.065) (0.021) (0.043) (0.072) 

None 
-- -0.073 -0.077 -0.060 

-- (0.062) (0.052) (0.033) 

30% 

Large 
-0.063 -0.081 -0.067 -0.079 

(0.027) (0.056) (0.050) (0.037) 

Medium 
-0.052 -0.074 -0.080 -0.079 

(0.024) (0.055) (0.023) (0.061) 

Small 
-0.085 -0.074 -0.072 -0.103 

(0.047) (0.053) (0.068) (0.063) 

None 
-- -0.077 -0.097 -0.085 

-- (0.056) (0.043) (0.053) 

15% 

Large 
-0.076 -0.085 -0.065 -0.090 

(0.052) (0.048) (0.066) (0.056) 

Medium 
-0.106 -0.081 -0.063 -0.094 

(0.049) (0.047) (0.046) (0.048) 

Small 
-0.106 -0.083 -0.067 -0.041 

(0.071) (0.065) (0.056) (0.038) 

None 
-0.067 -0.058 -0.076 -0.092 

(0.050) (0.060) (0.056) (0.071) 
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APPENDIX Q 

 

QUADRATIC SLOPE PARAMETER P-VALUE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.140 0.184 0.061 0.019 

(0.277) (0.292) (0.126) (0.043) 

Medium 
0.236 0.074 0.167 0.153 

(0.246) (0.170) (0.256) (0.295) 

Small 
0.412 0.222 0.148 0.169 

(0.440) (0.278) (0.246) (0.277) 

None 
-- 0.232 0.130 0.107 

-- (0.332) (0.251) (0.189) 

30% 

Large 
0.231 0.143 0.120 0.082 

(0.295) (0.230) (0.216) (0.185) 

Medium 
0.361 0.210 0.275 0.173 

(0.311) (0.266) (0.336) (0.260) 

Small 
0.243 0.454 0.300 0.075 

(0.241) (0.322) (0.294) (0.159) 

None 
-- 0.281 0.144 0.197 

-- (0.354) (0.273) (0.206) 

15% 

Large 
0.163 0.239 0.297 0.254 

(0.157) (0.298) (0.345) (0.257) 

Medium 
0.270 0.200 0.184 0.276 

(0.338) (0.241) (0.248) (0.335) 

Small 
0.526 0.355 0.257 0.254 

(0.293) (0.341) (0.285) (0.326) 

None 
0.268 0.140 0.282 0.270 

(0.259) (0.185) (0.306) (0.282) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.033 0.052 0.022 0.004 

(0.070) (0.055) (0.053) (0.006) 

Medium 
0.215 0.040 0.041 0.016 

(0.306) (0.085) (0.095) (0.035) 

Small 
0.138 0.087 0.024 0.072 

(0.160) (0.111) (0.042) (0.148) 

None 
-- 0.125 0.024 0.014 

-- (0.191) (0.058) (0.026) 

30% 

Large 
0.177 0.061 0.024 0.006 

(0.315) (0.109) (0.048) (0.015) 

Medium 
0.259 0.101 0.104 0.040 

(0.274) (0.226) (0.155) (0.091) 

Small 
0.097 0.251 0.154 0.014 

(0.168) (0.335) (0.228) (0.031) 

None 
-- 0.170 0.092 0.087 

-- (0.283) (0.196) (0.163) 

15% 

Large 
0.171 0.036 0.062 0.138 

(0.229) (0.060) (0.073) (0.220) 

Medium 
0.095 0.135 0.020 0.035 

(0.130) (0.255) (0.026) (0.034) 

Small 
0.306 0.152 0.152 0.163 

(0.271) (0.265) (0.212) (0.282) 

None 
0.171 0.049 0.200 0.194 

(0.287) (0.052) (0.310) (0.241) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.021 0.005 0.002 0.000 

(0.041) (0.007) (0.008) (0.000) 

Medium 
0.125 0.009 0.006 0.000 

(0.170) (0.021) (0.012) (0.001) 

Small 
0.078 0.040 0.003 0.010 

(0.085) (0.066) (0.004) (0.018) 

None 
-- 0.120 0.015 0.003 

-- (0.218) (0.022) (0.005) 

30% 

Large 
0.109 0.045 0.021 0.002 

(0.174) (0.073) (0.051) (0.006) 

Medium 
0.239 0.080 0.049 0.023 

(0.292) (0.224) (0.061) (0.042) 

Small 
0.071 0.218 0.109 0.012 

(0.080) (0.335) (0.221) (0.031) 

None 
-- 0.126 0.081 0.088 

-- (0.171) (0.175) (0.166) 

15% 

Large 
0.154 0.036 0.086 0.127 

(0.196) (0.061) (0.120) (0.246) 

Medium 
0.102 0.116 0.016 0.044 

(0.145) (0.196) (0.020) (0.048) 

Small 
0.281 0.133 0.156 0.159 

(0.237) (0.217) (0.245) (0.280) 

None 
0.175 0.051 0.201 0.159 

(0.245) (0.070) (0.335) (0.199) 
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APPENDIX R 

 

QUADRATIC SLOPE PARAMETER ESTIMATE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.028 -0.024 -0.032 -0.041 

(0.015) (0.016) (0.016) (0.015) 

Medium 
-0.016 -0.028 -0.026 -0.031 

(0.016) (0.011) (0.016) (0.020) 

Small 
-0.014 -0.021 -0.024 -0.025 

(0.013) (0.016) (0.013) (0.018) 

None 
-- -0.021 -0.025 -0.030 

-- (0.014) (0.020) (0.015) 

30% 

Large 
-0.018 -0.029 -0.022 -0.038 

(0.014) (0.020) (0.015) (0.018) 

Medium 
-0.007 -0.019 -0.017 -0.023 

(0.020) (0.015) (0.020) (0.012) 

Small 
-0.018 -0.007 -0.016 -0.033 

(0.012) (0.013) (0.017) (0.014) 

None 
-- -0.016 -0.024 -0.022 

-- (0.016) (0.019) (0.018) 

15% 

Large 
-0.014 -0.022 -0.016 -0.018 

(0.012) (0.015) (0.012) (0.015) 

Medium 
-0.018 -0.020 -0.023 -0.022 

(0.018) (0.021) (0.013) (0.019) 

Small 
-0.003 -0.014 -0.018 -0.020 

(0.011) (0.012) (0.017) (0.018) 

None 
-0.015 -0.020 -0.009 -0.017 

(0.012) (0.015) (0.018) (0.017) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.036 -0.032 -0.036 -0.043 

(0.012) (0.016) (0.011) (0.011) 

Medium 
-0.019 -0.030 -0.034 -0.038 

(0.009) (0.010) (0.012) (0.012) 

Small 
-0.022 -0.027 -0.035 -0.030 

(0.009) (0.013) (0.012) (0.011) 

None 
-- -0.028 -0.035 -0.040 

-- (0.015) (0.012) (0.014) 

30% 

Large 
-0.025 -0.034 -0.034 -0.045 

(0.013) (0.016) (0.009) (0.013) 

Medium 
-0.020 -0.028 -0.028 -0.033 

(0.014) (0.011) (0.013) (0.010) 

Small 
-0.027 -0.020 -0.024 -0.039 

(0.011) (0.013) (0.013) (0.010) 

None 
-- -0.026 -0.033 -0.033 

-- (0.014) (0.013) (0.016) 

15% 

Large 
-0.021 -0.034 -0.026 -0.024 

(0.009) (0.013) (0.008) (0.012) 

Medium 
-0.030 -0.028 -0.032 -0.034 

(0.014) (0.015) (0.008) (0.016) 

Small 
-0.014 -0.024 -0.025 -0.027 

(0.007) (0.011) (0.014) (0.015) 

None 
-0.023 -0.028 -0.024 -0.023 

(0.012) (0.010) (0.014) (0.014) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
-0.042 -0.044 -0.055 -0.067 

(0.015) (0.015) (0.016) (0.014) 

Medium 
-0.024 -0.040 -0.046 -0.055 

(0.010) (0.011) (0.015) (0.012) 

Small 
-0.025 -0.035 -0.047 -0.043 

(0.007) (0.017) (0.012) (0.012) 

None 
-- -0.032 -0.039 -0.047 

-- (0.016) (0.013) (0.014) 

30% 

Large 
-0.027 -0.039 -0.037 -0.050 

(0.011) (0.019) (0.011) (0.012) 

Medium 
-0.022 -0.030 -0.031 -0.037 

(0.015) (0.011) (0.012) (0.012) 

Small 
-0.027 -0.023 -0.027 -0.045 

(0.010) (0.014) (0.014) (0.012) 

None 
-- -0.028 -0.036 -0.035 

-- (0.014) (0.015) (0.018) 

15% 

Large 
-0.022 -0.035 -0.027 -0.026 

(0.010) (0.013) (0.011) (0.012) 

Medium 
-0.030 -0.028 -0.033 -0.033 

(0.014) (0.014) (0.007) (0.017) 

Small 
-0.015 -0.024 -0.027 -0.028 

(0.008) (0.011) (0.015) (0.016) 

None 
-0.023 -0.029 -0.025 -0.025 

(0.012) (0.011) (0.014) (0.013) 
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APPENDIX S 

 

QUADRATIC SLOPE VARIANCE PARAMETER P-VALUE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.298 0.403 0.343 0.303 

(0.238) (0.270) (0.161) (0.270) 

Medium 
0.383 0.393 0.227 0.252 

(0.259) (0.284) (0.195) (0.190) 

Small 
0.327 0.390 0.395 0.421 

(0.204) (0.231) (0.255) (0.252) 

None 
-- 0.283 0.245 0.381 

-- (0.182) (0.210) (0.233) 

30% 

Large 
0.371 0.261 0.406 0.417 

(0.226) (0.196) (0.248) (0.289) 

Medium 
0.426 0.280 0.337 0.318 

(0.197) (0.174) (0.225) (0.221) 

Small 
0.261 0.383 0.350 0.248 

(0.219) (0.282) (0.230) (0.249) 

None 
-- 0.311 0.236 0.340 

-- (0.225) (0.249) (0.237) 

15% 

Large 
0.338 0.330 0.385 0.238 

(0.251) (0.266) (0.261) (0.207) 

Medium 
0.279 0.235 0.446 0.236 

(0.220) (0.143) (0.265) (0.191) 

Small 
0.221 0.340 0.361 0.379 

(0.241) (0.257) (0.243) (0.246) 

None 
0.352 0.354 0.343 0.286 

(0.219) (0.219) (0.257) (0.211) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.339 0.418 0.524 0.364 

(0.212) (0.252) (0.203) (0.262) 

Medium 
0.430 0.485 0.351 0.367 

(0.314) (0.285) (0.282) (0.117) 

Small 
0.439 0.498 0.440 0.569 

(0.282) (0.144) (0.246) (0.359) 

None 
-- 0.434 0.427 0.483 

-- (0.287) (0.323) (0.209) 

30% 

Large 
0.402 0.394 0.520 0.399 

(0.210) (0.292) (0.276) (0.250) 

Medium 
0.535 0.433 0.395 0.438 

(0.135) (0.221) (0.154) (0.219) 

Small 
0.329 0.376 0.481 0.308 

(0.190) (0.259) (0.257) (0.239) 

None 
-- 0.414 0.298 0.396 

-- (0.280) (0.210) (0.268) 

15% 

Large 
0.401 0.323 0.493 0.333 

(0.275) (0.198) (0.288) (0.250) 

Medium 
0.304 0.372 0.443 0.291 

(0.179) (0.205) (0.229) (0.191) 

Small 
0.294 0.401 0.440 0.530 

(0.227) (0.293) (0.266) (0.312) 

None 
0.439 0.486 0.409 0.385 

(0.266) (0.276) (0.264) (0.226) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.330 0.354 0.513 0.361 

(0.219) (0.207) (0.201) (0.260) 

Medium 
0.429 0.487 0.353 0.363 

(0.314) (0.288) (0.286) (0.118) 

Small 
0.504 0.495 0.443 0.571 

(0.319) (0.148) (0.243) (0.357) 

None 
-- 0.448 0.395 0.482 

-- (0.280) (0.304) (0.210) 

30% 

Large 
0.398 0.398 0.476 0.399 

(0.209) (0.296) (0.257) (0.252) 

Medium 
0.531 0.448 0.395 0.435 

(0.136) (0.224) (0.155) (0.227) 

Small 
0.329 0.380 0.483 0.331 

(0.192) (0.261) (0.254) (0.247) 

None 
-- 0.417 0.298 0.410 

-- (0.286) (0.213) (0.275) 

15% 

Large 
0.402 0.323 0.492 0.333 

(0.274) (0.198) (0.288) (0.249) 

Medium 
0.303 0.372 0.446 0.291 

(0.180) (0.206) (0.233) (0.191) 

Small 
0.294 0.407 0.440 0.528 

(0.226) (0.281) (0.267) (0.313) 

None 
0.436 0.485 0.407 0.385 

(0.263) (0.274) (0.261) (0.226) 
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APPENDIX T 

 

QUADRATIC SLOPE VARIANCE PARAMETER ESTIMATE 

 

 

First-Order Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.025 0.018 0.020 0.026 

(0.015) (0.011) (0.010) (0.018) 

Medium 
0.022 0.020 0.030 0.024 

(0.016) (0.014) (0.016) (0.010) 

Small 
0.024 0.018 0.018 0.019 

(0.017) (0.009) (0.011) (0.016) 

None 
-- 0.027 0.029 0.019 

-- (0.018) (0.017) (0.010) 

30% 

Large 
0.019 0.024 0.021 0.018 

(0.010) (0.011) (0.016) (0.013) 

Medium 
0.017 0.025 0.022 0.025 

(0.009) (0.015) (0.011) (0.016) 

Small 
0.027 0.021 0.024 0.031 

(0.016) (0.014) (0.020) (0.020) 

None 
-- 0.025 0.030 0.024 

-- (0.015) (0.016) (0.017) 

15% 

Large 
0.023 0.024 0.024 0.030 

(0.015) (0.014) (0.020) (0.017) 

Medium 
0.026 0.027 0.017 0.030 

(0.012) (0.013) (0.010) (0.016) 

Small 
0.033 0.024 0.021 0.019 

(0.018) (0.016) (0.012) (0.011) 

None 
0.022 0.022 0.024 0.027 

(0.013) (0.016) (0.016) (0.015) 
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Second-Order Constrained Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.023 0.018 0.014 0.023 

(0.012) (0.010) (0.010) (0.016) 

Medium 
0.023 0.017 0.024 0.019 

(0.021) (0.013) (0.015) (0.008) 

Small 
0.021 0.014 0.017 0.017 

(0.017) (0.005) (0.011) (0.020) 

None 
-- 0.022 0.021 0.015 

-- (0.019) (0.016) (0.008) 

30% 

Large 
0.018 0.021 0.017 0.019 

(0.008) (0.014) (0.016) (0.011) 

Medium 
0.013 0.019 0.019 0.019 

(0.005) (0.014) (0.008) (0.014) 

Small 
0.023 0.021 0.019 0.028 

(0.012) (0.012) (0.019) (0.019) 

None 
-- 0.020 0.026 0.022 

-- (0.013) (0.013) (0.016) 

15% 

Large 
0.021 0.023 0.020 0.026 

(0.015) (0.010) (0.020) (0.017) 

Medium 
0.025 0.022 0.018 0.026 

(0.011) (0.014) (0.011) (0.014) 

Small 
0.028 0.022 0.018 0.014 

(0.017) (0.017) (0.013) (0.012) 

None 
0.019 0.018 0.021 0.024 

(0.013) (0.016) (0.015) (0.017) 
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Second-Order Free Non-Linear Latent Growth Model 

Percent of 

DIF 

Loading 

DIF 

Intercept DIF 

None Small Medium Large 

45% 

Large 
0.023 0.020 0.014 0.022 

(0.012) (0.010) (0.010) (0.015) 

Medium 
0.022 0.017 0.023 0.018 

(0.020) (0.013) (0.015) (0.008) 

Small 
0.018 0.014 0.016 0.017 

(0.017) (0.005) (0.011) (0.020) 

None 
-- 0.021 0.022 0.015 

-- (0.019) (0.016) (0.008) 

30% 

Large 
0.018 0.021 0.018 0.019 

(0.008) (0.014) (0.016) (0.011) 

Medium 
0.013 0.018 0.019 0.019 

(0.005) (0.014) (0.008) (0.014) 

Small 
0.023 0.021 0.019 0.027 

(0.012) (0.012) (0.019) (0.019) 

None 
-- 0.020 0.026 0.022 

-- (0.014) (0.013) (0.017) 

15% 

Large 
0.021 0.023 0.020 0.026 

(0.015) (0.010) (0.020) (0.017) 

Medium 
0.025 0.022 0.017 0.026 

(0.011) (0.014) (0.011) (0.014) 

Small 
0.028 0.022 0.018 0.014 

(0.017) (0.017) (0.013) (0.012) 

None 
0.019 0.018 0.021 0.024 

(0.012) (0.016) (0.015) (0.017) 
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APPENDIX U 

 

TEST LENGTH RESULTS COMPARISON FOR THE SECOND-ORDER 

CONSTRAINED LATENT GROWTH MODEL 

 

 

Second-Order Constrained Latent Growth Model 

  
  

Percent of 

DIF 

20 Item   40 Item* 

  Mean SD   Mean SD 

Model Fit 

  
Chi-squared p-value 

30% 0.000 0.000   0.000 0.000 

  15% 0.000 0.000   0.000 0.000 

  
RMSEA 

30% 0.009 0.001   0.005 0.001 

  15% 0.008 0.001   0.005 0.001 

  
CFI 

30% 0.998 0.001   0.999 0.000 

  15% 0.998 0.000   0.999 0.000 

Parameter Recovery 

  
Slope Relative Bias 

30% 0.119 0.036   0.122 0.051 

  15% 0.038 0.036   0.028 0.056 

  
Slope RMSE 

30% 0.059 0.018   0.061 0.026 

  15% 0.021 0.015   0.024 0.017 

  Slope Variance Relative 

Bias 

30% -0.179 0.118   -0.193 0.025 

  15% -0.149 0.120   -0.179 0.108 

  
Slope Variance RMSE 

30% 0.039 0.018   0.039 0.005 

  15% 0.032 0.021   0.036 0.022 

  Intercept Variance 

Relative Bias 

30% 0.099 0.086   0.127 0.072 

  15% 0.128 0.100   0.066 0.115 

  
Intercept Variance RMSE 

30% 0.103 0.081   0.127 0.072 

  15% 0.128 0.100   0.086 0.096 

Incorrectly Specified Growth Parameters 

  
Covariance p-value 

30% 0.047 0.065   0.040 0.063 

  15% 0.038 0.055   0.097 0.094 

  
Covariance Estimate 

30% -0.074 0.028   -0.071 0.019 

  15% -0.084 0.033   -0.066 0.038 

* 40-item condition based on 5 replications 
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APPENDIX V 

 

TEST LENGTH RESULTS COMPARISON FOR THE SECOND-ORDER FREE 

LATENT GROWTH MODEL 

 

 

Second-Order Free Latent Growth Model 

  
  

Percent of 

DIF 

20 Item   40 Item* 

  Mean SD   Mean SD 

Model Fit 

  
Chi-squared p-value 

30% 0.000 0.000   0.000 0.000 

  15% 0.000 0.000   0.000 0.001 

  
RMSEA 

30% 0.008 0.001   0.005 0.001 

  15% 0.008 0.001   0.004 0.001 

  
CFI 

30% 0.998 0.001   0.999 0.000 

  15% 0.998 0.000   0.999 0.000 

Parameter Recovery 

  
Slope Relative Bias 

30% 0.186 0.046   0.178 0.048 

  15% 0.053 0.041   0.043 0.062 

  
Slope RMSE 

30% 0.093 0.023   0.089 0.024 

  15% 0.029 0.017   0.028 0.023 

  Slope Variance Relative 

Bias 

30% -0.184 0.120   -0.199 0.023 

  15% -0.151 0.118   -0.180 0.110 

  
Slope Variance RMSE 

30% 0.040 0.018   0.040 0.005 

  15% 0.032 0.021   0.036 0.022 

  Intercept Variance 

Relative Bias 

30% 0.096 0.084   0.120 0.072 

  15% 0.127 0.099   0.065 0.115 

  
Intercept Variance RMSE 

30% 0.100 0.080   0.120 0.072 

  15% 0.127 0.099   0.087 0.095 

Incorrectly Specified Growth Parameters 

  
Covariance p-value 

30% 0.046 0.066   0.043 0.068 

  15% 0.035 0.051   0.097 0.094 

  
Covariance Estimate 

30% -0.073 0.028   -0.070 0.019 

  15% -0.084 0.033   -0.066 0.038 

* 40-item condition based on 5 replications 

 


