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All living organisms must allocate resources to their survival and to their

reproduction. In this thesis, we use the mathematics of life history theory to determine

the optimal allocation between the two. In particular, we derive equations of optimal

allocation using theories of habitat choice and the lifetime fecundity function. We also

demonstrate how survival and reproduction can sometimes be measured as positively

correlated and yet still represent a trade-o�.
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CHAPTER I

INTRODUCTION

1.1 The Problem

Biological organisms are often seen essentially as machines for propagating ge-

netic material [Cha00]. They do this by utilizing obtained resources for reproduction.

However, there are many situations that can kill an organism, preventing it from

reproducing. Predators, natural disasters, and disease are all dangers that organisms

must endure. Thus, organisms must allocate resources not only to their reproduction,

but also to their survival.

If an organism allocates too much resource to survival, it will produce fewer

o�spring than otherwise. Its reproduction will su�er. If, however, an organism allo-

cates too much to reproduction, it will have a greater chance of dying sooner. This

will prevent it from participating in future opportunities to reproduce, and its repro-

duction will again su�er. There must be an optimal ratio of the amount of resource

allocated to reproduction versus the amount of resource allocated to survival. For

purposes of practicality, resources are measured in units of energy [Bog92], [VNdJ86].

The Principle of Allocation states that if the amount of acquirable resource

for two processes that compete directly is constant, then an increase in resources

allocated to one process results in a decrease of that of the other process [Ste92].
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Survival and reproduction are two necessary functions of life that require energy, so

the Principle of Allocation applies to them. But how do living organisms balance

these needs?

1.2 Context

This is a question of life history theory, the study of patterns of strategies

throughout an organism's life. [BHT90] refers to life histories as �lifetime pattern[s]

of growth, di�erentiation, storage and, especially, reproduction.� Studying optimiza-

tion of life histories provides biologists with a sound foundation to form hypotheses

regarding the developments of organisms and populations. These questions result in

particular from the subtopic of life history theory known as trade-o�s. According to

[Ste92], �Trade-o�s are the linkages between traits that constrain the simultaneous

evolution of two or more traits.� Of these traits, the most commonly studied include

current reproduction versus survival, current reproduction versus future reproduction,

reproduction versus growth, and number versus quality of o�spring [Ste92]. The rela-

tionship between the survival and reproduction of a given organism is a well-studied

trade-o� [Ste92].

1.3 Examples

Stearnes [Ste92] provides examples of trade-o�s between survival and repro-

duction. One such example is the beech tree Fagus sylvatica, which produce more

seeds in `mast' years followed by years of diminished reproduction. Because the di-

ameter of growth rings during mast years is less than that of non-mast years, this is

actually an example of growth versus reproduction. However, growth contributes to

survivability in many cases.
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Stearnes [Ste92] also discusses the mating calls of neotropical frogs. Because

certain species of bats locate these frogs and hunt them as prey, the mating calls male

frogs emit are necessarily linked to a survival-versus-reproduction trade-o�.

1.4 Contributions

What amounts of resource should be allocated to survival and to reproduction?

What ratio of these traits results in the maximal number of o�spring produced over

a lifetime? Here, we use the mathematics of life history theory to answer these

questions.

In Chapter II, we demonstrate that survival and reproduction do indeed rep-

resent a trade-o�. Field researchers have shown that allocations to survival and

fecundity can sometimes be positively correlated [VNdJ86], but trade-o�s are neg-

atively correlated, by de�nition. We prove, however, that the theory does permit

positive correlations when the total amount of resources is not constant. This is done

in Theorems 2.1 and 2.2, adapted from [VNdJ86].

In Chapter III, we derive optimal values of amounts of resource allocated to

reproduction by maximizing the lifetime fecundity function of organisms. The lifetime

fecundity of an organism is the total number of o�spring it reproduces over its lifetime.

We derive an expression of lifetime fecundity as a function of resources allocated to

reproduction in order to �nd a formula for the resource value that maximizes this

function. As adaptations from [Rof84], we �nd the time at which the maximum of

a function related to a �sh's fecundity occurs in Lemma 3.1. We also adapt [Rof84]

to �nd the optimal age for a �sh to reproduce in Theorems 3.2 and 3.3. Theorem

3.2 represents a semelparously-reproducing species, and Theorem 3.3 represents the

iteroparous case. We cover the continuously-reproducing case (Theorem 3.4) and show
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that the iteroparous case is better than the continuous case (Theorem 3.5) as original

results. Our original results also include an expression of the lifetime fecundity as a

function of resources allocated to reproduction (Theorem 3.6) and a derivation of the

optimal value allocated to the reproduction in that case (Theorem 3.7).

In Chapter IV, we consider the resource of time rather than conventional

energy-based resources. This is done by examining situations in which an organism

has a choice between two habitats. Suppose one habitat is associated with a higher

mortality rate and a lower growth rate while the other is associated with a lower

mortality rate and a higher growth rate. In Theorem 4.1, we prove that the net

reproductive rate is maximized when the derivative of the mortality rate by the growth

rate is equal to the ratio of the mortality rate to the growth rate, as Gilliam [Gil82]

did. Theorem 4.2 is an adaptation of Houston et. al [HMH93], in which we show

that the optimal strategy of a �xed-state organism is to minimize its mortality rate-

to-growth rate ratio.
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CHAPTER II

POSITIVE AND NEGATIVE CORRELATIONS

de Jong and van Njoordwijk give a model of survival-versus-reproduction

trade-o�s that explains why positive correlations between these can sometimes be

observed [VNdJ86]. Let Ai be the total amount of resources available to an individ-

ual i, Ri be the amount of resources allocated to reproduction, and Si be the amount

of resources allocated to survival. It is assumed that Ai, Ri and Si can be measured

in energy units [VNdJ86]. Then, by [VNdJ86],

Ai = Ri + Si (2.1)

Additionally, they de�ne a fraction Bi such that Bi = Ri
Ai

[VNdJ86]. Then, for

individual i,

Ri = BiAi (2.2)

and

Si = (1−Bi)Ai (2.3)

Suppose Ai is constant and n is used a time index. That is, time t0 ≡ 0 and

tn+1 − tn = ∆t such that tn = n∆t. Then, for individual i, (Ri)n is the amount

of resource allocated to reproduction at time tn and (Si)n is the amount of resource

allocated to survival at time tn.
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Also, ∆(Si)n = (Si)n+1 − (Si)n and ∆(Ri)n = (Ri)n+1 − (Ri)n. Then, we can

represent the set of all possible value pairs of Ri and Si by the portion of the line

Si = −Ri + Ai that is in the �rst quadrant of the Si versus Ri plane. Every point

pi on this line is given by pi = (Ri, Si), describing the balance between the energy

allocated to reproduction and the energy allocated to survival.

Table 1. Notation

Symbol Description

Ai Total amount of resource available to individual i
Ri Amount of resources allocated to reproduction by individual i
Si Amount of resources allocated to survival by individual i

Bi Fraction Ri
Ai

for individual i

(Ri)n
Amount of resource allocated to reproduction by individual i at
time tn

(Si)n
Amount of resource allocated to survival by individual i at time
tn

∆(Si)n Given time tn, ∆(Si)n = (Si)n+1 − (Si)n
∆(Ri)n Given time tn, ∆(Ri)n = (Ri)n+1 − (Ri)n
pi(tn) ((Ri)n, (Si)n)
Amin Minimum total resource available
Amax Maximum total resource available
range(Ai) [Amin, Amax]

For a given individual i with constant total resource Ai, there exists a point

pi that scales along the line Si = −Ri +Ai when the individual increases or decreases

the energy allocated to one of the two traits. Thus, we can de�ne the function pi(tn)

that gives the location of the point pi at time tn, so that pi(tn) = ((Ri)n, (Si)n).

It is simple to show that any change in one trait results in an equal but opposite

change in the other:
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Theorem 2.1 (Adapted from [VNdJ86]). For individual i with constant total resource

Ai, ∆(Ri)n = −∆(Si)n.

Proof.

Ai = (Si)n+1 + (Ri)n+1 = (Si)n + (Ri)n (2.4)

(Ri)n+1 − (Ri)n = (Si)n − (Si)n+1 (2.5)

Therefore,

∆(Ri)n = −∆(Si)n. (2.6)

This phenomenon of equal-but-opposite change is an example of negative cor-

relation in the two traits. Thus, when Ai is held constant, the amount of resource allo-

cated to survival and the amount of resource allocated to reproduction are negatively

correlated. This is demonstrated in Figure 1. However, this is not necessarily the

case when Ai is not held constant. For a given individual i, range(Ai) ≡ [Amin, Amax],

where Amin is the minimum possible total resource the individual can have and still

live and Amax is the maximum total resource the individual can have.
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R

S (Bi)n+1

(Bi)n

∆(Ri)n

∆(Si)n

Ai

Ai

pi(tn+1)

pi(tn)

Figure 1. When Ai is held constant and Bi varies from pi(tn) to pi(tn+1), ∆(Si)n =

−∆(Ri)n. Note that ∆(Si)n is positive and ∆(Ri)n is negative.

When range(Ai) has a width greater than zero, vertical and horizontal motion

of pi is possible. This sort of motion implies neutral correlation because the value

of one trait can change without the value of the other doing the same. This neu-

tral correlation is demonstrated in Figure 2. However, motion along the boundaries

(Ai = Amin or Amax) results again in equal-but-opposite negative correlation between

reproduction and survival. Of course, this sort of motion is simply a result of the case

of constant Ai.
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Theorem 2.2 (Adapted from [VNdJ86]). If range(Ai) > 0 and Bi is held constant,

then there exists a positive correlation between Ri and Si.

Proof. Suppose Bi is held constant. Then, Ri
Ai

is constant.

(Ri)n
(Ai)n

=
(Ri)n+1

(Ai)n+1

(2.7)

(Ri)n(Ai)n+1 = (Ri)n+1(Ai)n (2.8)

(Ri)n[(Ri)n+1 + (Si)n+1] = (Ri)n+1[(Ri)n + (Si)n] (2.9)

(Ri)n(Ri)n+1 + (Ri)n(Si)n+1 = (Ri)n+1(Ri)n + (Ri)n+1(Si)n (2.10)

(Ri)n(Si)n+1 = (Ri)n+1(Si)n (2.11)

(Ri)n
(Ri)n+1

=
(Si)n

(Si)n+1

(2.12)

Note that all values of Ri and Si are positive.

This implies that if (Ri)n+1 > (Ri)n, then (Si)n+1 > (Si)n. Similarly, (Ri)n+1 < (Ri)n

implies that (Si)n+1 < (Si)n, and (Ri)n+1 = (Ri)n implies that (Si)n+1 = (Si)n.

Therefore, there exists a positive correlation between Ri and Si.
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R

S

Amin Amax

(Bi)n+1

(Bi)n

∆(Si)n

pi(tn)

pi(tn+1)

Figure 2. When neither Ai nor Bi is held constant, the correlation between Si and

Ri can be neutral. Note that, in this �gure, ∆(Si)n is positive and ∆(Ri)n = 0.

Theorems 2.1 and 2.2 describe the cases of positive and negative correlation

between survival and reproduction. When the total amount of resource is held con-

stant, these traits have a negative correlation; when the ratio between these traits is

held constant, they have a positive correlation.
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R

S Bi

∆(Ri)n

∆(Si)n

Amin Amax

pi(tn)

pi(tn+1)

Figure 3. When B is held constant and A varies, the sign of ∆S is the sign of ∆R.

Note that in this �gure, both ∆S and ∆R are positive.

This is why van Noordwijk and de Jong [VNdJ86] claim that positive correla-

tions are seen in individuals i such that range(Ai) is large and variation in Bi is small

and that negative correlations are seen in individuals such that range(Ai) is small and

variation in Bi is large. The case of a positive correlation is illustrated in Figure 3.
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CHAPTER III

FECUNDITY

3.1 Introduction

One of the most important concepts in ecology is fecundity. The fecundity of

an individual is the number of o�spring that it produces [BHT90]. Fecundity has

such a clear association to �tness that understanding the nature of the fecundity of

an organism improves understanding of that organism's ecological behaviors.

Table 2. Notation

Symbol Description

f(t) Fecundity function
`(t) Probability of survival to age t

m(t)
Number of female o�spring a female of age t can produce at time
t

T Earliest age of reproduction
F (T ) Lifetime fecundity
a Fecundity coe�cient
L∞ Asymptotic length of a �sh species
p Probability of surviving the larval stage
M Instantaneous mortality rate
C Constant of the form paL3

∞

Because of this connection, life history theorists use the fecundity function

f(t), (3.1), as a model for understanding optimal strategies for reproduction.
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The expected number of female o�spring a female of age t can produce at that age is

f(t). Because a female can die before reaching age t,

f(t) = `(t)m(t), (3.1)

where `(t) represents the probability of a female surviving to age t and m(t) is the

number of female o�spring that a female of age t can produce. In this manner, the

fecundity function conveys the importance of reproductive investments. Low values

of f(t) can correspond to low survival probabilities `(t), low values of m(t), or both.

Table 3. Life History Terminology

Term De�nition

fecundity
The fecundity of an individual is the number of o�spring it pro-
duces.

fecundity
function

The fecundity function gives the expected number of female o�-
spring a female of age t can produce.

lifetime
fecundity

The lifetime fecundity of an organism is the expected total number
of female o�spring a female can produce over her lifetime.

asymptotic
length

The asymptotic length of a species is a length to which the average
member of that species grows asymptotically with time.

instantaneous
rate of mor-
tality

The instantaneous rate of mortality is the instantaneous rate at
which individuals die.

iteroparous
An iteroparous species is a species that reproduces seasonally (i.e.
once every year).

semelparous
A semelparous species is a species that reproduces once in its life-
time.

determinate
growth

An organism is said to have determinate growth if growth ceases
after the earliest age of reproduction

indeterminate
growth

An organism is said to have indeterminate growth if growth con-
tinues after reproduction.

13



Another bene�t of the fecundity function is its use in determining when an

organism should save its energy for later reproduction. For example, the fecundity

of an organism can be altered by changing its earliest age of reproduction. It is clear

that the total number of o�spring of two individuals with equal life spans and

reproductive rates will only di�er if their respective �rst ages of reproduction are not

the same. Ro� [Rof84] refers to this variable as the age of maturity T .

Ultimately, what we wish to know about an organism's success can often be

summarized as the total number of o�spring produced. All things being equal, the

probability of o�spring surviving to reproduce is higher for an individual that produces

more o�spring than another. The lifetime fecundity function F (T ) is the average total

number of female o�spring a female can produce across her lifetime, given she began

reproduction at age T . We have

F (T ) =
∞∑
t=T

f(t). (3.2)

3.2 Ro�'s Fecundity Model

Ro� [Rof84] developed formulas for f(t) andm(t) to describe the ecological and

life history properties of �sh species often found in �sheries. Experimental evidence

indicates that the number of o�spring many commercial �sh produce is a function

of the length. In fact, measurements have indicated that the fecundity of �sh is

proportional to a power of length very close to 3. Thus,

m(t) = aL3(t), (3.3)
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where a is a constant. Fish of many species grow to a maximum length asymptotically.

Using the notation L∞ for asymptotic length, Ro� uses the growth equation

L(t) = L∞(1− e−kt), (3.4)

where k is a growth constant. It is important to note here that (3.4) describes in-

determinate growth; that is, growth does not cease at the �rst age of reproduction.

Determinate growth would incorporate a constant length after the �rst age of repro-

duction. Thus, indeterminate growth of females implies that m(t) is

m(t) = aL3
∞(1− e−kt)3. (3.5)

Next, Ro� [Rof84] derives an expression for `(t):

`(t) = pe−Mt. (3.6)

Here, p represents the probability of surviving the larval stage of a �sh, andM

is the instantaneous rate of mortality. M serves as a measure of danger in the �sh's

environment by describing the average rate at which �sh of the given species die in

the given environment.

Consequently, the fecundity of a �sh of indeterminate growth can be described

as

f(t) = pe−MtaL3
∞(1− e−kt)3. (3.7)
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2 4 6 8 10
x

0.1

0.2

0.3

0.4

f (x)

Fecundity Functions

exp(-x) (1 - exp(-x))3

exp(-0.5 x) (1 - exp(-x))3

exp(-0.25 x) (1 - exp(-x))3

exp(-x) (1 - exp(-0.5 x))3

exp(-0.5 x) (1 - exp(-0.5 x))3

exp(-0.25 x) (1 - exp(-0.5 x))3

Figure 4. This is a collection of graphs of the form y = e−Mx(1 − e−kx)3. Values for

M are given as 0.25, 0.5, and 1. Values for k are given as 0.5 and 1.

See Figure 4 for illustration. f(t) is also useful for understanding the fecundity of de-

terminate �sh. This is because the fecundity function of a �sh of determinate growth

is identical to that of indeterminate growth until the age T of �rst reproduction.

In order to incorporate a cost to reproduction, Ro� [Rof84] assumes that

growth is determinate; that is, its growth ceases at the �rst age of reproduction.

Also, Ro� considers two forms of reproduction: semelparous and iteroparous. A

species is iteroparous if it breeds seasonally, and it is semelparous if it only breeds

once in its lifetime.
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Examples include the sand goby (Pomatoschistus minutus), which is an iteroparous

breeder, and the sea lamprey (Petromyzon marinus), which reproduces semelparously

[LMJ+16]. Under the assumption of determinate growth,

m(t) =


aL3
∞(1− e−kt) if t < T,

aL3
∞(1− e−kT ) if t ≥ T,

(3.8)

f(t) =


Ce−Mt(1− e−kt)3 if t < T,

Ce−Mt(1− e−kT )3 if t ≥ T,

(3.9)

where C = paL3
∞. And so, by (3.2),

F (T ) =
∞∑
t=T

Ce−Mt(1− e−kT )3. (3.10)

An example of f(t) is given in Figure 5.

3.3 Ro�'s Fecundity Theorems

Lemma 3.1 (Adapted from [Rof84]). The maximum of the function g(t) = Ce−Mt(1−

e−kt)3 occurs at age t = 1
k

ln
(
M+3k
M

)
.

Proof.

dg

dt
= −CMe−Mt(1− e−kt)3 + 3kCe−kte−Mt(1− e−kt)2. (3.11)

17



2 4 6 8 10
t

0.02

0.04

0.06

0.08

0.10

f (t)

Fecundity for Determinate Growth

Figure 5. A graph of the fecundity function f(t) for a �sh of determinate growth

whose earliest age of reproduction, t = 1.38, is approximately the optimal age for

�rst reproduction. Observe that f(t) = e−t(1 − e−t)3 when t < 1.38, and f(t) =

e−t(1− e−1.38)3 when t ≥ 1.38.

Let dg
dt

= 0. Then, solving for t, we obtain

M(1− e−kt) = 3ke−kt (3.12)

M = (M + 3k)e−kt (3.13)

t =
1

k
ln

(
M + 3k

M

)
(3.14)

> 0. (3.15)
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Note that dg
dt

is negative when CMe−Mt(1− e−kt)3 > 3kCe−kte−Mt(1− e−kt)2,

and dg
dt

is positive when CMe−Mt(1 − e−kt)3 < 3kCe−kte−Mt(1 − e−kt)2. Therefore,

the maximum of g(t) indeed occurs for t given in (3.14).

Theorem 3.2 (Adapted from [Rof84]). In the case of a semelparous �sh species of

determinate growth, the optimal value of T is given by T = 1
k

ln
(
M+3k
M

)
.

Proof. Since the species only reproduces once, we have, by (3.9), F (T ) = f(T ) =

Ce−MT (1− e−kT )3. Therefore, the result follows from Lemma 3.1.

Theorem 3.3 (Adapted from [Rof84]). In the case of an iteroparous �sh species of

determinate growth, the optimal value of T is given by T = 1
k

ln
(
M+3k
M

)
.

Proof.

F (T ) =
∞∑
t=T

Ce−Mt(1− e−kT )3 (3.16)

= C
(
1− e−kT

)3( ∞∑
t=T

e−Mt

)
(3.17)

= C(1− e−kT )3
(

e−MT

1− e−M

)
(3.18)

=
Ce−MT (1− e−kT )3

1− e−M
(3.19)

=
g(T )

1− e−M
. (3.20)
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Note that 1
1−e−M is a constant. Then, by Lemma 3.1, the value of T maximizing

F (T ) is given by T = 1
k

ln
(
M+3k
M

)
.

Theorem 3.4. In the case of a continuously-reproducing �sh species of determinate

growth, the optimal value of T is given by T = 1
k

ln
(
M+3k
M

)
.

Proof.

F (T ) =

∫ ∞
T

Ce−Mt(1− e−kT )3dt (3.21)

=
Ce−Mt(1− e−kT )3

(−M)

∣∣∣∣∞
T

= lim
x→∞

[
Ce−Mx(1− e−kT )3

(−M)
− Ce−MT (1− e−kT )3

(−M)

]

=
Ce−MT (1− e−kT )3

M

=
g(T )

M
. (3.22)

Therefore, by Lemma 3.1, the value of T maximizing F (T ) is given by T =

1
k

ln
(
M+3k
M

)
.
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Theorem 3.5. Fiteroparous(T ) ≥ Fcontinuous(T ) given that all other species character-

istics are equal.

Proof. By (3.20),

Fiteroparous(T ) =
g(T )

1− e−M
. (3.23)

By (3.22),

Fcontinuous(T ) =
g(T )

M
. (3.24)

Note that

1−M ≤ e−M (3.25)

and, therefore, the result follows.

3.4 Connections to Allocation

Many interesting results follow from Ro�'s fecundity model presented in Sec-

tion 3.2, but the model so far made no connection between fecundity and resource

allocation. In this section, we will develop this connection, and we will then use the

optimization of fecundity to determine optimal patterns of allocation.
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Let A(t) be the function describing the amount of resource an individual has

at time t, R(t) be the amount allocated to reproduction, and S(t) be the amount

allocated to survival. As in Chapter II, we have

A(t) = R(t) + S(t). (3.26)

Let m(t) be the number of female o�spring a female at age t can produce at

age t. Because each o�spring can be represented as the amount of resource required

to produce it, we assume m(t) is proportional to the amount of energy allocated to

reproduction. That is, for some contant q,

m(t) = qR(t). (3.27)

We also develop a model describing how values of S(t) impact fecundity. Fis-

cher, Taborsky, and Dieckmann [FTD09] developed a model simulating an individual

allocating energy to multiple biological traits in stochastic environments.

This model is iterative, with distinct times. They describe the probability b

that an individual survives from time τ to τ + 1 as the ratio of energy allocated to

survival at that time to the sum of that energy and a constant S1/2 of the environment.

S1/2 is the value for resource allocation at which probability b becomes 1/2. The

probability of surviving from time τ to time τ + 1 is thus

b(τ) =
S(τ)

S(τ) + S1/2

(3.28)
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for τ = 0, 1, 2, 3, . . .. The function `(t) represents the probability of surviving from

age 0 to age t, so

`(t) =
t−1∏
τ=0

b(τ) (3.29)

=
t−1∏
τ=0

S(τ)

S(τ) + S1/2

(3.30)

Table 4. Notation

Symbol Description

A(t) Total energy available at time t
R(t) Amount of energy allocated to reproduction at time t
S(t) Amount of energy allocated to survival at time t
f(t) Fecundity function

m(t)
Number of female o�spring a female of age t can produce at time
t

`(t) Probability of survival to age t from age 0
q Constant such that m(t) = qR(t)
b(τ) Probability of surviving from time τ to τ + 1

S1/2
Energy allocation necessary for probability of survival from t to
t+ 1 to be 1/2

T Earliest age of reproduction
v Probability of surviving to the age of �rst reproduction T
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As a result,

f(t) = `(t)m(t)

= qR(t)
t−1∏
τ=0

S(τ)

S(τ) + S1/2

(3.31)

Note, however, that the probability of surviving to age T is given by

`(T ) =
T−1∏
τ=0

A(τ)

A(τ) + S1/2

(3.32)

For simplicity, we will denote the probability of surviving to age T as v. Thus,

for all times t > T , the fecundity function is given as

f(t) = qvR(t)
t−1∏
τ=T

S(τ)

S(τ) + S1/2

(3.33)

This describes an organism's fecundity in terms of the resources it has allocated

to survival and to reproduction.
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Recall that an organism's reproductive success is maximized with its lifetime

fecundity F (T ), which is determined by fecundity f(t). The optimal balance between

R(t) and S(t) is that which maximizes the lifetime fecundity F (T ), which is found as

F (T ) =
∞∑
t=T

f(t) (3.34)

= qv
∞∑
t=T

(
R(t)

t−1∏
τ=T

S(τ)

S(τ) + S1/2

)
. (3.35)

Theorem 3.6. When A(t) = A, S(t) = S, R(t) = R for all t > T , F (T ) =

qvR
(
S+S1/2

S1/2

)
.

Proof. Note that

F (T ) = qvR
∞∑
t=T

(
t−1∏
τ=T

S

S + S1/2

)
(3.36)

= qvR
∞∑
t=T

(
S

S + S1/2

)t−T
(3.37)

= qvR
∞∑
t=0

(
S

S + S1/2

)t
(3.38)

= qvR

(
S + S1/2

S1/2

)
, (3.39)

because the series of (3.38) is geometric.
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Figure 6. This is a graph of F with respect to R. Here, we set q = 1, v = 1, A = 8,

and S1/2 = 2.

Note that F can be rewritten in terms of R:

F (R, T ) =
qvR(A−R + S1/2)

S1/2

. (3.40)

F is illustrated as a function of R for multiple values of T in Figure 6.
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Theorem 3.7. When A(t) = A, S(t) = S, and R(t) = R for all t > T and S1/2 < A,

the value of R that maximizes F (R, T ) is given by R =
A+S1/2

2
.

Proof.

∂F

∂R
=
qv(A−R + S1/2)− qvR

S1/2

(3.41)

=
qv(A+ S1/2 − 2R)

S1/2

(3.42)

Letting ∂F
∂R

= 0, we obtain the optimal value for R:

R =
A+ S1/2

2
(3.43)

This represents the optimal value of R, because F is clearly a concave function

of R.

A and S1/2 are the only two terms included in (3.43). With only some simple

notation and some basic knowledge of resource allocation's connections to the lifetime

fecundity of an organism, a description of an optimal value for R can be found.
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CHAPTER IV

RISK AND REWARD

4.1 Gilliam Outline

In his Ph.D. thesis, Gilliam [Gil82] considers �sh species that have the option

of spending varying amounts of time in two di�erent habitats. One habitat has a low

availability of food, but it also has a low predator density; in the other habitat, the

rates of both food consumption and predation are higher. By constructing an appro-

priate optimal control problem and building the associated Hamiltonian of optimal

control theory, Gilliam was able to derive a strategy for �sh in these situations based

on their growth rates.

Table 5. Notation

Symbol De�nition

R0 Net reproductive rate
`(t) Probability of survival to age t
m(t) Reproductive rate at age t
µ(t) Mortality rate (probability of death per unit time)
D(t) Probability of death by age t
T Final age
s(t) Size at age t
H(t) Hamiltonian function
g(t) Growth rate at age t
λx Costate variable of state x
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Gilliam [Gil82] uses the function µ(t) to describe the mortality rate at time

t. The mortality rate of an individual is its probability of death per unit time. In

Gilliam's model, the mortality rate of a �sh at a given time will be determined by

the habitat it currently occupies. Gilliam uses the function D(t) to describe a �sh's

probability of dying by age t. Thus,

D(t) =

∫ t

0

µ(τ)dτ, (4.1)

where τ is a dummy variable for age. Note that the probability of survival from

age t to age t + dt is given by 1 − µ(t)dt ≈ e−µ(t)dt. For a discrete-time model,

`(t) ≈
∏t

τ=0 e
−µ(τ)dτ = e−

∑t
τ=0 µ(τ)dτ . Thus, for a continuous model like Gilliam's,

`(t) = e−
∫ t
τ=0 µ(τ)dτ = e−D(t). (4.2)

A �sh's strategy will be optimal when its net reproductive rate is maximal.

The net reproductive rate is given as

R0 =

∫ ∞
0

`(t)m(t)dt (4.3)

=

∫ ∞
0

e−D(t)m(t)dt (4.4)

= lim
T→∞

∫ T

0

e−D(t)m(t)dt. (4.5)
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In order to �nd the maximum value of R0, Gilliam constructs an optimal

control problem and the associated Hamiltonian. In general, for an equation

J =

∫ T

0

L(x(t), u(t))dt, (4.6)

with states x(t) and control u(t), the control Hamiltonian takes the form

H(x, u, λ, t) = L(x(t), u(t)) + λ(t)
dx

dt
, (4.7)

where λ(t) is the costate variable of x. Pontryagin's Maximum Principle [Ber13],

[SW97] states that J is maximized when the following four conditions are met:

dλ

dt
= −∂H

∂x
, (4.8)

dx

dt
=
∂H

∂λ
, (4.9)

∂H

∂u
= 0, (4.10)

and there exists a constant λ0 such that

(λ(t), λ0) 6= (0, 0) (4.11)

for all times t. Additionally, ∂H
∂t

= 0 if H is not explicitly dependent upon t.
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Theorem 4.1 (Adapted from [Gil82]). R0 is maximized when ∂µ
∂g

= µ
g
.

Proof. The corresponding control Hamiltonian of R0 =
∫∞
0
e−D(t)m(t)dt is given by

H(D, s, λD, λs, g, t) = L(D(t), s(t), g(t)) + λD(t)
dD

dt
+ λs(t)

ds

dt
(4.12)

= e−D(t)m(s(t)) + λD(t)µ(g(t), s(t)) + λs(t)g(t). (4.13)

Here, R0 is the variable we wish to maximize. The states of R0 are D(t) and

s(t), where s(t) is the size of the individual at time t. Similarly, L = e−D(t)m(s(t)),

and the costate variables are the λ-variables corresponding to D and s. The control

of R0 is the growth function

g(t) =
ds

dt
. (4.14)

By Pontryagin's Maximum Principle, R0 is maximized only when

∂H

∂g
= 0. (4.15)

Then, because ∂H
∂g

= λD(t)∂µ
∂g

+ λs,

∂µ

∂g
= − λs

λD
(4.16)

when R0 is maximized.
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Note that

lim
T→∞

e−D(T )m(T ) = lim
T→∞

`(T )m(T ) = 0 (4.17)

because the individual would otherwise live inde�nitely. Additionally, by

[Gil82],

lim
T→∞

λD(T ) = lim
T→∞

λs(T ) = 0. (4.18)

Then,

lim
T→∞

H(T ) = 0. (4.19)

Note that H is not explicitly dependent upon t, and thus,

H = 0 (4.20)

for all values of t. Then,

e−Dm+ λDµ+ λsg = 0. (4.21)

Solving for λs, we �nd

λs = −e
−Dm+ λDµ

g
. (4.22)
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Then, by (4.16),

∂µ

∂g
=

(
e−D(t)m(t)
λD(t)

)
+ µ(t)

g(t)
(4.23)

for all times t. At all times t such that the individual in question is juvenile,

m(t) = 0. As a result, (4.23) reduces to

∂µ

∂g
=
µ

g
. (4.24)

0.5 1.0 1.5 2.0 2.5 3.0
x
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y

Smallest Value of
y

x

Figure 7. If y is a strictly increasing curve of x, the minimal value of y
x
is the one that

acts as the slope of the line that is tangent to y. Here, y = x2 + 1 and the minimal

value of y
x
is 2. The green curve represents y

x
as a function.
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Because the rate of predation increases with food availability, µ is an increasing

function of g. As in Chapter II, we can graphically represent a fraction as a line

passing through the origin; the slope of that line is equal to the fraction in question.

Thus, values of µ
g
can be represented as lines on a µ-vs-g plot. We �nd that, because

µ is strictly increasing in g, the smallest value of µ
g
is represented by a line tangent to

the curve µ. Figure 7 demonstrates this phenomenon graphically. As a result, ∂µ
∂g

= µ
g

only when µ
g
is minimized. The Gilliam Rule thus states to minimize µ

g
in order to

maximize R0.

4.2 Houston, McNamara, Hutchinson Model

Houston, McNamara, and Hutchinson [HMH93] look at trade-o�s between en-

ergy gain and risk of predation. In many cases, survival of an individual is likelier

in low-energy environments and reproduction is likelier with greater acquisition of

resources [HMH93]. Houston et. al describe this model as one in which �High rates

of gain can be achieved only at the cost of a high rate of predation� [HMH93]. Addi-

tionally, to favor either of the two traits runs a risk that the other does not acquire

adequate resources for success. This trade-o� can be generalized to resource gain

versus risk. Thus, the trade-o� between resource gain and risk avoidance is relevant.

The behavior of the individual is described by the control variable u. u is

de�ned as the proportion of time spent in the high-energy situation out of the total

time. The state x of the individual is a measure of its resource level. Houston et. al

give examples of x as fat reserves in a bird or total mass of a �sh.
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The mean increase of state x given control variable u is denoted γ(u, x). Hous-

ton et. al [HMH93] assume the mean increase in x for an individual with control

variable u is given by γ(u, x) = a(x)u− b(x) for some functions a(x) and b(x).

Table 6. Notation

Symbol De�nition

u(t) Control variable
x(t) State of an individual

γ(u, x)
The mean increase in x per unit time for an individual with control
variable u and x

M(u, x)
Probability of termination of an individual with control variable
u and state x

uOPT (x, t) Optimal value of u given state x and time t
x∗(t) Optimal level of resource of an individual at time t
u∗(t) Optimal control variable, given as uOPT (x∗(t), t)
uG(x) Gilliam strategy given x
R0 Net reproductive rate

Table 7. Biological Terminology

Term De�nition

Control vari-
able

The fraction of time an individual spends in a high-risk situation
out of the total time

State The amount of resource an individual holds
Refuge A habitat with a predation rate of 0

Gilliam
Strategy

Control variable v ∈ [0, 1] such that M(v,x)
γ(v,x)

≤ M(u,x)
γ(u,x)

for all u ∈
[0, 1]
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The exact form and interpretation of a(x) and b(x) are dependent upon the

individual and its situation [HMH93]. However, possible values of a(x) are limited by

the fact that a(x) > 0 for all values of x; b(x) can be positive or negative.

γ(u, x) = a(x)u− b(x) (4.25)

We can see this when we examine two environments 0 and 1. Let g0(x) be the

gain in Environment 0, and let g1(x) be the gain in Environment 1. Suppose also that

g1(x) > g0(x) so that Environment 0 has higher risk and reward than Environment

1. Assume there is an individual that travels between these two environments such

that this individual has control variable u. Then,

γ(u, x) = (1− u)g0(x) + ug1(x) (4.26)

= (g1(x)− g0(x))u+ g0(x), (4.27)

which is of the same form as (4.25). Thus, γ(u, x) is linear in u, but not necessarily

in x.

The function M(u, x) denotes the mortality rate in this model. It is assumed

that M(u, x) is an increasing function of u for �xed x. That is, M(u, x) increases

when u increases and x remains constant. Houston et. al do not make any further

constraints on M(u, x) but instead present multiple possible relationships between

M and u. They consider a linear relationship, a strictly convex relationship, and

multiple types of piecewise relationships. In particular, they stress the existence of
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strictly convex graphs of M that have refuges. The authors refer to a refuge as �a

special habitat in which the animal is safe from predators� [HMH93].

For example, suppose there is a bird with a choice between foraging (u = 1)

and vigilance (u = 0). In certain habitats, the probability or rate of predation still

exists even when the bird spends all its time in a state of vigilance [HMH93]. That is,

M(0, x) > 0. A refuge is a third state s3, which can in this case be envisioned as some

physical space available to the bird that is not available to its predators. Because

there are no predators in this state, the probability/rate of predation has value 0.

The authors denote the optimal strategy by uOPT (x, t). uOPT (x, t) is a function

that outputs the optimum strategy u given resource level x and time t. Furthermore,

the functions x∗(t) and u∗(t) in order to describe the behavior of the individual over

time.

The authors provide examples of two circumstances in which a trade-o� be-

tween gain and risk can arise. An individual may require a certain level x of resource

in order to reproduce, or it may require a certain amount of time T in order to re-

produce [HMH93]. These two circumstances are known as �xed-state and �xed-time,

respectively.

In determining the optimal strategy in a �xed-state situation in which the e�ect

of time is not considered, Houston et. al [HMH93] refer to `Gilliam's rule.' [HMH93]

and [Pit12] qualitatively describe this rule as minimizing the ratio of the mortality

rate over the foraging rate. In [HMH93], this rule is expressed as the minimization of

M
γ
, and a function uG(x) is de�ned such that uG(x) = u such that M(u,x)

γ(u,x)
is minimized.
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In a �xed-state situation not taking the e�ects of time into account, the Gilliam

Rule gives the optimal strategy [HMH93]. Here, as before, we denote the net repro-

ductive rate of an organism as R0.

Theorem 4.2 (Adapted from [HMH93]). uOPT = uG in a �xed-state situation without

time constraints.

Proof. In a �xed-state situation, suppose that the state level required for an organism

to reproduce is x0. By Theorem 4.1, R0 is maximized when ∂M
∂γ

= M
γ
. Clearly, the

probability of reaching x is maximized when R0 is maximized. Recall that ∂M
∂γ

= M
γ

when M
γ
is minimized. Then, the probability of reaching x is maximized when M

γ
is

minimized. Therefore, uOPT = uG.

The M
γ
rule is applicable to the motion of sun�sh as they develop, the timing

of metamorphosis in amphibians, and the levels of fat carried by migrating birds

[HMH93].
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CHAPTER V

CONCLUSIONS

The resources living organisms have must be allocated to survival and repro-

duction, but how should these resources be divided? Over the previous three chapters,

we have attempted to answer this question using the mathematics of life history the-

ory. We introduced the basic mathematics in Chapter II, we have derived answers

from the lifetime fecundity function in Chapter III, and we have derived answers from

habitat choice in Chapter IV.

In Chapter II, we demonstrated that the positive correlations observed by some

�eld researchers are not indications that survival and reproduction do not represent

a trade-o�. Rather, it is the �uctuations of the total energy which cause survival and

reproduction to sometimes be positively correlated. When the total energy available

to an organism is held constant, survival and reproduction are negatively correlated.

In Chapter III, we utilized the lifetime fecundity function to determine the

optimal amount of resource to allocate to reproduction. This concept was �rst intro-

duced with Ro�'s work [Rof84] on �sh populations. We then connected the lifetime

fecundity function to resource allocation by realizing that the individual fecundity

function m(t) is a function of R(t) and that the probability function `(t) is a func-

tion of S(t). We were able to �nd the optimal amount of resource to allocate to

reproduction by maximizing the lifetime fecundity function.

In Chapter IV, we explored how time, rather than energy or food, might be

allocated. We considered an organism with a choice of habitat: One habitat had a
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high mortality rate and low growth rate, and the other had a low mortality rate with

a high growth rate. We �rst showed how minimizing the ratio of the mortality rate

over the growth rate maximizes the net reproductive rate of the organism; then, we

proved that this is the optimal strategy for a �xed-state organism. In doing so, we

found the optimal allocations of time to survival and reproduction.
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