
Online matching with blocked input 

 

By: Ming-Yang Kao and Stephen R. Tate  

 

M. Kao and S. R. Tate. ―Online Matching with Blocked Input‖, Information Processing Letters, Vol. 38, May 

1991, pp. 113–116. 

 

Made available courtesy of Elsevier: http://www.elsevier.com/ 

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be 

missing from this format of the document.*** 

 
Abstract: 

In this paper, we examine the problem of "blocked online bipartite matching". This problem is similar to the 

online matching problem except that the vertices arrive in blocks instead of one at a time. Previously studied 

problems exist as special cases of this problem; the case where each block contains only a single vertex is the 

standard online matching problem studied by Karp et al. (1990), and the case where Mere is only one block 

(containing al/ vertices of the graph) is the offline matching problem (see, for example, the work by Aho et al. 

(1985)). 

 

The main result of this paper is that no performance gain (except in low-order terms) is possible by revealing 

the vertices in blocks, unless the number of blocks remains constant as n (the number of vertices) grows. 

Specifically, we show that if the number of vertices in a block is k = o(n), then the expected size of the 

matching produced by any algorithm (on its worst-case input) is at most (1 — 1/e)n + o(n). This is exactly the 

bound achieved in the original online matching problem, so no improvement is possible when k = o(n). This 

result follows from a more general upper bound that applies for all k ≤ n; however, the bound does not appear to 

be tight for some values of k which are a constant fraction of n (in particular, for k = n/3). 

 

We also give an algorithm that makes use of the blocked structure of the input. On inputs with k = o(n), this 

algorithm can be shown to perform at least as well as using the algorithm from Karp et al. (1990) and ignoring 

blocking. Hence, by the upper bound, our algorithm is optimal to low-order terms for k = o(n), and in some 

cases considerably outperforms the algorithm of Karp et al. (1990). The algorithm also trivially has optimal 

performance for k = n; furthermore, it appears to have optimal performance for k = n /2, but a proof of this 

performance has not been found. Unfortunately, the algorithm does not meet the upper bound for all block sizes, 

as is shown by a simple example with block size n/3. We conjecture that the algorithm we present is actually 

optimal, and that the upper bound is not tight. 
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Article: 

1. Introduction 

In this paper, we examine the problem of blocked online bipartite matching, which is a generalized problem that 

includes both classical (off-line) matching and online matching. The input for the blocked online matching 

problem
1
 is a bipartite graph with a perfect matching; the vertices are revealed in small blocks. To distinguish 

the halves of the bipartite graph, we give each half a color: either red or blue. The input graph is assumed to 

have 2n vertices (n red vertices and n blue vertices), and the red vertices are presented k at a time, with all their 

adjacencies. When each block of k vertices is revealed, the algorithm must decide what matches to make 

involving these vertices, and the matches involving this block can never be changed after the block is processed. 

The input graph is chosen at the beginning of the algorithm; in the language of online algorithms, this is the 

same as assuming an oblivious adversary—the only difference is that the size of the input is fixed (and known 

by the online algorithm) at the beginning of the computation. 
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The blocked online matching problem contains as special cases the standard online problem (with k =1) as 

studied by Karp, Vazirani, and Vazirani [2], and the classical, offline matching problem (with k= n), as well as 

the entire spectrum between these two previously studied problems. The performance of these algorithms is 

measured by the expected number of vertices matched on the worst-case input for the online algorithm. Clearly, 

with k = n, a matching of size n can easily be found (remember that the input graph is guaranteed to contain a 

perfect matching), so performance of n can be achieved. The case of k = 1 was studied in [2], and they proved a 

performance upper bound of (1 – 1/e)n + o(n) for any algorithm, in addition to presenting an algorithm that 

matched this bound up to low-order terms. 

 

In Section 2 we prove an upper bound that relates the blocked matching problem to the non-blocked online 

matching problem. This bound shows, among other things, that for all k = o(n), the best performance possible is 

(1 – 1/e)n + o(n), so nothing is gained (except in low-order terms) by blocking the input. An algorithm is 

presented in Section 3 that gives optimal performance for k= o(n) and in the extreme case of k = n. 

Furthermore, the upper bound shows that no algorithm can obtain performance better than (3/4)n when k = n/2, 

and the algorithm of Section 3 appears to match this bound. Unfortunately, the performance of the algorithm 

does not match the upper bound for smaller k =Θ(n). We conjecture that the algorithm obtains optimal 

performance and that the upper bound is not tight. 

 

2. The upper bound 

In this section, we prove an upper bound on the performance of any algorithm that solves the blocked online 

matching problem. The upper bound is not stated in terms of a function of n; rather, it is stated in terms of the 

optimal performance of any nonblocked online matching algorithm on smaller graphs. 

 

Let  (k, n) be the class of all (randomized) online algorithms that construct a matching on 2n-vertex bipartite 

graphs (each input is guaranteed to have a perfect matching), where the red vertices are revealed in blocks of k 

vertices each. Let  (k, n) be the set of all possible inputs to an algorithm in  (k, n); in other words,  (k, n) is 

the set of all 2n-vertex bipartite graphs that contain a perfect matching, where the ordering of the vertices is 

important. EM(k, n) is defined to be the expected size of the matching produced by the best algorithm from 

 (k, n) on its worst-case input. Specifically, if MA(x) is a random variable denoting the size of a matching 

produced by algorithm A    (k, n) on input x    (k, n), then E[MA(x)] is the performance of A on x, and 

 
 

We call an algorithm in  (k, n) optimal if it has worst-case performance equal to EM(k, n). We note here that 

any optimal algorithm must use randomization. This follows from an extension of the deterministic upper bound 

in [2]; specifically, no deterministic algorithm can have performance better than n/2 when k ≤ n/2. Notice that 

EM(1, n) is exactly the best worst-case performance of a nonblocked online algorithm, as examined in [2]. We 

relate performance of blocked and nonblocked online algorithms in the following theorem: 

 

Theorem 2.1. 

 
 

Proof. The first inequality, EM(1, kn) ≤ EM(k, kn), is obvious. The blocking of the input can be ignored, and the 

graph matched one vertex at a time using an optimal algorithm for non-blocked online matching. 

 

The second inequality is proved by contradiction. Assume that there exists a blocked online algorithm A    (k, 

kn) with worst-case performance > k • EM(1, n). We can assign an order to the vertices in each block, so the 

notion of the ith vertex (1 ≤ i ≤ k) in a block is well defined. For a given input x, let E[MA,i(x)] denote the 

expected number of ith position vertices matched (in all blocks); notice that this means that 



 
Now consider the following nonblocked algorithm S. First, pick a value c uniformly from {1, 2, ... , k}. Next, 

when a vertex is presented to the nonblocked algorithm S, make k distinct copies of the vertex (and its 

adjacencies), and simulate algorithm A on this "block". Finally, the match that S makes on this step is the match 

that A made on the cth vertex in the block. The simulation steps are reapplied for each vertex received by S, 

each time using the original value of c and making k copies of the original graph. 

 

Since algorithm S has constructed k copies of the input graph, and we have randomly chosen a copy and taken 

its matching, the result is clearly a valid matching in the original graph. Let x denote the input to S, and let 

   denote the graph constructed for input to algorithm A (i.e.,    is the graph with k distinct copies of x). The 

performance of algorithm S on input x is 

 
The algorithm A was chosen to be such that for all   , E[MA(  )] > k • EM(1, n), so for all x, E[MS(x)]> EM(1, n). 

Since EM(1, n) is the optimal worst-case performance, this shows that the performance of S is better than 

optimal—clearly a contradiction, completing the proof of the theorem. 

 

The following theorem shows that blocking input has no benefit (to low-order terms) when k = o(n): 

 

Theorem 2.2. If N = kn and k = o(N), then 

 
Proof. Rewriting the bound from Theorem 2.1 gives 

 
Since k = o(N), N/k must grow without bound as N increases. This gives 

 
Furthermore, since EM(k, N)/N is sandwiched between these two functions, its limit must also be the same, 

which is exactly the claim in the theorem. 

 

Using a result from [2], an exact value can be given for EM(k, N), when k = o(N). 

 

Corollary 2.3. If N = kn and k = o(N), then 

 
EM(1, n) is easy to compute for small values of n. Table 1 lists EM(1, n) for n ≤ 5; note that these numbers 

provide an upper bound on EM(n/c, n) for c ≤ 5. 

 



3. The blocked input algorithm 

In this section, we present an algorithm for the blocked online matching problem. The algorithm has several 

interesting features. First, when k =1, the algorithm is exactly the same as the online matching algorithm of 

Karp, Vazirani, and Vazirani [2]. They conjectured that their online algorithm was absolutely optimal (they 

proved that their algorithm is optimal up to low-order terms, and the conjecture states that their algorithm has 

optimal performance even when low-order terms are considered), so if this is true, our algorithm is also optimal 

for k = 1. Secondly, for k = n, the algorithm always gives a matching of size n, so it is trivially optimal in that 

case. Finally, this algorithm is optimal to low-order terms for k= o(n). 

 

The first step of the algorithm is to pick a permutation a of the integers (1, 2, ... , n} uniformly from all possible 

permutations. This permutation will remain fixed throughout all blocks of input, and should be viewed as 

ranking the blue vertices. The algorithm should find a maximum size matching in every block it receives, giving 

priority to the highest ranked blue vertices; in other words, the algorithm chooses the lexicographically first 

maximum matching. This can be accomplished by assigning weights to the edges of a block as follows: for any 

edge e = (u„ vj), where ui is a red vertex and vj is a blue vertex, assign a weight 

 

w(e) =2
n+1 

+2
σ(j)

. 

 

After all edges have been assigned a weight, a maximum weight matching is found. The term 2'1 in each edge's 

weight insures that the matching involves the maximum number of vertices, arid the remaining term in the 

weight gives priority to the highest-ranked set of blue vertices that are in a maximum matching. It is not hard to 

see that this algorithm becomes the same as the [2] algorithm when k = 1. 

 

For k = o(n), the algorithm performs at least as well as running [2] and ignoring the blocking. Therefore, this 

algorithm is optimal to low-order terms when k = o(n). The expected size of the matching produced when k = 

n/2 seems to be (3/4)n, which is the best possible by Theorem 2.1 and Table 1; unfortunately, a proof of this 

performance has not been found. 

 
For k= n/3, the story becomes worse. For the adjacency matrix of Fig. 1 (where the columns are revealed two at 

a time from the right), the expected matching size for the above algorithm was computed by a program that 

counted matchings over all permutations of the rows; the expected size of the matching produced by the 

algorithm of this section is 377/90 ≈ 4.19, which is slightly less than the upper bound of 13/3 ≈ 4.33 provided 

by Theorem 2.1. 

 

4. Conclusion 

It has been shown in this paper that unless a constant fraction of the total number of vertices are revealed in a 

block, then blocking the input has no significant advantage over simply revealing the vertices one at a time. 

When k =Θ(n), blocking the vertices can be of considerable advantage. 

 

We have also presented an algorithm that takes advantage of the blocked structure of the input. Due to the upper 

bound, this gives no asymptotic gain over [2] for k= o(n), but seems to perform well for large block sizes where 

[2] becomes less than optimal. Analysis of the expected matching size produced by the algorithm has proved to 

be a very difficult problem, which we leave open for the present. We believe that the algorithm is optimal, and 

that a tighter upper bound is possible. 

 

 



Notes: 
1
 To avoid being too wordy, the word "bipartite" is left out of most of this discussion; however. it should be 

remembered that we are dealing only with bipartite graphs. 
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