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Abstract: 

In this paper, we study the problem of designing proxies (or portfolios) for various stock market indices based 

on historical data. We use four different methods for computing market indices, all of which are formulae used 

in actual stock market analysis. For each index, we consider three criteria for designing the proxy: the proxy 

must either track the market index, outperform the market index, or perform within a margin of error of the 

index while maintaining a low volatility. In eleven of the twelve cases (all combinations of four indices with 

three criteria except the problem of sacrificing return for less volatility using the price-relative index) we show 

that the problem is NP-hard, and hence most likely intractable. 

 

Article: 

1. Introduction 

Market indices are widely used to track the performance of stocks or to design investment portfolios [1]. This 

paper initiates a rigorous mathematical study of the computational complexity of the art of designing proxies for 

such indices. There are several results on selecting such proxies (or portfolios) in an on-line manner (see, for 

example, [2] and [3]), but we look at off-line algorithms for designing proxies based on historical data. In 

particular, we show that, with one exception, all combinations of three fundamental problems (such as tracking 

or outperforming a full market index) with four commonly-used indices give NP-complete problems, so are 

computationally hard. We conjecture that the one remaining problem is also NP-complete, but do not have a 

proof at this time. 

 

To formally define market indices, let   be a set of b stocks in a market. Let Si,t  ≥ 0 be the price of the ith stock 

at time t. Let wi be the number of outstanding shares of the ith stock. We assume that wi does not change with 

time. This paper discusses computational complexity issues regarding four kinds of market indices currently in 

use [1]. These indices are calculated by the following formulae, which can be multiplied by arbitrary constants 

to arrive at desired starting index values at time 0. 

 

 The price-weighted index of   at time t is 

 
The Dow Jones Industrial Average is calculated in this manner for some   consisting of thirty stocks. 

 

 The value-weighted index of   at time t is 

 
The Standard & Poor‘s 500 is computed in this way with respect to 500 stocks. 

 

 The equal-weighted index of   at time t is 
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The index published by the Indicator Digest is calculated by this method, involving stocks listed on the New 

York Stock Exchange. 

 

 The price-relative index of   at time t is 

 
The Value Line Index is computed by this formula. 

 

There are numerous reasons why stock investors and money managers would want to invest in a subset of 

stocks rather than those of a whole market [1]. For instance, small investors certainly do not have sufficient 

capital to invest in every stock in the market. Logically, such investors would attempt to choose a small subset 

of stocks which hopefully can perform roughly as well as or even outperform the market as a whole. They then 

face difficult trade-offs between returns and risks. For these and other reasons of optimization, we formulate 

three natural computational problems for the design of market indices. Given a market   consisting of m 

stocks, we wish to choose a subset  k of at most k stocks and calculate an index of  k, which is called a k -

proxy of the corresponding index of the whole market M (we sometimes refer to  k as a portfolio). Our goal is 

to choose  k so that the resulting k-proxy tracks or outperforms the corresponding index of M. This paper 

shows that designing proxies for the above four indices based on historical data is computationally hard. 

 

We note here that while our problem statements might sound rather restrictive since error bounds must be met 

for every time step, we can use simple padding arguments to extend all of our proofs to more relaxed problems 

of the form ‗can the error bound be met x per cent of the time?‘ 

 

2. Problem formulations 

In this section we formally define three basic problems related to selecting k-proxies, or portfolios. 

 

Problem 1(tracking an index). 

Input: A market   of m stocks, their prices Si,t ≥ 0 for t = 0, ... , f, their numbers wi of outstanding shares, a 

real  1 > 0, an integer k > 0, and some j   {1, 2, 3, 4} to indicate the desired type of index. 

 

Output: A subset  k of at most k stocks in   such that 

 
Problem 2 (outperforming an index). 

Input: A market   of m stocks, their prices Si,t ≥ 0 for t = 0, ... , f, their numbers wi of outstanding shares, a 

real  2 ≥ 0, an integer k > 0, and some j   {1, 2, 3, 4} to indicate the desired type of index. 

 

Output: A subset  k of at most k stocks in   such that 

 
For the final problem, we need a few extra definitions in order to analyse the volatility of a set of stocks. Let   

be a set of stocks as defined in section 1. 

 

 The one -period return of Φj for   at time t ≥ 1 is 

 



 The average return of Φj for   up to time t ≥ 1 is 

 
 The volatility of Φj for   up to time t ≥ 2 is 

 
 

Problem 3 (sacrificing return for less volatility). 

Input: A market   of m stocks, their prices Si,t ≥ 0 for t = 0, …, f, their numbers wi of outstanding shares, two 

reals α, β > 0, an integer k > 0, and some j   {1,2,3,4} to indicate the desired type of index. 

 

Output: A subset  k of at most k stocks in   such that 

 
In this problem, (4) is called the performance bound, and (5) is called the volatility bound. 

 

2.1. Outline of results 

In section 3.1 we give a reduction proving the NP-hardness of tracking an index (problem 1) using the price-

weighted index (index 1). Then in section 3.2 we give a reduction showing the NP-hardness of sacrificing return 

for less volatility (problem 3 using the same index, and in section 3.3 we describe the simple extension of this 

result to the problem of outperforming an index (problem 2). 

 

In section 4 we give a general condition of index functions which is sufficient to allow us to extend the results 

using the price-weighted index to other indices, and we apply this to prove NP-hardness results for all three 

problems under the value-weighted index (index 2) in section 4.1 and the equal-weighted index (index 3) in 

section 4.2. 

 

Finally, in section 4.3 we show that tracking or outperforming an index using the price-relative index (index 4) 

is NP-hard. 

 

3. Price-weighted index 

In this section, we consider taking the value of the market and portfolio using a price-weighted index, defined in 

(1). As given in the problem statements, we use the notation Φ1( , t) to denote the market average at time step 

t, and Φ1( k, t) to denote the average of the portfolio at that time step. 

 

3.1. Tracking an index 

To solve the problem of tracking the market average, we need to satisfy (2) using function Φ1( , t). We will 

refer to this bound as the ‗tracking bound‘. In the following proofs, we show this by proving an equivalent 

relation: 

 
Theorem 3.1. Let e be any error bound satisfying 0 <   < 1 and specified using

 
n

O(1)
 bits in fixed point notation. 

Then the tracking problem for a price-weighted index with error bound   is NP-hard. 

 

In the remainder of this section, we prove this theorem by reduction from the minimum set cover problem. We 

will use the notation from the minimum cover definition given in the classic book on NP-completeness by 



Garey and Johnson [4]: C is a collection of subsets of a finite set S, and K is the desired cover size. Specifically, 

we want a subcollection C'   C such that |C' | ≤ K and every item x   S is in some subset from C'. 

 

Let n = | C |, and consider making an n × |S| matrix in which each column corresponds to a fixed item from S, 

and each row corresponds to a subset S'   C. The element in row i, column j is some given value v1 if the 

element in S for that column is in the subset S', and value v0 if it is not (v0 and v1 will be defined later, after 

lemma 3. 1, in order to correspond to the price-weighted tracking problem). Then the minimum cover problem 

can be stated as follows: Is there a set of K rows such that the K × | S | matrix defined using only those rows has 

at least one entry with value v1 in each column? 

 

It makes sense now to consider this n × |S| matrix as an input to the portfolio selection problem, where each row 

corresponds to a stock and each column corresponds to a time step, and we are to choose a portfolio of size k = 

K. Selecting a portfolio is then equivalent to selecting the subcollection in the minimum cover problem. A 

subcollection that is missing some item from S corresponds to a portfolio in which some time step has all values 

equal to v0, and hence the portfolio average at that time step must be v0. Ideally, we would select v0 and v1 in 

such a way that the required tracking bound is met if any v1 values are included in the portfolio, but not if all 

values are v0. However, this simple construction has very unpredictable market averages at each time step, so 

we need a slightly more involved construction. 

 

We will introduce a new row into our matrix called the ‗adjustment row‘, and we will select values to adjust the 

column averages to predictable values. To guarantee that this row is not selected in our portfolio (so selections 

are made up entirely of rows from the minimum cover problem), we introduce a special column called the 

‗control column‘—any selection including our adjustment row will violate the error bound in that column, and 

no selection excluding that row will violate the bound. In addition, we need to pad the problem out 

substantially. This is accomplished by including rows that contain value v0 in every non-control column, which 

is equivalent to padding the original set cover problem instance with empty subsets added to C. This clearly has 

no effect on the set cover problem. Finally, we insert a column of all ones to give the Si,0 values for the portfolio 

selection problem. The final matrix contains m = 3n rows, f = |S| + 2 columns, and is depicted in figure 1. 

 
Note that since Si,0 = 1 for all i, Φ1( , 0) = Φ1( k, 0) = 1, and so (6) reduces to just checking that 

 
First we examine properties of the control column, where the values in that column are defined by 

 



Lemma 3.1. The tracking bound is met for the control column if and only if the adjustment row is not included 

in the portfolio. 

 

Proof. From the values for c0 and c1, it is clear that the average value of the control column is c0 + 1. Since we 

will be examining the error of approximations relative to this average, we first note that we can bound (due to 

the ceiling involved in the definition of c0) 

 
Any portfolio that does not include the adjustment row has average value c0, and so we can lower bound the 

relative error by 

 
Since the relative error is clearly less than one, it falls into the acceptable range of values. 

 

On the other hand, if a portfolio does include the adjustment row, then the portfolio average is c0 + m/k, and so 

the relative error is 

 
 

Due to our padding of the problem, we know that k ≤ m/3, and so m/k − 1 ≥ 2. Using this observation and the 

bound from (7) leads to the conclusion that 

 
In other words, any portfolio that includes the adjustment row will not meet the required error bound. Combined 

with our previous observation, this completes the proof of the lemma.  
 

Next we must define the values v0 and v1, and show the equivalence of our portfolio selection instance with the 

original set cover instance. To do so, define 

 
Note that since   < 1, all these values are clearly non-negative integers, as required by the portfolio selection 

problem. 

 

For column t, if there are Mt rows with value v1, then the value we use in the adjustment row for that column is 

 
which is clearly a positive integer, since Mt < m. The sum down the column is 

 
which means that the column average is v0 + Δ, or just v1. Notice the independence from t. We make such an 

adjustment for every column in the matrix. 

 

We next demonstrate the equivalence of the produced portfolio selection instance with the original set cover 

instance. 

 

Lemma 3.2. The relative error bound is met if and only if the portfolio contains at least one v1 value in each 

column (other than the control column). 



Proof. First, for the ‗only if‘ part of the lemma, consider the case where the relative error bound is met. 

Consider any specific column t of our table, and assume that this column does not contain any v1 values. By the 

last lemma, the adjustment row cannot be included in our portfolio, so all values must be v0, and so the 

portfolio average is exactly v0. Therefore, we can derive 

 

and so providing a good lower bound for 
 

  
 would in fact upper bound this ratio. We can do this as follows: 

 
Plugging back into (8), we get 

 
 

Thus under our assumption that no v1 values are included, the error bound is not met. We conclude that if the 

error bound is met, then at least one v1 value must be included in each column. 

 

Next, for the ‗if‘ part of the theorem, assume that each column in the selected portfolio contains at least one v1 

value and that we have not selected the adjustment row. Since the market average is v1, and the largest possible 

selected value in the portfolio is v1, we know that Φ1( k, t) ≤ Φ1( , t), and so the upper bound 1 +   on the 

relative error is trivially met for any   ≥ 0. 

 

Since we have selected at least one v1 value, the portfolio average is at least v0 + Δ/ k, and so to lower bound the 

relative error notice that 

 
Now we will derive a lower bound for 

  

 
 in a similar way to what we did above, so 

 
Using this bound, with a little manipulation we can derive 

 

We can bound the middle factor of this bound by 
   

 
 by noticing that 

 
And so plugging back into (9) we get 

 
We conclude that if at least one value in column t of the selected portfolio is v1, then the relative error bound is 

met. Since we have completed both directions of the ‗if and only if‘ proof, this completes the proof of the 

lemma.  



As a final note, it is fairly easy to show that all values in the constructed portfolio selection problem have length 

polynomial in the length of the original set cover problem and the number of bits used to specify  . Therefore, 

these values form a polynomial time reduction from the set cover problem to the portfolio selection problem, 

which completes the proof of theorem 3.1. 

 
3.2. Sacrificing return for less volatility 

Next, we will skip problem 2 and prove a hardness result for problem 3: sacrificing return for less volatility. In 

the following section, we will return to problem 2, and show that the hardness of that problem (outperforming 

an index) follows directly from the results of this section. 

 

As in section 3.1, we will show that problem 3 is NP-complete by reducing the minimum cover problem to this 

one. 

 

3.2.1. The construction 

The main reduction for this proof involves a problem constructed from a minimum cover instance, and this 

construction is illustrated in figure 2. This constructed problem is an instance of our portfolio selection problem 

where the rows represent different stocks, the columns represent times, and the values in the matrix represent 

prices. 

 

In the original minimum cover instance, let n = | C | represent the number of subsets in the input, let |S| represent 

the size of the overall set, and let K be the number of subsets we are allowed to select. The data from this 

problem can be encoded into an n × |S| matrix M, where the values in this matrix are set as follows (v2 is a value 

that will be defined shortly): 

 
We will need a larger matrix in order to complete the reduction, so we embed matrix M into our larger matrix—

in figure 2 the embedded matrix is labeled as the ‗Coding Region‘. This gives a portfolio selection problem with 

m stocks, f = P+ |S| time steps, and portfolio size k = K. 

 

We surround matrix M with various ‗padding rows‘ and ‗padding columns‘. The number of padding rows and 

padding columns are defined as follows: 

 

 There are P + 1 padding columns, where P = max (2(k + 1), 2|S|). 

 

 The total number of rows is defined in terms of the following constants (recall that α and β are parameters 

defining a specific problem of this type – see the definition of problem 3 in section 2): 

 



 
The total number of rows is m = nb 

 

The definition of q implies some important properties of the constant B that we note here: 

 
Finally, from the first part of (11) notice that B/(αk) ≥ 1, and so 

 
 

All of the first n rows in the padding columns are filled with value v1, and value v2 is used in the coding region 

as previously described. These values are defined in terms of the constant B as follows: 

 

  v1 = B − 1 

 

  v2 = k(B − 1) 

 

Each column may have an ‗adjustment value‘, denoted by At for column t. Odd numbered columns in the 

padding region (type-2 columns) do not have an adjustment value, but even numbered columns other than 

column 0 (type-1 columns) do, and these values are positioned at successively lower rows; therefore, if column 

t is a type-1 column, then At is placed in row n + 
 

 
. If we run out of rows before completing this placement, 

simply put all remaining adjustment values on the last row. Notice that since P ≥ 2(k + 1) there are at least k + 1 

type-1 padding columns, and since the number of padding rows is (m − n) = (nB − n) ≥ n ≥ k + 1 (using (10)), 

there must be at least k + 1 distinct rows that contain adjustment values. Columns that cross the coding region 

(called ‗coding columns‘) also have adjustment values, which are all placed on the last row of the matrix (see 

figure 2). The adjustment values to be used are defined below, where zt is the number of zeros in the coding 

region of column t: 

 
Note that the adjustment values in the padding columns are all the same, but the adjustments in the coding 

region depend on the data in the coding region. Furthermore, (11) guarantees that these adjustment values are 

all non-negative. 

 

Before analysing the return and volatility of the constructed portfolio selection problem, we state the following 

lemma regarding the size of the constructed problem, showing that we have a polynomial reduction—the proof 

of this lemma is straightforward given the above definitions, and is omitted. 

 

Lemma 3.3. If α and β are expressed using
 
n

O(1)
 bits in fixed-point binary notation, and 0 < α ≤ n

O(1) 
and 

β = Ω 
    

    
 , then the size of the constructed problem (including the size of the values in the matrix) is 

polynomial in the size of the original minimum cover problem. 

 

3.2.2. Guarantees on return 

Lemma 3.4. The performance bound is met for all columns if and only if the selected portfolio contains exactly 

k items from the coding rows and each coding column has at least one v2 value from among the selected rows. 

 

Proof. We will first prove that if the selected portfolio contains exactly k items from the coding rows and each 

coding column has at least one v2 value from the selected rows, then the performance bound is met. First 

consider a padding column t—since the k selected rows are all coding rows, all selected values for any padding 



column have value v1, and so the portfolio average for that column is Φ1 ( k, t) = v1. On the other hand, the 

market average is different for the two types of columns. If column t is a type-1 padding column, then the sum 

of all the values in the column is 

 
Therefore, the market average for column t satisfies 

 
 

Furthermore, any type-2 padding column has no adjustment value, which makes the market average smaller 

than a type-1 column. Therefore, for either type of padding column the bound Φ1( , t) ≤ 
  

 
 is valid, and so it 

immediately follows that for any padding column t, since Φ1( , 0) = Φ1( k, 0) = v1, 

 
Therefore, the performance bound is met for all padding columns. 

 

Now consider a coding column t, and recall that we are assuming that at least one v2 value from column t is 

included in the portfolio. This means that the portfolio average is Φ1 ( k, t) ≥ v2/k = v1. For the market average, 

we compute the sum over all values in the column, as we did before, and in this case we get 

 
Similar to the calculation for the padding columns, this gives us 

 
and so the performance bound is met for the coding columns as well. We therefore have completed this 

direction of the proof. 

 

For the other direction, we need to show that any portfolio that meets the performance bound must be made up 

of exactly k items from the coding rows and each coding column has at least one v2 value from the selected 

rows. We first show that any portfolio that meets the performance bound may only use coding rows. By our 

placement of adjustment values, we noticed before that there are at least k + 1 distinct padding rows that contain 

adjustment values. Therefore, there must be at least one type-1 padding column, say column t, that does not 

have its adjustment value At selected as part of the portfolio. Now if all k selections are not from the coding 

rows, then we can bound the portfolio average for column t by 



 
Since this is a type-1 column, we can use (15) for the portfolio average along with (13) for the market average, 

and we can further use (12) to refine our bound as follows: 

 
and so the performance bound would not be met. Therefore, all k row selections must come from the coding 

rows. 

 

Since we have established that all k selections must come from the coding rows, we will next show that every 

column in the coding region must have at least one v2 value among the selected rows. This is, in fact, very easy 

to see—if no v2 values are selected in a particular column, then the portfolio average is zero, which cannot meet 

the performance bound for that column. Therefore, all coding columns must contain at least one v2 value. This 

completes this direction of the proof, and also the entire proof.  
 

3.2.3. Guarantees on volatility 

Lemma 3.5. If the performance bound is met for our constructed portfolio selection problem, then the volatility 

bound is met as well. 

 

Proof. Assume we have a solution that meets the performance bounds. Then by lemma 3.4 we know that all k 

selected rows are coding rows and that each coding column contains at least one v2 value. From this 

information, we can bound the volatility of both the market and the portfolio. 

 

The first observation is that the portfolio average is exactly v1 for every padding column, including column 0, 

and this constant average means that the portfolio volatility is exactly zero for all of the padding columns (so 

Δ( k, t) = 0 for all t ≤ P). Since the portfolio volatility is zero, the volatility bound is trivially met whenever t ≤ 

P. 

 

For t > P we bound the market volatilities first. We have already computed the market averages for the type-1 

columns (in (13)) and for coding columns (in (14)), but we need to compute the market average for type-2 

columns. Since there are exactly n values of v1 in a type-2 column, and there are m = n B total columns, the 

market average of a type-2 column is simply 
   

 
 = 

      

  
 = 

   

 
 We summarize all market averages below: 

 
These values can then be used to compute the one-period returns for the market: 

 
Recall that we are only interested in volatilities for times t > P, and from the above we can derive for t > P 

 



This market average return can be either positive or negative, depending on the value of α, so we consider these 

two situations separately. First, if α ≥ 1, then B ≥  
 

 
  , and so   1 ( , t) ≤ 0, which implies that when i is even 

we have 

 

On the other hand, if α < 1, then B <  
 

 
   , and so   1( , t) > 0, which implies that when i is odd and greater 

than 1 we have 

 

Notice that in both cases, we have the same bound, and we can guarantee that this bound holds for at least 
 

 
 − 1 

columns. Using this fact, we can bound the market volatilities for t > P as follows: 

 
Recall that by definition P = max (2(k + 1), 2|S|), and since k ≥ 2 for any interesting problem

3
, we can conclude 

that P ≥ 6 and P ≥ 2|S|. Combining this with t ≤ P + |S|, we can bound 
   

      
 ≥ 

 

 
, and then use (12) to derive 

 
Next, we will find an upper bound for the portfolio volatility. As mentioned before, the portfolio averages for t 

≤ P are constant values v1. For t > P, the portfolio averages are data dependent, but we can certainly bound 

them by the closed interval 

 
Using this bound, we can bound the one-period portfolio returns by 

 
and we can also bound the portfolio‘s average return by 

 

Given these bounds, the largest possible value for (R1( k, i) −   1( k, t))
2
 is (

   

 
 ln k)

2
, and so 



 
Finally, since t ≥ P + 1 ≥ 2t + 1 ≥ 3, we can bound 

 
Combining (16) and (17) we get 

 
and so the volatility bounds are met.  

 

3.2.4. The main result 

Theorem 3.2. Let α and β be values expressed using n
O(1) 

bits in fixed-point binary notation, and satisfying 

0 < α ≤ n
O(1) 

and β = Ω 
    

    
 . Then the problem of sacrificing return for less volatility using the price-weighted 

index is NP-complete. 

 

Proof. Follows immediately from lemmas 3.3, 3.4, and 3.5.  

 

3.3. Outperforming an index 

Given the results of the previous section, showing that the problem of outperforming an index is NP-complete is 

trivial. In particular, we use the exact same construction as in section 3.2 (for concreteness in the construction, 

use β = 4), and then our result follows from direct application of lemmas 3.3 and 3.4. 

 

Theorem 3.3. Let   be any value satisfying 0 <   < n
c
 for some constant c. Then the problem of outperforming 

the market average using the price-weighted index with bound   is NP-hard. 

 

We note here that the construction of section 3.2 gives us a slightly stronger result: We can actually let   be as 

small as −1 +        
. However, the disadvantage of using this reduction is that it is in fact more complicated 

than necessary for this problem—a direct, and simpler, reduction for the problem of outperforming an index is 

given in the appendix. 

 

4. Other indices 

For the value-weighted and equal-weighted indices, we will, in fact, use the exact same constructions as in the 

previous section—the prices in the constructed problem have been selected carefully so that they work using 

related indices, such as the value-weighted and equal-weighted indices. The results will follow fairly easily 

from the following general lemma regarding index functions. In section 4.1 and section 4.2 we will show that 

the condition of this lemma is met for the value-weighted and equal-weighted indices (but note that this 

condition may also hold for additional index functions which we have not considered). 

 

Lemma 4.1. Let Φj ( , t) be an index function where Si,0 = c for some constant c implies that 

 
for all sets of stocks     M, where d is a constant that does not depend on   or t. Then all of the previous NP-

completeness results hold for index Φj ( , t). 

 

Proof. Note that in all the problem statements, whenever an index value is used, it is always used in a ratio with 

the same index function, either at a different time step or for a different set of stocks. This will allow us to 

cancel out common factors, and the resulting problem will be in terms of the price-weighted index (Φ1( , t)). 



For example, in considering the tracking problem, we need to have a subset  k of k stocks such that for all t = 

1,..., f, 

 
Due to the condition of equation (18), this bound id met if and only if 

 
and cancelling common terms we see that this is met if and only if 

 
Therefore, the tracking problem using the Φj index function is entirely equivalent to the problem using the Φ1 

index function. 

 

Exactly the same derivation can be performed on the problem 2 condition (3), on the definition of Rj( , t), and 

on the problem 3 performance bound (4). Therefore, all of these problems are equivalent to using the price-

weighted index, and our previous reductions apply.  
 

4.1. The value-weighted index 

We first apply lemma 4.1 to the value-weighted index. For the value-weighted index, we must indicate the 

weights (the wi‘s) in the constructed portfolio selection problem as well as the prices. In all of our constructions, 

we will pick wi = 1 for all i. 

 

If Si,0 = c for some constant c, then for any valid time t and any set of stocks  , using wi = 1 gives 

 

Furthermore, regardless of   we have Φ2( , 0) = 1, and so lemma 4.1 holds with constant d = 
 

 
. The following 

three theorems are a direct consequence of this lemma. 

 

Theorem 4.1. Let a be any error bound satisfying 0 <   < 1 and specified using
 
n

O(1)
 bits in fixed point 

notation. Then the tracking problem for a value-weighted index with error bound   is NP-hard. 

 

Theorem 4.2. Let   be any value satisfying 0 <   < n
c
 for some constant c. Then the problem of outperforming 

the market average using the value-weighted index with bound   is NP-hard. 

 

Theorem 4.3. Let α and β be values expressed using n
O(1) 

bits in fixed-point binary notation, and satisfying 

0 < α ≤ n
O(1) 

and β = Ω 
    

    
 . Then the problem of sacrificing return for less volatility using the value-weighted 

index is NP-complete. 

 

4.2. The equal-weighted index 

If Si,0 = c for all i, then 

 



and so lemma 4.1 applies with constant d =
  

 
. The following three theorems are direct consequences of that 

lemma. 

 

Theorem 4.4. Let   be any error bound satisfying 0 <   < 1 and specified using
 
n

O(1)
 bits in fixed point 

notation. Then the tracking problem for a equal-weighted index with error bound   is NP-hard. 

 

Theorem 4.5. Let   be any value satisfying 0 <   < n
c
 for some constant c. Then the problem of outperforming 

the market average using the equal-weighted index with bound   is NP-hard. 

 

Theorem 4.6. Let α and β be values expressed using n
O(1) 

bits in fixed-point binary notation, and satisfying 

0 < α ≤ n
O(1) 

and β = Ω 
    

    
 . Then the problem of sacrificing return for less volatility using the equal-weighted 

index is NP-complete. 

 

4.3. The price-relative index 

The price-relative index is a geometric mean of the values in a set of stocks, whereas our first index (the price-

weighted index) is the arithmetic mean. In this section we will show that, at least for the first two problems, we 

can transform the reductions for the price-weighted index into reductions for the price-relative index, and thus 

obtain NP-hardness results for the price-relative index. For the second problem (outperforming an index), we 

use the simpler reduction given in the appendix. We will use the notation (S,  , Φj) to denote an instance of a 

portfolio selection problem with prices Si,t, error bound  , and index function Φj. 

 

The first step in transforming the reductions for the price-relative index is to change them so that every column, 

including the control column, has the same market average. If c1, c2, ... , cn are the column sums of columns 1 

through n, then let c = LCM(c1 , ... , cn) be the least common multiple of these sums. We create a new set of 

prices by setting     
  = 

 

  
Si,t at all times t ≥ 1. Now the sum down column i is  

 
which is independent of the actual column, so all columns will now have the same average value (so Φ1( , t1) 

= Φ1( , t2) for all times t1 and t2). And finally, since the first two problems treat columns independently and 

the bounds are relative error bounds, if all values in a particular column are multiplied by a particular value, this 

‗scaling up‘ does not change whether or not the error bound is met. Therefore, for problem 1 or problem 2, the 

instance (Si,t,  , Φ1) satisfies the bound if and only if the instance (    
 ,  , Φ1) satisfies the bound. 

 

The next step in transforming the reductions is to change all the     
  values into new values     

   =      
 

 for t ≥ 1, 

while keeping     
   = 1 for all i. The result of this is that for any set of b stocks  , and any t ≥ 1, 

 
We will also need to transform the   values, but this is done differently for the two problems, and so is handled 

separately below. 

 

Theorem 4.7. Let   be any error bound satisfying 0 <   < 1 and specified using O(log n) bits in fixed point 

notation. Then the tracking problem for a price-relative index with error bound   is NP-hard. 

 

Proof. Let  ’ = 
  

 

   

   
, where m is the number of stocks in the entire market (or the number of rows in our table), 

and c is the common column sum as described above in the transformation from S to S'. Now we show that (S'', 

 , Φ4) satisfies the tracking lower bound if and only if (S',  ', Φ1) does: 



 
Furthermore, since the Si,t values come from the reduction for theorem 3.1, the tracking upper bound is trivially 

met for (S'',  , Φ4) just like it is trivially met for (S,  ', Φ1) (all acceptable portfolio averages are in fact less than 

the market average). 

 

Therefore, (S''  , , Φ4) satisfies the tracking bound (both upper and lower) if and only if (S,  ', Φ1) does, and so 

we can use (S'',  , Φ4) in the reduction for the tracking problem in place of (S,  ', Φ1), and the validity of the 

reduction for (S'',  , Φ4) follows directly from the results of theorem 3.1. Examining the number of bits required 

for the various values in the reduction, we get the NP-completeness result stated in the theorem.  
 

Theorem 4.8. Let E be any value satisfying 0 <   < n
c
 for some constant c. Then the problem of outperforming 

the market average using the price-relative index with bound   is NP-hard. 

 

Proof. Similar to the derivation in the previous theorem, except 

we use  ' = 
          

   
.  

 

Finally, we end this section by noting that our final problem, sacrificing return for less volatility, does not have 

independent column values as problems 1 and 2 did, and so the above transformation idea does not work. We 

leave the complexity of the combination of price-relative index and problem 3 as an open problem. 

 

5. Conclusion 

We have examined the problem of using a subset of stocks to act as a proxy for a larger set of stocks, which 

would allow an investor to have the benefits of diversity over a large set of stocks, but would require a smaller 

commitment in initial stock acquisitions. We examine this natural problem from the standpoint of several 

different problems (tracking the larger set, outperforming the larger set, and limiting volatility of the proxy) 

using four widely used measures of portfolio performance, or index measures. 

 

Defining these problems carefully, as we did in section 1 and section 2, it is clear that these problems are 

classical optimization problems. While many optimization problems are efficiently solvable, others do not seem 

to be (or in the language of computer science, they are NP-hard). We show that, unfortunately, the selection of 

proxies falls largely into the latter category. In particular, the three problems we consider, along with the four 

indices, give a total of 12 possible problems to consider. We have given rigorous proofs in this paper that 11 of 

these 12 problems are in fact NP-hard. 

 

Having presented the reductions to prove NP-hardness, we can now elaborate on our comment from the 

introduction that these results can be easily extended to looser statistical conditions. In particular, imagine that 

we would like to loosen the restriction that the market be tracked at every step, but rather only require that the 

market be tracked at half of the time steps. In reducing the subset sum to this more relaxed problem, we simply 

double the number of columns by adding columns in which there is no way for the market to be tracked. Thus, 

to meet the tracking condition on half of the time steps, you must meet the tracking condition on all of the other 



columns, which corresponds to the original problem of tracking at every time step. This idea can be extended to 

fractions other than one half, and to the various problems and indices studied in this paper. 

 
The obvious open problem is to show a similar hardness proof for the remaining problem: the problem of 

finding a limited-volatility proxy using the price-relative index. Another interesting problem would be to design 

good approximation algorithms for the problems defined in this paper. Our results show that finding efficient, 

exact solutions to the 11 problems shown to be NP-hard is equivalent to showing that P = NP, so approximation 

algorithms are most likely the only practical approach to these problems. Finally, the results could be extended 

to other problems on these indices, or to additional indices. Lemma 4.1 is a powerful tool which works to 

extend our hardness results to many other natural indices, and most likely could be used for indices that we have 

not considered in this paper. 

 

Appendix. Direct construction for outperforming an index 

We now turn our attention to the problem of finding a portfolio that outperforms the market average at every 

time step. In particular, we are looking for a portfolio  k of size k which satisfies (3). As we did in the first 

construction (for tracking an index), we rewrite this condition as follows: 

 
Theorem A.1. Let   be any value satisfying 0 <   < n

c
 for some constant c. Then the problem of portfolio 

selection for outperforming the market average with bound   is NP-hard. 

 

Proof. The reduction used in this proof is shown pictorially in figure 3. The indicator variables in this case are 

simple zero and one values (set to one if and only if the element represented by that row is in the subset 

represented by that column). The adjustment row contains values so that each column except the control column 

has sum n. This is clearly possible for each column, using only integer values between 0 and n. We also again 

use an initial column of all ones, which reduces condition (A.1) to just 

 
        

       
 ≥ 1 +   

 

We first show that the required bound is met for the control column if and only if the selected portfolio is made 

up entirely of rows from the first kn rows (i.e. those rows that contain a 1 in the control column). In particular, 

the adjustment row may not be included in the portfolio. The market average for the control column is simply 



 
Obviously, when the portfolio  k is made up entirely of these rows, the portfolio average in the control column 

is 1, so we can bound 

 
On the other hand, when only k − 1 or fewer of the portfolio rows begin with a 1, then the portfolio average is at 

most 1−
  

 
, and so we can bound 

 

 
Therefore, the desired bound is met only if all k selected rows begin with a 1. 

 

We next show that the desired bound for all other columns is met if and only if at least one row must be selected 

that contains a non-zero value. If no such rows are selected, all selected rows contain 0 and so the portfolio 

average is 0. This clearly cannot meet our required bound. On the other hand, if even one row is included with a 

non-zero value, then Φ1( k, t) ≥ 
 

 
, while the market average for this column is clearly 

 

         
 . This leads to 

 
and so the desired bound is met. We note that in order to meet the desired bound on all columns, the adjustment 

row must not be selected, and therefore the non-zero value required in each column of the portfolio must come 

from the indicator variables of the original set cover problem. Therefore, an acceptable portfolio exists if and 

only if an acceptable set cover exists.  
 
Notes: 
3
 In fact, to have a hard problem, k = ω (1) (or k is non-constant).
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