
Designing proxies for stock market indices is computationally hard

By: Ming-Yang Kao and Stephen R Tate

M.-Y. Kao and S. R. Tate. ―Designing Proxies for Stock Market Indices is Computationally Hard,‖ Quantitative

Finance, Volume 1, Number 3, May 2001, pp. 361-371.

Made available courtesy of Taylor and Francis: http://www.tandf.co.uk/journals/

***Reprinted with permission. No further reproduction is authorized without written permission from

Taylor and Francis. This version of the document is not the version of record. Figures and/or pictures

may be missing from this format of the document.***

Abstract:

In this paper, we study the problem of designing proxies (or portfolios) for various stock market indices based

on historical data. We use four different methods for computing market indices, all of which are formulae used

in actual stock market analysis. For each index, we consider three criteria for designing the proxy: the proxy

must either track the market index, outperform the market index, or perform within a margin of error of the

index while maintaining a low volatility. In eleven of the twelve cases (all combinations of four indices with

three criteria except the problem of sacrificing return for less volatility using the price-relative index) we show

that the problem is NP-hard, and hence most likely intractable.

Article:

1. Introduction

Market indices are widely used to track the performance of stocks or to design investment portfolios [1]. This

paper initiates a rigorous mathematical study of the computational complexity of the art of designing proxies for

such indices. There are several results on selecting such proxies (or portfolios) in an on-line manner (see, for

example, [2] and [3]), but we look at off-line algorithms for designing proxies based on historical data. In

particular, we show that, with one exception, all combinations of three fundamental problems (such as tracking

or outperforming a full market index) with four commonly-used indices give NP-complete problems, so are

computationally hard. We conjecture that the one remaining problem is also NP-complete, but do not have a

proof at this time.

To formally define market indices, let be a set of b stocks in a market. Let Si,t ≥ 0 be the price of the ith stock

at time t. Let wi be the number of outstanding shares of the ith stock. We assume that wi does not change with

time. This paper discusses computational complexity issues regarding four kinds of market indices currently in

use [1]. These indices are calculated by the following formulae, which can be multiplied by arbitrary constants

to arrive at desired starting index values at time 0.

 The price-weighted index of at time t is

The Dow Jones Industrial Average is calculated in this manner for some consisting of thirty stocks.

 The value-weighted index of at time t is

The Standard & Poor‘s 500 is computed in this way with respect to 500 stocks.

 The equal-weighted index of at time t is

http://libres.uncg.edu/ir/uncg/clist.aspx?id=110
http://www.tandf.co.uk/journals/

The index published by the Indicator Digest is calculated by this method, involving stocks listed on the New

York Stock Exchange.

 The price-relative index of at time t is

The Value Line Index is computed by this formula.

There are numerous reasons why stock investors and money managers would want to invest in a subset of

stocks rather than those of a whole market [1]. For instance, small investors certainly do not have sufficient

capital to invest in every stock in the market. Logically, such investors would attempt to choose a small subset

of stocks which hopefully can perform roughly as well as or even outperform the market as a whole. They then

face difficult trade-offs between returns and risks. For these and other reasons of optimization, we formulate

three natural computational problems for the design of market indices. Given a market consisting of m

stocks, we wish to choose a subset k of at most k stocks and calculate an index of k, which is called a k -

proxy of the corresponding index of the whole market M (we sometimes refer to k as a portfolio). Our goal is

to choose k so that the resulting k-proxy tracks or outperforms the corresponding index of M. This paper

shows that designing proxies for the above four indices based on historical data is computationally hard.

We note here that while our problem statements might sound rather restrictive since error bounds must be met

for every time step, we can use simple padding arguments to extend all of our proofs to more relaxed problems

of the form ‗can the error bound be met x per cent of the time?‘

2. Problem formulations

In this section we formally define three basic problems related to selecting k-proxies, or portfolios.

Problem 1(tracking an index).

Input: A market of m stocks, their prices Si,t ≥ 0 for t = 0, ... , f, their numbers wi of outstanding shares, a

real 1 > 0, an integer k > 0, and some j {1, 2, 3, 4} to indicate the desired type of index.

Output: A subset k of at most k stocks in such that

Problem 2 (outperforming an index).

Input: A market of m stocks, their prices Si,t ≥ 0 for t = 0, ... , f, their numbers wi of outstanding shares, a

real 2 ≥ 0, an integer k > 0, and some j {1, 2, 3, 4} to indicate the desired type of index.

Output: A subset k of at most k stocks in such that

For the final problem, we need a few extra definitions in order to analyse the volatility of a set of stocks. Let

be a set of stocks as defined in section 1.

 The one -period return of Φj for at time t ≥ 1 is

 The average return of Φj for up to time t ≥ 1 is

 The volatility of Φj for up to time t ≥ 2 is

Problem 3 (sacrificing return for less volatility).

Input: A market of m stocks, their prices Si,t ≥ 0 for t = 0, …, f, their numbers wi of outstanding shares, two

reals α, β > 0, an integer k > 0, and some j {1,2,3,4} to indicate the desired type of index.

Output: A subset k of at most k stocks in such that

In this problem, (4) is called the performance bound, and (5) is called the volatility bound.

2.1. Outline of results

In section 3.1 we give a reduction proving the NP-hardness of tracking an index (problem 1) using the price-

weighted index (index 1). Then in section 3.2 we give a reduction showing the NP-hardness of sacrificing return

for less volatility (problem 3 using the same index, and in section 3.3 we describe the simple extension of this

result to the problem of outperforming an index (problem 2).

In section 4 we give a general condition of index functions which is sufficient to allow us to extend the results

using the price-weighted index to other indices, and we apply this to prove NP-hardness results for all three

problems under the value-weighted index (index 2) in section 4.1 and the equal-weighted index (index 3) in

section 4.2.

Finally, in section 4.3 we show that tracking or outperforming an index using the price-relative index (index 4)

is NP-hard.

3. Price-weighted index

In this section, we consider taking the value of the market and portfolio using a price-weighted index, defined in

(1). As given in the problem statements, we use the notation Φ1(, t) to denote the market average at time step

t, and Φ1(k, t) to denote the average of the portfolio at that time step.

3.1. Tracking an index

To solve the problem of tracking the market average, we need to satisfy (2) using function Φ1(, t). We will

refer to this bound as the ‗tracking bound‘. In the following proofs, we show this by proving an equivalent

relation:

Theorem 3.1. Let e be any error bound satisfying 0 < < 1 and specified using

n

O(1)
 bits in fixed point notation.

Then the tracking problem for a price-weighted index with error bound is NP-hard.

In the remainder of this section, we prove this theorem by reduction from the minimum set cover problem. We

will use the notation from the minimum cover definition given in the classic book on NP-completeness by

Garey and Johnson [4]: C is a collection of subsets of a finite set S, and K is the desired cover size. Specifically,

we want a subcollection C' C such that |C' | ≤ K and every item x S is in some subset from C'.

Let n = | C |, and consider making an n × |S| matrix in which each column corresponds to a fixed item from S,

and each row corresponds to a subset S' C. The element in row i, column j is some given value v1 if the

element in S for that column is in the subset S', and value v0 if it is not (v0 and v1 will be defined later, after

lemma 3. 1, in order to correspond to the price-weighted tracking problem). Then the minimum cover problem

can be stated as follows: Is there a set of K rows such that the K × | S | matrix defined using only those rows has

at least one entry with value v1 in each column?

It makes sense now to consider this n × |S| matrix as an input to the portfolio selection problem, where each row

corresponds to a stock and each column corresponds to a time step, and we are to choose a portfolio of size k =

K. Selecting a portfolio is then equivalent to selecting the subcollection in the minimum cover problem. A

subcollection that is missing some item from S corresponds to a portfolio in which some time step has all values

equal to v0, and hence the portfolio average at that time step must be v0. Ideally, we would select v0 and v1 in

such a way that the required tracking bound is met if any v1 values are included in the portfolio, but not if all

values are v0. However, this simple construction has very unpredictable market averages at each time step, so

we need a slightly more involved construction.

We will introduce a new row into our matrix called the ‗adjustment row‘, and we will select values to adjust the

column averages to predictable values. To guarantee that this row is not selected in our portfolio (so selections

are made up entirely of rows from the minimum cover problem), we introduce a special column called the

‗control column‘—any selection including our adjustment row will violate the error bound in that column, and

no selection excluding that row will violate the bound. In addition, we need to pad the problem out

substantially. This is accomplished by including rows that contain value v0 in every non-control column, which

is equivalent to padding the original set cover problem instance with empty subsets added to C. This clearly has

no effect on the set cover problem. Finally, we insert a column of all ones to give the Si,0 values for the portfolio

selection problem. The final matrix contains m = 3n rows, f = |S| + 2 columns, and is depicted in figure 1.

Note that since Si,0 = 1 for all i, Φ1(, 0) = Φ1(k, 0) = 1, and so (6) reduces to just checking that

First we examine properties of the control column, where the values in that column are defined by

Lemma 3.1. The tracking bound is met for the control column if and only if the adjustment row is not included

in the portfolio.

Proof. From the values for c0 and c1, it is clear that the average value of the control column is c0 + 1. Since we

will be examining the error of approximations relative to this average, we first note that we can bound (due to

the ceiling involved in the definition of c0)

Any portfolio that does not include the adjustment row has average value c0, and so we can lower bound the

relative error by

Since the relative error is clearly less than one, it falls into the acceptable range of values.

On the other hand, if a portfolio does include the adjustment row, then the portfolio average is c0 + m/k, and so

the relative error is

Due to our padding of the problem, we know that k ≤ m/3, and so m/k − 1 ≥ 2. Using this observation and the

bound from (7) leads to the conclusion that

In other words, any portfolio that includes the adjustment row will not meet the required error bound. Combined

with our previous observation, this completes the proof of the lemma.

Next we must define the values v0 and v1, and show the equivalence of our portfolio selection instance with the

original set cover instance. To do so, define

Note that since < 1, all these values are clearly non-negative integers, as required by the portfolio selection

problem.

For column t, if there are Mt rows with value v1, then the value we use in the adjustment row for that column is

which is clearly a positive integer, since Mt < m. The sum down the column is

which means that the column average is v0 + Δ, or just v1. Notice the independence from t. We make such an

adjustment for every column in the matrix.

We next demonstrate the equivalence of the produced portfolio selection instance with the original set cover

instance.

Lemma 3.2. The relative error bound is met if and only if the portfolio contains at least one v1 value in each

column (other than the control column).

Proof. First, for the ‗only if‘ part of the lemma, consider the case where the relative error bound is met.

Consider any specific column t of our table, and assume that this column does not contain any v1 values. By the

last lemma, the adjustment row cannot be included in our portfolio, so all values must be v0, and so the

portfolio average is exactly v0. Therefore, we can derive

and so providing a good lower bound for

 would in fact upper bound this ratio. We can do this as follows:

Plugging back into (8), we get

Thus under our assumption that no v1 values are included, the error bound is not met. We conclude that if the

error bound is met, then at least one v1 value must be included in each column.

Next, for the ‗if‘ part of the theorem, assume that each column in the selected portfolio contains at least one v1

value and that we have not selected the adjustment row. Since the market average is v1, and the largest possible

selected value in the portfolio is v1, we know that Φ1(k, t) ≤ Φ1(, t), and so the upper bound 1 + on the

relative error is trivially met for any ≥ 0.

Since we have selected at least one v1 value, the portfolio average is at least v0 + Δ/ k, and so to lower bound the

relative error notice that

Now we will derive a lower bound for

 in a similar way to what we did above, so

Using this bound, with a little manipulation we can derive

We can bound the middle factor of this bound by

 by noticing that

And so plugging back into (9) we get

We conclude that if at least one value in column t of the selected portfolio is v1, then the relative error bound is

met. Since we have completed both directions of the ‗if and only if‘ proof, this completes the proof of the

lemma.

As a final note, it is fairly easy to show that all values in the constructed portfolio selection problem have length

polynomial in the length of the original set cover problem and the number of bits used to specify . Therefore,

these values form a polynomial time reduction from the set cover problem to the portfolio selection problem,

which completes the proof of theorem 3.1.

3.2. Sacrificing return for less volatility

Next, we will skip problem 2 and prove a hardness result for problem 3: sacrificing return for less volatility. In

the following section, we will return to problem 2, and show that the hardness of that problem (outperforming

an index) follows directly from the results of this section.

As in section 3.1, we will show that problem 3 is NP-complete by reducing the minimum cover problem to this

one.

3.2.1. The construction

The main reduction for this proof involves a problem constructed from a minimum cover instance, and this

construction is illustrated in figure 2. This constructed problem is an instance of our portfolio selection problem

where the rows represent different stocks, the columns represent times, and the values in the matrix represent

prices.

In the original minimum cover instance, let n = | C | represent the number of subsets in the input, let |S| represent

the size of the overall set, and let K be the number of subsets we are allowed to select. The data from this

problem can be encoded into an n × |S| matrix M, where the values in this matrix are set as follows (v2 is a value

that will be defined shortly):

We will need a larger matrix in order to complete the reduction, so we embed matrix M into our larger matrix—

in figure 2 the embedded matrix is labeled as the ‗Coding Region‘. This gives a portfolio selection problem with

m stocks, f = P+ |S| time steps, and portfolio size k = K.

We surround matrix M with various ‗padding rows‘ and ‗padding columns‘. The number of padding rows and

padding columns are defined as follows:

 There are P + 1 padding columns, where P = max (2(k + 1), 2|S|).

 The total number of rows is defined in terms of the following constants (recall that α and β are parameters

defining a specific problem of this type – see the definition of problem 3 in section 2):

The total number of rows is m = nb

The definition of q implies some important properties of the constant B that we note here:

Finally, from the first part of (11) notice that B/(αk) ≥ 1, and so

All of the first n rows in the padding columns are filled with value v1, and value v2 is used in the coding region

as previously described. These values are defined in terms of the constant B as follows:

 v1 = B − 1

 v2 = k(B − 1)

Each column may have an ‗adjustment value‘, denoted by At for column t. Odd numbered columns in the

padding region (type-2 columns) do not have an adjustment value, but even numbered columns other than

column 0 (type-1 columns) do, and these values are positioned at successively lower rows; therefore, if column

t is a type-1 column, then At is placed in row n +

. If we run out of rows before completing this placement,

simply put all remaining adjustment values on the last row. Notice that since P ≥ 2(k + 1) there are at least k + 1

type-1 padding columns, and since the number of padding rows is (m − n) = (nB − n) ≥ n ≥ k + 1 (using (10)),

there must be at least k + 1 distinct rows that contain adjustment values. Columns that cross the coding region

(called ‗coding columns‘) also have adjustment values, which are all placed on the last row of the matrix (see

figure 2). The adjustment values to be used are defined below, where zt is the number of zeros in the coding

region of column t:

Note that the adjustment values in the padding columns are all the same, but the adjustments in the coding

region depend on the data in the coding region. Furthermore, (11) guarantees that these adjustment values are

all non-negative.

Before analysing the return and volatility of the constructed portfolio selection problem, we state the following

lemma regarding the size of the constructed problem, showing that we have a polynomial reduction—the proof

of this lemma is straightforward given the above definitions, and is omitted.

Lemma 3.3. If α and β are expressed using

n

O(1)
 bits in fixed-point binary notation, and 0 < α ≤ n

O(1)
and

β = Ω

 , then the size of the constructed problem (including the size of the values in the matrix) is

polynomial in the size of the original minimum cover problem.

3.2.2. Guarantees on return

Lemma 3.4. The performance bound is met for all columns if and only if the selected portfolio contains exactly

k items from the coding rows and each coding column has at least one v2 value from among the selected rows.

Proof. We will first prove that if the selected portfolio contains exactly k items from the coding rows and each

coding column has at least one v2 value from the selected rows, then the performance bound is met. First

consider a padding column t—since the k selected rows are all coding rows, all selected values for any padding

column have value v1, and so the portfolio average for that column is Φ1 (k, t) = v1. On the other hand, the

market average is different for the two types of columns. If column t is a type-1 padding column, then the sum

of all the values in the column is

Therefore, the market average for column t satisfies

Furthermore, any type-2 padding column has no adjustment value, which makes the market average smaller

than a type-1 column. Therefore, for either type of padding column the bound Φ1(, t) ≤

 is valid, and so it

immediately follows that for any padding column t, since Φ1(, 0) = Φ1(k, 0) = v1,

Therefore, the performance bound is met for all padding columns.

Now consider a coding column t, and recall that we are assuming that at least one v2 value from column t is

included in the portfolio. This means that the portfolio average is Φ1 (k, t) ≥ v2/k = v1. For the market average,

we compute the sum over all values in the column, as we did before, and in this case we get

Similar to the calculation for the padding columns, this gives us

and so the performance bound is met for the coding columns as well. We therefore have completed this

direction of the proof.

For the other direction, we need to show that any portfolio that meets the performance bound must be made up

of exactly k items from the coding rows and each coding column has at least one v2 value from the selected

rows. We first show that any portfolio that meets the performance bound may only use coding rows. By our

placement of adjustment values, we noticed before that there are at least k + 1 distinct padding rows that contain

adjustment values. Therefore, there must be at least one type-1 padding column, say column t, that does not

have its adjustment value At selected as part of the portfolio. Now if all k selections are not from the coding

rows, then we can bound the portfolio average for column t by

Since this is a type-1 column, we can use (15) for the portfolio average along with (13) for the market average,

and we can further use (12) to refine our bound as follows:

and so the performance bound would not be met. Therefore, all k row selections must come from the coding

rows.

Since we have established that all k selections must come from the coding rows, we will next show that every

column in the coding region must have at least one v2 value among the selected rows. This is, in fact, very easy

to see—if no v2 values are selected in a particular column, then the portfolio average is zero, which cannot meet

the performance bound for that column. Therefore, all coding columns must contain at least one v2 value. This

completes this direction of the proof, and also the entire proof.

3.2.3. Guarantees on volatility

Lemma 3.5. If the performance bound is met for our constructed portfolio selection problem, then the volatility

bound is met as well.

Proof. Assume we have a solution that meets the performance bounds. Then by lemma 3.4 we know that all k

selected rows are coding rows and that each coding column contains at least one v2 value. From this

information, we can bound the volatility of both the market and the portfolio.

The first observation is that the portfolio average is exactly v1 for every padding column, including column 0,

and this constant average means that the portfolio volatility is exactly zero for all of the padding columns (so

Δ(k, t) = 0 for all t ≤ P). Since the portfolio volatility is zero, the volatility bound is trivially met whenever t ≤

P.

For t > P we bound the market volatilities first. We have already computed the market averages for the type-1

columns (in (13)) and for coding columns (in (14)), but we need to compute the market average for type-2

columns. Since there are exactly n values of v1 in a type-2 column, and there are m = n B total columns, the

market average of a type-2 column is simply

 =

 =

 We summarize all market averages below:

These values can then be used to compute the one-period returns for the market:

Recall that we are only interested in volatilities for times t > P, and from the above we can derive for t > P

This market average return can be either positive or negative, depending on the value of α, so we consider these

two situations separately. First, if α ≥ 1, then B ≥

 , and so 1 (, t) ≤ 0, which implies that when i is even

we have

On the other hand, if α < 1, then B <

 , and so 1(, t) > 0, which implies that when i is odd and greater

than 1 we have

Notice that in both cases, we have the same bound, and we can guarantee that this bound holds for at least

 − 1

columns. Using this fact, we can bound the market volatilities for t > P as follows:

Recall that by definition P = max (2(k + 1), 2|S|), and since k ≥ 2 for any interesting problem

3
, we can conclude

that P ≥ 6 and P ≥ 2|S|. Combining this with t ≤ P + |S|, we can bound

 ≥

, and then use (12) to derive

Next, we will find an upper bound for the portfolio volatility. As mentioned before, the portfolio averages for t

≤ P are constant values v1. For t > P, the portfolio averages are data dependent, but we can certainly bound

them by the closed interval

Using this bound, we can bound the one-period portfolio returns by

and we can also bound the portfolio‘s average return by

Given these bounds, the largest possible value for (R1(k, i) − 1(k, t))
2
 is (

 ln k)

2
, and so

Finally, since t ≥ P + 1 ≥ 2t + 1 ≥ 3, we can bound

Combining (16) and (17) we get

and so the volatility bounds are met.

3.2.4. The main result

Theorem 3.2. Let α and β be values expressed using n
O(1)

bits in fixed-point binary notation, and satisfying

0 < α ≤ n
O(1)

and β = Ω

 . Then the problem of sacrificing return for less volatility using the price-weighted

index is NP-complete.

Proof. Follows immediately from lemmas 3.3, 3.4, and 3.5.

3.3. Outperforming an index

Given the results of the previous section, showing that the problem of outperforming an index is NP-complete is

trivial. In particular, we use the exact same construction as in section 3.2 (for concreteness in the construction,

use β = 4), and then our result follows from direct application of lemmas 3.3 and 3.4.

Theorem 3.3. Let be any value satisfying 0 < < n
c
 for some constant c. Then the problem of outperforming

the market average using the price-weighted index with bound is NP-hard.

We note here that the construction of section 3.2 gives us a slightly stronger result: We can actually let be as

small as −1 +
. However, the disadvantage of using this reduction is that it is in fact more complicated

than necessary for this problem—a direct, and simpler, reduction for the problem of outperforming an index is

given in the appendix.

4. Other indices

For the value-weighted and equal-weighted indices, we will, in fact, use the exact same constructions as in the

previous section—the prices in the constructed problem have been selected carefully so that they work using

related indices, such as the value-weighted and equal-weighted indices. The results will follow fairly easily

from the following general lemma regarding index functions. In section 4.1 and section 4.2 we will show that

the condition of this lemma is met for the value-weighted and equal-weighted indices (but note that this

condition may also hold for additional index functions which we have not considered).

Lemma 4.1. Let Φj (, t) be an index function where Si,0 = c for some constant c implies that

for all sets of stocks M, where d is a constant that does not depend on or t. Then all of the previous NP-

completeness results hold for index Φj (, t).

Proof. Note that in all the problem statements, whenever an index value is used, it is always used in a ratio with

the same index function, either at a different time step or for a different set of stocks. This will allow us to

cancel out common factors, and the resulting problem will be in terms of the price-weighted index (Φ1(, t)).

For example, in considering the tracking problem, we need to have a subset k of k stocks such that for all t =

1,..., f,

Due to the condition of equation (18), this bound id met if and only if

and cancelling common terms we see that this is met if and only if

Therefore, the tracking problem using the Φj index function is entirely equivalent to the problem using the Φ1

index function.

Exactly the same derivation can be performed on the problem 2 condition (3), on the definition of Rj(, t), and

on the problem 3 performance bound (4). Therefore, all of these problems are equivalent to using the price-

weighted index, and our previous reductions apply.

4.1. The value-weighted index

We first apply lemma 4.1 to the value-weighted index. For the value-weighted index, we must indicate the

weights (the wi‘s) in the constructed portfolio selection problem as well as the prices. In all of our constructions,

we will pick wi = 1 for all i.

If Si,0 = c for some constant c, then for any valid time t and any set of stocks , using wi = 1 gives

Furthermore, regardless of we have Φ2(, 0) = 1, and so lemma 4.1 holds with constant d =

. The following

three theorems are a direct consequence of this lemma.

Theorem 4.1. Let a be any error bound satisfying 0 < < 1 and specified using

n

O(1)
 bits in fixed point

notation. Then the tracking problem for a value-weighted index with error bound is NP-hard.

Theorem 4.2. Let be any value satisfying 0 < < n
c
 for some constant c. Then the problem of outperforming

the market average using the value-weighted index with bound is NP-hard.

Theorem 4.3. Let α and β be values expressed using n
O(1)

bits in fixed-point binary notation, and satisfying

0 < α ≤ n
O(1)

and β = Ω

 . Then the problem of sacrificing return for less volatility using the value-weighted

index is NP-complete.

4.2. The equal-weighted index

If Si,0 = c for all i, then

and so lemma 4.1 applies with constant d =

. The following three theorems are direct consequences of that

lemma.

Theorem 4.4. Let be any error bound satisfying 0 < < 1 and specified using

n

O(1)
 bits in fixed point

notation. Then the tracking problem for a equal-weighted index with error bound is NP-hard.

Theorem 4.5. Let be any value satisfying 0 < < n
c
 for some constant c. Then the problem of outperforming

the market average using the equal-weighted index with bound is NP-hard.

Theorem 4.6. Let α and β be values expressed using n
O(1)

bits in fixed-point binary notation, and satisfying

0 < α ≤ n
O(1)

and β = Ω

 . Then the problem of sacrificing return for less volatility using the equal-weighted

index is NP-complete.

4.3. The price-relative index

The price-relative index is a geometric mean of the values in a set of stocks, whereas our first index (the price-

weighted index) is the arithmetic mean. In this section we will show that, at least for the first two problems, we

can transform the reductions for the price-weighted index into reductions for the price-relative index, and thus

obtain NP-hardness results for the price-relative index. For the second problem (outperforming an index), we

use the simpler reduction given in the appendix. We will use the notation (S, , Φj) to denote an instance of a

portfolio selection problem with prices Si,t, error bound , and index function Φj.

The first step in transforming the reductions for the price-relative index is to change them so that every column,

including the control column, has the same market average. If c1, c2, ... , cn are the column sums of columns 1

through n, then let c = LCM(c1 , ... , cn) be the least common multiple of these sums. We create a new set of

prices by setting
 =

Si,t at all times t ≥ 1. Now the sum down column i is

which is independent of the actual column, so all columns will now have the same average value (so Φ1(, t1)

= Φ1(, t2) for all times t1 and t2). And finally, since the first two problems treat columns independently and

the bounds are relative error bounds, if all values in a particular column are multiplied by a particular value, this

‗scaling up‘ does not change whether or not the error bound is met. Therefore, for problem 1 or problem 2, the

instance (Si,t, , Φ1) satisfies the bound if and only if the instance (
 , , Φ1) satisfies the bound.

The next step in transforming the reductions is to change all the
 values into new values

 =

 for t ≥ 1,

while keeping
 = 1 for all i. The result of this is that for any set of b stocks , and any t ≥ 1,

We will also need to transform the values, but this is done differently for the two problems, and so is handled

separately below.

Theorem 4.7. Let be any error bound satisfying 0 < < 1 and specified using O(log n) bits in fixed point

notation. Then the tracking problem for a price-relative index with error bound is NP-hard.

Proof. Let ’ =

, where m is the number of stocks in the entire market (or the number of rows in our table),

and c is the common column sum as described above in the transformation from S to S'. Now we show that (S'',

 , Φ4) satisfies the tracking lower bound if and only if (S', ', Φ1) does:

Furthermore, since the Si,t values come from the reduction for theorem 3.1, the tracking upper bound is trivially

met for (S'', , Φ4) just like it is trivially met for (S, ', Φ1) (all acceptable portfolio averages are in fact less than

the market average).

Therefore, (S'' , , Φ4) satisfies the tracking bound (both upper and lower) if and only if (S, ', Φ1) does, and so

we can use (S'', , Φ4) in the reduction for the tracking problem in place of (S, ', Φ1), and the validity of the

reduction for (S'', , Φ4) follows directly from the results of theorem 3.1. Examining the number of bits required

for the various values in the reduction, we get the NP-completeness result stated in the theorem.

Theorem 4.8. Let E be any value satisfying 0 < < n
c
 for some constant c. Then the problem of outperforming

the market average using the price-relative index with bound is NP-hard.

Proof. Similar to the derivation in the previous theorem, except

we use ' =

.

Finally, we end this section by noting that our final problem, sacrificing return for less volatility, does not have

independent column values as problems 1 and 2 did, and so the above transformation idea does not work. We

leave the complexity of the combination of price-relative index and problem 3 as an open problem.

5. Conclusion

We have examined the problem of using a subset of stocks to act as a proxy for a larger set of stocks, which

would allow an investor to have the benefits of diversity over a large set of stocks, but would require a smaller

commitment in initial stock acquisitions. We examine this natural problem from the standpoint of several

different problems (tracking the larger set, outperforming the larger set, and limiting volatility of the proxy)

using four widely used measures of portfolio performance, or index measures.

Defining these problems carefully, as we did in section 1 and section 2, it is clear that these problems are

classical optimization problems. While many optimization problems are efficiently solvable, others do not seem

to be (or in the language of computer science, they are NP-hard). We show that, unfortunately, the selection of

proxies falls largely into the latter category. In particular, the three problems we consider, along with the four

indices, give a total of 12 possible problems to consider. We have given rigorous proofs in this paper that 11 of

these 12 problems are in fact NP-hard.

Having presented the reductions to prove NP-hardness, we can now elaborate on our comment from the

introduction that these results can be easily extended to looser statistical conditions. In particular, imagine that

we would like to loosen the restriction that the market be tracked at every step, but rather only require that the

market be tracked at half of the time steps. In reducing the subset sum to this more relaxed problem, we simply

double the number of columns by adding columns in which there is no way for the market to be tracked. Thus,

to meet the tracking condition on half of the time steps, you must meet the tracking condition on all of the other

columns, which corresponds to the original problem of tracking at every time step. This idea can be extended to

fractions other than one half, and to the various problems and indices studied in this paper.

The obvious open problem is to show a similar hardness proof for the remaining problem: the problem of

finding a limited-volatility proxy using the price-relative index. Another interesting problem would be to design

good approximation algorithms for the problems defined in this paper. Our results show that finding efficient,

exact solutions to the 11 problems shown to be NP-hard is equivalent to showing that P = NP, so approximation

algorithms are most likely the only practical approach to these problems. Finally, the results could be extended

to other problems on these indices, or to additional indices. Lemma 4.1 is a powerful tool which works to

extend our hardness results to many other natural indices, and most likely could be used for indices that we have

not considered in this paper.

Appendix. Direct construction for outperforming an index

We now turn our attention to the problem of finding a portfolio that outperforms the market average at every

time step. In particular, we are looking for a portfolio k of size k which satisfies (3). As we did in the first

construction (for tracking an index), we rewrite this condition as follows:

Theorem A.1. Let be any value satisfying 0 < < n

c
 for some constant c. Then the problem of portfolio

selection for outperforming the market average with bound is NP-hard.

Proof. The reduction used in this proof is shown pictorially in figure 3. The indicator variables in this case are

simple zero and one values (set to one if and only if the element represented by that row is in the subset

represented by that column). The adjustment row contains values so that each column except the control column

has sum n. This is clearly possible for each column, using only integer values between 0 and n. We also again

use an initial column of all ones, which reduces condition (A.1) to just

 ≥ 1 +

We first show that the required bound is met for the control column if and only if the selected portfolio is made

up entirely of rows from the first kn rows (i.e. those rows that contain a 1 in the control column). In particular,

the adjustment row may not be included in the portfolio. The market average for the control column is simply

Obviously, when the portfolio k is made up entirely of these rows, the portfolio average in the control column

is 1, so we can bound

On the other hand, when only k − 1 or fewer of the portfolio rows begin with a 1, then the portfolio average is at

most 1−

, and so we can bound

Therefore, the desired bound is met only if all k selected rows begin with a 1.

We next show that the desired bound for all other columns is met if and only if at least one row must be selected

that contains a non-zero value. If no such rows are selected, all selected rows contain 0 and so the portfolio

average is 0. This clearly cannot meet our required bound. On the other hand, if even one row is included with a

non-zero value, then Φ1(k, t) ≥

, while the market average for this column is clearly

 . This leads to

and so the desired bound is met. We note that in order to meet the desired bound on all columns, the adjustment

row must not be selected, and therefore the non-zero value required in each column of the portfolio must come

from the indicator variables of the original set cover problem. Therefore, an acceptable portfolio exists if and

only if an acceptable set cover exists.

Notes:
3
 In fact, to have a hard problem, k = ω (1) (or k is non-constant).

References

[1] Alexander G J, Sharpe W F and Bailey J V 1993

Fundamentals of Investments 2nd edn (Upper Saddle River, NJ: Prentice-Hall)

[2] Cover T M 1991 Universal portfolios Math. Finance 11–29

[3] Cover T M and Ordentlich E 1996 Universal portfolios with side information IEEE Trans. Information

Theory 42 348–63

[4] Garey M R and Johnson D S 1979 Computers and Intractability: A Guide to the Theory of NP-

Completeness (New York: Freeman)

