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Abstract: 
 
Big data analytics provides an interdisciplinary framework that is essential to support the current 
trend for solving real‐world problems collaboratively. The progression of big data analytics 
framework must be clearly understood so that novel approaches can be developed to advance this 
state‐of‐the‐art discipline. An ignorance of observing the progression of this fast‐growing 
discipline may lead to duplications in research and waste of efforts. Its main companion field, 
machine learning, helps solve many big data analytics problems; therefore, it is also important to 
understand the progression of machine learning in the big data analytics framework. One of the 
current research efforts in big data analytics is the integration of deep learning and Bayesian 
optimization, which can help the automatic initialization and optimization of hyperparameters of 
deep learning and enhance the implementation of iterative algorithms in software. The 
hyperparameters include the weights used in deep learning, and the number of clusters in 
Bayesian mixture models that characterize data heterogeneity. The big data analytics research 
also requires computer systems and software that are capable of storing, retrieving, processing, 
and analyzing big data that are generally large, complex, heterogeneous, unstructured, 
unpredictable, and exposed to scalability problems. Therefore, it is appropriate to introduce a 
new research topic—transformative knowledge discovery—that provides a research ground to 
study and develop smart machine learning models and algorithms that are automatic, adaptive, 
and cognitive to address big data analytics problems and challenges. The new research domain 
will also create research opportunities to work on this interdisciplinary research space and 
develop solutions to support research in other disciplines that may not have expertise in the 
research area of big data analytics. For example, the research, such as detection and 
characterization of retinal diseases in medical sciences and the classification of highly interacting 
species in environmental sciences can benefit from the knowledge and expertise in big data 
analytics. 
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1 INTRODUCTION 
 
The scientific term “big data analytics” may describe an analytical framework that provides 
approaches to extract knowledge from a big data environment and characterize the data source 
that produced the big data environment which is large, complex, heterogeneous, unstructured, 
unpredictable, and exposed to scalability problems (Suthaharan, 2015). This analytical 
framework not only provides theory and methods, but also facilitates the selection of big data 
systems and software. In general, the big data analytics adopt machine learning as one of the 
supporting tools to formulate this analytical framework; hence, it is dependent upon the 
successful advancements of its companion field of machine learning and other alternatives, such 
as data mining. When necessary, the machine learning models are parametrized with two types 
of parameters: hyperparameters and learned‐parameters (Thornton, Hutter, Hoos, & Leyton‐
Brown, 2013). The suitable values for the hyperparameters are determined before training; 
hence, it requires proficiency in machine learning, whereas the learned‐parameters are derived by 
the machine learning algorithms from the training data sets. When interdisciplinary applications 
are merged in big data analytics framework, a big question comes to everyone's mind is that, 
with the huge spectrum of users of big data, how the big data analytics framework will serve 
them better by grouping them into individuals with different levels of proficiency, ranging from 
nonexpert users to data analysts to data scientists, for both big data analytics research and 
applications. The aforementioned parametrization approaches in machine learning models, 
adopted by big data analytics, create problems and challenges to several disciplines when, in 
general, the expertise in machine learning is lacking. Similarly, the adaptive selection of machine 
learning algorithms for different applications is also a challenge to nonexpert users of big data 
analytics and machine learning. Therefore, the expectations of the individuals from different 
disciplines are the availability of a flexible big data analytics framework that is more intelligent 
and can minimize the need for user expertise for tuning model parameters and selecting suitable 
machine learning models and algorithms for their applications. 
 
One of the recent advances in machine learning is the automated machine learning (AutoML) 
technique which adopts Bayesian optimization (Shahriari, Swersky, Wang, Adams, & De 
Freitas, 2016) and enables simultaneous selection and optimization of hyperparameters of 
machine learning models, which include logistic regression, support vector machine, decision 
tree, and random forest (Thornton et al., 2013). It is a very useful technique that enables the use 
of machine learning models in an interdisciplinary setting; however, it still suffers from 
performance degradation issues due to large, complex, unstructured, unpredictable, scalable, and 
heterogeneous data characteristics in big data analytics. The Bayesian optimization is not fully 
understood in a big data analytics settings; hence, it is still questionable whether the AutoML 
approach will provide desired results with big data analytics framework under interdisciplinary 
settings. What is required now is a newly defined research domain that allows exploration of big 
data analytics with the advancement of AutoML toward developing smart machine learning that 
is fully automated, adaptive, and cognitive in nature. This new research domain can make big 
data analytics more interdisciplinary by changing big data analytics framework much smarter 
through the adoption of FullAutoML techniques. 
 
The purpose of this review article is to report the recent progress in big data analytics, machine 
learning, and Bayesian learning, and the way these three areas work together as companions 



toward meeting the expectation of interdisciplinary research and applications. In particular, this 
article reviews and reports the research progress in big data analytics and in the efforts made to 
make machine learning much smarter so that the interdisciplinary research can benefit from big 
data analytics techniques and technologies. 
 
2 BIG DATA ANALYTICS 
 
The current progress in big data analytics can be appreciated by observing its widespread 
applications in many scientific and nonscientific disciplines. The recent major conference in the 
discipline—the 2017 I.E. International Conference on Big Data, held in Boston, MA, USA, on 
December 11–14, 2017—incorporated several topics that highlight the trend of big data analytics 
and the interests of research community in the field. Using the compiled conference program and 
the proceedings published in this research forum, we can divide the current progress in big data 
analytics into the following focused‐driven research domains: 
 

• Descriptive big data analytics: It addresses the theoretical and design aspects of modeling 
and algorithms of big data analytics and associated big data characteristics; 

• Predictive big data analytics: It focuses on the topics of machine learning that helps the 
study of predictive and classification models and algorithms for big data analytics; 

• Visual big data analytics: It defines the preprocessing and visualization techniques that 
help us understand the big data characteristics through exploration analysis; 

• Streaming big data analytics: It describes the theory and methods required to study 
spatiotemporal characteristics of big data and machine learning models and algorithm; 

• Graphical big data analytics: It helps to study big data environment using graphical 
models and network analysis under machine learning and big data analytics paradigm; 

• Big data systems and software: It addresses the designing and building of big data 
systems and software that focus on efficient resource utilization and big data processing. 

 
Although the progress of big data analytics can be grouped into above categories, a closer and 
careful understanding of the current research activities in each of these categories suggest that 
the companion field of machine learning contributes significantly to the successful progress of 
big data analytics which include brain network analysis (Khazaee, Ebrahimzadeh, & Babajani‐
Feremi, 2016), social network analysis (Cybenko, 2017), and ecological network analysis 
(Stephens, Sánchez‐Cordero, & González Salazar, 2017). Hence, it cannot be separated from big 
data analytics. In addition, Bayesian inference is also emerging with big data analytics, because 
of the parametrization and optimization requirements of the machine learning models and 
algorithms (Klein, Bartels, Falkner, Hennig, & Hutter, 2015; Shahriari et al., 2016). The research 
in systems and software also focuses on the optimization of the performance of a computing 
environment; hence, the parametrization and parallelization of the computing processes and 
resources are explored (Dean & Ghemawat, 2010; White, 2012). The systems and software are 
essentials to house the big data analytics framework; hence, their progress is first discussed, and 
then the research progress in machine learning and Bayesian optimization, focusing on big data 
analytics, is discussed. 
 
3 SYSTEMS AND SOFTWARE 
 



The current big data systems and software have been developed as a parametric platform using a 
divide‐and‐conquer algorithm so that the distributed resources (e.g., cores, memory, executors, 
and software modules) can be parallelized to achieve optimal performance for big data analytics. 
It also focuses on providing both local and global (i.e., cloud) computing resources as an 
affordable mechanism for different levels of users and applications—an essential feature that is 
required for an interdisciplinary setting. Figure 1 illustrates these two types of big data analytics 
framework (local systems and software, and cloud computing resources) that are observable 
clearly in the current progress. It mainly shows the currently available cloud computing 
resources such as the Microsoft Azure (Azure: https://azure.microsoft.com/en-us/), Amazon Web 
Services (AWS: https://aws.amazon.com/), and Google Cloud Platform 
(GCP: https://cloud.google.com/), and the way they are utilized with Apache Hadoop 
(http://hadoop.apache.org/) and Spark (http://spark.apache.org/) systems, and the machine 
learning framework TensorFlow (https://www.tensorflow.org/) along with the programming 
languages such as R (https://www.r-project.org/), and Python (https://www.python.org/). 
 

 
Figure 1. A possible set of systems and software for big data analytics framework 
 
3.1 Parametrization 
 
Presently, the big data systems and software adopt the concept called (key, value)‐pair to 
parametrize big data computing environments. The use of this concept can be seen in the 
currently available computing platforms, such as the Hadoop distributed file systems, 
MapReduce framework, and Spark in‐memory computing system that adopt the programming 
languages, including R, Python, Java, and Scala with machine learning software libraries 
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(Pääkkönen & Pakkala, 2015). These big data processing computing platforms were initially 
developed to perform big data analytics in local computing environment; however, as the 
research in big data analytics progresses, a lack of resources has been realized and the ideas were 
extended to cloud architecture for addressing scalability issues with other big data 
characteristics. Figure 1 also illustrates some of the latest tools developed for big data systems 
and software (Bhatt, Patwa, & Sandhu, 2017; Komarek, Pavlik, & Sobeslav, 2017). 
 
3.2 Parallelization 
 
The aforementioned parametrization techniques enable the parallelization of computing 
resources with automated resource allocation and utilization. A simple example of systems and 
software parametrization and parallelization can be found in chapter 5 of book by the author 
(Suthaharan, 2015). In the current big data system, this parallelization is not transparent and it 
performs optimal resource allocation and utilization automatically. However, in some situations, 
it is important for the users to set the system parameters such as the number of cores, executors 
and memory size. Therefore, the progress in this domain has also shifted to allow user 
intervention and suggest some mechanism to select a correct combination of system parameters 
(Sundaravarathan, Martin, Rope, McRoberts, & Statchuk, 2016). 
 
4 MACHINE LEARNING 
 
The initial progress in machine learning has defined the standard methodological processes that 
include the development of parametric models and development of algorithms that help optimize 
the model parameters using training, validation, and testing processes, and given (labeled) data. 
These methodological processes may be grouped into two categories: interpretable knowledge 
discovery (Suthaharan, 2015) and actionable knowledge discovery (Cao, 2015). Additionally, the 
machine learning models are defined using two types of parameters, namely, hyperparameters 
and learned‐parameters. The hyperparameter values must be selected at the beginning of the 
training process—requires some expertise in the research domain—and the learned‐parameters 
are optimized by machine learning algorithms. 
 
4.1 Parametrization 
 
To date, the machine learning models are parametrized in three groups: mathematical, 
hierarchical, and layered models. The mathematical models include the models developed using 
the concept of support vectors and statistical regression—examples are support vector machine, 
logistic regression, and lasso regression. The hierarchical models include the models developed 
based on the concept of decision tree—examples are random forest models. The layered models 
include the models proposed based on the concept of neural networks—examples include deep 
learning models. The first two types of approaches have been proposed to address batch learning. 
Later, a need for on‐line learning (i.e., learning from a single point) was realized for big data 
analytics; hence, the layered models have been proposed. 
 
4.2 Optimization 
 



The optimization has been performed in a conventional manner, targeting the extraction of exact 
and complete knowledge from data; hence, strong mathematical techniques have been deployed 
to optimize model parameters. These approaches are based on the concepts of gradient descent or 
stochastic gradient descent (Luketina, Berglund, Greff, & Raiko, 2016). However, the latest 
trend is in the use of Bayesian optimization—a probabilistic approach—to address the problems 
and challenges evolve from the big data characteristics, such as data heterogeneity, 
unpredictability, and scalability (Shahriari et al., 2016; Wainer & Cawley, 2017), when the 
optimization of model parameters is the main objective. 
 
5 SMART MACHINE LEARNING 
 
As deep learning technique progresses—of course! as a promising solution to solve big data 
analytics problems—researchers have been trying to make machine learning techniques more 
intelligent as possible to meet the requirements of interdisciplinary research and applications. 
Hence, the expected features of machine learning techniques are currently divided into three 
groups: automatic, adaptive, and cognitive features. As a result, the current trend in big data 
analytics focuses on three types of machine learning—AutoML, adaptive machine learning, and 
cognitive machine learning. In essence, Bayesian learning, Bayesian optimization, and related 
approaches can help us develop smart machine learning. 
 
5.1 Bayesian learning 
 
The Bayesian learning, which includes Bayesian optimization and Bayesian mixture models, is 
especially adopted to optimize hyperparameters because of its ability to defend the difficulties 
that come from the big data characteristics using probabilistic approaches. Some of the latest 
progress in the integration of Bayesian optimization in big data analytics and machine learning 
are the techniques proposed in (Polson & Sokolov, 2017), (Shahriari et al., 2016), and (Snoek, 
Larochelle, & Adams, 2012). These approaches replace mathematical optimization with 
probabilistic optimization—a preferable approach for big data settings. 
 
5.2 Bayesian mixture model and machine learning 
 
The Bayesian mixture models assume data heterogeneity and represent a data domain in action 
as a composition of multiple sub domains (or clusters) with finite or infinite number of mixture 
distributions (Tafaj, Kasneci, Rosenstiel, & Bogdan, 2012). An example of its implementation in 
software systems for a big data environment is that the master node in a data sharing network can 
distribute these sub domains to worker nodes by associating them with general prior distributions 
and then the worker nodes process them and generate corresponding posterior distributions to 
specify hyperparameters for machine learning algorithms, such as the kernel and regularization 
parameters in Support Vector Machine (SVM) (Klein et al., 2015), and weights and learning‐rate 
parameters in deep learning (Suthaharan, 2015). 
 
5.3 Automated machine learning 
 
A machine learning technique can be claimed to be truly automatic, only if every step of the 
machine learning technique is automated such that it can minimize the problems of 



interdisciplinary applications. The research in AutoML for big data analytics is still in progress 
and it includes the research work reported in (Feurer et al., 2015) and (Luo, 2016). The current 
approaches mainly focus on the optimization of hyperparameters and the selection of models and 
algorithms to create suitable AutoML approaches that can be adopted by any types of users of 
interdisciplinary applications. 
 
One aspect of an AutoML is the optimization of hyperparameters, such as the regularization 
parameter in lasso regression (Suthaharan, 2015), kernel and regularization parameters in SVM 
(Nguyen, Gupta, Rana, & Venkatesh, 2017; Wainer & Cawley, 2017), and learning rate in deep 
learning. This objective requires efficient learning models and algorithms. The current research 
progress in this area shows a significant interest and an appropriate use of computational 
techniques based on Bayesian (Klein et al., 2015) and radial basis function (Ilievski, Akhtar, 
Feng, & Shoemaker, 2017). 
 
Another aspect of an AutoML is the automatic selection of models and algorithms for 
optimization and learning. As we know, the hyperparameter selection requires the automatic 
selection of suitable models and algorithms from a large pool of models and algorithms for 
optimization with respect to a given data set. However, in big data analytics environment, this 
selection process is problematic and very challenging because of the data characteristics that 
include complexity, scalability, and heterogeneity. A significant research has been performed—
including (Thornton et al., 2013) and (Sparks et al., 2015)—in this problem space; however, the 
research is still progressing because of the emerging problems and challenges that evolve from 
the interdisciplinary nature of big data analytics. 
 
5.4 Adaptive machine learning 
 
The adaptive machine learning is not new and it also includes AutoML concept. The concept of 
adaptive machine learning can be dated back to 1990s (Blum, 1998; Littlestone & 
Warmuth, 1994), as stated in the paper (Torabi, Sayad, & Balke, 2005). Today, it can be 
observed that the big data characteristics and the current widespread interdisciplinary 
applications have enforced new constraints and requirements that triggered the exploration of 
novel approaches for adaptive machine learning. 
 
One aspect of adaptive machine learning is the selection and optimization of the learned model 
parameters with respect to changing data characteristics between interdisciplinary domains. The 
examples include the techniques published in (Anagnostopoulos, Anagnostopoulos, & 
Hadjiefthymiades, 2011) and (Azodi, Gawron, Sapegin, Cheng, & Meinel, 2015). In other words, 
we can say that the progress in adaptive machine learning focuses on learning techniques that are 
adaptive to unseen data. Another aspect of adaptive machine learning is the revision of machine 
learning models and algorithms, with a minimum effort, to work with changing data 
characteristics between interdisciplinary domains. For example, in a recent paper, the authors 
have proposed a learning‐based approach that generates an adaptive best‐fit algorithm from a set 
of supervised learning algorithms to detect silent errors that occur in a high‐performance 
computing environment (Subasi et al., 2017). They described the silent errors as silent data 
corruption in high performance computing systems, and these errors corrupt the execution results 
with no warning and undetectable by hardware or software. 



 
5.5 Cognitive machine learning 
 
Cognitive machine learning is an emerging field and it includes both the adaptive and AutoML 
concepts. In big data analytics, the use of exact or complete knowledge for making decisions is 
impractical because of the big data characteristics that include data heterogeneity, 
unpredictability, and scalability. Hence, the machine learning research community has realized 
the need for developing techniques and technologies that mimic the cognitive processes that the 
humans use to solve complex environmental problems and make decisions through 
approximation, hypothesis, and reasoning. Hence, computational intelligence and cognitive 
computing have been studied in recent years by focusing on machine learning and big data 
analytics (Suthaharan, 2016; Wang et al., 2018). 
 
5.6 Intelligent computing (Computational Intelligence) 
 
The intelligent computing (or computational intelligence) is another concept that has been 
integrated in big data analytics to help computers learn from data in the similar way that the 
human brain learns from data (Modha et al., 2011). This concept includes the techniques such as 
the fuzzy sets, genetic algorithms, and neural networks–The latest book chapter by Samanpour, 
Ruegenberg, and Ahlers (2018) discusses clearly about the integration of these evolutionary 
algorithms with machine learning, especially in the interdisciplinary domain. 
 
5.7 Cognitive computing 
 
This research focuses on resource‐efficient, cost‐effective, and cognition‐enabled computing 
platforms for big data analytics (Suthaharan, 2016). In this computing platform, cognition‐enable 
means the availability of methodologies and techniques that mimic human cognitive process that 
utilize object‐recognition, speech‐recognition, and functional brain networks (machine learning, 
reasoning, and analysis) to make cognitive decisions. Similarly, the cost‐effective feature 
includes computational cost as well as affordable systems and software that support 
interdisciplinary settings. Finally, resource‐efficient feature includes the automated resource 
allocation and resource utilization with no transparency to users—It is especially useful to 
nonexpert users of the learning models (Hurwitz, Kaufman, & Bowles, 2015). 
 
5.8 Smart deep learning 
 
A literature review suggests that machine learning for big data analytics is converging to deep 
learning techniques. For example, based on the proceedings of the 2017 International Conference 
on Machine Learning held in Sydney, Australia, on August 6–11, 2017, we can clearly see that 
the research interest of the machine learning community has shifted toward deep learning 
significantly. The deep learning, compared to other machine learning techniques, focuses on 
single‐data‐point analysis (i.e., it enables both on‐line learning and batch learning), which is a 
highly preferred option for a big data analytics framework. Hence, it is expected in the current 
research of big data analytics that the deep learning will be studied, focusing on automated, 
adaptive, and cognitive approaches to create smart deep learning. 
 



6 CONCLUSIONS 
 
The progress of research in big data analytics and machine learning was reviewed and 
understood in three phases: past, present, and future. In Phase 1, a significant amount of research 
has been done on data analytics and machine learning by defining data‐driven approaches. In 
other words, the focus of research in Phase 1 was mainly on interpretable knowledge 
discovery theme (i.e., the development of models and algorithms that enhance the discovery of 
interpretable knowledge from a given set of data). In essence, the data‐driven approaches 
focused on the discovery of patterns that help understand the source that produced the data. 
 
In Phase 2, the focus of data analytics research shifted to big data analytics based on the 
redefinition of data that describe big data characteristics. Hence, the research has started to shift 
toward domain‐driven approaches (which of course included data‐driven approaches). In other 
words, the focus of the research in Phase 2 was on actionable knowledge discovery theme. The 
actionable knowledge discovery defines the practical significance of the knowledge discovered 
from data through domain‐driven data mining. Hence, it defines the flow of knowledge from 
data‐driven approaches to domain‐driven interdisciplinary applications. 
 
It is now well understood that big data analytics research spans across multiple disciplines where 
AutoML models and algorithms are required to solve problems without the help of data science 
experts. Hence, as we have seen, the selection and optimization of hyperparameters became a 
very strong research component among machine learning (or artificial intelligence) and data 
science research community. A significant research still has to be done on hyperparameter 
selection and optimization using Bayesian optimization to develop AutoML approaches that are 
useful for interdisciplinary big data analytics. 
 
In Phase 3, over the next two decades, a significant research is expected on FullAutoML 
approaches, toward achieving Smart Machine Learning techniques that are fully automated, 
adaptive, and cognitive under big data characteristics. However, to advance this research, it is 
important to study approaches that help discover patterns that are sensitive to changes between 
interdisciplinary domains. Hence, the progress reported in this paper suggests an establishment 
of a new research theme—transformative knowledge discovery. It means that, when a learning 
model is developed for a big data environment (big data domain or a discipline), it is important 
to discover the knowledge that can cause a noticeable change to the model, in addition to 
discovering the knowledge that is interpretable and actionable. This knowledge will help the 
model to become adaptive to a new environment. Hence, when a learning model is built for a 
data domain, it is important to study all the potential alternatives, which include both the real and 
hypothetical alternatives. 
 
The discovery of transformative knowledge from big data can significantly benefit from 
Bayesian learning, including Bayesian optimization and Bayesian mixture models. In other 
words, we need to define a new research discipline called Transformative Data Science and 
Analytics, or Transformative Data Science and Big data, or Transformative Big Data 
Analytics that study Bayesian optimization approaches and Bayesian mixture models 
extensively. 
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