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Abstract:  
 

We examined the capabilities of the Vermont Knee Laxity Device (VKLD) in measuring varus 

(VR)–valgus (VL) and internal (INT)–external (EXT) rotational laxities by quantifying 

measurement consistency and absolute measurement error (N = 10). Based on the expected 

measurement error, we then examined side-to-side differences (N = 20). For all measures, the 

knee was flexed 20°, the thigh securely fixed, and counterweights applied to the thigh and shank 

to create an initial zero shear and compressive load across the tibiofemoral joint. A 10-Nm 

torque was applied to the knee for VL and VR during non-weight-bearing, and a 5-Nm torque 

was applied for INT and EXT during non-weight-bearing and weight-bearing conditions. 

Position sensors measured angular displacements (deg). Except for INT during weight bearing, 

measurement consistency was good to excellent (range, 0.68–0.96), with absolute measurement 

errors generally less than 2° for VR–VL and 3–4° for INT–EXT. Although side-to-side 

differences were observed, they did not exceed absolute measurement errors. The VKLD yields 

reliable measures of VR–VL and INT–EXT laxities, with sufficient measurement precision to 

yield clinically relevant differences.  
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INTRODUCTION 
 

Joint laxity has received attention as a possible risk factor for knee joint trauma,1–4 and more 

specifically anterior cruciate ligament (ACL) injury.5–8 Greater knee laxity is thought to be 

associated with an increased demand of the leg musculature to maintain joint stability.9 This is 

supported by studies demonstrating increased anterior translation of the tibia relative to the 

femur when transitioning from non-weight bearing to weight bearing,10 and greater biceps 

femoris activation during weight-bearing tasks.11,12 However, when examining these 

relationships, knee laxity has primarily been characterized in the sagittal plane using common 

clinical measurement methods (e.g., general joint laxity, genu recurvatum, and anterior knee 

laxity), which may or may not be representative of joint motion in the frontal or transverse 

planes. Varus–valgus (VR–VL) and internal–external (INT–EXT) rotational knee laxities are 

rarely measured or investigated for their effects on knee joint function or injury risk, yet the 

capsulo-ligamentous restraints that limit these motions are different.13 Further, the knee is 

frequently subject to varus–valgus and internal–external torques during sport, and most ACL 

injury mechanisms are reported to include components of valgus and either internal or external 

rotational torques at the knee.14,15 Hence, quantifying VR–VL and INT–EXT laxities may also be 

important to understand how knee laxity (both within and between sexes) may impact knee joint 

function, and the potential for traumatic injury. Further, understanding the extent to which these 

values may differ from side to side may help us determine if the laxity measured on one limb 

(e.g., uninjured) may be sufficiently representative of the other (e.g., injured) limb. 

 

Various custom devices have been used to measure VR–VL16–18 and INT–EXT19 laxities in 

healthy knees in vivo, as commercial clinical devices are not readily available. Prior to our 

initiating studies that examined the relationships between VR–VL and INT–EXT knee laxities 

and knee joint function, our purpose was to establish the capabilities of the Vermont Knee Laxity 

Device (VKLD) in measuring VR–VL and INT–EXT laxities by quantifying day-to-day 

measurement consistency and absolute measurement error. A secondary purpose was to quantify 

side-to-side differences in these laxity values, and compare these differences with the absolute 

measurement error. 

 

METHODS 
 

Twenty University students between the ages of 18 and 30 years (10 males, 27.3 ± 3.4 years, 

177.3 ± 6.8 cm, 81.1 ± 7.0 kg; 10 females, 22.9 ± 1.5 years, 169.0 ± 7.1 cm, 66.1 ± 11.4 kg) 

participated. Subjects had no history of knee ligament injury or surgery, were free of other lower 

extremity injury or chronic pain for the past 6 months, and were otherwise healthy. Subjects 

were informed of the study risks and signed a consent form approved by the University’s 

institutional review board. Measures were taken on both left and right knees. Varus (VR) and 

valgus (VL) rotation laxity was always tested first, followed by internal (INT) and external 

(EXT) rotation laxity during both non-weight-bearing (INTNWB, EXTNWB) and weight-bearing 

(INTWB, EXTWB) conditions. The first leg (left, right) and the first direction of applied torque 

(i.e., varus, valgus; internal, external) were counterbalanced across subjects. To quantify 

measurement consistency, 10 subjects (5 males, 5 females) were tested a second time, 24 to 48 h 

later. Two testers were required for data collection; each performed their respective procedures 

on both days, and both were blinded to the results from the previous session. 



Procedures 
 

VR–VL and INT–EXT knee laxities were measured with the Vermont Knee Laxity Device 

(VKLD; University of Vermont, Burlington, VT) (Fig. 1). Subjects were positioned supine with 

the foot of the test limb strapped to the foot cradle, and the flexion axes of the ankle and hip 

joints aligned with the mechanical axes of rotation of the VKLD counterweight system. For all 

measures, the knee was flexed 20°, the thigh securely fixed, and counterweights applied to the 

thigh and shank. The counterweights offset the effect of gravity acting on the lower extremity, 

creating an initial zero shear load across the tibiofemoral joint that was used as a measurement 

reference. Thigh and shank counterweights and their respective locations were selected using the 

model described by Zatsiorsky et al.20 to estimate segment masses and center of mass locations. 

To minimize femur movement when applying torques to the knee, the thigh was tightly clamped 

on the medial and lateral sides just proximal to the femoral epicondyles with densely padded 

Plexiglas™ plates that conformed to the thigh shape (see Fig. 1). To prevent movement of the 

foot and ankle within the foot cradle, subjects were tightly fitted with an ankle brace (Ankle 

Lok,® Swede-O Inc., North Branch, MN), and excess space between the foot and foot cradle 

was filled with high density padding. We chose this brace over taping and a semi-rigid brace 

because it offered the best combination of standardized support while still allowing accurate 

palpation of the malleoli for digitization of the ankle joint center. 

 

 
 

Prior to data collection, electromagnetic position sensors (Mini Birds, Ascension Technologies, 

Colchester, VT) were attached to the lateral aspect of the subject’s thigh (just proximal to the 

thigh clamp along the iliotibial band) and the tibial shaft (distal to the shank strap). The VKLD 

was constructed with fiberglass-reinforced plastic and nonmagnetic 300 series stainless steel to 

minimize the amount of metal that could potentially interfere with the signal from the sensors. 

Sensor placements were chosen after qualitatively evaluating a variety of sensor locations during 

the application of torques to the knee joint, and identified as the locations that resulted in the 

least skin movement between the sensors and the bone, and therefore best represented the 



movements of the femur and tibia. Hip, knee, and ankle joint centers of rotation were estimated 

as previously described using the centroid method.10 Segmental coordinate systems were 

constructed by digitizing the greater trochanter and lateral and medial femoral epicondyles for 

the thigh, and the most medial and lateral parts of the tibial plateau and the medial malleolus for 

the shank. Following digitization of joint centers and anatomical landmarks, VR–VL and INT–

EXT measures where then obtained. 

 

VR–VL Laxity 
 

Prior to testing each subject, a neutral limb position was established. In reference to the knee, the 

foot cradle was locked in the transverse plane so that the second metatarsal was aligned parallel 

to the frontal plane, and unlocked in the frontal and sagittal planes to allow free movement of the 

lower leg. Subjects were asked to straighten their knee and then relax into flexion. The foot 

cradle was then locked with the knee in 20° flexion, prohibiting motion in all three planes. Knee 

flexion and VR–VL angles were confirmed (±5°) with a handheld goniometer and real-time 

angle data obtained from the motion sensors. This position defined the neutral (08) limb position 

from which all VR–VL measurements began.  

 

VR–VL laxity was measured by unlocking the foot cradle in the frontal plane, and applying force 

to the medial and lateral aspect of the distal tibia (three finger breaths proximal to the maleoli) 

with a handheld force transducer (Model SM-50, Interface, Scottsdale, AZ) (Fig. 2). For each 

subject, the distance from the tibiofemoral joint line to the point of applied force at the tibia was 

marked and measured (mean distance = 34.2 ± 1.9 cm) to calculate the magnitude of force (mean 

force = 29.3 ± 1.7 N) necessary to create a 10-Nm VR or VL torque about the knee. The force 

transducer was attached to a concave molded splint to insure good contact between the tibia and 

the transducer, and the force was applied at eye level to insure that the direction of the force was 

directed horizontally and perpendicular to the long axis of the tibia. The signal from the force 

transducer was amplified through a strain gauge transducer (Model 9820, Interface Advanced 

Force Measurement) and interfaced with the data collection software. After calibrating the force 

transducer, three alternating VR–VL loads were applied to the knee to familiarize the subjects 

with the loading procedure. Three VR–VL loading cycles were then collected with the knee 

NWB. The limb was returned to the neutral position between each cycle. 

 

INT–EXT Laxity 
 

Neutral limb position was achieved using a similar procedure as previously described. In this 

case, the foot plate was also unlocked in the transverse plane, allowing unrestricted axial rotation 

of the tibia. Once subjects straightened and relaxed their knee into 20° of knee flexion, the foot 

plate was locked in all three planes of motion and the neutral limb position defined. INT–EXT 

laxity was measured by unlocking the foot cradle to allow transverse plane knee motion, and INT 

and EXT torques from 0–5 Nm were applied to the knee using a T-handle connected to a six 

degree-of-freedom (6 DOF) force transducer (Model MC3A, Advanced Medical Technology, 

Inc.; Watertown, MA), firmly fixed to the foot cradle. (Fig. 3) Through pilot testing, we 

determined that 5 Nm was the maximum torque that subjects could comfortably tolerate. For 

INTWB and EXTWB, the foot cradle attachment to the base of the VKLD was unlocked in the 

horizontal plane, and a compressive force equal to 40% of body weight was applied to the 



subject’s foot prior to applying the INT–EXT torques. This required the subjects to actively 

maintain the knee in 20° of flexion while the INT–EXT torques were applied. The force 

transducer was interfaced with the data collection software to simultaneously record force and 

position data. Three alternating INT–EXT loading cycles were recorded following three 

familiarization cycles. Prior to each cycle, the limb was returned to the neutral position as 

previously described. 

 

  
 

Data Reduction and Analyses 

 

Position and force data were collected at 100 Hz using commercially available software (Motion 

Monitor, Innovative Sports Training; Chicago, IL). The signal from the position sensors and both 

the handheld and 6 DOF force transducers were low-pass filtered at 10 Hz and 20 Hz, 

respectively, using a 4th order zero lag Butterworth filter. For each limb segment, the +Y axis 

was directed superiorly, +Z axis directed laterally for the right leg and medially for the left leg, 

and +X axis directed anteriorly. Euler’s equations describe joint motion about the knee using a 

rotational sequence of Z Y’ X”. 21 

 

VR and VL were calculated as the angular displacements (°) produced between 0 and 10 Nm of 

torque. INT and EXT were calculated as the angular displacements produced between 0 and 5 

Nm. Measures were averaged over three cycles. To examine day-to-day measurement 

consistency, repeated measures ANOVA for each direction (VR, VL, INTNWB, EXTNWB, INTWB, 

EXTWB) and total motion (VR–VL, INT–EXTNWB, INT–EXTWB) were used to calculate 



intraclass correlation coefficients (ICC2,k) and standard error of measurements (SEM). Absolute 

measurement errors were quantified by subtracting day 2 from day 1 measures, and constructing 

68% and 95% confidence intervals (CI) around the mean difference.22 Side-to-side differences 

were examined by subtracting the left from the right value, and constructing 68% and 95% CIs 

around the mean difference (N = 20). To adjust for small sample sizes (i.e., less than 30 

subjects), CIs were constructed using the t-distribution for 10 subjects, and calculated as follows: 

68% CI = (mean difference) ± 1.049 (SD of the difference scores) and 95% CI = (mean 

difference) ± 2.262 (SD of the difference scores).22 
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RESULTS 

 

Table 1 provides the means, reliability coefficients, and 68% and 95% CIs for all measures on 

the first 10 subjects. With the exception of INTWB (0.20– 0.32), ICCs ranged between good and 

excellent (range, 0.68–0.96). Absolute measurement errors were smallest for VR and VL, with 

68% and 95% of the subjects having day-to-day measurement differences less than ±1.2° and 

±2.5°, respectively. For INT and EXT, absolute measurement errors in 68% and 95% of the 

subjects, respectively, were less than ±3° and ±7° during non-weight bearing and less than ±2.5° 

and ±5.5° during weight bearing. The mean absolute difference for all variables from day 1 to 

day 2 was generally close to zero, indicating little to no measurement bias from one day to the 

next. Table 2 lists the means and 68% and 95% CIs for side-to-side differences in laxity values 

for all 20 subjects. Mean left–right differences were also generally close to zero, indicating no 

systematic left–right differences. In 68% and 95% of the cases, respectively, actual side-to-side 

differences were less than 1.2° and 2.7° for VR and VL, less than 3° and 7° for INTNWB and 

EXTNWB, and less than 3° and 6° for INTWB and EXTWB. 

 

 

 
 



 
 

DISCUSSION 

 

This study introduces the use of the VKLD to quantify VR–VL and INT–EXT laxities in vivo. 

Our primary findings confirm that consistent measures can be obtained from one day to the next, 

with absolute measurement errors less than 2.5° for VR and VL, and less than 5–7° for INT and 

EXT in 95% of the subjects. Although side-to-side differences were observed, they did not 

exceed the absolute measurement errors calculated for each variable. 

 

Before initiating studies that use the VKLD to measure VR–VL and INT–EXT laxities, our 

desire was to confirm its measurement capabilities, given the reported challenges in stabilizing 

the thigh within the measurement system in vivo compared to cadaveric studies where the femur 

and tibia can be rigidly fixed.17 Measurement consistency was good-to-excellent for all measures 

(0.68–0.96), with the exception of INTWB which was substantially lower (0.32 and 0.20), and 

likely affected reliability of total INT–EXT WB (0.70 and 0.75). The only other ICC below 0.85 

was left VR (0.68). ANOVA results used to compute the ICCs for INTWB and left VR indicated 

that poor reliability was primarily due to a small proportion of between-subjects variance (i.e., 

the range in subject values was less than 58for INTWB, and 4° for left VR), rather than an 

increase in systematic or random measurement error. In fact, the measurement errors for INTWB 

and left VR (determined both by SEM and the absolute measurement errors) were quite 

consistent with other INT/EXT and VR/VL measures, respectively (see Table 1). The lower ICC 

for left compared to right VR may simply be due to the slightly smaller range in subject values 

for left versus right, which would effectively increase the proportion of variance due to error on 

the left side. These findings suggest that the VKLD yields equally repeatable measures of INTWB 

and left VR within subjects across time when compared to other laxity measures, but that 

comparison between subjects may be more challenging due to the smaller variations in subject 

scores. In these cases, total INT–EXTWB and VR–VL laxity may yield more clinically useful 

comparisons. 

 

Our sample was relatively small (N = 10), and it is possible that the distribution of scores in our 

sample are not reflective of the larger population, which may affect some of the ICC values. 

Hence, we also quantified absolute measurement error by constructing 68% and 95% CIs around 

the mean difference in values between tests, which are not dependent on the distribution of 

scores in the sample.23,24 These CIs are useful when making clinical decisions as to whether the 



magnitude of the measurement error is acceptable based on the expected range in the value. VL 

and VR laxities varied less than 2.4° and 2.7°, respectively, from one test to the next in 95% of 

the cases. Measurement errors for INT and EXT laxities were higher, with 95% of the cases 

generally varying less than 6° from one test to the next. However, it is important to note that 

these values represent the largest expected measurement error, with the majority of the subjects 

(~70%) having absolute measurement errors that were much lower (see 68% CIs). With the 

exception of INTWB, these absolute measurement errors were well within the clinical ranges for 

each value (typically representing less than 10%–20% of the total range of motion), and suggest 

the VKLD has sufficient measurement precision to identify true clinical differences of 

approximately 1–2° in VR and VL motion and approximately 2–3° in INT and EXT motion in 

68% of the cases. Power calculations based on the most conservative estimates (i.e., using the 

highest standard deviation of the two samples, and taking the unusual step of correcting for the 

reliability of the measure25) confirmed this, revealing minimum detectable mean differences for 

between-subject comparisons of 1–2° for VR and VL, 3–4° for INTNWB and EXTNWB, and ~3° 

for INTWB and EXTWB, and for within-subject comparisons across time of < 1° for VR and VL, 

1.5–2.5° for INTNWB and EXTNWB, 2–3° for INTWB, and 1.5° for EXTNWB (calculations based on 

80% power and a fixed sample size of N = 20). Except for INTWB, the precision of these 

measures appear to be adequate and allow the detection of clinically meaningful differences with 

reasonable sample sizes. Even so, we are working to further improve measurement precision by 

increasing the amount of familiarization so that subjects have the opportunity to become 

comfortable with the testing procedures prior to the first test session. This may be particularly 

helpful in improving measurement stability for INT–EXTWB, where subjects are required to 

actively maintain the knee at 20° flexion while INT–EXT torques are applied to the knee. 

To further analyze the quality of our data, we compared our laxity values with cadaveric reports 

where rigid fixation of position sensors to the femur and tibia could be achieved. Our VR and VL 

measures were very consistent with Markolf et al.26 who reported approximately 10° of total 

VR–VL laxity at 20° knee flexion with a 10-Nm load, and with Hsu et al.27 who reported similar 

VL values (males = 4.0°; females = 5.7°). While our values are greater than other in vivo studies 

measuring total VR–VL at 20° of knee flexion (range, 3–6.5°),16,18 it is difficult to compare 

findings because different measurement devices and forces were used. For total INT–EXTNWB, 

our values were somewhat lower than those reported by Markolf et al. at 20° knee flexion with a 

5-Nm load (34.9 ± 3.6),26 but were consistent with other measures with the knee flexed 20–30° 

(range, 18.6–27°).13,27–29 Our NWB findings also compared favorably with in vivo work using 

computed tomography (INT = 10.88; EXT = 7.48).19 When comparing INT–EXTNWB and INT–

EXTWB, we observed a 58%–60% reduction in laxity values with joint loading, which was 

consistent with one cadaveric study (58%)28 but substantially greater than others (range, 20%–

25%).26,29 Greater reductions would be expected in vivo, given the added contribution of muscle 

activity. Collectively, these findings provide good support that the VKLD yields both valid and 

reliable measures of VR–VL and INT–EXT laxities. 

 

Assessing bilateral symmetry allows one to determine if the laxity measured on one limb is 

sufficiently representative of the contralateral limb. In approximately 70% of our subjects, side-

to-side differences were < 1.6° for VR–VL, and < 2–3° for INT–EXTNWB and INT–EXTWB. 

While our VR–VL results are in close agreement with Markolf et al.17 who reported left–right 

differences of 1–2° in 70% of the subjects (measured at full knee extension), we found no 

comparative studies reporting side-to-side differences in INT–EXT laxities in healthy knees. 



Comparison of Tables 1 and 2 indicates that the magnitude of side-to-side differences were 

indistinguishable from the absolute measurement errors recorded for each variable. Hence, it is 

difficult to determine from these data if true side-to-side differences exist, or whether these 

differences simply reflect measurement error. Based on our data, side-to-side differences would 

need to exceed approximately 2.5° for VR and VL and 4–7° for INT and EXT for one to be 95% 

confident they reflect true differences. Because the majority of our subjects had side-to-side 

differences less than these values, these data support that VR–VL and INT–EXT laxities taken 

on one side of the body are adequately representative of the contralateral side when using these 

measurement techniques. Larger sample sizes should be studied to confirm these findings. 

 

In conclusion, the VKLD yields consistent measures of VR–VL and INT–EXT laxities with 

adequate measurement precision to identify clinically meaningful differences. Although side-to-

side differences were observed, the magnitude of these differences did not exceed the absolute 

measurement error. These findings are limited to 20° knee flexion, and different results may exist 

at other knee angles. While we took great care to achieve good immobilization of the femur and 

tibia during these tests, we cannot rule out that some motion may have occurred within the 

stabilizing constraints of the device. While this is a known limitation of in vivo models,17 our 

results suggest this did not produce a major source of measurement error, as our values were 

quite reproducible from day to day, and were in general agreement with values obtained from 

cadaveric models where motion sensors are rigidly fixed to the bone. 
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