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Abstract:  
 

Objective: To determine the effects of functional fatigue on active multijoint position 

reproduction in overhead-throwing athletes. 

 

Design and Setting: A standard, repeated-measures, randomized-ordered, counterbalanced, 2-

period (crossover) design was used. During the first test session, we randomly assigned subjects 

to either the nonfatigue or fatigue condition. Subjects underwent pretest measurements and then 

either a functional fatigue protocol or rest period, followed by posttest measurements. After a 

recovery period, subjects crossed over to the opposing condition for the second testing session. 

 

Subjects: Thirteen overhead-throwing athletes competing in National Collegiate Athletic 

Association Division I or club baseball, with no history of upper extremity or central nervous 

system disorders, volunteered for this study. 

 

Measurements: We measured active multijoint position reproduction accuracy in 3 dimensions 

using an electromagnetic tracking device. We noted each subject's ability to reproduce 3 

positions corresponding with distinct moments of his throwing motion. A variable error score 

was calculated to compare the locations of the reproduced points with reference to the target 

point. 

 

Results: A significant difference occurred between the pretest and posttest error scores in the 

fatigue condition. Comparisons between positions indicated that more errors were seen in the 

arm-cocked position than in the follow-through position under both fatigue and nonfatigue 

conditions. 

 

Conclusions: Functional fatigue decreased joint position sense acuity in overhead-throwing 

athletes. Our findings using this novel testing measurement method are in agreement with past 

research, with one exception. The trend toward higher error scores in the arm-cocked position 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=2284
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535523/?report=classic


would appear to contradict findings that sensorimotor system acuity increases toward end ranges 

of motion. 
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Article:  
 

The sensorimotor system is responsible for the body's coordination and stability and is a major 

component of function and performance in athletic activity.1–3 Proper function of the 

sensorimotor system is essential for injury-free athletics, especially with complex motor 

activities such as overhead throwing.4 Fatigue decreases sensorimotor system function5–8 and 

may predispose the athlete to injury. Research models that have been used to investigate the 

effects of fatigue on the sensorimotor system have commonly employed a single-joint and 

single-plane measure of joint position sense (JPS), typically after an isokinetic-type fatiguing 

protocol testing focused on single-joint and single-plane motions.1,3,5–11 However, the 

physiologic and biomechanical effects of the fatigue accompanying a functional activity may not 

be accurately simulated by isokinetic fatigue protocols. Additionally, athletic activities such as 

the overhead throw require multiple joints and take place in multiple planes. Hence, the findings 

of previous studies may have limited application with regard to functional, multidirectional 

movement, such as that seen in the overhead-throwing population. 

 

Recent investigations into fatigue of the upper extremity have shown that fatigue has negative 

effects on sensorimotor system function and acuity.5–9 The shoulder,2,12 elbow,13 and hand11 have 

shown the ability to reorganize muscle activity patterns with fatigue.14 The shoulder's 

reorganization strategy is believed to combat overload of specific muscles, minimize fatigue, and 

postpone exhaustion.14,15 In complex kinetic chain movements, such as throwing, this 

reorganization of multiple joint angles or muscle firing patterns may compensate for fatigue of 

one muscle or synergistic muscles. Upper extremity sensorimotor system studies have 

historically been confined to single-joint and single-plane motions: either the sagittal5,6,8,14 or 

horizontal (transverse) planes,7 with subjects' JPS error scores calculated in the same plane. In 

such studies, the body's normal biomechanics as well as natural alterations and reorganizations 

of muscle firing patterns are, if not prohibited, severely restricted. 

 

To date, the effects of fatigue from a multijoint and multiplanar activity on sensorimotor system 

function using 3-dimensional acuity of active joint reposition sense have not been definitively 

investigated. Therefore, the purpose of our study was to determine the effects of functional 

fatigue on multijoint position reproduction in the overhead-throwing athlete using a 3-

dimensional sensorimotor system testing method. 

 

METHODS 
 

Design and Setting 

 

To decrease the influence of individual subject differences, we used a standard, repeated-

measures design. We implemented a 2-period, crossover, counterbalanced design to minimize 

learning effects and biasing of test sequence. During the first test session, we randomly assigned 



subjects to either the nonfatigue or fatigue condition. After a recovery period, subjects were 

crossed over to the opposing condition for the next testing session. 

 

Subjects 

 

Subjects were 13 overhead-throwing athletes competing in National Collegiate Athletic 

Association Division I (n = 7) or club baseball (n = 6). Healthy subjects (age = 20.0 ± 1.7 years, 

height = 180.7 ± 3.8 cm, mass = 82.9 ± 4.7 kg) with no history of upper extremity injury or 

abnormality or central nervous system disorder participated in this study. Subjects included 3 

pitchers, 2 catchers, 4 infielders, and 4 outfielders, with 13.3 ± 1.36 years of baseball experience. 

Before participating, all subjects read and signed an informed consent form and received verbal 

instructions for the testing and fatigue protocols as approved by the University of Virginia's 

Institutional Review Board for the Social and Behavioral Sciences. 

 

Instrumentation 

 

We measured active multijoint position reproduction (AMPR) using the Flock of Birds (FOB) 

electromagnetic tracking device (Ascension Technology, Burlington, VT) with the default 

settings of 40 Hz, AC wide filter on, and DC low-pass filter on and a 4th-order Butterworth 

filter. This instrumentation measures the relation of points in 3-dimensional space. We calculated 

a 3-dimensional variable error score by comparing a target point location and the reproduced 

point location in the horizontal, vertical, and transverse planes (x, y, and z, respectively) with 

respect to a reference point.16,17 The error score represents a single measure of the 3-dimensional 

dispersion between the 2 points. 

 

Procedures 

 

Using the AMPR test, we compared pretest and posttest joint reposition-sense measurements. At 

each testing session, we measured subjects' pretest AMPR accuracies in 3 arm positions through 

the throwing arc. The fatigue-condition participants then performed a functional fatigue protocol 

consisting of a throwing program, after which we measured AMPR accuracy a second time in the 

same manner. Non-fatigue–condition members underwent the same procedures as fatigue-

condition participants, with the exception of a 5-minute waiting period in place of the throwing 

protocol. 

 

Active Multijoint Position Reproduction Measure 

 

We tested subjects in a single-knee stance position, standardized as follows: kneeling with the 

nondominant hip at 90° and the foot placed flat on the ground in front of the subject, throwing 

the dominant-side knee on the ground (Figure 1). We instructed subjects to rotate their trunks as 

needed but to maintain 90° angles at both knees. We taped the electromagnetic system reference 

leads to the participants at the sternal notch, deltoid tuberosity of the humerus, and third 

metacarpal of the dominant arm. We blindfolded subjects and tested their ability to reproduce 3 

specific, self-determined positions that corresponded with 3 distinct moments of the throwing 

motion. 

 



 
 

For the first position, subjects were instructed to hold the arm-cocked position at which forward 

acceleration of the arm would begin. They determined the second position by finding and 

holding the ball-release point. Participants established the final position in the same manner, 

holding the finishing point or follow-through position. Subjects then practiced the testing 

procedure once by moving through the throwing motion, pausing, and verbally indicating when 

they believed the extremity was in the first position. For the first recorded trial, the subject went 

through the throwing motion, stopping at position 1, while the FOB recorded the position for 5 

seconds. The position of the hand sensor (in reference to the thorax) during the initial trial 

represented the target position for the following 3 trials. The position that each subject identified 

was used as a target only for that specific test condition. Subjects identified new target positions 

at the beginning of each testing period (ie, 1 set for pretest and another set for posttest under each 

condition). We used this method of subject-selected targets to control for any decay in recall over 

time and any changes in the position identified over time. These methods only required subjects 

to replicate positions they identified 4 to 10 seconds earlier. After identification of the target 

positions, participants replicated each position 3 times. The average of the latter 3 trials' 



dispersion from the target location (in cm) served as the subject's error score for that position 

(Figure 2). Subjects repeated these procedures for the second (ball-release) position and finally 

the third (follow-through) position. 

 

 
 

Functional Fatigue 

 

The functional fatigue protocol consisted of an overhead-throwing program in the single-knee 

stance position. We removed the FOB leads and marked their locations. Participants used a 

standard baseball (circumference = 9 in [22.86 cm], mass = 5 oz [0.16 kg], Rawlings Sporting 

Goods Co, Inc, St Louis, MO), and faced a target 20 ft [6.10 m] away. Before beginning, 

participants underwent a 5-minute throwing warm-up, followed by the determination of their 

maximum throwing velocity. We calculated maximum velocity as the mean velocity of the 5 

throws recorded using a JUGS radar gun (JUGS Pitching Machine Co, Tualatin, OR). 

 

During the throwing program, investigators required subjects to throw each ball with maximum 

velocity every 5 seconds until they reached fatigue. We instructed subjects to maintain 90° of 

flexion at the forward hip and both knees. We prompted subjects during the protocol as needed to 

maintain these angles. These methods were chosen to maintain continuity between the testing and 

fatigue-protocol positions, limit the contribution of the lower extremity to force production, and 

further challenge the upper extremity. In order to ensure maximal effort, we prompted subjects 

when their velocity of throws fell below 90% of maximum velocity. Each subject rated the local 

(upper extremity) exertion level on the Borg Rating of Perceived Exertion (RPE) scale18 after 

every 20 throws. We considered subjects fatigued when they reported an exertion level of 15 or 

above. This technique has been used to measure local fatigue as opposed to systemic or overall 

fatigue.19 The local upper extremity RPE rating of 15 on a scale of 6 to 20 has been reported to be 



highly correlated with the metabolic responses of fatigue, including respiratory exchange, heart 

rate, absolute oxygen consumption, and blood lactate.20 

 

Participants assigned to the nonfatigue condition performed the pretest, waited 5 minutes, and 

performed the posttest in the same manner. We asked them to return later the same day (6.1 ± 1.7 

hours) for retesting under the opposite condition. 

 

Data Reduction and Statistical Analysis 

 

To compare differences in the pre- and posttest AMPR accuracy, we calculated a 3-dimensional 

variable error score, defined as a global standard deviation of end-position dispersions using the 

following equation16,17: 

 

 
 

The dx, dy, and dz are differences (in cm) between the coordinates of the target and final position 

in the x axis (anterior-posterior direction), the y axis (vertical direction), and the z axis (lateral 

direction), respectively.16The data were entered and analyzed in SPSS (version 10.0; SPSS Inc, 

Chicago, IL). We performed a repeated-measures analysis of variance with 3 within-group 

factors (condition at 2 levels, fatigue and nonfatigue; time at 2 levels, pretest and posttest; and 

position at 3 levels, arm cocked, ball release, and follow through). Statistical significance for all 

comparisons was set a priori at P < .05. 

 

RESULTS 
 

Subjects completed the fatigue protocol, reaching or exceeding 15 on the RPE scale, reporting 

“hard/heavy work or strain and fatigue on muscles” after 61.5 ± 15.1 throws. Error-score means 

and standard deviations for both the fatigue and nonfatigue conditions are listed in the Table. A 

3-way repeated-measures analysis of variance revealed no significant interaction for condition × 

time × position (F2,24 = 1.078, P = .356). We observed a significant condition × time interaction 

(F1,12 = 5.194, P = .042), with this increase being attributed to the fatigue condition (Figure 3). 

On average, error scores increased (10.5 ± 8.3) from pretest to posttest in the fatigue condition, 

while there was no difference (0.1 ± 1.6) pretest to posttest in the control condition. No time × 

position interaction was noted for the fatigue condition (F2,24 = 1.078, P = .35, β = .216). 

However, a statistically significant main effect for position was demonstrated (F1,12 = 5.991, P = 

.008). Pairwise comparisons with a Bonferroni correction indicated errors were not statistically 

different between the arm-cocked and ball-release positions (P = .42), but the arm-cocked 

position produced significantly higher error scores than the follow-through position (P = .02). 

These differences by arm position were not affected by time (F2,24 = 0.423, P = .66) or condition 

(F2,24 = 0.813, P = .45), indicating that the differences were similar at pretest and posttest and in 

the fatigue and nonfatigue conditions. We observed no other statistically significant pairwise 

differences. 

 



 
 

 
 

DISCUSSION 
 

Our purpose was to determine if functional fatigue had a significant effect on sensorimotor 

system function. Our primary findings indicate that functional fatigue decreased sensorimotor 

system acuity in the overhead-throwing athlete as measured by the AMPR test. The general 

observation that fatigue decreases sensorimotor system acuity is in agreement with previous 

literature.5,6,8 These findings support the dysfunctional mechanoreceptor theory proposed by 

Voight et al,5 in which muscle fatigue is believed to desensitize muscle spindle thresholds. This 

desensitization would serve to decrease afferent feedback to the central nervous 

system.5 Proposed mechanisms for this include local metabolism interfering at the muscular 

level,7,8,21–24central nervous system fatigue, and neuromuscular fatigue.8,25 

 

It is important to note that our findings reflect JPS acuity of the upper extremity as a whole. Our 

measurement technique, however, did not allow us to identify specific sources of reproduction 

error. Our findings nonetheless raise questions regarding the effects of individual joints on JPS 

acuity of the entire chain. We observed less JPS acuity in the arm-cocked position (position 1) 

compared with the ball-release and follow-through positions. However, previous authors 

specifically investigating the shoulder joint reported JPS improved toward the end ranges of 

motion in positions such as the arm-cocked position.3,6,8 Researchers postulated that increased 

JPS is enabled by enhanced afferent input provided by the tightening and maximal deformation 



of the joint capsule as the glenohumeral joint moves toward full external rotation.3,6,8 Our 

observations would, therefore, indicate that, although the shoulder joint itself has enhanced JPS 

in the arm-cocked position, JPS acuity of the extremity as a whole is not improved when 

compared with the other 2 positions. The integration of our results into the literature underscores 

the importance of gaining a better understanding of how the JPS of individual joints affects 

overall upper extremity JPS. 

 

The ostensible inconsistencies between our findings and the previous literature may be accounted 

for by examining the differences in testing methods. We used a functional fatigue protocol as 

opposed to isokinetic fatigue protocols.5–8,11 Also, our measure of JPS incorporated multiple 

joints measured in 3 dimensions rather than a single joint measured in a single plane.5–8 Our 

functional fatigue protocol incorporated throwing, which is a multijoint, coordinated ballistic 

motion that has shown kinematic changes in response to fatigue.14 The dynamic alterations in 

multijoint interactions during the functional fatigue protocol elude the confined nature of 

isokinetic protocols. The unique nature of our multijoint, 3-dimensional testing measures may 

have allowed us to observe higher error scores in the arm-cocked position. The unconfined and 

self-determined nature of the AMPR test is in stark contrast with the single-joint and single-plane 

testing methods commonly employed.1,3,5–11 Our measure of endpoint reproduction acuity across 

multiple joints does, however, bear limitations. Because we are unable to determine JPS acuity 

for each individual joint, we can only conclude that changes occur over the upper extremity 

kinetic chain as a whole. Additionally, our findings are only applicable to healthy, college-aged 

male baseball players. 

 

Clinical Relevance 

 

The observation that functional fatigue decreases JPS acuity over multiple joints is important for 

preventing injuries and rehabilitating overhead-throwing athletes. Clinicians should stress careful 

monitoring of prolonged overhead athletic or rehabilitative activity for both subjective reports 

and observable signs of fatigue. Our results indicate the presence of sensorimotor system deficits 

in conjunction with a fatigued state. These deficits are proposed to contribute to overuse injury 

and subtle instability26; thus, athletes should be monitored during bouts of prolonged training to 

avoid these deficits. 

 

The unique finding that errors were significantly greater in the arm-cocked position as compared 

with the ball-release and follow-through positions raises clinical concern for the overhead-

throwing population. Many athletes suffer from impingement syndromes attributed to 

microinstability in this position.27 During conditions of sensorimotor system deficit, lack of 

dynamic stability may increase stress placed on the static and dynamic joint stabilizers. This 

paradigm, originally described by Lephart and Henry,26 may lead to injury and the progressive 

decline of the joint. Clinicians develop and implement many exercises that aim to increase 

sensorimotor system acuity in rehabilitation or prophylactic programs. Because few sensorimotor 

system exercises employ multijoint training methods,1,4 it is important to understand that these 

sensorimotor system deficits are taking place during multijoint motions. Future research is 

needed, however, to evaluate the efficacy of such sensorimotor system training protocols. In 

addition, further investigation is needed to determine the roles both fatigue and the sensorimotor 

system play in pathophysiology in overhead-throwing athletes. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535523/?report=classic#i1062-6050-39-4-316-b8


CONCLUSIONS 
 

Functional fatigue decreased JPS in overhead-throwing athletes as measured by the AMPR test. 

We were able to observe, quantify, and compare these deficits in functional upper extremity 

positions. Additional research examining functional multijoint motions is warranted to compare 

JPS among planes of motion within individual joints and to compare JPS among the joints 

contributing to the kinetic chain. 
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