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Abstract: 

Using Tukey–Kramer versus the ANOVA F-test as the omnibus test of the Hayter–Fisher 
procedure for comparing all pairs of normally distributed means, when sample sizes are unequal, 
is investigated. Simulation results suggest that using Tukey–Kramer leads to as much or more 
any-pairs power compared to using the F-test for certain patterns of mean differences, and 
equivalent per-pair and all-pairs power for all cases. Furthermore, using Tukey–Kramer results in 
a consonant test procedure, where there cannot be disagreement between the results of the 
omnibus test and the subsequent pairwise tests. The results suggest that when sample sizes are 
unequal, Tukey–Kramer may be preferred over the F-test as the omnibus test for the Hayter–
Fisher procedure. 
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Article: 

Many studies can be analysed within the framework of the one-way, fixed effects analysis of 
variance (ANOVA) model, 

 

where the ɛij are independent N(0, σ2) random variables, and the μi and σ2 are unknown 
parameters. The ANOVA F-test can be used to test the hypothesis that all μi are equal. However, 
the F-test does not determine which sample means are statistically different when one is 
interested in pairwise differences. Thus, multiple pairwise comparisons of the means, especially 
of all pairwise differences, are a common goal of researchers. Textbooks on statistical methods 
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are virtually unanimous in presenting the Tukey/Tukey–Kramer (Tukey, 1949, 1953;Kramer, 
1956) simultaneous pairwise comparison procedure. When confidence intervals are not needed, 
however, the Hayter–Fisher procedure (Hayter, 1986) is often recommended as a more powerful 
alternative to Tukey's testing procedure. In fact, although there are other methods that can be 
slightly more powerful (see, for example, Peritz, 1970; Ramsey, 1978, 1981; Shaffer, 1979, 
1986; Welsch, 1977;Westfall, 1997), the relative simplicity of the Tukey–Kramer and Hayter–
Fisher methods continues to make them attractive (Ramsey, 2002;Myers & Well, 2003; Ramsey 
& Ramsey, 2008). 

The Tukey/Tukey–Kramer (TK) procedure makes all pairwise comparisons using the statistic 

 

which is compared to the quantile, qα,k,ν, of the studentized range distribution for k means 
with ν error degrees of freedom. When sample sizes are equal (ni=nj=n) the statistic reduces to 

 

Alternatively, the Hayter–Fisher (HF) method was originally devised as an improvement on 
Fisher's least significant difference (LSD) procedure with equal sample sizes, and is carried out 
as follows. First, test the overall null hypothesis, H0:μ1=μ2=⋯=μk, at level α, using the 
ANOVA F-test. If the F-test is significant, employ Tukey's procedure for testing all pairwise 
differences, using qα,k−1,ν, the studentized range distribution quantile for k− 1 means, instead 
of qα,k,ν. If the F-test is not significant, make no comparisons and no pairwise differences can be 
declared significant at familywise significance level α. 

A similar, but not equivalent, modification to the Hayter–Fisher procedure is to replace the F-
test, in the first step, with the Tukey-Q test as the ‘omnibus’ test. Simulation results have shown 
that this modification can result in higher power for testing the overall null 
hypothesis,H0:μ1=μ2=⋯=μk, for certain configurations of means. David, Lachenbruch, and 
Brandis (1972) and Seaman, Levin, and Serlin (1991) demonstrated this, for equal sample sizes, 
for the maximum range configuration – two extreme means with equal means between them. For 
unequal sample sizes, Ramsey and Ramsey (2008) compared the Hayter–Fisher procedure, using 
the Tukey–Kramer test procedure with k− 1 groups after a significant F-test, to the usual Tukey–
Kramer procedure. Their simulation results showed that for unequal sample sizes, the Tukey–
Kramer procedure can actually have higher power to detect at least the largest studentized 
pairwise difference (any-pair power) than the Hayter–Fisher procedure for the single extreme 
mean configuration. These results should not be surprising, since the Tukey–Kramer omnibus 
test, which uses the studentized range distribution based on maximum pairwise differences, 



should be more sensitive to pairwise differences. With regard to detecting all pairwise 
differences (all-pairs power), however, Ramsey and Ramsey (2008) found that the Tukey–
Kramer procedure always performed more poorly than the Hayter–Fisher procedure. Thus, 
although there may sometimes be a slight advantage for Tukey–Kramer in detecting the largest 
studentized pairwise difference, whenever both procedures are successful at detecting the largest 
studentized pairwise difference, the Hayter–Fisher procedure will always have at least as much 
power to further detect other, possibly smaller, pairwise differences, since the Hayter–Fisher 
procedure employs the Tukey–Kramer critical value based on k− 1 groups, rather than k. 

Ramsey and Ramsey (2008) did not consider using the Tukey–Kramer test as the omnibus test in 
the Hayter–Fisher procedure. However, based on their results as well as previous ones, making 
this modification should result in a procedure superior to both TK and HF for detecting pairwise 
differences. The focus of this investigation is to compare, for unequal sample sizes, the power of 
the modified Hayter–Fisher procedure using the Tukey–Kramer test of the largest observed 
studentized pairwise difference as the omnibus test, to that of the usual Hayter–Fisher procedure 
using the F-test as the omnibus test. To avoid confusion and to emphasize its sequential testing 
nature, the modified version of the Hayter–Fisher procedure using the Tukey–Kramer test will be 
referred to as the ‘Tukey–Kramer two-step’ (TK2S), using ‘HF’ to refer to the usual Hayter–
Fisher test utilizing the F-test as the omnibus test. For greater simplicity in implementation, 
TK2S might be better thought of as a sequential testing procedure. First, compare the largest 
observed test statistic, q*, to qα,k,ν– if significant, then proceed to the next largest test statistic, 
comparing it to qα,k−1,ν, and continuing in this fashion, using qα,k−1,ν for all subsequent 
comparisons. 

2. Simulation 

2.1 .  Details of the simulation 

Consider the one-way fixed-effects ANOVA model described in Section 1: 

 

where the ɛij are independent N(0, σ2) random variables, and the μi and σ2 are unknown 
parameters. Three procedures were considered: 

1 TK2S. Test the pairwise difference with the largest observed test statistic using qα,k,ν– if the 
test is significant then proceed to test all remaining pairwise differences using qα,k−1,ν. 

2 HF. Carry out the ANOVA F-test – if the test is significant, then proceed to test all 
pairwise differences using qα,k−1,ν. 

3 TK. Test all pairwise differences using qα,k,ν. 



 Following Ramsey and Ramsey (2008), several different mean and sample size configurations 
were considered (see Table A1 in the Appendix), and the values of μi selected to produce 
specified values of Cohen's effect size, f=σm/σ, where  and . 
The maximum rangeconfiguration is defined by , 
and produces configurations in which the smallest and largest means are as far apart as possible 
for the specified effect size. Ramsey (1978) showed that this configuration favours tests based on 
the studentized range distribution compared to those based on the F-distribution. The minimum 
range configuration, on the other hand, produces configurations in which the smallest and largest 
means are as close as possible for the specified effect size. The minimum range configuration 
will favour tests based on the F-distribution, compared to those based on the studentized range 
distribution (Ramsey, 1978). In addition, the single extreme mean configuration, 
where μ1=⋯=μk−1 with μk different, was considered. Ramsey and Ramsey (2008) found TK to 
have higher any-pair power than HF for the single extreme mean configuration. Finally, a 
configuration where means were equally spaced was also considered. 

Three sample size configurations, representing different ranges between the largest and smallest 
sample sizes, were chosen for each setting of ν, the error degrees of freedom. These are given in 
Table A1. For each case, sample sizes were randomly assigned to the k groups for each simulated 
data set, to ensure that all possible sample size pairings with groups were equally represented. 
The power results reported represent the average power, over the three sample size 
configurations, for each setting of ν. 

Familywise Type I error rate (FWER), any-pair, average per-pair (per-pair power, averaged over 
all non-null pairs), and all-pairs power were estimated, based on 10,000 randomly selected 
samples, for the TK, HF and TK2S procedures. 

2.2 .  Simulation results 

Tables 1–7 show the estimated power for each procedure, averaged over several patterns of 
unequal sample sizes (detailed in Table A1), and are presented above. Additional simulation 
results, including estimated familywise error rates for all procedures, are available from the first 
author. 

Table 1.  Estimated any-pair power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus test: 
single extreme mean configuration, k groups, ν degrees of freedom and effect size f 

k ν f Estimated any-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .7980 .8002 .7980 −.002 .000 



    1.31 .6394 .6481 .6393 −.009 .000 

  10 1.31 .8608 .8553 .8606 .005 .000 

    0.73 .4407 .4502 .4397 −.010 .001 

4 20 0.73 .7906 .7883 .7903 .002 .000 

    0.44 .3982 .4039 .3967 −.006 .002 

4 60 0.44 .7983 .7993 .7979 −.001 .000 

    0.36 .6341 .6396 .6328 −.005 .001 

6 5 1.60 .7472 .7131 .7472 .034 .000 

    1.31 .6228 .5881 .6228 .035 .000 

6 10 1.31 .8030 .7649 .8030 .038 .000 

    0.73 .3469 .3266 .3458 .020 .001 

6 20 0.73 .7671 .7440 .7667 .023 .000 

    0.44 .3366 .3135 .3353 .023 .001 

6 60 0.44 .6783 .6619 .6776 .016 .001 

    0.36 .5344 .5134 .5337 .021 .001 

 

Table 2.  Estimated any-pair power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus test: 
maximum range means configuration, k groups, ν degrees of freedom and effect size f 

k df f Estimated any-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .8186 .8104 .8186 .008 .000 

    1.31 .6588 .6495 .6587 .009 .000 

  10 1.31 .8677 .8692 .8676 −.002 .000 

    0.73 .4315 .4386 .431 −.007 .000 



4 20 0.73 .8059 .8179 .8058 −.012 .000 

    0.44 .3977 .4071 .3970 −.009 .001 

4 60 0.44 .7898 .7918 .7834 −.002 .006 

    0.36 .6373 .6426 .6370 −.005 .000 

6 5 1.60 .7747 .7249 .7747 .050 .000 

    1.31 .6012 .5526 .6012 .049 .000 

6 10 1.31 .8059 .7786 .8059 .027 .000 

    0.73 .3404 .3285 .3396 .012 .001 

6 20 0.73 .7686 .7419 .7684 .023 .000 

    0.44 .3258 .3089 .3246 .017 .001 

6 60 0.44 .6979 .6854 .6975 .012 .000 

    0.36 .5293 .5151 .5289 .014 .000 

 

Table 3.  Estimated any-pair power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus test: 
minimum range means configuration, k groups, ν degrees of freedom and effect size f 

k df f Estimated any-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .7548 .8199 .7548 −.065 .000 

    1.31 .5863 .6529 .5862 −.067 .000 

  10 1.31 .8617 .8988 .8617 −.037 .000 

    0.73 .4200 .4551 .4195 −.035 .001 

4 20 0.73 .8114 .8455 .8113 −.034 .000 

    0.44 .3749 .4005 .3739 −.026 .001 

4 60 0.44 .7720 .8125 .7717 −.040 .000 



    0.36 .5995 .6439 .5988 −.044 .001 

6 5 1.60 .6547 .6974 .6547 −.043 .000 

    1.31 .4897 .5226 .4897 −.033 .000 

6 10 1.31 .7476 .7816 .7476 −.034 .000 

    0.73 .2996 .3127 .2990 −.013 .001 

6 20 0.73 .6946 .7239 .6943 −.029 .000 

    0.44 .0386 .0395 .0301 −.001 .009 

6 60 0.44 .6712 .6865 .6707 −.015 .001 

    0.36 .4923 .5084 .4914 −.016 .008 

 

Table 4.  Estimated average per-pair power for the Tukey–Kramer (TK) procedure, and the 
Hayter–Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus 
test: single extreme mean configuration, k groups, ν degrees of freedom and effect size f 

k ν f Estimated per-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .7019 .7058 .6397 −.004 .062 

    1.31 .5247 .5323 .4655 −.008 .059 

  10 1.31 .7520 .7501 .7026 .002 .049 

    0.73 .2989 .3045 .2614 −.006 .038 

4 20 0.73 .6130 .6123 .5580 .001 .055 

    0.44 .2368 .2421 .2061 −.005 .031 

4 60 0.44 .6425 .6447 .5879 −.002 .054 

    0.36 .4544 .4592 .4037 −.005 .051 

6 5 1.60 .5761 .5654 .5321 .011 .044 

    1.31 .4391 .4291 .4011 .010 .038 



6 10 1.31 .5930 .5828 .5543 .010 .039 

    0.73 .1691 .1644 .1513 .005 .018 

6 20 0.73 .5060 .5003 .4665 .006 .039 

    0.44 .1457 .1411 .1298 .005 .016 

6 60 0.44 .4053 .4015 .3753 .004 .030 

    0.36 .2589 .2545 .2353 .004 .024 

 

Table 5.  Estimated per-pair power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus test: 
maximum range means configuration, k groups, ν degrees of freedom and effect size f 

k df f Estimated per-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .4376 .4368 .3720 .001 .066 

    1.31 .3150 .3144 .2665 .001 .049 

  10 1.31 .4875 .4901 .4213 −.003 .067 

    0.73 .1786 .1815 .1507 −.003 .028 

4 20 0.73 .3673 .3711 .3146 −.004 .053 

    0.44 .1415 .1450 .1199 −.004 .022 

4 60 0.44 .2666 .2674 .2386 −.001 .028 

    0.36 .2618 .2643 .2221 −.003 .040 

6 5 1.60 .3046 .2992 .2729 .005 .032 

    1.31 .2053 .1998 .1819 .006 .023 

6 10 1.31 .3109 .3080 .2786 .003 .032 

    0.73 .0869 .0857 .0766 .001 .010 

6 20 0.73 .2426 .2397 .2164 .003 .026 



    0.44 .0757 .0740 .0667 .002 .009 

6 60 0.44 .1971 .1958 .1770 .001 .020 

    0.36 .1265 .1250 .1127 .001 .014 

 

Table 6.  Estimated per-pair power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus test: 
minimum range means configuration, k groups, ν degrees of freedom and effect size f 

k df f Estimated per-pair power Difference 

TK2S HF TK TK2S–HF TK2S–TK 

4 5 1.60 .5872 .6118 .5153 −.025 .072 

    1.31 .4134 .4390 .3543 −.026 .059 

  10 1.31 .6497 .6627 .5854 −.013 .064 

    0.73 .2240 .2373 .1898 −.013 .034 

4 20 0.73 .4966 .5093 .4373 −.013 .059 

    0.44 .1717 .1816 .1464 −.010 .025 

4 60 0.44 .5146 .5288 .4520 −.014 .063 

    0.36 .3429 .3585 .2938 −.016 .049 

6 5 1.60 .3734 .3806 .3346 −.007 .039 

    1.31 .2408 .2463 .2134 −.006 .027 

6 10 1.31 .3889 .3941 .3512 −.005 .038 

    0.73 .1251 .1277 .1095 −.003 .016 

6 20 0.73 .2966 .3015 .2644 −.005 .032 

    0.44 .0815 .0826 .0713 −.001 .010 

6 60 0.44 .2449 .2473 .2193 −.002 .026 

    0.36 .1462 .1489 .1291 −.003 .017 



 

Table 7.  Estimated all-pairs power for the Tukey–Kramer (TK) procedure, and the Hayter–
Fisher procedure using either the Tukey–Kramer (TK2S) or ANOVA F (HF) omnibus 
test: k groups, ν degrees of freedom and effect size f 

k df f Estimated all-pairs power Difference 

TK2S HF TK TK2S-HF TK2S-TK 

Single extreme mean 

4 5 1.60 .5774 .5789 .4706 −.002 .107 

  10 1.31 .5952 .5950 .5058 .000 .089 

  20 0.73 .3554 .3540 .2718 .001 .084 

  60 0.73 .4483 .4488 .3607 −.001 .088 

6 5 1.60 .3425 .3424 .2937 .000 .049 

  10 1.31 .3253 .3253 .2834 .000 .042 

Maximum Range 

4 5 1.60 .0923 .0923 .0599 .000 .032 

  10 1.31 .0912 .0912 .0560 .000 .035 

  60 0.44 .1471 .1473 .0984 −.000 .049 

Minimum Range 

4 5 1.60 .3783 .3801 .2859 −.002 .092 

  10 1.31 .3965 .3973 .3073 −.001 .089 

  20 0.73 .1880 .1884 .1268 −.005 .061 

  60 0.44 .2288 .2294 .1592 −.001 .070 

 

2.2.1 .  Familywise error rate 

FWER control for TK and HF has been demonstrated both mathematically and empirically (see, 
for example, Hayter, 1984; Dunnett, 1980; Ramsey & Ramsey, 2008), and the results of the 



present simulation were consistent with previous results. Estimated FWERs for TK2S were 
similar to HF, and no evidence was found of error rates above the nominal level of α= 0.05. 

2.2.2 .  Any-pair power 

Consistent with results of previous studies (see Section 1), both TK and TK2S tended to have 
higher any-pair power than HF for the single extreme and maximum range mean configurations, 
especially for k= 6 (see Tables 1 and 2). The maximum observed power advantage was .038 (k= 
6, ν= 10, f= 1.31) for the single extreme mean case and .050 (k= 6, ν= 5, f= 1.60) for the 
maximum range case. For the minimum range and equally spaced means configurations, HF 
tended to have slightly higher any-pair power than TK and TK2S: as much as .067 (k= 4, ν= 5, f= 
1.31) for the minimum range case and .020 (k= 4, ν= 20, f= 0.73) for equally spaced means 
(Table 3 shows results for the minimum range configuration – results for the equally spaced 
means configuration were similar). 

For individual cases, the maximum observed power advantage for TK2S was .0523 (k= 6, NR= 
11, ν= 10, f= 1.31) for the single extreme mean case and .0741 (k= 6, NR= 2, ν= 5, f= 1.31) for 
the maximum range case; and for HF the advantage was as much as .0782 (k= 4, NR= 6, ν= 5, f= 
1.60)for the minimum range case and .0364 (k= 4, NR= 11, ν= 10, f= 1.31) for equally spaced 
means. 

2.2.3 .  Per-pair power 

Tables 4–6 show estimated per-pair power for the three methods. While TK2S and HF always 
had substantially higher power than TK, there was little or no difference in power between TK2S 
and HF. This was true even for cases where either TK2S or HF enjoyed an any-pair power 
advantage. The maximum per-pair power advantage observed for TK2S over HF was .0024 for 
the single extreme mean case (k= 4, NR= 8, ν= 20, f= 0.73), and for HF over TK2S was .0019 for 
the minimum range case (k= 4, NR= 1.5, ν= 5, f= 1.60). 

2.2.4 .  All-pairs power 

Table 7 shows estimated all-pairs power for the three methods for selected cases. Consistent with 
results of previous studies (e.g., Ramsey & Ramsey, 2008) was that the all-pairs power of TK 
was always substantially less than that of HF, even in cases where TK had higher any-pair 
power. However, for all cases, there was little or no difference in all-pairs power between HF 
and TK2S, with observed differences in all-pairs power less than .005 for all cases considered. 
As was found for per-pair power, this was true even for cases where either TK2S or HF enjoyed 
an any-pair power advantage. 

3. Discussion 

3.1 .  Power comparisons 



An important result of the simulations is that using the Tukey–Kramer omnibus test instead of 
the ANOVA F-test results in a procedure with both per-pair and all-pairs power essentially 
equivalent to that of the Hayter–Fisher test. In the single extreme mean and maximum range 
configurations, situations where pairwise differences are all moderate to large, TK2S was usually 
more powerful than HF in detecting at least the pair with the largest studentized mean difference. 
That is, the ‘omnibus’ TK test returned a significant result more often than the F-test. In these 
cases, since the subsequent pairwise tests for both procedures are identical, this must translate 
into higher any-pair power for TK2S. However, even for means configurations that tend to 
favour the F-test – configurations where there are small pairwise differences – TK2S had 
essentially the same per-pair power as HF, and was able to detect all pairwise differences with 
the same frequency as the HF test. This is due to the fact that although the overall F-test returns a 
significant result more often than does the TK omnibus test, the subsequent TK tests of the HF 
procedure do not always find at least one pairwise difference significant. 

Table 8 gives a particular example for the proportion of rejections for the respective omnibus 
tests of TK2S and HF for two means configurations: the maximum range configuration, for 
which TK2S had higher any-pair power, and the minimum range configurations, for which HF 
had higher any-pair power. For the maximum range means configuration, TK2S showed higher 
omnibus power, that is, tended to return a significant result more often than HF. Since the 
subsequent tests for the pairwise differences of the two procedures are identical, this necessarily 
translates into higher any-pair power for TK2S, since its omnibus test is in fact detecting the 
largest studentized pairwise difference, which must also be declared significant by the pairwise 
tests. However, the F-test will occasionally reject when TK does not, and pairwise differences 
may be detected by HF in these cases. This is why the any-pair power advantage enjoyed by 
TK2S does not translate to a per-pair or all-pairs power advantage. When there tend to be many 
differences of varying magnitude, non-pairwise contrasts have the potential to be larger than the 
largest pairwise contrast. Consequently, there might be more samples where the F-test rejects, 
but is not necessarily detecting the largest pairwise difference as the significant contrast. For 
these cases, HF may not declare any pairwise differences significant and the any-pairs power 
advantage over TK2S will be less than the omnibus test power advantage. Thus, the fact that 
the F-test rejects more often than TK does not automatically lead to HF having higher average 
per-pair or all-pairs power than TK2S. 

Table 8.  Omnibus test, any-pair and average per-pair power for the Tukey–Kramer (TK) 
procedure, and the Hayter–Fisher procedure using either the Tukey–Kramer (TK2S) or 
ANOVA F (HF) as the omnibus test, k groups, ν degrees of freedom and effect size f 

Means configuration k ν f Omnibus power Any-pair power All-pairs power 
TK2S HF TK2S HF TK2S HF 

Maximum range 6 10 1.31 .8045 .7915 .8043 .7794 .3109 .3080 
Minimum range 6 10 1.31 .7478 .8352 .7476 .7816 .3889 .3941 



Note also that the any-pair power of TK2S was often slightly higher than that of TK. While it 
may seem that these two procedures should have exactly the same any-pair power, consider that, 
in practice, it may happen that the largest observed studentized mean difference is associated 
with a true null hypothesis, that is, groups whose true means do not differ. When this occurs, 
both TK2S and TK may also correctly declare other groups different, but TK2S is more likely to 
do this, since it employs a less conservative critical value for subsequent tests. Thus, the any-pair 
power of TK2S can be slightly higher than that of TK. 

3.2 .  Statistical practice 

Using TK as the omnibus test results in a consonant procedure (Gabriel, 1969), so that if the 
omnibus test is significant, then at least one pairwise difference must also be declared significant. 
This is not the case when using the F-test as the omnibus test, however. Recall that the 
omnibus F-test rejects whenever there is at least one significant non-zero contrast of the k means, 
namely that there exist constants, c1, c2, …, ck, such that c1μ1+c2μ2+⋯+ckμk≠ 0, and thus while a 
significantF-test does imply that at least one pair of means differ, it does not guarantee that a 
pairwise difference will be found significant. (Here by ‘pairwise’ we mean a contrast of the 
form μi−μj for i≠j.) For instance, the F-test may detect that (μ1+μ2)/2 −μ3, or some other non-
pairwise contrast of the means, is significantly different from 0, although none of the 
pairs μi−μj, i≠j, are declared significantly different from 0. This raises a more subtle point 
regarding the use of the F-test as an omnibus test in any multiple pairwise testing procedure. 

As has been pointed out many times in the literature, there is no need for a preliminary omnibus 
test when using the TK procedure. Hsu (1996) states that to consider performing multiple 
comparisons only if the ANOVA F-test rejects is ‘a mistake’. Ramsey (1978, 1981, 
2002) and Ramsey and Ramsey (2008) present simulation results illustrating that the power of 
TK suffers if applied only after a significant omnibus F-test. Still, many textbooks (see Ramsey 
& Ramsey, 2008, p. 116) recommend using TK only after a significant F-test, and it is rare to 
find an example in the applied literature where the TK procedure has been applied without a 
significant preliminary F-test (Ramsey & Ramsey, 2008). 

This emphasis on a preliminary F-test can only help to perpetuate the myths among many 
practitioners that a significant F-test implies at least one significant pairwise difference using 
TK; and that a non-significant F-test implies it is not possible that TK will find a significant 
pairwise difference. Certainly rejection of the ‘omnibus’ TK test implies that at least one 
pairwise difference exists. However, while rejection of the omnibus F-test certainly implies that 
not all the means are equal, it does not guarantee that there is at least one 
significant pairwise contrast of the means. Cohen (2001, Chapter 13) presents numerical 
examples of such cases, as well as examples with equal sample sizes where using F versus TK as 
the omnibus test with the HF test results in a different conclusion. Textbooks sometimes add to 
this confusion. For example, Ott and Longnecker (2004, p. 365) state ‘we can safely conclude 
that all pairs of treatment means are not significantly different, because the AOV F-test failed to 



reject the null hypothesis’. Many statistical consultants and teachers of statistical methods have 
undoubtedly had to deal with confusion regarding seemingly conflicting results between the F-
test and a pairwise testing procedure. Although the Hayter–Fisher method is not an example of 
the incorrect use of the F-test as a gateway to a multiple pairwise testing procedure, it may 
appear to inexperienced practitioners as consistent with incorrect practice. Thus, replacing HF 
with TK2S would hopefully lead to better practice in general with multiple pairwise 
comparisons. 

4. Conclusion 

The Tukey–Kramer procedure continues to be an attractive method for making all pairwise 
comparisons, especially since confidence intervals are available. However, when greater power 
to detect pairwise differences is desired and confidence intervals are not required, TK2S is 
recommended as an alternative to the HF procedure. While HF can have slightly higher any-pair 
power under certain conditions, TK2S tends to have higher any-pair power for mean 
configurations where pairwise differences are all moderate to large. In addition, the all-pairs and 
per-pair power of TK2S is virtually identical to HF for all mean configurations, even those for 
which HF holds an any-pair power advantage. Finally, TK2S is a consonant procedure for which 
there cannot be disagreement between the ‘omnibus’ test and subsequent pairwise tests, so that a 
significant omnibus test under TK2S guarantees that at least the largest pairwise studentized 
difference will be declared significant. In contrast, the HF procedure has the undesirable property 
that it is possible that no pairwise differences are declared significant, even though the 
omnibus F-test is significant. 
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Appendix 

Table A1.  Sample sizes used for each case. k= number of groups, ν= error degrees of freedom, 
NR = range of largest to smallest sample size, n1, … , n6= sample size associated with the ith 
group 

k ν NR n 1 n 2 n 3 n 4 n 5 n 6 

4 5 6.0 6 1 1 1 — — 

    1.5 3 2 2 2 — — 

    3.0 3 3 2 1 — — 

  10 11.0 11 1 1 1 — — 

    5.0 5 5 3 1 — — 

    2.0 4 4 4 2 — — 

4 20 8.0 8 8 7 1 — — 

    5.0 10 10 2 2 — — 

    1.8 7 7 6 4 — — 

4 60 9.8 49 5 5 5 — — 

    1.9 25 13 13 13 — — 

    1.7 20 20 12 12 — — 

6 5 5.0 5 2 1 1 1 1 

    3.0 3 3 2 1 1 1 

    2.0 2 2 2 2 2 1 

6 10 11.0 11 1 1 1 1 1 

    9.0 9 3 1 1 1 1 

    1.5 3 3 3 3 2 2 

6 20 8.0 8 8 3 3 3 1 

    2.0 6 5 5 4 3 3 

    1.7 5 5 5 4 4 4 



6 60 40.0 40 22 1 1 1 1 

    2.0 18 12 9 9 9 9 

    1.8 16 14 9 9 9 9 

 

 


