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Abstract: 

Permutation methods using median differences for simultaneous pairwise comparisons with a 
control are investigated. Simulation results suggest that the permutation methods are generally 
more powerful than the Dunnett procedure when data are from nonnormal distributions. A new 
procedure is shown to provide strong control of the familywise error rate, and have highest 
power for detecting the treatment that differs most from the control, for certain nonnormal 
distributions. Step-down permutation procedures, which have greater power to detect treatment 
differences with the control, are also proposed and examined. The procedures are illustrated 
using an example from the applied literature. 
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Article: 

1. Introduction 

Many applied research studies involve comparing two or more treatments to a control treatment. 
In cases where the data are skewed or contain extreme outliers, medians may be more 
appropriate than means for describing central tendency of the distributions, and may be more 
effective for detecting location differences. 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=364
http://www.dx.doi.org/10.1016/j.spl.2013.01.014


In this paper, permutation methods for comparing all treatments to a control using median 
differences are presented and compared. 

2. Methods for comparing medians 

Much of the recent research on using medians to compare distributions has focused on 
approximating the asymptotic distribution of the sample median difference. However, these 
methods require an estimator of the asymptotic standard error of the sample median difference, 
and can have Type I error rates that are either much lower or higher than the nominal level 
(Wilcox, 2006). In addition, among these methods none are guaranteed to control the familywise 
error rate (FWER), the probability of making at least one false declaration of inequality. 
Alternatively, permutation methods can be used to determine exact reference distributions for 
comparing medians. Richter and McCann (2007) proposed a permutation procedure, using 
median differences and restricted randomization, for testing all pairwise comparisons. They 
showed that restricted randomization guarantees strong FWER control, and that the permutation 
procedure can have greater power for heavier-tailed distributions than the Tukey–Kramer 
(Tukey, 1949 and Kramer, 1956) testing procedure. 

In this paper, the permutation method of Richter and McCann (2007) is extended to the case of 
multiple pairwise comparisons with a control (MCC). The method is shown to control the 
FWER, and a simulation study is used to investigate power properties of the procedure, for 
various distributions and sample size configurations. The new procedure is compared to the 
method of using separate two-group median-difference permutation tests employing a Bonferroni 
correction, and also to Dunnett’s (1955) procedure, the optimal procedure for making all 
pairwise comparisons to a control for means of normal distributions with equal variances. 

3. Methodology 

3.1. Notation and assumptions 

Consider a one-way layout with c−1 independent treatment groups plus a control group, 
where Fi is the common continuous distribution function for the ith group, i=1,…,c−1,c, 
where i=c represents the control group, ni is the sample size of the ith group, 
and N=n1+n2+⋯+nc−1+nc. Further, let μi be the location parameter associated with the ith 
distribution and  be the sample median for the ith group. Distributions are assumed identical 
for all treatments except for possible location differences. 

3.2. Permutation-based median difference procedure (MED) 

To compute a p-value to assess each pairwise hypothesis, the absolute observed median 
difference for each pair will be compared to the permutation distribution of the 
statistic, , the maximum of all pairwise median differences. This statistic will 
be calculated for a large number of random reassignments of observations to groups, where the 



maximum is computed over the c−1treatment/control pairs, and where randomization is 
performed separately within each pair. This will be referred to as the MED procedure. 

3.3. Restricted randomization provides strong FWER control 

Strong FWER control for the MCC case can be established as follows. Consider c−1 independent 
samples from distributions that differ from a control distribution by at most a location parameter. 
That is, forj=1,…,c−1,Fc(x)=Fj(x−Δj). The null hypothesis then involves c−1 pairwise hypotheses 
of the form, H0j:Δj=0. Now consider the permutation distribution of median differences from 
samples c and j, and let Dj(α) be the 1−α percentile of this permutation distribution. Similarly, 
define  to be the1−α percentile of the permutation distribution for the maximum median 
difference among all c−1 pairs of a treatment with the control. 

First consider the case under the complete null hypothesis where all Δj=0. Let the calculated 
median difference from samples c and j be denoted by . Under the complete null hypothesis, 
the probability that a calculated median difference from a particular pair of samples in a given 
permutation is the maximum difference is 1/(c−1). Consequently, the probability that any 
observed difference from a particular pair exceeds , the comparisonwise error rate, 
is α/(c−1). Alternatively, the familywise error rate is given 
by 

. This shows that using the permutation distribution of the maximum difference controls the 
FWER in theweak   sense ( Hochberg and Tamhane, 1987). Now consider the case where 
only t<(c−1) of the pairwise null hypotheses are indeed true. For any permutation, a difference 
from one of these t pairs with a true pairwise null hypothesis is less likely to be the maximum 
difference than differences from the (c−1)−t pairs where Δj≠0. Consequently, the 
comparisonwise error rate is . The familywise error rate, the 
probability of rejecting at least one of the t true null hypotheses, 
is . Thus, the FWER is 
controlled at level α for any combination of t true and (c−1)−t false hypotheses, and the FWER is 
controlled in the strong sense ( Hochberg and Tamhane, 1987). This proves strong FWER 
control using median differences, but a similar argument can be used for any other statistic of 
interest. 

4. Increasing power 

4.1. Step-down procedure based on MED (MEDSD) 

Richter and McCann (2009) proposed a step-down procedure, using medians and permutation 
tests, for testing all pairwise differences. This method can be adapted to the case of all pairwise 
comparisons to a control to increase power as follows: 



1. Employ the procedure (MED  ) described in Section  3.2 to compute p-values for testing each 
of the treatments to the control. If the smallest p-value is less than the specified level α, declare 
the treatment associated with that p-value to have different location from the control, and 
proceed to step 2. If the smallest p-value is not less than α, stop, and no treatment locations can 
be declared different from the control at FWER α. 

2. Again employ the MED   procedure, but when constructing the reference distribution of the 
maximum median differences, exclude the treatment declared different from the control in step 
1. Again, if the smallest p-value is less than the specified level α, declare the treatment associated 
with that p-value to have different location from the control, and proceed to step 3. If the 
smallest p-value is not less than α, stop, and no further treatment locations can be declared 
different from the control at FWER α. 

3. Continue until the smallest p-value at a step is larger than α. 

Richter and McCann (2009) showed that this step-down procedure provides strong control of the 
FWER while increasing the likelihood that other differences, in addition to the largest observed 
difference, will be declared statistically significant. 

4.2. Step-down procedure based on BON (BONSD) 

Two-group permutation tests based on median differences, for all treatments compared to the 
control, using a Bonferroni adjustment to control the FWER, may also be used. This procedure 
will be referred to asBON. A step-down procedure based on BON, denoted BONSD, due to Holm 
(1979), can also be used as follows: 

(1) Employ separate, pairwise permutation tests, based on median differences. Multiply all 
pairwise p-values by c−1, the number of comparisons. If the smallest p-value is less than the 
specified level α, declare the treatment associated with that p-value to have different location 
from the control, and proceed to step 2. If the smallest p-value is not less than α stop, and no 
treatment locations can be declared different from the control at FWER α. 

(2) Again employ separate, pairwise permutation tests, but multiply all p-values by c−2, and so 
on, until the last step, when only one comparison is left, where the unadjusted p-value is used. 

5. Simulation study 

5.1. Simulation setup 

A small simulation study was conducted to compare FWER and power properties of the 
procedures discussed in Sections 3 and 4: 



(1) MED  : The test based on the randomization distribution of , the 
maximum median difference, over all comparisons of treatments to the control, using restricted 
randomization. 

(2) MEDSD: The step-down procedure based on MED. 

(3) BON: Separate two-group permutation tests, using median differences, with a Bonferroni 
correction based on the number of comparisons. 

(4) BONSD: The step-down procedure based on BON. 

(5) DUN: Dunnett’s (1955) procedure. 

The following model was assumed to generate the data: 

 

where yij is the jth observation for the ith treatment, μi is the location parameter for the ith 
treatment, and εij is the random error associated with the jth observation for the ith treatment. 
The errors, εij, are assumed independent and identically distributed. Several different 
distributions were considered for εij. Normal, Laplace, and Cauchy distributions were chosen to 
represent symmetric distributions with progressively heavier tails. Similarly, exponential and 
lognormal (σ=1.5) distributions were chosen to represent lighter and heavier-tailed skewed 
distributions, respectively. While methods based on means (such as Dunnett’s procedure) are not 
consistent for the Cauchy distribution, this comparison is included to get a sense of the maximum 
power advantage of the median-based methods. 

The FWER, power for each individual comparison, and average power over all false hypotheses 
were estimated. Models containing three, four and five treatments, in addition to the control, with 
both equal and unequal sample sizes per group were examined. In most cases the total number of 
permutations possible was prohibitive, and thus a random sample of permutations was used to 
estimate the p-value for any given test. Each permutation test was based on a reference 
distribution estimated using 2000 randomly sampled permutations, and the estimated proportion 
of rejections in each case was based on 1000 randomly generated samples. For cases with 
unequal sample sizes, the estimated values were averaged over the different arrangements of 
sample sizes with treatment locations. 

5.2. Simulation results 

5.2.1. Type I error 

All procedures controlled the FWER in the strong sense for all scenarios examined. FWER 
for BONSDtended to be closest to the nominal level of 0.05, while others, especially those 



for MED and MEDSD, tended to be much smaller than 0.05. Tables 1– 2 show representative 
results for FWER estimates. 

Table 1. FWER — proportion of times at least one true null hypothesis was rejected at α=0.05, 
three treatments, ni=10, locationsμC=μ1=μ2=0;μ3=2. 

Procedure Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
MED 0.013 0.007 0.015 0.009 0.018 
MEDSD 0.013 0.007 0.015 0.010 0.018 
BON 0.023 0.030 0.027 0.034 0.029 
BONSD 0.034 0.037 0.030 0.039 0.036 
DUN 0.021 0.019 0.008 0.020 0.014 
 

Table 2. FWER — proportion of times at least one true null hypothesis was rejected at α=0.05, 
four treatments, ni=10, locationsμC=μ1=0;μ2=0.5,μ3=1,μ4=1.5. 

Procedure Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
MED 0.002 0.005 0.004 0.007 0.011 
MEDSD 0.002 0.006 0.006 0.009 0.011 
BON 0.008 0.012 0.010 0.012 0.010 
BONSD 0.020 0.031 0.019 0.033 0.021 
DUN 0.009 0.016 0.006 0.013 0.008 
 

5.2.2. Power 

Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9 show representative results for 
estimated power. As expected, DUN   always showed highest power (of any kind) for normally 
distributed data. MED  always had the highest power for detecting the largest difference for non-
normal distributions. However, when more than one treatment location differed from the control, 
the power for detecting smaller location differences suffered, resulting in lower average power 
for MED   compared to BON   (although MED   did have highest average power for data from a 
Cauchy distribution, when only one treatment differed substantially from the control—
see Table 7, Table 8 and Table 9). For lighter-tailed non-normal distributions, 
however, MED   tended to have the lowest average power, with DUN   and BON   obtaining 
higher, but often similar, power (DUN   could have slightly higher power than BON   for the 
symmetric distribution (Laplace), while BON   usually had slightly higher power for the skewed 
distribution (exponential)). With small sample sizes (ni=5), BON showed little or no power 
(see Table 7), due to the small number of permutations and the discreteness of the two-sample 



permutation distributions. The step-down extensions MEDSD and BONSD had only slightly 
higher power than the single-step methods. 

Table 3. Power–power to detect the superior treatment, when all other treatments have equal 
location with the control, using α=0.05, three treatments, ni=10, locations μC=μ1=μ2=0;μ3=2. 

Procedure Distribution 
 Normal Laplace Cauchy Exponential Lognormal 
MED 0.920 0.814 0.433 0.957 0.427 
MEDSD 0.920 0.815 0.433 0.957 0.427 
BON 0.919 0.668 0.308 0.957 0.437 
BONSD 0.919 0.670 0.310 0.959 0.438 
DUN 0.973 0.758 0.073 0.951 0.108 
 

Table 4. Power — average power and power to detect the largest location difference, 
using α=0.05, three treatments, ni=10, locations μC=0,μ1=0.5,μ2=1,μ3=1.5. 

Proced
ure 

Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
 Larges

t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

MED 0.709 0.321 0.526 0.163 0.228 0.101 0.830 0.376 0.279 0.144 
MEDS
D 

0.711 0.344 0.529 0.166 0.231 0.105 0.832 0.415 0.288 0.156 

BON 0.689 0.360 0.451 0.236 0.184 0.099 0.841 0.520 0.297 0.162 
BONS
D 

0.702 0.392 0.466 0.258 0.196 0.109 0.852 0.573 0.310 0.183 

DUN 0.815 0.457 0.483 0.252 0.038 0.024 0.798 0.471 0.242 0.034 
 

Table 5. Power — average power and power to detect the largest location difference, 
using α=0.05, three treatments, ni=20, locations μC=0,μ1=0.5,μ2=1,μ3=1.25. 

Proced
ure 

Distribution 
 

 Normal Laplace Cauchy 
 

Exponential 
 

Lognormal 

 Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 



MED 0.784 0.457 0.761 0.401 0.372 0.203 0.922 0.594 0.345 0.211 
MEDS
D 

0.785 0.458 0.762 0.401 0.372 0.203 0.926 0.595 0.347 0.212 

BON 0.820 0.512 0.714 0.432 0.318 0.194 0.971 0.710 0.494 0.293 
BONS
D 

0.833 0.519 0.733 0.442 0.329 0.200 0.973 0.711 0.499 0.295 

DUN 0.918 0.631 0.654 0.386 0.021 0.014 0.910 0.620 0.036 0.029 
 

Table 6. Power — average power and power to detect the largest location difference, 
using α=0.05, four treatments, ni=10, locations μC=μ1=0;μ2=0.5,μ3=1,μ4=1.5. 

Proced
ure 

Distribution 

 Normal Laplace Cauchy Exponential Lognormal 
 Larges

t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

MED 0.649 0.286 0.539 0.224 0.197 0.088 0.797 0.351 0.233 0.113 
MEDS
D 

0.651 0.286 0.540 0.225 0.197 0.088 0.799 0.352 0.233 0.113 

BON 0.606 0.313 0.412 0.215 0.147 0.081 0.792 0.466 0.224 0.127 
BONS
D 

0.616 0.318 0.425 0.221 0.157 0.085 0.806 0.473 0.235 0.132 

DUN 0.779 0.420 0.488 0.256 0.026 0.027 0.791 0.443 0.052 0.031 
 

Table 7. Power — average power and power to detect the largest location difference, 
using α=0.05, four treatments, ni=5, locationsμC=0;μ1=μ2=μ3=0.5,μ4=3. 

Proced
ure 

Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
 Larges

t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

MED 0.797 0.266 0.629 0.211 0.218 0.076 0.756 0.252 0.277 0.101 
MEDS
D 

0.797 0.266 0.629 0.211 0.218 0.076 0.756 0.252 0.277 0.101 

BON 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
BONS
D 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DUN 0.974 0.358 0.762 0.281 0.09 0.035 0.947 0.354 0.138 0.053 



Table 8. Power — average power and power to detect the largest location difference, 
using α=0.05, four treatments, ni=10, locations μC=0;μ1=μ2=μ3=0.5,μ4=2. 

Proced
ure 

Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
 Larges

t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

MED 0.906 0.309 0.809 0.274 0.376 0.132 0.960 0.323 0.379 0.141 
MEDS
D 

0.906 0.309 0.809 0.274 0.376 0.132 0.960 0.323 0.379 0.141 

BON 0.873 0.331 0.619 0.236 0.229 0.092 0.921 0.384 0.346 0.137 
BONS
D 

0.874 0.335 0.626 0.241 0.234 0.095 0.924 0.389 0.346 0.139 

DUN 0.961 0.372 0.773 0.296 0.048 0.022 0.959 0.387 0.090 0.039 
 

Table 9. Power — average power and power to detect the largest location difference, 
using α=0.05, four treatments,ni=5,8,12,15, locations μC=0;μ1=μ2=0.5,μ3=2. 

Proced
ure 

Distribution 
 

 Normal Laplace Cauchy Exponential Lognormal 
 Larges

t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

Larges
t 
differe
nce 

Avera
ge 
powe
r 

MED 0.820 0.286 0.671 0.233 0.266 0.098 0.839 0.290 0.246 0.098 
MEDS
D 

0.820 0.290 0.672 0.236 0.266 0.099 0.839 0.294 0.247 0.101 

BON 0.768 0.300 0.568 0.219 0.231 0.095 0.773 0.333 0.285 0.115 
BONS
D 

0.772 0.316 0.574 0.231 0.237 0.100 0.778 0.365 0.288 0.123 

DUN 0.939 0.376 0.697 0.272 0.072 0.041 0.921 0.388 0.104 0.050 
 

6. Example 

Researchers collected data on the levels of osteopontin (OPN), a glycoprotein that has been 
associated with inflammation and fibrosis (Delimpoura et al., 2010) (See Table 10). The primary 
focus was to compare the OPN levels in patients with severe refractory asthma (SRA) to levels 
of those with milder forms of the disease. Since the observed OPN levels for all four groups were 
highly skewed, medians were reported and used to compare the groups. 



Table 10. Means and medians of the OPN levels for the three treatment groups and control 
group (SRA). 

Treatment n Mean Median 
SRA 33 6601.2 1840 
Moderate asthma 29 188.1 130 
Naïve asthma 21 104.8 100 
Normal subjects 20 57.5 50 
 

There are four groups, including the control, and thus three comparisons to be made. The 
estimated p-values for the MED  , BON, MEDSD   and BONSD   tests are based on 10,000 
random permutations and are presented in Table 11. Both methods declare the SRA group 
different from all three of the milder condition groups, using α=0.05. Note, however, 
that MED provides stronger evidence for differences from the Mild and Normal groups, which 
were the two largest observed median differences, while BONprovides stronger evidence for a 
difference from the Moderate group, which was the smallest observed median difference. 

Table 11. P-values for testing for location difference between SRA and less severe groups, using 
the single step and step-down median-difference procedures. 

Group Single-step method 
 

Step-down method 
 

 MED BON MEDSD BONSD 
SRA vs. Moderate 0.0122 0.0030 0.0001 0.0001 
SRA vs. Mild 0.0097 0.0111 0.0037 0.0074 
SRA vs. Normal 0.0094 0.0177 0.0094 0.0177 
 

The first step of the step-down procedure MEDSD   is to find the smallest p-value from 
the MED  procedure, 0.0094, which is associated with the comparison of SRA vs. Normal. Since 
this p-value is less than α=0.05, the remaining p-values are recomputed by reapplying 
the MED   procedure, excluding the Normal group. The smaller of these two p-values is 0.0037, 
which is associated with the comparison of SRA vs. Mild. Since this p-value is less than α=0.05, 
recompute the p-value for comparing the SRA vs. Normal, using a two-group permutation test, 
resulting in 0.0001. 

For the step-down procedure BONSD  , multiply all pairwise permutation test p-values by the 
number of comparisons (in this example, three), resulting in a smallest p-value of 0.0177 for the 
SRA vs. Normal comparison. Since this p-value is less than α=0.05, multiply the original p-
values from the pairwise permutation tests for the remaining two comparisons by two, yielding a 
smallest p-value of 0.0074, for the test of SRA vs. Mild. Finally, since this p-value is less 
than α=0.05, the original pairwise permutation testp-value of 0.001 is used for the test of SRA 
vs. Moderate. Table 11 summarizes the results of the two step-down tests. Note that the p-values 



for Steps 2 and 3 are both smaller than those of the single-step procedure, and also that all p-
values using MEDSD yield at least as strong evidence as those usingBONSD. 

7. Discussion 

Two permutation test procedures were investigated as more robust alternatives to Dunnett’s 
procedure for all pairwise comparisons to a control. The simulation results suggest that the 
procedures based on medians (MED  , BON  ) are preferred for data from heavy-tailed 
distributions. However, there does not appear to be a clear choice between the median 
procedures for all scenarios. In the cases where it is expected that only one treatment is clearly 
better than the control, MED   is the preferred choice to detect the superior treatment, especially 
for symmetric, non-normal distributions. However, for skewed, non-normal distributions and 
situations where two or more treatments are expected to be substantially better than the 
control, BON   is preferred due to higher power for detecting differences in addition to the 
largest. With small sample sizes (e.g., ni≤5), BON may have little or no power, due to the 
discreteness of the two-sample permutation distributions. Thus, MED may also be preferred 
when sample sizes are small, since the distribution of maximum differences will generally be 
less discrete. 

Step-down extensions of MED and BON were also presented. While these methods are 
guaranteed to have at least as much power as the single-step procedures, the power advantage 
may not be substantial, since only one comparison can be eliminated at each step, resulting in 
only a nominal power advantage over the single step procedure. 
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