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Abstract:  

 

A method for computing simultaneous pairwise confidence intervals for location shift is 

presented, based on the permutation distribution of the maximum absolute pairwise difference 

among all pairs. The method guarantees strong control of familywise confidence, and does not 

require assumptions about the form of the population distribution. Simulations compare the 

permutation procedure to a bootstrap procedure, as well as to the Tukey–Kramer procedure. 

Simulation results suggest the proposed permutation method produces intervals that maintain 

simultaneous coverage, and that can be more precise for heavy-tailed distributions compared to 

competing methods. The permutation intervals may be preferred for data from heavy-tailed 

distributions. 
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Article:  
 

1 Introduction 

 

In single factor designs, estimating all pairwise location differences is frequently of interest. 

Typically mean differences are estimated, using a method such as Tukey’s (1949) procedure for 

constructing simultaneous confidence intervals. Tukey’s procedure is optimal for equal size 

samples from normally distributed populations with equal variance, but there often arise 

instances when the normal assumption is not plausible. An example is presented in Sect. 5 where 

the goal is to estimate the magnitude of pairwise differences between four groups. However, the 

data appear to come from highly skewed distributions and contain extreme outliers, so Tukey’s 

procedure is not valid. Although methods based on means can often claim “robustness” to 

nonnormality when samples are large, they may no longer be optimal, and nonparametric 

procedures with greater precision can often be found. Further, robust measures of location, such 

as medians, may be more meaningful than means when populations are known to be skewed, and 

thus inference using medians might be preferred in these situations. In fact, since in most cases 
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the shape of the population distribution will not be known, comparing medians instead of means 

might be considered a safer choice, since the median is a meaningful parameter to estimate in 

virtually any distribution. 

 

Procedures that have been proposed for estimating median differences have generally focused on 

deriving approximate standard errors, and have been based on large sample approximations for 

resulting Wald-type statistics (see Price and Bonnett 2001). Recently, Bonnett and Price (2002) 

proposed an approximate procedure for estimating an arbitrary contrast of medians, employing a 

modification of the variance estimator of McKean and Schrader (1984). Simulations suggested 

that their procedure had more consistent (close to nominal confidence level) coverage 

probabilities for estimating all pairwise differences in a four group design, compared to other 

competitors based on medians. Wilcox (2006) found in further simulations, however, that the 

method of Bonnett and Price (2002), when employed for multiple testing, had inflated Type I 

error probabilities for certain discrete distributions where tied observations are likely, which 

suggests that coverage probabilities for simultaneous intervals would be lower than expected. 

Wilcox (2006) compared several interval estimators based on medians, and found a percentile 

bootstrap procedure based on median differences to be the only method to perform well in terms 

of Type I error probability for all situations. However, bootstrap intervals are only 

asymptotically exact, and can suffer from lack of precision for small samples (Good 2000). 

Alternatively, permutation tests can provide distribution-free exact p values for multiple testing, 

and can be inverted to obtain interval estimates, without the need to derive approximate standard 

errors. 

 

Several methods for using permutation tests for multiple pairwise tests of mean differences have 

been discussed. For one and two-sample settings, Wheldon et al. (2007) adapted a technique due 

to Manly et al. (1986) for testing for group mean differences at multiple time points. For their 

method, a reference distribution is built by taking the minimum p value across all time points, for 

each permutation. Statistical significance is determined by comparing the separate 

permutation p value at each time point to the 1−α1−αpercentile of the reference distribution. This 

method is similar to the testing procedure of Miller (1981), who proposed using the maximum 

absolute mean difference across all pairs to build the reference distribution. However, both the 

method of Miller (1981) and that of Wheldon et al. (2007) suffer from the fact that observations 

are permuted freely across all groups or time points, and thus can only control the familywise 

error rate (FWER) in the weak sense (Hochberg and Tamhane 1987). Richter and McCann 

(2007) proposed instead permuting separately within each pair of groups being compared, with 

the reference distribution constructed in fashion similar to Miller (1981), and showed that this 

technique controlled the FWER in the strong sense (Hochberg and Tamhane 1987). 

 

A method for simultaneous estimation of the location shift parameters, ΔijΔij, for all pairwise 

comparisons, based on inverting the test procedure of Richter and McCann (2007), is presented 

in Sect. 2. 

 

2 Simultaneous confidence intervals using permutation tests 

 

2.1 Testing procedure of Richter and McCann (2007) 

 

http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR14
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR1
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR10
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR20
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR1
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR20
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR2
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR19
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR9
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR11
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR11
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR19
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR5
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR15
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR11
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR5
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#CR15
http://link.springer.com/article/10.1007/s10182-015-0258-4/fulltext.html#Sec2


Consider a one-way layout with k groups, where Fi is the common continuous distribution 

function for the ith group, ni is the sample size of the ith group, and N=n1+n2+⋯+nk. Further, let 

μi be the location parameter associated with the ith distribution and  be the sample median for 

the ith group. Distributions are assumed identical for all treatments except for possible location 

differences. That is, for , where  

represents the location difference between groups i and j. The reference distribution is based on 

the distribution of , the maximum of all pairwise median differences, 

calculated for a large set of random reassignments of observations to groups. Richter and 

McCann (2007) showed that this procedure provides strong FWER control (Hochberg and 

Tamhane 1987). 

 

2.2 Individual confidence intervals based on inverting the permutation distribution 
 

Consider first the case where , and suppose a permutation test to compare the locations of 

the two distributions, using the sample median difference as the test statistic, is conducted. A 

confidence interval for the pairwise location difference, , can be constructed as follows. Find 

two constants,  and  that, when subtracted from the observed median difference, lead to the 

smallest p value of the permutation test greater than or equal to . Then the  

confidence interval for is . That this is indeed a confidence 

interval for is verified by Good (2000, p. 210). Note that this amounts to finding a set of 

values for that would not be rejected by the corresponding hypothesis test from Sect. 2.1 

with . 

 

The values  and  can be found by first finding the percentiles of the permutation 

distribution, and then determining  and  as  and , 

where is the observed median difference. To see this, consider two independent, 

identically distributed observations,  and , from distribution. Then 

. Thus, the 

distribution of  is symmetric about 0. Consequently, when using a statistic based 

directly on differences of statistics from a common distribution, to find a confidence interval it 

suffices to estimate an upper percentile from the sampling distribution, as the lower percentile 

will simply be the negative of the respective upper percentile, and thus the confidence interval 

will be the observed difference plus or minus the appropriate upper percentile point. 

 

2.3 Simultaneous confidence intervals when k>2 
 

First, the reference distribution described in Sect. 2.1 is derived, consisting of the maximum 

absolute median difference, , across all pairs for each permutation. Next, 

the percentile of the reference distribution, , is determined. Then for each 



pairwise difference, the constants are found as described in Sect. 2.2. That 

is, , where  is 

the observed median difference for groups i and j.  

 

Richter and McCann (2007) proved that for the case of testing all pairwise comparisons, using 

the distribution of the absolute maximum median difference across all pairs, where 

randomization is performed within each pair, provides strong control of the FWER. Since the 

confidence interval procedure is found by inverting the test procedure, the same percentiles used 

for the testing procedure will be used to construct the confidence intervals. Thus, since the 

acceptance region of the testing procedure is used to construct the confidence intervals, the 

simultaneous confidence level must also be controlled. This follows from Good (2000, Theorem 

4.1, p. 210) when we make the appropriate generalization to a set of tests with their 

corresponding confidence intervals and consider FWER instead of individual coverage. 

Specifically, let be the set of all values in the sample 

space where the simultaneous testing procedure of Richter and McCann (2007), detailed in Sect. 

2.1, would not be rejected if the values were simultaneously tested. Now let  be the set 

of simultaneous confidence intervals described above that result from a specific in the sample 

space. Note that a vector  values will be included in  if and only if this would 

not be rejected by the simultaneous procedure described above. Consequently, 

, and thus simultaneous coverage at the  level is 

guaranteed. 

 

2.4 Alternative estimators for location shift 
 

The procedure described in Sect. 2.3 is based on the sample median difference as an estimator of 

the location shift. A similar procedure may be employed for forming confidence intervals based 

on other estimators, such as the Hodges–Lehmann estimator of location shift, which is the 

midpoint of all pairwise differences among observations. The reference distribution may be 

derived, using permutation tests, as the distribution of the maximum median pairwise difference 

for each permutation. 

 

Since the sample median is known to be relatively inefficient for light-tailed distributions, the 

Harrell–Davis quantile estimator (Harrell and Davis 1982) is sometimes considered as an 

alternative. However, Wilcox (2006) found that replacing the sample median with the Harrell–

Davis estimator worsened the performance of the best performing median procedures. For this 

reason, the Harrell–Davis estimator is not considered here. 

 

3 Simulation 

 

3.1 Simulation details 
 

A simulation study was used to estimate simultaneous coverage probabilities for the permutation 

confidence interval method discussed in Sect. 2.3, using the median difference (MED) as well as 

the median of pairwise differences (PWD) to estimate location difference. To compare to 



existing methods, intervals were also computed using a percentile bootstrap procedure (MEDB) 

based on median differences (Wilcox 2006, 2012), as well as to the parametric Tukey–Kramer 

procedure (TK) based on mean differences. 

 

Wilcox (2006, 2012) recommended a percentile bootstrap procedure based on median 

differences for comparing medians. Wilcox (2006) considered the pairwise testing case, and 

found that pairwise bootstrap distributions, combined with Rom ’s (1990) method of p value 

adjustment, provided a testing procedure that worked well over all cases considered. For 

pairwise confidence intervals, however, Rom’s method cannot be applied, and thus a Bonferroni 

correction is used here to achieve desired simultaneous coverage for the pairwise bootstrap 

intervals. 

 

The additive model, , was assumed to generate the 

data, where is the location parameter associated with the ith treatment. Several different g-

and-h (Hoaglin 1985) error distributions were considered. The five different distributions were 

the standard normal distribution (g=h=0)(g=h=0), symmetric non-normal distributions with 

moderately heavy (g=0,h=0.4)(g=0,h=0.4) and very heavy (g=0,h=0.8)(g=0,h=0.8) tails, and 

skewed distributions with light (g=0.8,h=0)(g=0.8,h=0) and moderately heavy 

(g=0.8,h=0.4)(g=0.8,h=0.4) tails. 

 

Equal and unequal sample size cases were examined, for different configurations of location 

difference. For the unequal sample size cases, sample sizes were randomly assigned to each 

distribution to avoid potential bias in power estimates due to sample size. 

 

3.2 Simulation results 

 

3.2.1 Simultaneous coverage 
 

Estimated simultaneous coverage probabilities are given in Tables 1, 2, 3 and 4. The MEDB 

bootstrap intervals had coverage very close to the nominal level over all conditions. The MED 

and PWD permutation intervals had simultaneous coverage of 95 % or higher for all cases 

considered, and tended to be conservative in most cases, with a higher estimated coverage 

probability than the advertised 0.95. 

 



 
 

 

3.2.2 Interval width 
 

For each simulated data set, the mean interval length for all intervals for a particular method was 

calculated. Then, for all simulated data sets under a given condition, minimum, maximum and 

quartiles of mean interval widths for each method were calculated, and are given in Tables 5, 6, 7 

and 8. The MEDB procedure tended to produce wider intervals than the MED and PWD methods 

for all non-normal distributions, and could become much wider when distributions were heavier-

tailed. 

 

TK intervals were always the narrowest when data were generated by a normal distribution, and 

usually narrowest for the lighter-tailed skewed distribution (g=0.8,h=0)(g=0.8,h=0). For the 



heavier-tailed distributions (g=0,h=0.8g=0,h=0.8; g=0.8,h=0.4g=0.8,h=0.4), the median-based 

procedures always had smaller maximum length, and sometimes narrower third quartile and 

median lengths. The TK intervals could become very wide for all of the heavier-tailed 

distributions, and this problem was especially severe for the distribution with 

g=0,h=0.8g=0,h=0.8. 

 

Among MED and PWD intervals, MED tended to have slightly narrower intervals when 

distributions were symmetric but heavy-tailed (g=0g=0, h=0.4h=0.4; g=0g=0, h=0.8h=0.8), 

while PWD tended to produce narrower intervals when distributions were skewed. However, the 

difference in interval length was never substantial. 

 

 
 



 
 



 
 



 
 

4 Robustness to scale heterogeneity 
 

For the simulations discussed in Sect. 3, distributions were assumed to be identical except for 

possible shifts in location. However, Romano (1990) showed that two-sample permutation tests 

for comparing medians were generally invalid when scale parameters were unequal. Thus, it was 

of interest to investigate the robustness of the procedures to scale heterogeneity. 

 

Simulations were conducted under similar conditions as for the location shift model in Sect. 3, 

but allowing the scales of the distributions to vary by as much as a 4:1 ratio between the largest 

and smallest scales. Tables 9 and 10 show representative results of estimated coverage under 

various settings of heterogeneity. As expected, the permutation procedures can fail to maintain 

coverage at the nominal level for both 4- and 6-group cases when there is a large amount of scale 



heterogeneity. For all cases considered, coverage for the permutation tests eventually dropped 

below nominal level as the ratio between the smallest and largest scale increased. The magnitude 

of the effect depended on several factors, including the number of groups, the distribution that 

generated the data, whether or not the sample sizes were equal, and, when sample sizes were 

unequal, on the pattern of unequal scales and whether the larger scale parameter was associated 

with the smaller sample size. However, the lack of coverage was in general not due to narrower 

intervals, as interval widths tended to be larger when scales were unequal (Tables 11, 12). 

 

The effect of heterogeneity was less severe when data came from heavy-tailed distributions, 

when sample sizes were equal, and when there were several nonzero differences in magnitude of 

scale between pairs of groups. For example, Table 10 shows that coverage was poorest when 

sample sizes were unequal, there was only one group with scale different from the others, and the 

group with the larger scale had the smallest sample size. For unequal sample sizes, while the 

effect was more severe when the largest scale parameter was associated with the smallest 

sample, when the largest scale parameter was associated with the largest sample the permutation 

methods actually became quite conservative. 

 

 



 
 

 



 
 

 
 



 
 

 
 

 
 

 

 



 



5 Example 
 

Powell and Russell (1984, 1985) and Linton et al. (1989) collected data (Table 13) on the 

stomach contents of eastern horned lizards for each of four summer months. It was desired to 

estimate the magnitude of consumption differences between different pairs of months. Since the 

sample distributions were skewed with a few extreme outliers (see Fig. 1), medians might be 

more meaningful measures of location. 

 

Simultaneous 95 % confidence intervals are presented in Table 14 using methods MED, MEDB, 

PWD, and TK. Note that for these data, which represent skewed distributions with extreme 

values, the Tukey–Kramer method can produce extremely wide intervals, in comparison to the 

permutation and bootstrap methods. However, even if the TK intervals were narrower, they 

would necessarily be centered at the mean difference, which for heavy-tailed data may not be 

appropriate as the estimate of the location shift. Thus, the median-based intervals, which are 

centered at the sample median difference and are not susceptible to extremely wide intervals due 

to extreme outliers, may provide a better alternative for such distributions. The MEDB bootstrap 

intervals were generally narrower than the MED intervals, but were also not centered on the 

sample median difference. This is likely due to skewness in the bootstrap distribution, which can 

result in biased intervals (see Manly 1997). Thus, the MED intervals may be preferred for these 

data. 

 

6 Discussion 
 

Permutation-based methods were presented for simultaneous estimation of location difference. 

The results of the simulation study suggest that the permutation-based intervals may be preferred 

when data are expected to come from heavy-tailed distributions. While the permutation methods 

can be less precise in some situations, they are also not susceptible to producing extremely wide 

intervals, as are the MEDB and TK methods. It may seem surprising that the median-based MEDB 

intervals could be adversely affected by extreme data points. However, the bootstrap intervals can 

have samples where extreme values are oversampled, resulting in large variability in the bootstrap 

distribution and thus wide intervals. Thus, even though they have shown good coverage estimates 

for heavy-tailed distributions, this appears to be at the expense of precision. 

 

The conservativeness of coverage levels of MED in certain situations may be due to the 

discreteness of the permutation distributions, especially for small sample sizes. For permutation 

tests, one suggestion to alleviate the effect of discreteness on the p value is the mid-p value 

(Lancaster 1961). That is, if   is the observed test statistic, then the p value is 

. Thus, we proposed an analogous adjustment, the mid-critical 

point, for simultaneous confidence intervals. The adjustment works as follows: if 

, then the confidence level is exact, and  is used; however, if 

, then the critical value is chosen to be the midpoint between : 

. Unfortunately, except for very small sample sizes  simulation 

results showed little or no gain in precision for the scenarios considered, and for this reason results 

using this adjustment were not included.  



The permutation procedures considered in this paper can be recommended as robust alternatives 

for data from heavy-tailed distributions. Since the bootstrap procedure does not require the 

assumption of equal distributions, it may be preferred when variance heterogeneity is expected. 
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