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Abstract:

A method for computing simultaneous pairwise confidence intervals for location shift is
presented, based on the permutation distribution of the maximum absolute pairwise difference
among all pairs. The method guarantees strong control of familywise confidence, and does not
require assumptions about the form of the population distribution. Simulations compare the
permutation procedure to a bootstrap procedure, as well as to the Tukey—Kramer procedure.
Simulation results suggest the proposed permutation method produces intervals that maintain
simultaneous coverage, and that can be more precise for heavy-tailed distributions compared to
competing methods. The permutation intervals may be preferred for data from heavy-tailed
distributions.
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Article:
1 Introduction

In single factor designs, estimating all pairwise location differences is frequently of interest.
Typically mean differences are estimated, using a method such as Tukey’s (1949) procedure for
constructing simultaneous confidence intervals. Tukey’s procedure is optimal for equal size
samples from normally distributed populations with equal variance, but there often arise
instances when the normal assumption is not plausible. An example is presented in Sect. 5 where
the goal is to estimate the magnitude of pairwise differences between four groups. However, the
data appear to come from highly skewed distributions and contain extreme outliers, so Tukey’s
procedure is not valid. Although methods based on means can often claim “robustness” to
nonnormality when samples are large, they may no longer be optimal, and nonparametric
procedures with greater precision can often be found. Further, robust measures of location, such
as medians, may be more meaningful than means when populations are known to be skewed, and
thus inference using medians might be preferred in these situations. In fact, since in most cases
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the shape of the population distribution will not be known, comparing medians instead of means
might be considered a safer choice, since the median is a meaningful parameter to estimate in
virtually any distribution.

Procedures that have been proposed for estimating median differences have generally focused on
deriving approximate standard errors, and have been based on large sample approximations for
resulting Wald-type statistics (see Price and Bonnett 2001). Recently, Bonnett and Price (2002)
proposed an approximate procedure for estimating an arbitrary contrast of medians, employing a
modification of the variance estimator of McKean and Schrader (1984). Simulations suggested
that their procedure had more consistent (close to nominal confidence level) coverage
probabilities for estimating all pairwise differences in a four group design, compared to other
competitors based on medians. Wilcox (2006) found in further simulations, however, that the
method of Bonnett and Price (2002), when employed for multiple testing, had inflated Type |
error probabilities for certain discrete distributions where tied observations are likely, which
suggests that coverage probabilities for simultaneous intervals would be lower than expected.
Wilcox (2006) compared several interval estimators based on medians, and found a percentile
bootstrap procedure based on median differences to be the only method to perform well in terms
of Type | error probability for all situations. However, bootstrap intervals are only
asymptotically exact, and can suffer from lack of precision for small samples (Good 2000).
Alternatively, permutation tests can provide distribution-free exact p values for multiple testing,
and can be inverted to obtain interval estimates, without the need to derive approximate standard
errors.

Several methods for using permutation tests for multiple pairwise tests of mean differences have
been discussed. For one and two-sample settings, Wheldon et al. (2007) adapted a technique due
to Manly et al. (1986) for testing for group mean differences at multiple time points. For their
method, a reference distribution is built by taking the minimum p value across all time points, for
each permutation. Statistical significance is determined by comparing the separate

permutation p value at each time point to the 1—a1—apercentile of the reference distribution. This
method is similar to the testing procedure of Miller (1981), who proposed using the maximum
absolute mean difference across all pairs to build the reference distribution. However, both the
method of Miller (1981) and that of Wheldon et al. (2007) suffer from the fact that observations
are permuted freely across all groups or time points, and thus can only control the familywise
error rate (FWER) in the weak sense (Hochberg and Tamhane 1987). Richter and McCann
(2007) proposed instead permuting separately within each pair of groups being compared, with
the reference distribution constructed in fashion similar to Miller (1981), and showed that this
technique controlled the FWER in the strong sense (Hochberg and Tamhane 1987).

A method for simultaneous estimation of the location shift parameters, AijAij, for all pairwise
comparisons, based on inverting the test procedure of Richter and McCann (2007), is presented
in Sect. 2.

2 Simultaneous confidence intervals using permutation tests

2.1 Testing procedure of Richter and McCann (2007)
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Consider a one-way layout with k groups, where Fjis the common continuous distribution
function for the ith group, njis the sample size of the ith group, and N=ng+nz+---+nk. Further, let

i be the location parameter associated with the ith distribution and #i be the sample median for
the ith group. Distributions are assumed identical for all treatments except for possible location

differences. That is, for &:J =1,2,...,kwithi < j, Fi(z) = Fi(z — Ay), where 2
represents the location difference between groups i and j. The reference distribution is based on

the distribution of ™a%1<i<<k | — 14| the maximum of all pairwise median differences,
calculated for a large set of random reassignments of observations to groups. Richter and
McCann (2007) showed that this procedure provides strong FWER control (Hochberg and
Tamhane 1987).

2.2 Individual confidence intervals based on inverting the permutation distribution

Consider first the case where *= 2 and suppose a permutation test to compare the locations of
the two distributions, using the sample median difference as the test statistic, is conducted. A

confidence interval for the pairwise location difference, A1z can be constructed as follows. Find
two constants, @ and % that, when subtracted from the observed median difference, lead to the
smallest p value of the permutation test greater than or equal to /2 Then the 10001 —a)%
confidence interval for 212 s @ = A1z < du That this is indeed a 100(1 — @) % confidence
interval for A1z is verified by Good (2000, p. 210). Note that this amounts to finding a set of

values for 212 that would not be rejected by the corresponding hypothesis test from Sect. 2.1
with k=2,

The values % and %= can be found by first finding the percentiles of the permutation
distribution, and then determining 9 and v as @ =812 ~P1 a2 gng e = B2 TP ap2

Agz = 1&1

where H2 js the observed median difference. To see this, consider two independent,

identically distributed observations, Xi and “*4, from distribution. Then
P{_Xt' Xj‘ < E‘.} = P[Xj _1:1' = C]I = Pl[ {_Xf Xj} <. E‘.j.l = P[X; _X-_-Ic = C]. Thus. the

distribution of i — X js symmetric about 0. Consequently, when using a statistic based
directly on differences of statistics from a common distribution, to find a confidence interval it
suffices to estimate an upper percentile from the sampling distribution, as the lower percentile
will simply be the negative of the respective upper percentile, and thus the confidence interval
will be the observed difference plus or minus the appropriate upper percentile point.

2.3 Simultaneous confidence intervals when k>2

First, the reference distribution described in Sect. 2.1 is derived, consisting of the maximum
absolute median difference, MaXi<i<j<k | I“'*J'l', across all pairs for each permutation. Next,

the 1 — /2 percentile of the reference distribution, P(™3%) /2 js determined. Then for each



pairwise difference, the constants d(max); and d(max). are found as described in Sect. 2.2. That
is. d(max); = iij- p(max); .o and d(max), = .-_:'11-J- t p(max), a/2 where Aij = iz — B is
the observed median difference for groups i and j.

Richter and McCann (2007) proved that for the case of testing all pairwise comparisons, using
the distribution of the absolute maximum median difference across all pairs, where
randomization is performed within each pair, provides strong control of the FWER. Since the
confidence interval procedure is found by inverting the test procedure, the same percentiles used
for the testing procedure will be used to construct the confidence intervals. Thus, since the
acceptance region of the testing procedure is used to construct the confidence intervals, the
simultaneous confidence level must also be controlled. This follows from Good (2000, Theorem
4.1, p. 210) when we make the appropriate generalization to a set of tests with their
corresponding confidence intervals and consider FWER instead of individual coverage.
Specifically, let A(A). A ={Ai;,2,5=1,..., ki < jipe the set of all values in the sample
space where the simultaneous testing procedure of Richter and McCann (2007), detailed in Sect.

2.1, would not be rejected if the values Aijyere simultaneously tested. Now let S(X) pe the set

of simultaneous confidence intervals described above that result from a specific X in the sample

space. Note that a vector A of Aij yalues will be included in S(X) if and only if this A would
not be rejected by the simultaneous procedure described above. Consequently,
P(AeS(X))=P(X e A(A)) =1

guaranteed.

. and thus simultaneous coverage at the 1 — level is

2.4 Alternative estimators for location shift

The procedure described in Sect. 2.3 is based on the sample median difference as an estimator of
the location shift. A similar procedure may be employed for forming confidence intervals based
on other estimators, such as the Hodges—Lehmann estimator of location shift, which is the
midpoint of all pairwise differences among observations. The reference distribution may be
derived, using permutation tests, as the distribution of the maximum median pairwise difference
for each permutation.

Since the sample median is known to be relatively inefficient for light-tailed distributions, the
Harrell-Davis quantile estimator (Harrell and Davis 1982) is sometimes considered as an
alternative. However, Wilcox (2006) found that replacing the sample median with the Harrell—
Davis estimator worsened the performance of the best performing median procedures. For this
reason, the Harrell-Davis estimator is not considered here.

3 Simulation
3.1 Simulation details
A simulation study was used to estimate simultaneous coverage probabilities for the permutation

confidence interval method discussed in Sect. 2.3, using the median difference (MED) as well as
the median of pairwise differences (PWD) to estimate location difference. To compare to



existing methods, intervals were also computed using a percentile bootstrap procedure (MEDB)
based on median differences (Wilcox 2006, 2012), as well as to the parametric Tukey—Kramer
procedure (TK) based on mean differences.

Wilcox (2006, 2012) recommended a percentile bootstrap procedure based on median
differences for comparing medians. Wilcox (2006) considered the pairwise testing case, and
found that pairwise bootstrap distributions, combined with Rom ’s (1990) method of p value
adjustment, provided a testing procedure that worked well over all cases considered. For
pairwise confidence intervals, however, Rom’s method cannot be applied, and thus a Bonferroni
correction is used here to achieve desired simultaneous coverage for the pairwise bootstrap
intervals.

The additive model, ¥i5 = #i +&ij, 1= 1,2,...,k, 7 =1,...,m was assumed to generate the
data, where i is the location parameter associated with the ith treatment. Several different g-
and-h (Hoaglin 1985) error distributions were considered. The five different distributions were
the standard normal distribution (g=h=0)(g=h=0), symmetric non-normal distributions with
moderately heavy (g=0,h=0.4)(g=0,h=0.4) and very heavy (g=0,h=0.8)(g=0,h=0.8) tails, and
skewed distributions with light (g=0.8,h=0)(g=0.8,h=0) and moderately heavy
(9=0.8,h=0.4)(g=0.8,h=0.4) tails.

Equal and unequal sample size cases were examined, for different configurations of location
difference. For the unequal sample size cases, sample sizes were randomly assigned to each
distribution to avoid potential bias in power estimates due to sample size.

3.2 Simulation results
3.2.1 Simultaneous coverage

Estimated simultaneous coverage probabilities are given in Tables 1, 2, 3 and 4. The MEDB
bootstrap intervals had coverage very close to the nominal level over all conditions. The MED
and PWD permutation intervals had simultaneous coverage of 95 % or higher for all cases
considered, and tended to be conservative in most cases, with a higher estimated coverage
probability than the advertised 0.95.



Table 1 Estimated

simultaneous coverage at 95 % Distribution MED MEDE PWD ®

canfidence, g=0:h=0 0979 0963 0979 0951

mp=10, i=123 4. =

O 2= 0 p3m0 pg—2  E=0h=04 0.985 0.966 0.986 0.962
g=0h=038 (1.989 0961 0.994 0979
g=08h=0 0992 (0.958 0.979 0959
g=08h=04 (.990 (.965 0.985 0.97a

Tabhle 2 Estimated . ;

simultaneous coverage al 95 % Disteibution MED MEDB s TK

'J-'{:““"“”'—'“é ny = ‘-:‘- ny = g=0:h=0 0.984 0.957 0.967 0.951

2.n3=8 na=5pu) =

0. ur—0. 30, pg—2  §=0:h=04 099 0956 0.986 0.948
g=0h =08 0.993 0.961 0.9494 0.955
g=08h=0 (1.988 0.956 0978 0952
g=08h=04 0.987 (1.958 (.985 0.960

Tabhle 3 Estimated . ;

simultaneous coverage al 95 % Distribution MED MEDB PwD T

confidence, g=0:h=0 0.987 0.956 0976 0942

mp=10,i=123456:

w1 =0, gy =0, ps— g=0:h=04 0.989 0.964 0.992 0.947

0, pg =10, pus =0, pg=2 g=0h=03%8 0.992 0.959 0.997 0.970
g=08h=0 (1.996 (.950 0981 0.95]
g=08h=04 0.9594 .954 0.9491 0959

Tabhle 4 Estimated . ;

simultaneous coverage at 95 % Distribation MED MEDE PWD Tk

confidence, g=0:h=0 0.991 0.961 0.977 0.949

np=15 ny=12 ny=

10, ng = 10, ns =8, ng =5, g=0h=04 0.992 0.964 0,990 0.946

p1="0, pp =0, p3 = g=0:h=08 0.994 0.960 0.993 0.939

0. g =0, ps=0, pg=2 g=08h=0 0.990 0.960 0.977 0.951
e=08h=04 0.996 0.961 0.988 0.945

3.2.2 Interval width

For each simulated data set, the mean interval length for all intervals for a particular method was
calculated. Then, for all simulated data sets under a given condition, minimum, maximum and
quartiles of mean interval widths for each method were calculated, and are given in Tables 5, 6, 7
and 8. The MEDB procedure tended to produce wider intervals than the MED and PWD methods
for all non-normal distributions, and could become much wider when distributions were heavier-
tailed.

TK intervals were always the narrowest when data were generated by a normal distribution, and
usually narrowest for the lighter-tailed skewed distribution (g=0.8,h=0)(g=0.8,h=0). For the



heavier-tailed distributions (g=0,h=0.89=0,h=0.8; g=0.8,h=0.49=0.8,h=0.4), the median-based
procedures always had smaller maximum length, and sometimes narrower third quartile and
median lengths. The TK intervals could become very wide for all of the heavier-tailed
distributions, and this problem was especially severe for the distribution with
g=0,h=0.89g=0,h=0.8.

Among MED and PWD intervals, MED tended to have slightly narrower intervals when
distributions were symmetric but heavy-tailed (g=0g=0, h=0.4h=0.4; g=0g=0, h=0.8h=0.8),
while PWD tended to produce narrower intervals when distributions were skewed. However, the
difference in interval length was never substantial.

Table 5 Minimum, 151 quartile,

. . Distribution/statistic MED MEDE PWD TE
median, 3rd quartile and

!n;ur.imum estimated mean g=0h=0
interval lengths, o
mp=10i=1234 pu; = Minimum 1.95 1.82 1.96 0.78
O.pr=0,p3=0,u3 =12 Q1 318 267 203 1.10
Median 164 295 320 1.20
Q3 4.11 3.26 348 1.30
Maximum 591 448 4.82 1.&7
g=Lh=04
Minimum 222 1.96 2.44 1.07
Q1 368 3.59 359 1.93
Median 416 413 3197 243
Q3 469 495 443 3.20
Maximum 665 11.00 6.72 194.44
g=0h=038
Minimum 257 221 2.E8 1.41
Q1 4.10 4.91 4.26 383
Median 4.60 6.22 4.86 6.12
Q3 524 8.20 5.65 11.50
Maximum 9.16 4561 11.69 38 558.68
p=0E8h=0
Minimum 235 1.78 216 (.86
Q1 347 L 323 1.46
Median 39] 3.67 356 1.77
Q3 4.39 4.40 3.93 218
Maximum 663 9.20 5.64 14.35
p=08h=04
Minimum 260 2.20 243 1.09
Q1 333 4.089 373 2.54
Median 4.36 509 418 371
Q3 4.97 685 4.75 .33

Maximinm 10.15 4774 Q.25 2844 36




Table 6 Minimum, 1st guartile,
median, 2rd quartile and
maximum estimated mean
interval lengths, ny = 15, na =
12, n3 =8, my =5 =

0 pr=0 pa=0 uy=12

Distributionfstatistic MED MEDB WD TK
g=0kh=0
Minimum 216 1.832 2.4 085
Q1 339 2.8A 3.0 1.19
Median 385 319 3.35 1.30
Q3 4.33 3.57 3T 1.40
Maximum fi 85 5.0M 5.64 1.54
g=kh=04
Minimum 263 223 247 1.08
Q21 4.08 ERE R 209
Median 466 486 447 2.63
Q3 528 fi.28 5.12 346
Maximum 074 43 838 056 21215
g=kh=08
Minimum 309 2.64 297 1.42
Q1 476 5.79 4 .36 4.10
Median 5.51 543 5.89 661
Q3 £ 66 13.48 T.28 12.43
Maximum 2212 H456.62 310 42061.61
g=08h=10
Minimum 242 1.79 235 0.5
Q1 379 331 3446 1.60
Median 4.37 404 393 1.91
Q3 4.99 5.08 4.45 2.35
Maximum 1046 L6654 217 15.67
g=0%h=04
Minimum 256 217 2.6 1.18
Q1 4.31 4.51 4.2 276
Median 5.13 .12 4.9 3.99
Q3 fi.28 o.0m 5.92 652
Maximum 2379 18657 2340 3102.79




Table 7 Minimum, |st quartile,
median, 3rd quartile and
maximum estimated mean
interval lengths,

=10 i=1,2 34 5 6;

pp =0 gp =10, p3 =

0 g =0, us=10. ug =12

[stribution/statistic MED MEDB MWD TK
g=kh=0D
Minimum 231 231 241 RS
1 344 310 3.15 1.24
Median 354 3.33 342 1.31
Q23 4.36 3.55 3Tl 1.4
Maximum 6.07 4.63 ila 1.8k
g=kh=04
Minimum 247 298 270 1.24
21 4.00 4.65 3E9 217
Median 449 5.46 4.35 275
L 495 6.52 4.74 3.52
Maximum 728 49.54 .38 45.77
g=kh=08
Minimum 260 336 LR 160
Q1 4.52 1.75 4_80) 4494
Median 5.06 1044 5.53 T.51
L 575 15.37 .49 1386
Maxinmum 1043 TILGT 2763 271298
g=0&h=10
Minimum 263 232 262 1.6
21 379 38l 348 1.65
Median 4.19 4.37 3T 1.95
Q23 4.71 3.20 419 231
Maxinum 1.37 971 fr.14 .05
g=0%h=04
Minimum 266 30z 264 1.45
1 4.2 5.60) 4.0 ERI )
Median 4.75 T.34 4.58 4.34
L 5.38 1005 5.19 RS
Maximum 1035 98.74 B.H3 185.65




Tahle 8 Minimum, st guartile,
median, 3rd quartile and
maximum estimated mean
interval kengths,

Distribution/statistic MED MEDB W TK

g=0h=10

ny=15.n2 = 12,03 = Minimum 251 223 2.48 .02
10, ng = 10,05 = 8, ng = 5, Q1 368 3.19 3.29 1.29
P =0p2=0p3=0py= Median 407 347 3.57 .38
0.p5=0.pg =2 03 454 375 388 .47
Maximum 745 4.72 6.18 1.91
g=10h=104
Minimum 298 2,60 3.05 1.24
Q1 442 468 427 2.39
Median 495 5.59 4.80 2.88
Q3 5355 6.83 5.46 3.69
Maximum 12.51 5907 12.51 47.50
g=10h=108
Minimum 358 3.13 3.59 1.72
Q1 522 748 5.47 5.25
Median 6.15 10.55 6.75 8.21
Q3 756 15.92 8.25 14.64
Maximum 316 266049 3495 2816.93
g=08h=10
Minimum 271 232 2.64 1.06
Q1 411 383 3.73 1.75
Median 4,63 4.40 4.13 2.05
Q3 530 5.30 4.64 2.43
Maximum 12.77 12.19 1277 6.45
g=0%h=104
Minimum 293 2.90 2.98 .45
Q1 475 5.60 4.59 3.22
Median 552 7.13 5.31 4.58
Q3 6.97 9.99 6.51 7.27
Maximum 3217 14155  32.17 195.66

4 Robustness to scale heterogeneity

For the simulations discussed in Sect. 3, distributions were assumed to be identical except for
possible shifts in location. However, Romano (1990) showed that two-sample permutation tests
for comparing medians were generally invalid when scale parameters were unequal. Thus, it was
of interest to investigate the robustness of the procedures to scale heterogeneity.

Simulations were conducted under similar conditions as for the location shift model in Sect. 3,
but allowing the scales of the distributions to vary by as much as a 4:1 ratio between the largest
and smallest scales. Tables 9 and 10 show representative results of estimated coverage under
various settings of heterogeneity. As expected, the permutation procedures can fail to maintain
coverage at the nominal level for both 4- and 6-group cases when there is a large amount of scale



heterogeneity. For all cases considered, coverage for the permutation tests eventually dropped
below nominal level as the ratio between the smallest and largest scale increased. The magnitude
of the effect depended on several factors, including the number of groups, the distribution that
generated the data, whether or not the sample sizes were equal, and, when sample sizes were
unequal, on the pattern of unequal scales and whether the larger scale parameter was associated
with the smaller sample size. However, the lack of coverage was in general not due to narrower
intervals, as interval widths tended to be larger when scales were unequal (Tables 11, 12).

The effect of heterogeneity was less severe when data came from heavy-tailed distributions,
when sample sizes were equal, and when there were several nonzero differences in magnitude of
scale between pairs of groups. For example, Table 10 shows that coverage was poorest when
sample sizes were unequal, there was only one group with scale different from the others, and the
group with the larger scale had the smallest sample size. For unequal sample sizes, while the
effect was more severe when the largest scale parameter was associated with the smallest
sample, when the largest scale parameter was associated with the largest sample the permutation
methods actually became quite conservative.

Table % Estimated simultaneous coverage at 95 % confidence., 4 groups, unequal scales, wuy =0, 7 =
bpa=0uy=2

g Fe i MED MEDE PWI TK
a=i1,1.1.2) (10, 10, 10, 10
X [0 944 0956 (942 0917
X .4 0963 0.963 (0970 (0.950
LH 08 0977 0.961 (L9ET 0.975
[LE] .0 (1.959 0.957 (.96 (0.935
08 0.4 0.976 01.961 ER i R
a={1,1,1,2) {15,12.8.5)
LK) .0 (190 0.940 (L2362 (.332
L1 .4 0935 0,940 (.935 (LHED
X LR 958 0941 (0970 (.57
L] .0 (1945 0937 0912 0.274
[LE] .4 (.952 0.937 (.99 (.58
a=1{1,1.1.4) {100, 10, DO, 16N
0.0 0.0 0778 0.959 (.845 (8398
0.0 HE (821 0.958 (0.929 (0.923
L1 LR 0925 01.960 (IR (562
LE] [0 830 (.96 (L8257 RIS
LE] .4 E8Y 0957 (L9346 (0546
a=(1,1.1.4) {15,12.8.5)
LH .0 1714 0.927 (0.7T13 0.704
0.0 0.4 .835 01.932 (.855 0. 760
0.0 0.8 (.E43 01.932 (.90 (.832
L] .0 (8320 0.929 (0.2035 0721

LE] .4 ETS 01,934 (L3EZ (B30T




Table 100 Estimated simultaneous coverage at 93 % confidence, 6 groups, unequal scales, jg =0, g2 =

O pz=0py=0ps=0p5=1

g I n MED MEDE PWD TK
o =1i1,2,2,3 3, 4) (10,10,10,10,10,10)
0.0 0.0 0.945 0.950 0,941 0.913
0.0 0.4 0.961 0.961 0.970 0.932
0.0 0.8 0.977 0.957 01.9%9 01.966
0.8 0.0 0.970 0,945 0.923 0.927
0.8 0.4 0,978 0.954 0.975 0.953
a=(1,2,23 3 4) (15,12, 10, 10,8.5)
0.0 0.0 0.927 0.929 0365 0864
0.0 0.4 0.956 0.936 0,948 0.883
0.0 0.5 0.973 0.934 0,978 0,883
0.8 0.0 0.972 0.929 0,929 0863
0.8 0.4 0.979 0.933 0,965 0.884
a=(1,1111.4) 10, 1, D0, L0, 100, 1Oy
0.0 0.0 0.883 0.953 0,395 0.872
0.0 0.4 0.931 0.959 0,953 0.H98
0.0 0.8 0.957 0.959 0,982 0.954
0.8 0.0 0.932 00,961 0L.90% 0.470
0.8 0.4 0.957 0.961 0.954 0.930
a=i1,1.1,1,1.4) (15,12,10,10,8.5)
0.0 0.0 0.757 0.933 0.737 0L6ES
0.0 0.4 0.874 0.932 0.585 0.757
0.0 0.8 0.922 0.934 0,942 0.814
0.8 0.0 0.862 0.940 0.833 0.731
0.8 0.4 0910 0.935 0.905 0.813
:Efl:}mh;?;?;r":qll:nik Distribution/Statistic = MED  MEDB  PWD  TK
.a:rn:l maximum estimated mean g=0h=0
interval lengths, unequal scales .
(@ = (1.1, 1 4)). Minimum 1.92 284 2.24 1.27
mp=10i=1,234p; = Q1 3.46 4.84 3.95 222
Oopp=0puz=0pug =2 Median 4.05 561 4.69 2.56
Q3 4.78 6.45 5.51 293
Maximum 8.78 10.53 9,06 4.38
g=kh=04
Minimum 2.05 344 2.69 1.80
0l 4.07 6.23 5.03 3.64
Median 495 773 6.12 4.75
03 6106 9.82 T.46 6.82
Maximum 13.13 8044 1451 194.46




Tahle 11 continued

Table 12 Minimum, st
quartile, median, 3rd guartile
and maximum estimated mean
interval kengths, unequal scales
(e =(1.1,1,1. 0,4}
np=15n =11 n3 =

0. ng =10,n; =8 ng =37,
pp =0 g =0, p3 =0, py =
O, s =0, ug =2

Distributiontatistic MED MEDE PWD TK
g=kh=08
Minimum 214 394 285 222
Q1 4.70 837 6.26 6.79
Median 5.86 11.13 T.88 11.23
Q3 748 1579 10.11 22.02
Maximum 21.69 166,32 24.80 JFH558.68
g=0%ha=0
Minimum 1.81 238 2.00 1.35
Q1 366 5.39 4.22 273
Median 4.50 662 444 341
Q3 5.60 .32 5.86 4.70
Maximum 15.12 2533 13.27 20.47
g=08h=04
Minimum 1.93 343 248 1.94
Q1 420 687 516 4.61
Median 5.36 9.19 .28 682
Q3 .93 12.61 7497 11.84
Maximum 2503 122.52 24.40 2E44.36
Distributionfstatistic MED MEDB PWD TK
g=kh=0
Minimum 263 2.6l 4.41 1.12
Q1 4.42 48K 4.41 1.70
Median 498 5.66 5.05 1.93
L [Nk 6.56 623 222
Maximum 16.51 9.71 16.07 371
g=kh=04
Minimum 31z ilb 296 1.70
1 573 o7 00 304
Median GET 1.96 T.37 387
Q3 156 1208 Q17 5.21
Maximum 45.13 .65 45.13 47.52
g=kh=08
Minimum 340 398 131 2.54
Q1 T.35 11.11 827 .40
Median 918 1615 100400 1043
L 12.05 26.72 14.04 18.99
Maximum 12064 5311.65 12%.64 281693




Table 12 continued

Table 13 Dy biomass {mg) of

ants for 24 aduli males and

vearling females, taken in four

maonths in 19810

Enmess (mag)

Distributionstatistic MED MEDH WD TK
=08 h=10
Minimum 273 279 155 1.22
Q1 517 5.68 5.12 220
Median 6.210 [N 619 2.68
Q3 774 B.T8 746 3.39
Maxinmum 30.30 3723 2894 16.81
g=08h=04
Minimum 321 3.6l 307 1.76
1 6.31 522 G635 4.04
Median 796 1104 .30 5.73
Q3 10,75 16.63 1086 9.38
Maxinmum 5767 546.51 55.16 274.22
Momnth Dry biomass (mg)
June 13, 105, 242
Tuly 2, 8, 20, 59, 245
August 40 50, 52, 82, 88, 233, 488, 515, 600, 1389
September 0,5 6, 18 21,44
2000
o
1500
1000
- 1
L)
L%}
Fed
. = i
i J.:rr Aug Bapl

Manth

Fig. 1 Distributions of biomass (mg) of ants for 24 adult males and yearling females, taken in 4 months in

195D
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5 Example

Powell and Russell (1984, 1985) and Linton et al. (1989) collected data (Table 13) on the
stomach contents of eastern horned lizards for each of four summer months. It was desired to
estimate the magnitude of consumption differences between different pairs of months. Since the
sample distributions were skewed with a few extreme outliers (see Fig. 1), medians might be
more meaningful measures of location.

Simultaneous 95 % confidence intervals are presented in Table 14 using methods MED, MEDB,
PWD, and TK. Note that for these data, which represent skewed distributions with extreme
values, the Tukey—Kramer method can produce extremely wide intervals, in comparison to the
permutation and bootstrap methods. However, even if the TK intervals were narrower, they
would necessarily be centered at the mean difference, which for heavy-tailed data may not be
appropriate as the estimate of the location shift. Thus, the median-based intervals, which are
centered at the sample median difference and are not susceptible to extremely wide intervals due
to extreme outliers, may provide a better alternative for such distributions. The MEDB bootstrap
intervals were generally narrower than the MED intervals, but were also not centered on the
sample median difference. This is likely due to skewness in the bootstrap distribution, which can
result in biased intervals (see Manly 1997). Thus, the MED intervals may be preferred for these
data.

6 Discussion

Permutation-based methods were presented for simultaneous estimation of location difference.
The results of the simulation study suggest that the permutation-based intervals may be preferred
when data are expected to come from heavy-tailed distributions. While the permutation methods
can be less precise in some situations, they are also not susceptible to producing extremely wide
intervals, as are the MEDB and TK methods. It may seem surprising that the median-based MEDB
intervals could be adversely affected by extreme data points. However, the bootstrap intervals can
have samples where extreme values are oversampled, resulting in large variability in the bootstrap
distribution and thus wide intervals. Thus, even though they have shown good coverage estimates
for heavy-tailed distributions, this appears to be at the expense of precision.

The conservativeness of coverage levels of MED in certain situations may be due to the
discreteness of the permutation distributions, especially for small sample sizes. For permutation
tests, one suggestion to alleviate the effect of discreteness on the p value is the mid-p value

(Lancaster 1961). That is, if f js the observed test statistic, then the p value is
. _ 1 T i (-, A . L.
mid-p = 3 P(T = to) + P(T > to) Thus, we proposed an analogous adjustment, the mid-critical
point, for simultaneous confidence intervals. The adjustment works as follows: if
P(D=d.)=1—a/2 then the confidence level is exact, and P1 «/2 = e is ysed: however, if

P(D =d.) >1—a/2 then the critical value is chosen to be the midpoint between @ 1 and d

* — . . /53 . (41 — B . .
Pl app=(detde1)/2 Unfortunately, except for very small sample sizes \"% = 3) simulation

results showed little or no gain in precision for the scenarios considered, and for this reason results
using this adjustment were not included.



The permutation procedures considered in this paper can be recommended as robust alternatives
for data from heavy-tailed distributions. Since the bootstrap procedure does not require the
assumption of equal distributions, it may be preferred when variance heterogeneity is expected.
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