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Small sample properties of the method proposed by Brunner et al. (1997) for performing two-way analysis of 
variance are compared to those of the normal based ANOVA method for factorial arrangements.  Different 
effect sizes, sample sizes, and error structures are utilized in a simulation study to compare type I error rates 
and power of the two methods. An SAS program is also presented to assist those wishing to implement the 
Brunner method to real data. 
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Introduction 
 
Normal theory methods for analysis of variance 
depend on the assumption of homogeneity of the 
variance of the error distribution. For a one-way 
treatment structure, modifications are available 
when the homogeneity of variance assumption is 
violated. Milliken and Johnson (1992) suggest a 
method due to Box (1954) when sample sizes are 
equal. When samples sizes are unequal, they 
suggest Welch's (1951) test.  
 For multifactor layouts, however, there are 
few options available for testing effects of 
interaction and main effects. A parametric 
approach to this problem was presented by 
Weerahandi (1995), but it requires complex and 
intensive computing and isn’t yet practical for use 
on real data. Papers by Akritas (1990), Thompson 
(1991) and Akritas and Arnold (1994) present 
nonparametric rank test statistics in a multi-way 
ANOVA setting. One should see Brunner, et al. 
(1997) for a survey of references relating to this 
topic.  
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 One method that does not require the 
equal variance assumption is based on a Wald 
statistic, which has an asymptotic chi-square 
distribution. This method tends to reject too 
frequently under the null hypothesis for small 
samples. In fact, simulations of Brunner, et al. 
(1997) show the test to be liberal (by as much as 
0.05) for small to moderate sample sizes, and they 
suggest a small sample improvement over the 
Wald statistic. 
 Their approach is to use a generalization 
of chi-square approximations dating back to 
Patnaik (1949) and Box (1954). Simulation results 
indicate that this adjustment greatly improves the 
performance of the Wald statistic, and is effective 
for sample sizes as small as n=7 per factor 
combination. They also point out that for equal 
sample sizes, their statistic is identical to the 
classical ANOVA F-statistic, and thus their 
method can be regarded as a robust extension of 
the classical ANOVA to heteroscedastic designs. 
They recommend that their method should always 
be preferred (even in the homoscedastic case) to 
the classical ANOVA. However, they do not 
investigate how the performance of their statistic 
compares to the ANOVA F-statistic. 
 In this paper, we present results of a 
simulation study comparing the performance of 
the Brunner statistic to the ANOVA F-statistic, 
make a recommendation for the Brunner statistic 
for moderate sample sizes ( 7n ≥ ), and also 
present a SAS program (SAS Institute, Cary, N.C.) 
for implementing the method. 
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Brunner Method 
The method of Brunner et al. (1997) is a 

small sample adjustment to the well-known Wald 
statistic, which permits heterogeneous variance but 
is known to have inflated Type I error rates for 
small sample sizes. Consider a two-way layout a 
levels of factor A and b levels of factor B. Assume 
a set of independent random variables 

2( , ), 1,..., .ij i iX N i abµ σ =∼  

Let ( )1 2, ,..., abµ µ µ ′=µ  denote the 

vector containing the a b• population means. 
Then the hypotheses of no main effects and 
interaction can be written as 
 

0( ) : 0AH A =M µ  

0( ) : 0BH B =M µ  

0( ) : 0ABH AB =M µ  

 
where 
 

1
A a bb

= ⊗M P J  

1
B a ba

= ⊗M J P  

.AB a b= ⊗M P P  

 

Here , 
1

c c cc
= −P I J , where cI is a c c× identity 

matrix, cJ  a c c×  matrix of 1’s, and the symbol 
⊗  represents the Kronecker product of the 
matrices. The vector of observed cell means is 

denoted by ( )1 ,..., abX X ′=X  and the estimated 

covariance matrix is given by  
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(Brunner, 1997). 
 

Results 
 

A simulation study was performed using SAS 
version 8.02 for a two-way layout with 

4 and 3a b= = , for various sample sizes. The 
model used for all simulations was 
 

2

,

 1,2,3,4, 1,2,3,

 1,..., , (0, )

= + + +

= =

= ∼

ijk i j ij ijk

ij ijk ij

Y a b ab

i j

k n N

ε

ε σ
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  The classical F test from ANOVA 
(denoted by F), assuming normality and equal 
variances, and the adjusted F-test (denoted by FB) 
of Brunner, et al. (1997) were calculated for 5000 
samples and the probabilities of rejection 
estimated using an α = 0.05. Differences in Type I 
error rates and powers are investigated for 
different sample sizes, effect sizes, and variance 
structures. 
 
Case 1: Homogeneous errors, equal sample sizes. 

  For this case, we let 
21,..., , (0, )ijk ik n Nε σ= ∼ . Table 1 shows 

nominal Type I error rate for both methods, for 
various sample sizes. Note that the FB statistic 
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underestimates the nominal level when n is small, 
but for sample size as small as n = 7, the nominal 
rates are comparable to the classical ANOVA test. 
As sample size increases beyond n = 7, the 
nominal rate remains stable near the target 

0.05α = . 
 Tables 2 and 3 give proportion of 
rejections when factor A effect is present, and 
when both main effects are present, respectively, 
for n = 3 and n = 7. When 3n = , the test based on 
the FB statistic has less power than the F statistic, 

and underestimates the nominal rate, especially for 
the test of interaction and when the effect size is 
small. When 7n = , power and nominal rate are 
very similar, with the exception that the nominal 
rate for interaction is still a bit too low. 
 Table 4 shows that when interaction only 
is present, the FB statistic again has less power for 
the small sample size case. When the sample size 
is 7n = , power is comparable for both tests, 
especially when effect sizes are not very small. 

 
 

Table 1. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, no effects present, equal cell sample sizes. 
 
  n      
Test for: Method 2 3 5 7 10 20 
        
Main Effect A F .0492 .0496 .0478 .0482 .0494 .052 
 FB .0130 .0284 .0412 .0448 .0462 .0512 
        
Main Effect B F .0466 .0522 .0526 .0530 .052 .0466 
 FB .0142 .0360 .0448 .0502 .0502 .0466 
        
Interaction F .0458 .0470 .0474 .0512 .053 .0488 
 FB .0086 .0222 .0326 .0402 .0456 .0462 
 

 
Table 2. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, factor A effect present (a1=c, a3=-c), equal cell sample sizes. 
 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .3446 .9302 1.000 .7530 .9998 1.000 
 FB .2642 .8876 .9992 .7370 .9998 1.000 
        
Main Effect B F .0522 .0522 .0522 .0530 .0530 .0530 
 FB .0360 .0360 .0360 .0502 .0502 .0502 
        
Interaction F .0470 .0470 .0470 .0512 .0512 .0512 
 FB .0222 .0222 .0222 .0402 .0402 .0402 
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Table 3. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, factor A and B effects present (a2=b1=c, a3=b2=-c), equal cell sample sizes. 

 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .3440 .9214 .9998 .7422 1.000 1.000 
 FB .2604 .8780 .9986 .7276 1.000 1.000 
        
Main Effect B F .5268 .9902 1.000 .9140 1.000 1.000 
 FB .4576 .9830 1.000 .9100 1.000 1.000 
        
Interaction F .0470 .0470 .0470 .0512 .0512 .0512 
 FB .0222 .0222 .0222 .0402 .0402 .0402 

 
 

Table 4. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, interaction effect present (ab11=ab33=c, ab13=ab31=-c), equal cell sample sizes. 

 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .0496 .0496 .0496 .0482 .0482 .0482 
 FB .0284 .0284 .0284 .0448 .0448 .0448 
        
Main Effect B F .0522 .0522 .0522 .0530 .0530 .0530 
 FB .0360 .0360 .0360 .0502 .0502 .0502 
        
Interaction F .1584 .5976 .9460 .4276 .9828 1.000 
 FB .0842 .4368 .8734 .3864 .9762 1.000 

 
 

Case 2: Heterogeneous errors, equal sample sizes. 
 Here we consider:  
 

2 21,..., , (0, (1 * /2) )ijk ijk n N i jε σ= = +∼ ,   
 
(errors increasing with the levels of A). Tables 5, 6 
and 7 are heterogeneous analogs to Tables 2, 3 and 
4, respectively.  They compare the tests under 
variance heterogeneity. Note that the classical F-

test shows inflated nominal rates for all effects, 
with the test for interaction the most inflated. The 
inflation becomes more severe as the ratio 
between smallest and largest variances becomes 
larger. The test using the Box-type adjustment, 
however, maintains the correct nominal rate in all 
conditions considered. 
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Table 5. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 10 to 1), based on 5000 samples, factor 
A effect present (a1=c, a3=-c), equal cell sample size: ni=7. 

 
  c    
Test for: Method 0 .5 1.5 2.5 
      
Main Effect A F .0592 .1684 .9518 .9998 
 FB .0490 .1384 .9266 .9998 
      
Main Effect B F .0564 .0564 .0564 .0564 
 FB .0482 .0482 .0482 .0482 
      
Interaction F .0728 .0728 .0728 .0728 
 FB .0486 .0486 .0486 .0496 

 
 

Table 6. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 22 to 1), based on 5000 samples, factor 
A effect present (a1=c, a3=-c), equal cell sample size: ni=7. 

 
  c    
Test for: Method 0 .5 1.5 2.5 
      
Main Effect A F .0652 .1008 .5324 .9672 
 FB .0488 .0750 .4408 .9392 
      
Main Effect B F .0612 .0612 .0612 .0612 
 FB .0488 .0488 .0488 .0488 
      
Interaction F .0824 .0824 .0824 .0824 
 FB .0494 .0494 .0494 .0494 

 
 

Table 7. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 22 to 1), based on 5000 samples, factor 
A and B effects present (a2=b1=c, a3=b2=-c), equal cell sample size: ni=7. 

 
     
Test for: Method .5 1.5 2.5 
     
Main Effect A F .1030 .5234 .9518 
 FB .0784 .4422 .9220 
     
Main Effect B F .1228 .7868 .9980 
 FB .1014 .7298 .9962 
     
Interaction F .0824 .0824 .0824 
 FB .0494 .0494 .0494 
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Case 3: Homogeneous errors, unequal sample 
sizes. 
 In this case we consider: 
 

1,..., , (0,1)ij ijkk n Nε= ∼ , 
 

 where 1 2 3 47, 8, 9, 10= = = =j j j jn n n n . Here 
there was little difference in the performance of 
the two tests (See Tables 8 and 9). The Box-
adjusted test showed slightly higher power in 
some cases. 
 
Case 4: Heterogeneous errors, unequal sample 
sizes. 

Here we consider: 
21,..., , (0, )ij ijk ik n Nε σ= ∼ , 

with 1 2 3 47, 8, 9, 10j j j jn n n n= = = = .  When the 
largest variance was associated with the smallest 
sample the classical F-test always had inflated 
nominal Type I error rates (often more than twice 
the nominal rate) for any effects not present, while 
the Box-adjusted test maintained expected 
nominal Type I error rates (See Tables 10, 11 and 
12). The classical F-test had greater power for 
small effect sizes, but the power advantage 
became negligible as the effect size increased.  
 Although not shown here, when the 
largest variance was associated with the largest 
sample the power of the two tests was essentially 
equivalent, with the Box-adjusted test often having 
a slight power advantage. The classical F-test 
tended to underestimate the Type I error rate for 
effects not present. 

 
 
Table 8. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and equal variances, based on 5000 samples, factor A effect present 
(a1=c, a3=-c). 
 

  C   
Test for: Method 0 .5 1.5 
Main Effect A F .0482 .7962 1.000 
 FB .0500 .8258 1.000 
Main Effect B F .0518 .0552 .0598 
 FB .0514 .0514 .0514 
Interaction F .0500 .0502 .0462 
 FB .0414 .0414 .0414 

 
Table 9. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and equal variances, based on 5000 samples, factors A and B effects 
present (a2=b1=c, a3=b2=-c). 
 

  C  
Test for: Method .5 1.5 
Main Effect A F .8002 1.000 
 FB .8302 1.000 
Main Effect B F .9596 1.000 
 FB .9564 1.000 
Interaction F .0498 .0496 
 FB .0420 .0420 
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Table 10. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, factor A effect present (a1=c, a3=-c). 
 

  c   
Test for: Method 0 .5 1.5 
     
Main Effect A F .1056 .2902 .9850 
 FB .0476 .1666 .9422 
     
Main Effect B F .1000 .1024 .1034 
 FB .0418 .0418 .0418 
     
Interaction F .1244 .1246 .1230 
 FB .0494 .0494 .0494 

 
 

Table 11. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, factor A and B effects present (a2=b1=c, a3=b2=-c). 
 

  C   
Test for: Method .5 1.0 1.5 
     
Main Effect A F .3070 .8176 .9944 
 FB .1634 .6660 .9788 
     
Main Effect B F .4522 .9450 .9992 
 FB .3174 .8852 .9980 
     
Interaction F .1242 .1224 .1208 
 FB .0494 .0494 .0494 

 
Table 12. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, interaction effect present (ab11=ab33=c, ab13=ab31=-c). 

  C   
Test for: Method .5 1.5 2.5 
     
Main Effect A F .1060 .1046 .1016 
 FB .0476 .0476 .0476 
     
Main Effect B F .1032 .1018 .1026 
 FB .0418 .0418 .0418 
     
Interaction F .2128 .8278 .9996 
 FB .0938 .6324 .9898 
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Conclusion 

 
Based on our results and the results of Brunner, et 
al. (1997), we agree with those authors that there 
is no reason to use the classical ANOVA F-test, as 
long as cell sample size is at least 7. For smaller 
samples, when the normal theory assumptions 
hold, we prefer the classical ANOVA F-test, since 
the FB statistic becomes very conservative in this 
case. When samples are very small and variances 
are not equal, the ANOVA test suffers from 
inflated nominal levels and thus should be used 
with caution. The FB test, on the other hand, is 
always conservative in these situations, and thus is 
a good choice for those concerned mostly with 
avoiding making Type I errors. The obvious trade-
off for small sample sizes, however, is that the FB 
test is virtually powerless to detect small to 
moderate effects. 
 
Example 1. 
 We illustrate the method using an example 
given in Sokal and Rohlf (1995). The data are 
from an experiment to examine differences in food 
consumption when rancid lard was substituted for 
fresh lard in the diet of rats. The data are classified 
by fat (fresh, rancid) and gender (male, female). 
The amount of food eaten (in grams) is given in 
the following table: 
 
 Fats  

 Fresh Rancid 
Gender   

Male 709 592 
 679 538 
 699 476 
   
Female 657 508 
 594 505 
 677 539 
  
 A SAS program (available from the first 
author) was used to compute the p-values for both 
the ANOVA F-test and the FB test. Since cell 
sample sizes are equal, values of the F and FB 
statistics are identical. Notice that although the 
sample sizes are small (n = 3), there is very little 

difference between the p-values associated with 
the two methods, and only a strong effect of 
gender is evident from the data.   
 
Source of 
variation 

F p-
value 

FB p-
value 

Fats 2.593 0.146 2.593 0.153 
Gender 41.969 <0.001 41.969 <0.001 
Fats*Gender 0.630 0.450 0.630 0.454 
 
 
Example 2. 
 This example utilizes data presented in 
Kuehl (2000), page 224.  It is a 3x2 factorial 
experiment involving 3 levels of alcohol and two 
levels of base. Note that the data are unbalanced in 
terms of the number of replications per treatment 
combination.    
 Because the cell sample sizes are not 
equal, the calculated test statistics are not the same 
for the two methods, although the conclusions 
might be the same for both methods depending 
upon the level of significance the researcher 
adopted. The FB statistic gives stronger evidence 
for effects of interaction and main effects. 
   
 
 Alcohol   
Base 1 2 3 
1 90.7 89.3 89.5 

 91.4 88.1 87.6 
  90.4 88.3 
   90.3 
Mean 91.05 89.27 88.93 
Std Dev 0.49 1.15 1.21 
    
2 87.3 94.7 93.1 
 88.3  90.7 
 91.5  91.5 
Mean 89.03 94.7 91.77 
Std Dev 2.19 --- 1.22 
 
 
Source of 
variation 

F p-
value 

FB p-
value 

Alcohol 1.931 0.195 4.297 0.053 
Base 7.167 0.023 12.858 0.006 
Alcohol*Base 7.357 0.011 14.087 0.002 
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