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Abstract:

A procedure is studied that uses rank-transformed data to perform exact and estimated exact
tests, which is an alternative to the commonly used F-ratio test procedure. First, a common
parametric test statistic is computed using rank-transformed data, where two methods of ranking
— ranks taken for the original observations and ranks taken after aligning the observations — are
studied. Significance is then determined using either the exact permutation distribution of the
statistic or an estimate of this distribution based on a random sample of all possible permutations.
Simulation studies compare the performance of this method with the normal theory parametric F-
test and the traditional rank transform procedure. Power and nominal type | error rates are
compared under conditions when normal theory assumptions are satisfied, as well as when these
assumptions are violated. The method is studied for a two-factor factorial arrangement of
treatments in a completely randomized design and for a split-unit experiment. The power of the
tests rivals the parametric F-test when normal theory assumptions are satisfied, and is usually
superior when normal theory assumptions are not satisfied. Based on the evidence of this study,
the exact aligned rank procedure appears to be the overall best choice for performing tests in a
general factorial experiment.

Keywords: exact aligned rank procedure | F-ration test procedure | exact aligned test procedure
Article:
1. Introduction

In experiments to determine if one or more factors have an effect on a response, the researcher
typically can choose between one of two classes of analysis: para-metric and non-para metric
analysis. Parametric procedures exist for simple and for complex experiments, but the validity of
inferences made using these procedures depends on a set of unknown assumptions. The most
common of these in the analysis of designed experiments is the assumption of normally
distributed populations with equal variances. However, it is generally unknown to what extent
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the validity of the inferences suffers when the assumptions are not satisfied. In contrast, m any
non-para metric procedures require less stringent assumptions, such as independent samples and
observations, which can often be controlled by the experimenter. Furthermore, most of these
methods depend on the exact permutation distribution of the test statistic for making inferences.
However, as a result of the complexity of deriving the exact sampling distributions when sample
sizes are large, most non-para metric methods rely on the asymptotic distribution of the test
statistic. In addition, there exist few non-para metric procedures for analyzing complex
experimental designs, and most of those that do exist are very limited in application.

Conover and Iman (1976) addressed this situation, by proposing the procedure of performing
parametric procedures on the ranks of the data when it was suspected that the parametric
assumptions were violated. Many studies of the ‘rank transform’ procedure, however, have
shown it to be non-robust and lacking in power in some situations — most notably, in experiments
w here interaction is present (see Akritas, 1990; Blair et al., 1987; Sawilowsky et al., 1989;
Thompson & Ammann, 1990).

An adjustment to the usual rank transform, known as ‘ranking after alignment’, was first
proposed by Hodge s and Lehmann (1962). This adjustment has been found to make the rank
transform procedure more robust and more powerful in some situations, especially in designs
with interaction. However, asymptotic sampling distributions are still used for tests of
significance, and very few studies of the small-sample properties are available. Fawcett and
Salter (1984) and Groggel (1987) investigated the aligned rank procedure for testing main effects
in a randomized block design. Conover and Iman (1976) examined the aligned rank procedure
for testing for interaction in a two-factor factorial experiment, using small effect magnitudes.
Higgins et al. (1990) and H igg ins and Tashtoush (1994) considered the aligned rank procedure
for testing main effects and interaction in a two-factor factorial experiment, and for testing main
and subunit effects and interaction in a split-unit experiment.

In this paper, the performances of the usual rank transform and the aligned rank transform are
investigated when the exact permutation distribution of the sampling distribution of the test
statistic is used. Simulation studies compare the performances of these methods with that of the
parametric F-ratio test procedure when testing main effects and interaction in factorial and split-
unit experiments. Finally, a numerical example is presented to illustrate the implementation of
the method.

2. Estimating exact distributions

For complex designs with large sample sizes, the exact distribution of the test statistic will be
estimated based on a random sample of all possible permutations of the data. This method was
first proposed by D ass (1957) as ‘the most logical” way to obtain an approximation to Fisher’s
method of randomization, and tests based on this method of determining significance have
become known as ‘randomization tests’ (Edgington, 1995; Manly, 1991). This technique, when
applied to the actual observations, has the somewhat undesirable property that a possibly unique
sampling distribution must be constructed for each set of data. In addition, two researchers
performing a randomization test independently on the same set of data would probably obtain
slightly different p-values. For a large random sample (say 20 000) of permutations, however, it



is unlikely that two independent tests would arrive at different conclusions with regard to
significance. For example, for estimating the cumulative probability associated with the 95th
percentile of a sampling distribution based on a random sample of 20000 permutations, the
expected error of estimation, with 99% confidence, would be about 0.004, or 0.4%. Thus, very
precise estimates of the exact critical values of the sampling distribution can be obtained. When
applied to rank-transformed data, however, a unique sampling distribution would need to be
derived only for each possible sample size. Thus, it is possible to create tables of critical values,
given a particular sample size.

3. Simulation study for a completely randomized two-factor factorial experiment

3.1 Procedure

Simulated data sets were generated to examine the performance of the three methods: the
parametric F -test procedure (FT ), the exact rank transform test procedure (RT) and the exact

aligned rank transform test procedure (ART ). The following model was used to generate the
observations:

Y;‘j,r;: ¥ + A;‘ -+ Bj‘|— AB;‘J{‘F E;‘ﬂa
Here, A; is the effect of the ith level of treatment A, 15 1, 2, 3, 4; Bj is the effect of the jth level of
treatment B, j 5 1, 2, 3; AB;j; is the effect of the interaction between the ith level of factor A and
the jth level of factor B; and eij« is the random error effect, k5 1, 2, .. ., n. Although most
simulations investigated models for samples of size n 5 2, some models were also simulated with
n55andn5 10.

For the A RT, observations were aligned in the following manner: when testing interaction, an
aligned observation was

AYijp= Yip — (sample mean); — (sample mean);
when testing for main effects, an aligned observation for testing effect A was
Avip= Y — (sample mean);
and, for testing effect B, the aligned observation was
Avir= Yi,— (sample mean),

Standard nor m al and exponential (I 5 3) distributions were used to model the error distributions.
Effect sizes (denoted by c in the tabulated results) are in standard deviation units, and range in
magnitude from 0.5 (very small) to 3.5 (very large). In addition, models with variance
heterogeneity were investigated. In all cases, the reported variance ratio rep resents the ratio of
the largest to the smallest variance. Critical values for both rank tests were estimated by



calculating the value of the test statistic for a random sample of 20 000 permutations of the ranks
of the data. 10000 samples were generated and the proportion of test statistic values greater than
or equal to the critical values for the respective sampling distributions was calculated. Thus, for
estimating a nominal type | error rate of 0.05, the maxim um error of estimation is 0.0056, with
99% confidence (values outside of this range are in bold in the tables that follow).

3.2 Results

First, we consider normally distributed errors with equal variances (see Tables 1 and 2). The
ART consistently showed power almost equal to that of the FT. The ART often had slightly
inflated, nominal type I error rates, but the inflation was never severe and did not appear to be
affected by the magnitude of the modeled effects. The RT tended to com pare favorably in most
cases, but showed poor power when both main effects and interaction were present in the
model—especially for testing interaction. In addition, for all models, the RT h ad nominal type I
error rates that inflated as the magnitude of the effects increased. For a more detailed study of the
performance of the RT when the parametric assumptions are satisfied, see Blair et al. (1987).

TaptE 1. Proportion of rejections at o= 0.05, normally distributed errors with

squal variance

" Test for Test 0.5 1.% 2.5 3.5
2 Factor A FI 0.210 0.968 1.00 1.00
RT 0.199 0.942 1.0 1.00
ART 0.199 0.959 1.0 1.00
Factor B FI 0.329 0.999 1.00 1.00
RT 0.317 0.996 1.0 1.00
ART 0.319 0.998 1.0 1.0
Interaction FI 0050 0050 0050 0050
RT 0.054 0.054 0054 0.068
ART 0.056 0.056 0056 0056
10  Imteracrion FI 0.049 0.049 0049 0049
RT 0.051 0.134 0.671 0.997
ART 0050 0050 0050 0050
Note: A4 and B main cffects present (ga= b &y @1 = ba — ¢» ¢= 0 for all other

cftects).



TABRLE 2. Proportion of rejections at a= 0.05%, normally distributed errors
with equal variance: = 2

Test for Test 0.5 1.5 25 3.5
Factor 4 Fr 0.066 0.213 0.527 0.830
BT 0.066 0.132 0.193 0218
ART 0.065 0.153 0.252 0.290
Factor B Fr 0.139 0.780 0.oo07 1.00
RT 0.134 0.652 0.940 0.994
ART 0.140 0.732 0.989 1.00
Interaction Fr 0,069 0.260 0.655 mo3l
RT 0.066 0.153 0.230 0.264
ART 0.075 0.251 0.617 0.90%
Note: A, B and interaction cffects present (aby= ¢y b= abau= —¢;c= 0 for

all other effects).

TapLE 3. Proportion of rejections at = 0.05, identically exponentially distributed

CITors
n Test for Test 0.5 1.5 2.5 3.5
2 Factor 4 FT 0.0 66 0.246 0.574 0.828
ET 0.083 0.314 0.621 0.834
ART 0.086 0.335 0.665 0nB7T7
Factor B FT 0.084 0.386 0.762 0.943
ET 0.119 0.497 0.825 0.956
ART 0.113 0485 0.839 0.966
Interaction Fr 0.055 0.055 0.055 0.055
ET 0.058 0.059 0.059 0.057
ART 0.074 0.074 0.074 0.074
10 Factor A FT 0.172 0898 1.00 1.00
ET 0.329 0.985 1.00 1.00
ART 0.332 0.993 1.00 1.00
Factor B FT 0.251 0.977 1.00 1.00
ET 0.477 0.999 1.00 1.00
ART 0.463 1.00 1.00 1.00
Interaction Fr 0.048 0.048 0.048 0048
ET 0.053 0.060 0.078 0.121
ART 0.061 0.061 0.061 0.061
Note: 4 and B main effects present (@:= b= ¢, ay= b= —¢; ¢= 0 for all other

effects).



Next, we consider exponentially distributed error s (see Tables 3 and 4). Both rank tests had
superior power relative to the FT. A notable exception was the model which had both main
effects and interaction present, where the RT again had less power for testing interaction than in
other models. Although the power of the RT was about the same as that of the FT for most
models (except when effect magnitudes became very large, where the FT usually had more
power), it was still outperformed by the ART. Interestingly, for small sample sizes (n 5 2
observations per cell), when the error distributions were non-nor mal, the nominal type | error
rates for the RT did not show a tendency to inflate as the magnitudes of the effects increased.

Finally, we consider normally distributed errors with unequal variances (see Tables 5 and 6).
This was a much more serious problem than the lack of normality. The power for all methods
was less than was found in the equal variance case, and this decrease in power became more
severe as the degree of heterogeneity between variances increased. However, both rank tests
consistently outperformed the FT in the power category, except for the RT in the previously
discussed model. However, the FT did often exhibit slightly higher power for very small effect
magnitudes. In addition, the ART usually h ad more power for testing interaction than did the
RT. Examination of nominal type | error rates for testing interaction when none was
modeled revealed that these rates were inflated for all three methods, with more severe inflation
occur ring when the variances differed more. This indicated that variance heterogeneity actually
tended to be falsely interpreted as interaction more often than would be expected. The ART
seemed to be the most sensitive to this false interaction, which is not surprising, because the
alignment procedure isolates the effect of interaction; next most sensitive was the FT and then
the RT. Thus, it is not surprising that the A RT showed more power when interaction was
actually modeled. The RT was the least sensitive to the presence of interaction.

The problem of nominal type | error rate inflation was not limited only to the test for interaction,
however. When only one main effect was modeled along with an interaction effect, the nominal
type | error rates for testing the unmodeled main effect were also inflated for all methods. Thus,
it is apparent that variance heterogeneity can produce very erratic behavior in the analysis.



TABLE 4. Proportion of rejections at o= 0.05%, identically exponentially distributed

CITOrS
W Test for Test 0.5 1.% 2.5 35
2 Facror A Fr 0.049 0.063 0.097 0.154
RT 0.054 0.073 0.094 0.121
ART 0.057 0.080 0113 0.151
Factor B Fr 0.057 0.155 0.362 0.610
RT 0.073 0.224 0.405 0.576
ART 0.072 0.208 0.420 0.634
Interaction Fr 0.058 0.075 o113 0.186
RT 0.059 0.082 0109 0.142
ART 0.076 0.1 00 0.153 0.234
10 Facror A Fr 0.059 0.167 0412 0.707
RT 0.077 0.238 0.443 0.616
ART 0.075 0.268 0.549 0.774
Factor B Fr 0.113 0.638 0.961 1.00
RT 0.200 0.832 0.986 1.00
ART 0.185 0.841 0.992 1.00
Interaction Fr 0065 0.227 0.592 0.891
RT 0.089 0.335 0.634 0.836
ART 009l 0.412 0.846 0.984
Note: A, B and interaction effects present (abpy= ¢ b= aby —¢; ¢= 0 for all

other effects).

TARLE 5. Proportion of rejections at a= 0.05, normally distributed errors
with unequal variance: m= 2

Test for Test 0.5 1.5 2.5 3.5
Factor A FT 0. 108 0.218 0.475 0.753
BT 0,096 0.280 0.562 0.802
ART 0,097 279 0.613 0.874
Factor B FT 0. 108 0.313 0.651 0.887
BT 0102 0.380 0.718 D914
ART 0,105 0.406 0.757 0.945
Interaction FT 0.113 0.113 0.113 0.113
BT 0.080 0.089 0.110 0.111
ART 0.134 0.134 0.134 0.134

Notes: Rario of largest to smallest variance, 30:1. 4 and B main effects
present (g:= b= ¢y ay= ba= — g ¢= 0 for all other effects).



TABLE 6. Proportion of rejections at o= 0.05, normally distribured errors

with unequal variance: g = 2
Test for Test 0.5 1.5 2.5 3.5
Factor A FT 0097 LN ] 0.132 0167
BT 0.076 0090 0.115 0.146
ART 0082 0093 0.118 o144
Factor B FT 0090 0160 0.291 0481
BT 0.075 0.144 0.275 0.455
ART 0075 0153 0.302 0.5006
Interaction FT 0117 0.132 0.164 0211
BT 0.078 008G 0110 0o.140
ART 0.135 0157 0.193 0.248

Nores: Rartio of largest to smallest variance, 30:1. 4, B and interacrion
effects present (ab,, = ¢ by = aby, = — ¢ ¢c= 0 for all other effecrs).

4. Simulation study for a split-unit experiment
4.1 Procedure

Simulated data sets were generated to examine the performance of the three methods. A split-
unit experiment with main units in a randomized complete block design was considered. The
following model was used to generate the observations:

Y;}'k — B;—l— l‘r’“fj-F BM;‘J{‘F Sk—|— SMJ;,{»+ E;‘jk

Here, B; is the random effect of the ith block, i = 1, 2, 3; M j is the fixed effect of the jth level of
the main unit treatment, j = 1, 2, 3, 4; BMj; is the random effect of the interaction between the ith
block and the jth level of the main unit treatment; Sk is the fixed effect of the kth level of the sub
unit treatment, k = 1, 2, 3; SMj« is the fixed effect of the interaction between the jth level of the
subunit treatment with the kth level of the main unit treatment; and Eij is the random subunit
error effect.

The random effect BM;j was used as the error to test for the effect of the main unit treatment,
while the random effect Ejjx was used as the error to test both the subunit treatment effect Sk and
the interaction effect SMj. Standard nor mal (both with homogeneous and heterogeneous
variances), exponential (« = 3) and uniform [- 3, 3] distributions were used to model the error
distributions. 10000 samples were generated, and the proportion of test statistic values greater
than or equal to the critical values for the respective sampling distributions was calculated.

For the aligned rank procedure, three different methods of aligning were used, depending on the
effect being tested. For testing the main unit treatment effect, the observations were aligned by
subtracting estimates of both block and subunit treatment effects. For testing the subunit



treatment effect, estimates of both block and main unit treatment effects were subtracted from
each observation. Finally, for testing the interaction, the observations were aligned by
subtracting block, main unit and subunit effect estimates.

Once again, in each case where unequal error variances were modeled, the reported ratio
represents the ratio of the largest to the smallest variance.

4.2 Results

First, we consider normally distributed main unit and subunit errors (see Tables 7 and 8). In this
situation, all random effects were modeled as identically distributed, standard normal
distributions. The performance observed for each of the three methods was almost identical to
that found in the previous study of the two-way layout in a completely randomized design. Both
rank tests consistently exhibited power almost equal to that of the FT. As in the completely
randomized case, the RT again showed poor power for testing interaction when both main and
subunit main effects and interaction were present in the model. When only main and subunit
effects were in the model, the RT again exhibited type | error rates that inflated as the magnitude
of the effects increased. However, this behavior was not as evident for other models.

Next, we consider exponentially distributed errors (see Tables 9 and 10). When the sub unit error
effect was exponentially distributed, both the rank tests had more power than did the FT for all
models. When all the fixed effects were in the model, the power of the A RT was clearly superior
to those of the other two tests, although the drop-o p in power for the RT was not as severe as
had been observed in previous situations.

TABLE 7. Proportion of rejections at a= 0.0%, normally distributed errors

with equal variance

Test for Test 0.5 1.5 25 3.5
MU Trr Fr 0.088 0.474 0900 0.994
KT 0091 0.467 0.889 0.993
ART 0.096 0.481 0.897 0.993
50U Trr Fr 0. 500 1.00 1.0 1.00
KT 0. 449 1.00 1.0 1.00
ART 0.473 1.00 1.0 1.00
Interaction Fr 0.049 0.049 0049 0049
KT 0. 046 0.047 0.077 0.148
ART 0.049 0.049 0049 0049

Notes: MU (main unit) and SU (sub unit), main effects present (m.= 5= ¢,
M= 5 — & ¢ = 0 for all other effects).



TABLE E. Proportion of rejections at @= 0.05, normally distribured errors
with equal variance

Test for Test 0.5 1.5 25 3.5
MU Trt FI 0.052 0087 D168 0.298
BT 0.057 0.078 0114 0.146
ART 0.058 0087 0123 0.155
S5U Trt FI 0187 0.942 1.00 1.00
BT 0. 168 0.875 0998 1.00
ART 0179 noll 1.00 1.00
Interaction FI 0.079 0416 0894 0.997
BT 0.070 0.269 0.497 0.642
ART 0.075 0.383 0850 0.991
Now: MU, 5U main effects and interaction effect present (msn= — ¢
5 msy= ¢ ¢= 0 for all other effects).

TABLE 9. Proportion of rejections at o= 0.0%, exponentially distribured
subunit errors, normally distributed block effect and main unit errors

Test for Test 0.5 1.5 25 1.5
MU Trt Fr 0.066 0198 0470 0.748
ET 0.074 0.234 0.513 0.770
ART 0.074 0.240 0.542 0.801
SU Tre Fr 0.095 0.543 0909 0.989
ET 0.126 0.637 0.948 0.996
ART 0.125 0.655 0.952 0.997
Interaction Fr 0.044 0044 0044 0.044
ET 0.049 0049 0049 0.055
ART 0.058 0.058 0.058 0.058
Note: MU and 5U main effects present (mz= si= ¢y mr= 52 — i c= 0 for

all other effects).

Finally, we consider heterogeneous error s (see Tables 11 + 14). Two cases were considered.
One of the errors was modeled as being normally distributed with heterogeneous
variances, while the other error was modeled as being normally distributed with homogeneous
variances. In each case, the block effect was modeled as having a standard normal distribution.
For all models, the ratio between the largest and the smallest variances was considered to be 30 :
1 (very large). As in the completely randomized case, unequal error variances turned out to be a
more serious problem than was the lack of normality. However, while the performance of the
rank tests was generally better than that of the FT in the completely randomized case, the results
were mixed in the split-unit case.



TABLE 10. Proportion of rejections at o= 0.05, exponenrtially distribured
subunit errors, nor mally distributed block effect and main unit errors

Test for Test 0.5 1.5 25 3.0
MU Trt Fr 0.054 0068 0096 0.138
RT 0.055 0.070 0.094 0.120
ART 0.056 0.074 0.098 0.132
5U Trt Fr 0,061 0.220 0518 0.778
RT 0.076 0.282 0.574 0.778
ART 0.076 0.274 0.582 0.805
Interaction Fr 0.050 0080 o160 0.288
RT 0.055 0.094 0.155 0.227
ART 0. 064 0.105 0.198 0.345
Note: MU, 5U main effects and interaction effect present (msn — &y

5 msy= ¢i ¢= O for all other effects).

TARIE 11. Proportion of rejections at = 0.05%, normally distributed errors, unegual main
unit €rror variancoes

Tesr for Tesr 0.0 0.5 1.5 2.5 35
MU Trt FI 0.0B3 0088 0.130 0.223 0.366
BT 0.000 0.0 5 0.151 0.257 0.405
ART 0.084 0090 0.142 0.258 0.407
sSU Trt FI 0.050 0.509 1.00 1.00 1.00
BT 0.056 0422 L.o0o 1.0 1.00
ART 0.050 0440 L.o0o 1.0 1.00
Interaction FI 0.052 0.0532 0.052 0.052 0.052
BT 0.051 0057 0.080 0.107 0.120
ART 0.050 0.050 0.050 0.050 0.050

Nores: Ratio of largest to smallest variance, 30:1. MU and SU main cffects present
(M= 5= ¢y M= 52= — g3 ¢= 0 for all other effects).

The power of all tests was lower when the main units had heterogeneous variances, and the
power reduced as the degree of heterogeneity increased. When only main unit and subunit
treatment effects were present, the rank tests exhibited better power for testing for main unit
treatment effects, but slightly less power for testing for subunit treatment effects. In addition, the
RT had nominal type | error rates that increased steadily with increasing effect magnitudes.
When all the effects were present, the FT exhibited the best power, with the ART close behind
and the RT a distant third.

The rank tests performed consistently better than did the FT when the subunit error effect had
unequal variances. When the ratio of the largest to the smallest variance was 30 : 1, the rank tests



exhibited more power. For all the methods, there was also a slight nominal type | error rate
inflation for testing the interaction effect, which became more severe as the variance ratio
increased. Surprisingly, the RT showed less inflation than did either the FT or the ART. When
only both main and subunit effects were modeled, the rank tests were much more powerful, with
some nominal type | error rate inflation for testing interaction evident for all the methods.
However, while the FT and the ART nominal rates remained constant as the magnitude of the
effects increased, the RT showed its familiar inflation as an increasing function of effect
magnitude. When all the fixed effects were in the model, the ART exhibited much more power
than did the other two methods for testing interaction.

TABRLE 12, Proportion of rejections at = 0.05, normally distributed errors,

unequal main unit error variances

[

Test for Test 0.5 1.5 25 3.5
MU Trr Fr 0.084 0088 0097 0.109
KT 0091 0092 0094 0101
ART 0.085 0087 0094 0.103
50U Trr Fr 0.194 0.936 1.0 1.0
KT 0.133 0691 0.969 1.0
ART 0.144 0777 0991 1.0
Interaction Fr 0.082 0.421 0890 0.996
KT 0.067 0.152 0.302 0.458
ART 0.070 0.307 0.735 0.947

Notes: Rartio of largest to smallest variance, 30:1. MU, 5U main effects and
interaction effect present (ms,,= — o 51 = M= o ¢c= 0 for all other effects).

Investigation of the nominal type I error rates when the main or subunit variances were unequal
revealed a problem of inflated nominal type | error rates similar to that of the completely
randomized experiment (see Tables 13 and 14). When the main unit variances were
heterogeneous, the nominal type I error rates for testing the main unit treatment effects were
often larger than expected. When the subunit variances were heterogeneous, the nominal type |
error rates for testing for subunit treatment and interaction effects were always inflated.
However, heterogeneous main unit variances did not adversely affect the nominal levels of the
subunit tests, and vice versa. Once again, the inflation of the nominal rates for the RT was often
a function of the magnitude of the modeled effects, while the inflation of the nominal rates for
the FT and the ART seemed to be independent of the effect magnitude. This again indicates that,
when error variances are heterogeneous, test results may be misleading, especially when testing
for interaction. This was not a problem when one of the underlying populations was skewed
(exponentially distributed).



TARIE 13. Proportion of rejections at ¢= 0.05, normally distributed errors, unegual
subunit error variances

Tesr for Tesr 0.0 0.5 1.5 2.5 15
MU Trt FI 0.052 0.063 0155 0.350 0.619
BT 0055 0.070 0. 184 0.389 0.625
ART 0.052 0.067 0191 0.437 0.701
sSU Trt FI 0.074 0.095 0.411 0.211 0.999
BT 0.073 0131 0. 666 0.985 100
ART 0.068 0114 0636 0.984 1.0
Interaction FI 0.083 0.083 0.083 0.083 0.083
BT 0.065 0.065 0.074 0.081 0.083
ART 0.105 0.105 0. 105 0.105 0.105

Notes: Ratio of largest to smallest variance, 30:1. MU and SU main effects present
(M= 5= s My= 52= — ¢ ¢= 0 for all other effects).

TABLE 14. Proportion of rejections at a= 0.0%, normally distributed errors,
unequal subunit error variances

Test for Test 0.5 1.5 2.5 .5
MU Trr Fr 0.053 0059 0.079 o111
BT 0.057 0075 0.095 0122
ART 0054 0073 0101 0.135
SU Tre Fr 0081 0159 0.370 0682
BT 0,090 0.240 0.537 0ElG
ART 0.07T8 0210 0.510 nEl4
Interaction Fr 0.085 0102 0.143 0219
BT 0.070 0107 0.170 0.242
ART 0. 108 0.135 0.193 0.294

Nores: Ratio of largest to smallest variance, 30:1. MU, SU main effects and
interaction effect present (ms,,= — ¢ 51= msny= ¢ ¢= 0 forall other effects).

5. Conclusion and summary

The exact aligned rank procedure appears to be the overall best choice for performing tests in a
general factorial experiment. When the error distribution was symmetric and the error variances
were homogeneous, the ART was nearly as powerful as was the FT, with an almost negligible
difference in power between the two methods. For a skewed error distribution, the ART was
clearly more powerful than was the FT. When the error variances were heterogeneous, both
methods led to problems with maintaining nominal type | error levels for testing interaction, but
the ART showed superior power for detecting main effects and interaction.



Although the results were not as consistent as for the completely randomized case, the exact
aligned rank procedure appears to be a viable alternative to the normal theory FT for performing
tests in a split-unit factorial design; it is certainly a better choice than is the rank transform
method. Once more, when the error distributions were normal and the error variances were
homogeneous (situations in which the FT is known to work well), the ART was always nearly as
powerful, usually with an almost negligible difference in power between the two methods. For
exponential error distributions, the ART was clearly more powerful than the FT. Uniformly
distributed errors were also examined for several models. The results were nearly identical to
those in the case for normally distributed errors, with the FT having the most power, followed
closely by the ART and then the RT. Again, the ART often had slightly inflated nominal type |
error rates for testing interaction. When the error variances were heterogeneous, both methods
tended to lead to problems with maintaining nominal type | error levels for interaction — although
these problems were less severe in the split-unit case — while the ART usually exhibited superior
power for detecting main effects.

Although the FT outperformed the ART in some cases, even when parametric assumptions were
violated, the ART had superior power in most cases, and tended to enjoy a greater power
advantage when it was the more powerful test, especially when the assumptions of normality and
homogeneity of variance were violated. Although the simulation results indicate that a non-
existent interaction effect can be introduced when error variances are unequal, this phenomenon
occurs for the FT and for the ART. Because the analysis is typically performed without the
benefit of definite knowledge of the nature of the error variances, and because the ART generally
has more power than does the FT when the variances are unequal, the ART seems a logical
choice over the FT.

One issue that deserves comment is the choice of estimator used for aligning observations. The
mean was used in this study, but an argument could be made for using a more robust measure,
especially when the error distribution is skewed. Higgins and Tashtoush (1994) examined the use
of the trim med mean and the median, but concluded that the gain in power did not necessarily
outweigh the greater ease of implementation of the procedure using the mean. Also, regardless of
which estimator of location is used, the performance of the test maybe affected by the properties
of that estimator for the underlying error distribution. This may explain the inflated type I error
rates observed for samples from skewed distributions, for example, where the mean is probably
not the most robust measure of location.

Another issue is the problem of heterogeneous errors, which is generally considered to be a more
serious problem than is departure from normality. Other transformations can sometimes be used
to lessen the effect of variance heterogeneity but, because the purpose of this study was to
improve the performance of the rank transform procedure, additional transformations were not
investigated. However, it is possible that an additional transformation could help to alleviate the
problem of inflated nominal type | error rates.

6. Example



The following example (Ott, 1993, p. 884) illustrates an experiment conducted to determine the
effects of four different pesticides (A1, A2, A 3, A4) on the yield of fruit from three different
varieties (B 1, B 2, B 3) of a citrus tree. Eight trees from each variety were randomly selected
from an orchard. The four pesticides were then randomly assigned to two trees of a particular
variety and applications were made according to the recommended levels. The yields of fruit, in
bushels per tree, were obtained after the test period. These data appear in Table 15.

TABLE 15. Yields, in bushels, of 24 citrus trees, with two trecs of cach variety

random ly assigned to one of four pesticides

Pesticide (4)

Variable (B) 1 2 3 4 Mean

1 49 50 43 53 46.88
3o 55 38 48

2 55 67 53 85 59.25
41 58 432 73

3 G 85 69 85 78.25
68 032 62 oo

Mean 53.00 67.83 51.17 7383 G1.46

TARLE 16. The aligned observarions obtained by subtracting the respec-
tive variety and pesticide means from the observarions in Table 15

Pesticide (A4)

Varicty (H) 1 2 3 4
— 50.88 — 64.71 — 55.05 — 67.71
1 — G0.BE — 59.71 — 60.05 — T2.71
— 57.25 — 6008 — 574 — 48.08
2 — 71.25 — G908 — 6G8.42 — 60.08
— 65.25 — G61.08 — 60.42 — 67.08
3 — 63.25 — 54.08 — 67.42 — 53.08

TARLIE 17. Ranks of the aligned observations in Table 16

Pesticide ()

Variety (B) 1 2 3 4
23 o 20 5
1 12 17 16 1
19 14.5 18 24
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We will illustrate the test for the interaction effect (AB ). Subtracting the corresponding row and
column means from each observation, we obtain the aligned observations in Table 16.

Ranking these observations, without regard to factor level, we obtain the results shown in Table
17.

Computing the ordinary F-ratio statistic, F = MS(AB )/M S(E ), we obtain F = 82.542 /54.271 =
1.52. Because the 0.9 quantile of this statistic is 2.356, there is insufficient evidence of an
interaction effect. It was found that the estimated exact tail quantiles of the aligned rank F -ratio
statistics were very close to the theoretical F distribution (for this example, F(0.9, 6, 12) 5 2.33).
Thus, in practice, there will be little difference in using tables of the F distribution to determine
significance instead of the exact quantiles.
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