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Abstract:  
 

A procedure is studied that uses rank-transformed data to perform exact and estimated exact 

tests, which is an alternative to the commonly used F-ratio test procedure. First, a common 

parametric test statistic is computed using rank-transformed data, where two methods of ranking 

– ranks taken for the original observations and ranks taken after aligning the observations – are 

studied. Significance is then determined using either the exact permutation distribution of the 

statistic or an estimate of this distribution based on a random sample of all possible permutations. 

Simulation studies compare the performance of this method with the normal theory parametric F-

test and the traditional rank transform procedure. Power and nominal type I error rates are 

compared under conditions when normal theory assumptions are satisfied, as well as when these 

assumptions are violated.  The method is studied for a two-factor factorial arrangement of 

treatments in a completely randomized design and for a split-unit experiment. The power of the 

tests rivals the parametric F-test when normal theory assumptions are satisfied, and is usually 

superior when normal theory assumptions are not satisfied. Based on the evidence of this study, 

the exact aligned rank procedure appears to be the overall best choice for performing tests in a 

general factorial experiment. 
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Article:  
 

1. Introduction  
 

In experiments to determine if one or more factors have an effect on a response, the researcher 

typically can choose between one of two classes of analysis: para-metric and non-para metric 

analysis. Parametric procedures exist for simple and for complex experiments, but the validity of 

inferences made using these procedures depends on a set of unknown assumptions. The most 

common of these in the analysis of designed experiments is the assumption of normally 

distributed populations with equal variances. However, it is generally unknown to what extent 
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the validity of the inferences suffers when the assumptions are not satisfied. In contrast, m any 

non-para metric procedures require less stringent assumptions, such as independent samples and 

observations, which can often be controlled by the experimenter. Furthermore, most of these 

methods depend on the exact permutation distribution of the test statistic for making inferences. 

However, as a result of the complexity of deriving the exact sampling distributions when sample 

sizes are large, most non-para metric methods rely on the asymptotic distribution of the test 

statistic. In addition, there exist few non-para metric procedures for analyzing complex 

experimental designs, and most of those that do exist are very limited in application. 

 

Conover and Iman (1976) addressed this situation, by proposing the procedure of performing 

parametric procedures on the ranks of the data when it was suspected that the parametric 

assumptions were violated. Many studies of the ‘rank transform’ procedure, however, have 

shown it to be non-robust and lacking in power in some situations – most notably, in experiments 

w here interaction is present (see Akritas, 1990; Blair et al., 1987; Sawilowsky et al., 1989; 

Thompson & Ammann, 1990). 

 

An adjustment to the usual rank transform, known as ‘ranking after alignment’, was first 

proposed by Hodge s and Lehmann (1962). This adjustment has been found to make the rank 

transform procedure more robust and more powerful in some situations, especially in designs 

with interaction. However, asymptotic sampling distributions are still used for tests of 

significance, and very few studies of the small-sample properties are available. Fawcett and 

Salter (1984) and Groggel (1987) investigated the aligned rank procedure for testing main effects 

in a randomized block design. Conover and Iman (1976) examined the aligned rank procedure 

for testing for interaction in a two-factor factorial experiment, using small effect magnitudes. 

Higgins et al. (1990) and H igg ins and Tashtoush (1994) considered the aligned rank procedure 

for testing main effects and interaction in a two-factor factorial experiment, and for testing main 

and subunit effects and interaction in a split-unit experiment. 

 

In this paper, the performances of the usual rank transform and the aligned rank transform are 

investigated when the exact permutation distribution of the sampling distribution of the test 

statistic is used. Simulation studies compare the performances of these methods with that of the 

parametric F-ratio test procedure when testing main effects and interaction in factorial and split-

unit experiments. Finally, a numerical example is presented to illustrate the implementation of 

the method. 

 

2. Estimating exact distributions 
 

For complex designs with large sample sizes, the exact distribution of the test statistic will be 

estimated based on a random sample of all possible permutations of the data. This method was 

first proposed by D ass (1957) as ‘the most logical’ way to obtain an approximation to Fisher’s 

method of randomization, and tests based on this method of determining significance have 

become known as ‘randomization tests’ (Edgington, 1995; Manly, 1991). This technique, when 

applied to the actual observations, has the somewhat undesirable property that a possibly unique 

sampling distribution must be constructed for each set of data. In addition, two researchers 

performing a randomization test independently on the same set of data would probably obtain 

slightly different p-values. For a large random sample (say 20 000) of permutations, however, it 



is unlikely that two independent tests would arrive at different conclusions with regard to 

significance. For example, for estimating the cumulative probability associated with the 95th 

percentile of a sampling distribution based on a random sample of 20000 permutations, the 

expected error of estimation, with 99% confidence, would be about 0.004, or 0.4%. Thus, very 

precise estimates of the exact critical values of the sampling distribution can be obtained. When 

applied to rank-transformed data, however, a unique sampling distribution would need to be 

derived only for each possible sample size. Thus, it is possible to create tables of critical values, 

given a particular sample size. 

 

3. Simulation study for a completely randomized two-factor factorial experiment 
 

3.1 Procedure 

 

Simulated data sets were  generated  to examine the performance  of the three methods: the  

parametric  F -test  procedure  (FT ),  the exact rank transform test procedure (RT) and the exact 

aligned rank transform test procedure (ART ). The following model was used to generate the 

observations: 

 

 
 

Here, Ai is the effect of the ith level of treatment A, i 5 1, 2, 3, 4; Bj is the effect of the jth level of 

treatment B, j 5 1, 2, 3; ABij is the effect of the interaction between the ith level of factor A and 

the jth level of factor B; and eijk is the random error effect, k 5 1, 2, . . . , n. Although most 

simulations investigated models for samples of size n 5 2, some models were also simulated with 

n 5 5 and n 5 10. 

 

For the A RT, observations were aligned in the following manner: when testing interaction, an 

aligned observation was 

 

 
 

when testing for main effects, an aligned observation for testing effect A was 

 

 
 

and, for testing effect B, the aligned observation was 

 

 
 

Standard nor m al and exponential (l 5 3) distributions were used to model the error distributions. 

Effect sizes (denoted by c in the tabulated results) are in standard deviation units, and range in 

magnitude from 0.5 (very small) to 3.5 (very large). In addition, models with variance 

heterogeneity were investigated. In all cases, the reported variance ratio rep resents the ratio of 

the largest to the smallest variance. Critical values for both rank tests were estimated by 



calculating the value of the test statistic for a random sample of 20 000 permutations of the ranks 

of the data. 10000 samples were generated and the proportion of test statistic values greater than 

or equal to the critical values for the respective sampling distributions was calculated. Thus, for 

estimating a nominal type I error rate of 0.05, the maxim um error of estimation is 0.0056, with 

99% confidence (values outside of this range are in bold in the tables that follow). 

 

3.2 Results 

 

First, we consider normally distributed errors with equal variances (see Tables 1 and 2). The 

ART consistently showed power almost equal to that of the FT. The ART often had slightly 

inflated, nominal type I error rates, but the inflation was never severe and did not appear to be 

affected by the magnitude of the modeled effects. The RT tended to com pare favorably in most 

cases, but showed poor power when both main effects and interaction were present in the 

model—especially for testing interaction. In addition, for all models, the RT h ad nominal type I 

error rates that inflated as the magnitude of the effects increased. For a more detailed study of the 

performance of the RT when the parametric assumptions are satisfied, see Blair et al. (1987). 

 

 
 



 
 

 
 



Next, we consider exponentially distributed error s (see Tables 3 and 4). Both rank tests had 

superior power relative to the FT. A notable exception was the model which had both main 

effects and interaction present, where the RT again had less power for testing interaction than in 

other models. Although the power of the RT was about the same as that of the FT for most 

models (except when effect magnitudes became very large, where the FT usually had more 

power), it was still outperformed by the ART. Interestingly, for small sample sizes (n 5 2 

observations per cell), when the error distributions were non-nor mal, the nominal type I error 

rates for the RT did not show a tendency to inflate as the magnitudes of the effects increased. 

 

Finally, we consider normally distributed errors with unequal variances (see Tables 5 and 6). 

This was a much more serious problem than the lack of normality. The power for all methods 

was less than was found in the equal variance case, and this decrease in power became more 

severe as the degree of heterogeneity between variances increased. However, both rank tests 

consistently outperformed the FT in the power category, except for the RT in the previously 

discussed model. However, the FT did often exhibit slightly higher power for very small effect 

magnitudes. In addition, the ART usually h ad more power for testing interaction than did the 

RT. Examination  of  nominal  type  I error  rates  for  testing  interaction  when  none  was 

modeled revealed that these rates were inflated for  all three methods, with more severe inflation 

occur ring when the variances differed more. This indicated that variance heterogeneity actually 

tended to be falsely interpreted as interaction more often than would be expected. The ART 

seemed to be the most sensitive to this false interaction, which is not surprising, because the 

alignment procedure isolates the effect of interaction; next most sensitive was the FT and then 

the RT. Thus, it is not surprising that the A RT showed more power when interaction was 

actually modeled. The RT was the least sensitive to the presence of interaction. 

 

The problem of nominal type I error rate inflation was not limited only to the test for interaction, 

however. When only one main effect was modeled along with an interaction effect, the nominal 

type I error rates for testing the unmodeled main effect were also inflated for all methods. Thus, 

it is apparent that variance heterogeneity can produce very erratic behavior in the analysis. 

 



 
 

 
 



 
 

4. Simulation study for a split-unit experiment 
 

4.1 Procedure 

 

Simulated data sets were generated to examine the performance of the three methods. A split-

unit experiment with main units in a randomized complete block design was considered. The 

following model was used to generate the observations: 

 

 
 

Here, Bi is the random effect of the ith block, i = 1, 2, 3; M j is the fixed effect of the jth level of 

the main unit treatment, j = 1, 2, 3, 4; BMij is the random effect of the interaction between the ith 

block and the jth level of the main unit treatment; Sk is the fixed effect of the kth level of the sub 

unit treatment, k = 1, 2, 3; SMjk is the fixed effect of the interaction between the jth level of the 

subunit treatment with the kth level of the main unit treatment; and Eijk is the random subunit 

error effect. 

 

The random effect BMij was used as the error to test for the effect of the main unit treatment, 

while the random effect Eijk was used as the error to test both the subunit treatment effect Sk and 

the interaction effect SMjk. Standard nor mal (both with homogeneous and heterogeneous 

variances), exponential (μ = 3) and uniform [- 3, 3] distributions were used to model the error 

distributions. 10000 samples were generated, and the proportion of test statistic values greater 

than or equal to the critical values for the respective sampling distributions was calculated. 

 

For the aligned rank procedure, three different methods of aligning were used, depending on the 

effect being tested. For testing the main unit treatment effect, the observations were aligned by 

subtracting estimates of both block and subunit treatment effects. For testing the subunit 



treatment effect, estimates of both block and main unit treatment effects were subtracted from 

each observation. Finally, for testing the interaction, the observations were aligned by 

subtracting block, main unit and subunit effect estimates. 

 

Once  again,  in  each  case  where  unequal  error  variances  were  modeled,  the reported ratio 

represents the ratio of the largest to the smallest variance. 

 

4.2 Results 

 

First, we consider normally distributed main unit and subunit errors (see Tables 7 and 8). In this 

situation, all random effects were modeled as identically distributed, standard normal 

distributions. The performance observed for each of the three methods was almost identical to 

that found in the previous study of the two-way layout in a completely randomized design. Both 

rank tests consistently exhibited power almost equal to that of the FT. As in the completely 

randomized case, the RT again showed poor power for testing interaction when both main and 

subunit main effects and interaction were present in the model. When only main and subunit 

effects were in the model, the RT again exhibited type I error rates that inflated as the magnitude 

of the effects increased. However, this behavior was not as evident for other models. 

 

Next, we consider exponentially distributed errors (see Tables 9 and 10). When the sub unit error 

effect was exponentially distributed, both the rank tests had more power than did the FT for all 

models. When all the fixed effects were in the model, the power of the A RT was clearly superior 

to those of the other two tests, although the drop-o þ in power for the RT was not as severe as 

had been observed in previous situations. 

 

 
 



 
 

 
 

Finally, we consider heterogeneous error s (see Tables 11 ± 14). Two cases were considered.  

One  of  the  errors  was  modeled  as  being  normally  distributed  with heterogeneous 

variances, while the other error was  modeled  as  being  normally distributed with homogeneous 

variances. In each case, the block effect was modeled as having a standard normal distribution. 

For all models, the ratio between the largest and the smallest variances was considered to be 30 : 

1 (very large). As in the completely randomized case, unequal error variances turned out to be a 

more serious problem than was the lack of normality. However, while the performance of the 

rank tests was generally better than that of the FT in the completely randomized case, the results 

were mixed in the split-unit case. 

 



 
 

 
 

The power of all tests was lower when the main units had heterogeneous variances, and the 

power reduced as the degree of heterogeneity increased. When only main unit and subunit 

treatment effects were present, the rank tests exhibited better power for testing for main unit 

treatment effects, but slightly less power for testing for subunit treatment effects. In addition, the 

RT had nominal type I error rates that increased steadily with increasing effect magnitudes. 

When all the effects were present, the FT exhibited the best power, with the ART close behind 

and the RT a distant third. 

 

The rank tests performed consistently better than did the FT when the subunit error effect had 

unequal variances. When the ratio of the largest to the smallest variance was 30 : 1, the rank tests 



exhibited more power. For all the methods, there was also a slight nominal type I error rate 

inflation for testing the interaction effect, which became more severe as the variance ratio 

increased. Surprisingly, the RT showed less inflation than did either the FT or the ART. When 

only both main and subunit effects were modeled, the rank tests were much more powerful, with 

some nominal type I error rate inflation for testing interaction evident for all the methods. 

However, while the FT and the ART nominal rates remained constant as the magnitude of the 

effects increased, the RT showed its familiar inflation as an increasing function of effect 

magnitude. When all the fixed effects were in the model, the ART exhibited much more power 

than did the other two methods for testing interaction. 

 

 
 

Investigation of the nominal type I error rates when the main or subunit variances were unequal 

revealed a problem of inflated nominal type I error rates similar to that of the completely 

randomized experiment (see Tables 13 and 14). When the main unit variances were 

heterogeneous, the nominal type I error rates for testing the main unit treatment effects were 

often larger than expected. When the subunit variances were heterogeneous, the nominal type I 

error rates for testing for subunit treatment and interaction effects were always inflated. 

However, heterogeneous main unit variances did not adversely affect the nominal levels of the 

subunit tests, and vice versa. Once again, the inflation of the nominal rates for the RT was often 

a function of the magnitude of the modeled effects, while the inflation of the nominal rates for 

the FT and the ART seemed to be independent of the effect magnitude. This again indicates that, 

when error variances are heterogeneous, test results may be misleading, especially when testing 

for interaction. This was not a problem when one of the underlying populations was skewed 

(exponentially distributed). 

 



 
 

 
 

 

5. Conclusion and summary 
 

The exact aligned rank procedure appears to be the overall best choice for performing tests in a 

general factorial experiment. When the error distribution was symmetric and the error variances 

were homogeneous, the ART was nearly as powerful as was the FT, with an almost negligible 

difference in power between the two methods. For a skewed error distribution, the ART was 

clearly more powerful than was the FT. When the error variances were heterogeneous, both 

methods led to problems with maintaining nominal type I error levels for testing interaction, but 

the ART showed superior power for detecting main effects and interaction. 



 

Although the results were not as consistent as for the completely randomized case, the exact 

aligned rank procedure appears to be a viable alternative to the normal theory FT for performing 

tests in a split-unit factorial design; it is certainly a better choice than is the rank transform 

method. Once more, when the error distributions were normal and the error variances were 

homogeneous (situations in which the FT is known to work well), the ART was always nearly as 

powerful, usually with an almost negligible difference in power between the two methods. For 

exponential error distributions, the ART was clearly more powerful than the FT. Uniformly 

distributed errors were also examined for several models. The results were nearly identical to 

those in the case for normally distributed errors, with the FT having the most power, followed 

closely by the ART and then the RT. Again, the ART often had slightly inflated nominal type I 

error rates for testing interaction. When the error variances were heterogeneous, both methods 

tended to lead to problems with maintaining nominal type I error levels for interaction – although 

these problems were less severe in the split-unit case – while the ART usually exhibited superior 

power for detecting main effects. 

 

Although the FT outperformed the ART in some cases, even when parametric assumptions were 

violated, the ART had superior power in most cases, and tended to enjoy a greater power 

advantage when it was the more powerful test, especially when the assumptions of normality and 

homogeneity of variance were violated. Although the simulation results indicate that a non-

existent interaction effect can be introduced when error variances are unequal, this phenomenon 

occurs for the FT and for the ART.  Because the analysis is typically performed without the 

benefit of definite knowledge of the nature of the error variances, and because the ART generally 

has more power than does the FT when the variances are unequal, the ART seems a logical 

choice over the FT. 

 

One issue that deserves comment is the choice of estimator used for aligning observations. The 

mean was used in this study, but an argument could be made for using a more robust measure, 

especially when the error distribution is skewed. Higgins and Tashtoush (1994) examined the use 

of the trim med mean and the median, but concluded that the gain in power did not necessarily 

outweigh the greater ease of implementation of the procedure using the mean. Also, regardless of 

which estimator of location is used, the performance of the test maybe affected by the properties 

of that estimator for the underlying error distribution. This may explain the inflated type I error 

rates observed for samples from skewed distributions, for example, where the mean is probably 

not the most robust measure of location. 

 

Another issue is the problem of heterogeneous errors, which is generally considered to be a more 

serious problem than is departure from normality. Other transformations can sometimes be used 

to lessen the effect of variance heterogeneity but, because the purpose of this study was to 

improve the performance of the rank transform procedure, additional transformations were not 

investigated. However, it is possible that an additional transformation could help to alleviate the 

problem of inflated nominal type I error rates. 

 

6. Example 
 



The following example (Ott, 1993, p. 884) illustrates an experiment conducted to determine the 

effects of four different pesticides (A1 , A2 , A 3 , A4) on the yield of fruit from three different 

varieties (B 1 , B 2 , B 3 ) of a citrus tree. Eight trees from each variety were randomly selected 

from an orchard. The four pesticides were then randomly assigned to two trees of a particular 

variety and applications were made according to the recommended levels. The yields of fruit, in 

bushels per tree, were obtained after the test period. These data appear in Table 15. 

 

 
 

 
 

 
 



We will illustrate the test for the interaction effect (AB ). Subtracting the corresponding row and 

column means from each observation, we obtain the aligned observations in Table 16. 

 

Ranking these observations, without regard to factor level, we obtain the results shown in Table 

17. 

 

Computing the ordinary F-ratio statistic, F = MS(AB )/M S(E ), we obtain F = 82.542 /54.271 = 

1.52. Because the 0.9 quantile of this statistic is 2.356, there is insufficient evidence of an 

interaction effect. It was found that the estimated exact tail quantiles of the aligned rank F -ratio 

statistics were very close to the theoretical F distribution (for this example, F(0.9, 6, 12) 5 2.33). 

Thus, in practice, there will be little difference in using tables of the F distribution to determine 

significance instead of the exact quantiles. 
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