PRIOR TO MATRICULATION, STUDENT REGISTERED NURSE ANESTHETIST STRESS MITIGATION BY PARTICIPATION IN AN ON

BOARDING STUDENT-LED SESSION

Sarah Elizabeth Porter

A Project Report Submitted to the Faculty of The School of Nursing at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Doctorate in Nursing Practice

> Greensboro 2022

Approved by:

Terry Wicks, DNP, CRNA

Project Team Leader

Vadim Korogoda, DNP, CRNA

Lori A Lupe DNP, CCRN, NEA-BC

DNP Program Director

Project Team Co-Leader

Table of Contents

Stress and the Anesthesia Student	Questionnaire	3
-----------------------------------	---------------	---

Dedication and Acknowledgements

This project is dedicated to all those that made this dream possible. First, to my husband, Chris, thank you for your endless love, support, and encouragement during this crazy, stressful journey. I could not have chased this dream without you by my side. To my family and friends, thank you all for your support and understanding while I have completed this 36-month program. To the nurse anesthesia faculty, thank you for your support and encouragement throughout this program. I am forever grateful.

Abstract

Background: Each year thousands of students across the country apply to nurse anesthesia programs. Due to the rigorous nature of the nurse anesthesia concentration, only a select few are accepted to each program. Nurse anesthesia school is highly stressful, and it is important to identify and decrease these stressors to ensure successful completion of the program. **Purpose:** The aim of this project was to evaluate whether providing an onboarding simulation day to firstyear registered nurse anesthetist students prior to matriculation would decrease their stress levels. **Methods:** A quantitative design was used for this study. Participants for the intervention group were incoming first-year registered nurse anesthetist students. The control group consisted of current first-year registered nurse anesthetist students. Both groups attend the nurse anesthesia concentration at the local university. Students participated in the same pre- and post-intervention survey that evaluated school-related, personal-related, and other stressors on a 5-point Likert scale. Results: A single ANOVA, f-tests, and t-tests were conducted, and 13 questions were analyzed. The overall stress score did not show a significance between the pre-intervention (M=3.00, SD=0.78) and post-intervention groups (M=2.86, SD=0.87); however, there was a statically significant improvement between the control (M=3.56, SD=0.75) and post-intervention groups (M=2.86, SD=0.87). Conclusion: My study suggests that providing first-year registered nurse anesthesia students an onboarding experience could be an effective way to decrease overall student stress scores.

Key Words: Stress, Student Nurse Anesthetist, Simulation

Background and Significance

Each year, thousands of critical care-trained registered nurses apply to nurse anesthesia programs across the country. Due to the rigor of each program, only a handful of applicants are accepted each year. Nurse anesthesia education programs are highly stressful, and student registered nurse anesthetists (SRNAs) face many stressors during their first year of school. Nurses that were once experts on their critical care units are now novice anesthesia providers. Chipas et al. (2012) reported that SRNAs ranked their overall stress levels a 7.2 out of a 10-point Likert scale, with females and minorities ranking their stress the highest. Chipas & Mckenna (2011) revealed that student stress is ranked a 7.2 out of a 10-point scale compared to practitioner's stress level of 4.7. In addition, Chipas et al, concluded that advanced practitioners have less stress than SRNAs. There are numerous reasons for these stress scores. Each nurse anesthesia program format is different; some programs are front-loaded, while some choose to incorporate an integrated format. Chipas et al. (2012) discovered that SRNAs attending an integrated program rated their stress higher than those attending a front-loaded program. Starcher (2008) revealed that stress from school stems from fear of unsuccessful completion of the board exam, fear of clinical error, and financial issues. In addition, Starcher states that interpersonal relationships during school may attenuate stress.

Purpose

The purpose of this project is to determine whether providing first-year SRNAs with an onboarding simulation experience prior to matriculation decreases the student's stress level. The potential benefits of the onboarding simulation day include providing familiarity with new medications and equipment used in the clinical setting and end-of-semester checkoffs. In addition, simulation participants benefit from having a mentor who has experienced the stress and anxiety of anesthesia school firsthand.

Review of Current Evidence

A literature review was conducted to identify articles addressing stress mitigation in the SRNA by participating in a simulation provided by upper-class student mentors. PubMed and Proquest were chosen as primary sources. Search words included "stress in the student registered nurse anesthetist ", "student nurse anesthetist stress", "simulation and stress in the student nurse", and "nursing students and simulation". Inclusion criteria were peer-reviewed articles published in English. Due to a lack of recent studies, search criteria were expanded to studies conducted since 1985.

Student Registered Nurse Anesthetists' Stress

The terms stress and anxiety are frequently used interchangeably (McKay et al., 2010). Anxiety may be due to a lack of knowledge and skill regarding a particular topic and is associated with making mistakes (Chipas et al., 2012;Shearer, 2016). Stress is defined as a change resulting from any emotional, physical, social, economic, or other factor (Cantrell et al., 2017). It is essential for nurse anesthesia students to identify the cause of anxiety and stressors to apply mitigation strategies. It is crucial to understand that stress and the perception of stressors are unique to each student, their experience, and their ability to manage stress.

Compared to other healthcare-related specialties, nursing students have greater stress levels (Jimenez et al., 2010). Stress may be positive or negative; some stress is required to motivate the learner (Tunajek, 2006; Wildgust, 1986), but when stress exceeds an optimal level, it can lead to failure, unhappiness, and loss of economic stability (Wildgust, 1986). Uncontrolled stress may lead to emotional or physical disease (Conner, 2016).

Stress in anesthesia school stems from high academic standards and the clinical setting.

Anesthesia students are overloaded with lectures, skills practicums, and transitioning from expert to novice (Conner, 2016). In a study of eight junior and ten senior students enrolled in a two-year program, Wildgust (1986) identified several significant sources of stress, including academic, clinical, and social/personal categories. The study results revealed both student groups ranked academic overload as their highest stressor. The senior students' stress resulted mostly from the fear of failing the national certification exam, while junior students' stress stemmed from test anxiety and fear of failure. Perez and Perez (1999) concluded students in nurse anesthesia programs are either in mild, moderate, or major life crises, with most experiencing major life crises. According to their survey, 76% of students experienced a change in financial status and social engagement, which were primary sources of stress. Most academic stresses stemmed from needing to challenge the national certification exam, fear of clinical error, mental and physical exhaustion, and lack of leisure or social activities (Perez & Perez, 1999). Chipas et al., (2011) and Chipas and Mckenna (2012) conducted an additional study focused on students' stress and its effects, evaluating the current stress level and physical manifestations among CRNAs and SRNAs. Stress in school begins during the first semesters, levels off by semester five, and increases again in the final semester, originating from board examination preparation and job-seeking (Chipas et al., 2012).

To limit stress SRNAs must adopt positive coping strategies while avoiding maladaptive coping behaviors. Exercise is known to decrease stress levels and the physical manifestations of stress. SRNAs who exercise regularly have a substantial decrease in stress levels while in school (Chipas & McKenna, 2011; Chipas et al., 2012). Unfortunately, SRNAs often turn to harmful coping activities, such as substance and alcohol abuse, to help them cope with stress during their

programs (Chipas & Mckenna, 2011; Chipas et al., 2012). While students may use alcohol to cope with the physical manifestations of stress, negative coping behaviors make stressful situations worse.

Simulation

To prepare students to move from the didactic portion of their education to their clinical portion, many anesthesia schools have incorporated human-based simulation use into their programs (McKay et al., 2010). Student nurse anesthetists must transition from registered nurses working under a physician's direction to advanced practitioners who work autonomously, while making life and death decisions (Phillips, 2010). The use of simulation enables learners to practice in controlled settings with low stakes. Simulation allows students to receive feedback before entering the clinical area and encountering critical preceptors. Hollenbach (2016) and Yuan et al., (2011) concluded that students felt more prepared for the clinical experience due to having had a simulated clinical experience.

Students feel anxiety during their first clinical rotations (Chipas et al., 2012; Wunder, 2016). Simulation decreases anxiety while increasing students' confidence and skills when entering clinical practicums (Hollenbach, 2016; Yuan et al., 2011). Yuan et al., (2011) concluded clinical simulation increases students' confidence and clinical skills. Seymour (2016) completed a similar study and concluded that students who had received the simulation had reduced stress levels. Comparably, Head (2015) concluded that providing a mentor would help decrease stress.

While nursing students' stress is widely studied, there is little evidence specific to student nurse anesthetists' stressors. It is unknown whether an onboarding simulation would decrease the stress experienced by first-year SRNAs. The lack of evidence supports the need for our study.

Theoretical Framework

Betty Neuman's "Neuman Systems Model" views the client as an open system that responds to stressors of the environment (Reed Gerhrling, 1993). There are three significant elements of the Neuman Systems Model. These include the human being, the environment, and health. The human being in the open system responds to internal and external stressors. The environment can be internal, external, or created. The internal environment exists within the system, whereas the external system exists outside the system. The created environment is developed and implemented to support coping (Reed Gerhrling, 1993). In Neuman's theory, health is defined as the system's condition and ranges from being well to being ill. When needs are met, wellness exists. In contrast, when the system's needs are unmet, illness occurs.

The student nurse anesthetist will encounter many stressors in school. These stresses could be internal, external, or environmental. In addition to internal stressors the student experiences, students will encounter external and environmental stressors, including academic examinations, preparation for airway practicums, and countless skill check-offs. The goal is for human beings to have their needs met and to minimize stressors. This project aims to decrease stress in first year SRNAs and help maintain student wellness.

Methods

Design

This project used a quantitative design in the form of a pre and post-test survey to assess stress in the first-year SRNA before and after participating in a simulation onboarding experience. The study took place at the local university. The experimental group consisted of incoming first-year SRNAs scheduled to graduate in 2024. The control group was the current first-year cohort scheduled to graduate in 2023. The groups were not randomized, and there will be no policy, procedure, or practice guidelines developed because of this project. Two senior SRNAs led the simulation experience which included airway set up, medication set up, and a basic introduction to the world of anesthesia. The simulation experience also included a perioperative simulation and hands-on familiarization experience with the anesthesia gas machine. In addition, the group leaders provided mentorship and a question-and-answer session.

Translational Framework

A modified version of the Iowa Model of Evidence-Based Practice to promote quality care was used for this project. The Iowa Model was developed in the 1990s at the University of Iowa Hospitals and Clinics (Brown, 2014). It serves as a guide to allow nurses to utilize research findings to improve patient care. There are eight steps to this model, each is summarized in Table 1.

Table 1

Step 1	Identify where an evidence-	My project partner and I
	based practice change is needed	identified that stress in
		SRNAs is significant and
		considered how we could
		reduce it
Step 2	Determine if the presenting	Student mental health and
	problem is a priority for the	decreasing stress is a
	organization	priority for UNC-G.

Iowa Model of Evidence-Based Practice

Step 3	Form a team to develop,	My project partner and I
	evaluate, and implement the	developed and
	evidence-based practice change	implemented the
		onboarding. We evaluated
		SRNA stress and anxiety
		pre and post intervention
Step 4	Gather and analyze the research	I gathered research on
	surrounding the wanted change	SRNA stress and how
	in practice	simulation helps mitigate it
Step 5	Critique and combine the	I conducted a literature
	discovered research	review on SRNA stress and
		simulation
Step 6	Decide if there is enough	There is enough research to
	research to implement the	support that simulation
	change	helps decrease nursing
		student stress
Step 7	If yes to step 6, implement a	My partner and I developed
	change into a pilot program	the onboarding simulation
		for incoming first-year
		students
Step 8	Evaluate the results, and if the	While the results were not
	change is feasible, introduce the	statistically significant,
	change to the organization	feedback was positive

There is controversy in the literature regarding simulation effects on the student registered nurse anesthetists' stress levels prior to beginning classes. Therefore, the steps of the Iowa model were followed to assess if implementing an onboarding simulation day prior to matriculation decreases stress levels in first year SRNAs.

Permissions

The program director at the local university at the time of project implementation granted permission to utilize the classroom and simulation lab as the project site. The faculty of the nurse anesthesia department granted access to all required equipment, including but not limited to gas machines, mannequins, and intubation equipment.

Setting

The setting was a mid-major university in central North Carolina. The participant sample was expected to be approximately 60 SRNAs, including the control group of the class of 2023 and the experimental group of the class of 2024. This setting allowed for access to all equipment and simulation spaces needed to complete this project.

Sample

Students were recruited to participate in the study via email. The study sample was limited based on admission to the anesthesia program. Many studies have been completed for stress and anxiety in the student registered nurse anesthetists. However, the effects of an onboarding simulation to reduce stress prior to matriculation has not been studied. Inclusion criteria for the study included those accepted and matriculating into the CRNA program, as well as students in their first year of the program. Exclusion criteria included students in their second and/or third years of the program.

Intervention

The project was granted an exemption by the university IRB. Pre-simulation stress surveys were administered to the control group (class of 2023) via Qualtrics. Information sheets about the project were provided, and adequate time was given for answers. Due to COVID restrictions of no eating and drinking in the classroom, a \$10 gift card was provided to the control group for completing the surveys. We could not be in person due to COVID restrictions, so a Zoom meeting was conducted to present our project to both groups. A recruitment email and information sheet were provided to the control group. The experimental group received the same information sheet via email. In addition, the experimental group was incentivized with a \$10 gift card if the pre-simulation survey, simulation day, and post-simulation surveys were completed in their entirety before October 8, 2021. The experimental group participated in an onboarding simulation day led by two senior SRNAs, which included a peer-led simulation and didactic hybrid experience consisting of gas machine demonstration, airway equipment set-up, medication set-up, and an observation of perioperative care from the anesthesia perspective. Adequate time was given for a question-and-answer session following the simulation experience.

Data Collection

Data were collected via an online survey using Qualtrics. Data was kept on a passwordprotected computer in a locked room when not in the co-investigator's possession. Data was collected from the control group in the Spring of 2021. Data was collected from the experimental group in late Summer and early Fall of 2021. The intervention took place on August 10, 2021. Post-intervention surveys were sent out on September 25, 2021, to the experimental group, and responses were required by October 8, 2021. Information sheets were provided to both groups, and participation in this project was voluntary.

Instruments

All participants completed a pre- and post-intervention stress survey. The stress survey utilized was a modified version used with permission from the author (Starcher, 2008). The control group completed only the pre-intervention survey. The survey consisted of items to measure the stress they have experienced or anticipate experiencing in the categories of school-related stressors, personal-related stressors, and other specific stressors. The questions were measured on a Likert scale of 1-5, with 1 being no stress, 2 mild stress, 3 moderate stress, 4 highly stressful, and 5 extremely stressful. In addition, 15 questions obtained from the control pre-and post-intervention stress survey were measured and analyzed using descriptive statistics.

Data Analysis

Data were analyzed using Microsoft Excel. A single ANOVA test (alpha .05) was performed to assess for significance between the three groups (control, pre-intervention, and post-intervention). The data revealed there was significance between at least two groups on 13 out of 15 analyzed questions. Further analysis of the 13 remaining questions using an F-test (alpha.05) two sample for variances were ran to determine if the T-test (alpha 0.0167) needed to assume equal or unequal variances. Significance for each of the 13 questions were demonstrated. A Bonferroni adjustment was made to the alpha level of .05/3, resulting in an alpha of P <0.0167 due to 3 pairs of tests. In addition, averages of each question were collected from the control and experimental group and compared to the post surveys of those that received the intervention and those that did not. Finally, a standard deviation was calculated by Qualtrics to assess for group agreement.

Budget, Time, Resources

Financial resources for rewarding the gift card for participation in the entirety of presurvey, intervention, and post-survey and participation in the control survey were provided by the investigator and the co-investigator. In addition, the investigator and co-investigator split costs for the intervention group. The nurse anesthesia department provided clinical resources to implement this project. The project began in the spring of 2021 and was completed by the fall of 2021.

Results

Out of a potential 28 control subjects, three subjects did not complete the pre-intervention survey. There were twenty-five (N=25) students in the final control group that completed the pre-intervention survey. Demographic data are contained in Table 2 below. Demographic results included age and marital status. One participant did not answer the age or marriage demographic question. For the pre-intervention survey, a total of 26 participants answered the pre-intervention survey concerning most questions.

Demographic Data	Control group	Intervention group
Age 18-24	0	1
Age 25-34	24	22
Age 35-44	1	3
Married	7	16
Never Married	18	7
Divorced	0	2

Table 2 Demographic data

Twenty-two subjects participated in the post-intervention survey. A single ANOVA test was conducted. The results included 13 questions for significant data analysis (P<0.05). Further analysis with the use of an F-test two-sample for variances was done on the control, pre-intervention, and post-intervention data to determine which type of T-test to perform. If the one-tail P value multiplied by 2 was greater than 0.05, An equal variance T-test was performed. An

unequal variance T-test was performed if the one-tail P value multiplied by 2 was less than .05. For this project, averages and the standard deviations are listed in table 2 (school-related factors), table 3 (personal-related stress factors), and table 4 (specific stress factors) for each statistically significant question for the control, pre-intervention, and post-intervention data. Further data analysis, including the F-tests and T-tests for each question are provided in the appendices.

Stressor (school-related)	Control group	Pre-intervention group	Post-intervention group
	Mean±SD	Mean±SD	Mean±SD
Fear of Academic Failure	3.48±0.98	2.96±0.85	2.50±0.89
Fear of clinical error	4.40±0.63	3.50±1.08	2.91±0.85
Mental exhaustion	4.16±0.88	3.44±1.02	3.05±0.88
Successful on NCE	4.00±1.02	2.65±1.14	2.32±0.92
Preparedness as a	3.28±1.04	2.38±1.00	2.00±0.74
competent practitioner			

Table 3 School-related stressors

Stressor (personal-related)	Control group	Pre-intervention group	Post-intervention group			
	Mean±SD	Mean±SD	Mean±SD			
Knowledge to handle	3.60±0.98	3.19±0.96	2.50±0.89			
clinical situations 1 st year						

Table 4 Personal-related stressors

Stressor (specific)	Control group	Pre-intervention group	Post-intervention group
	Mean±SD	Mean±SD	Mean±SD
Exams of the course	3.80±0.94	3.54±0.69	2.73±1.05
Workload of the course	3.40±0.98	3.58±0.79	2.68±0.82
Financial constraints of	3.36±1.16	2.88±1.19	2.41±1.03
the course			

Travel requirements	3.72±0.87	3.27±1.13	2.55±0.78
Relationship with hospital	3.36±1.13	2.58±0.63	2.09±0.73
staff			
Relationship with	3.56±1.13	2.81±0.79	2.27±0.81
preceptors			

Table 5 Specific stressors

An overall stress score was calculated for the control, pre-intervention, and postintervention group. For the control group, the mean stress score was 3.56 ± 0.75 . For the preintervention group, the mean stress score was 3.00 ± 0.78 , and for the post-intervention group, the mean stress score was 2.86 ± 0.87 .

Discussion

The purpose of this study was to assess whether an onboarding simulation experience would decrease the stress of incoming first year SRNAs. There were three different types of stressors assessed in the control, pre-intervention, and post-intervention groups. These included school-related stressors, personal-related stressors, and specific stressors. The same surveys were administered to each group. The hypothesis was that providing the incoming first year SRNAs an onboarding simulation would decrease their stress level. The quantitative data obtained from the control, pre-intervention, and post-intervention groups demonstrated a statistical improvement in overall stress score between the control and pre-intervention group as well as the control and post-intervention group. The pre-intervention and post-intervention groups did not show a statistically significant change. As found in Wildgust's (1986) study, our study concluded that first year students' stress was higher concerning successful completion of the national certification exam than first-year students. A reason for this could be that the first-year students feel the stress of the upcoming exam, whereas the exam is not a current concern for the incoming

first-year students. Unlike Wildgust's study, academic failure did not seem to be a significant concern for either group. Perez and Perez (1996) concluded that financial stress was a source of stress for the students in their study. Our study built upon that conclusion, with financial stress identified as a stressor for current first and incoming first-year nurse anesthesia students. The current first year students ranked their stress regarding financial constraints at 3.36, whereas the incoming first-year nurse anesthesia students rated their stress a mean score of 2.41. This discrepancy could be explained by the requirement of current first-year students to travel to outof-town clinical sites, while the incoming first-year students do not. Another concern that showed statistical significance was fear of clinical error. Seymour (2016) concluded that simulation decreased students' stress levels related to clinical error. Our study drew similar results. The control group's average stress score for fear of clinical error was 4.40. The preintervention stress score was 3.50, and the post-intervention stress score for fear of clinical error was 2.91. These results further support our initial hypothesis. Mental exhaustion was also a stressor for both groups. The current first-year students rated this stressor 4.16, whereas the average score of the pre-intervention group was 3.44 and the post-intervention average score of 3.05. Current first-year students have been through an entire year of classes, whereas the incoming first-year students had started their first semester when the post-intervention scores were obtained. Preparedness was also a source of stress for the control group, with an average stress score of 3.28. The post-intervention average stress score was 2.00. Current first-year students are beginning to feel the importance of being perceived as competent practitioners having gained experience in the clinical setting, the intervention group has yet to experience this setting. The stressor of relationships with significant others did not show significance for either group. The ability to manage clinical situations during the first year was not significant between

the control and pre-intervention but was significant between the pre-and post-intervention groups. The first-year students had completed their first-year clinical rotations, but the incoming first-year students had not begun clinical rotations at the time of the project's implementation. The average score of the pre-intervention group was 3.19. The average score of the post-intervention group was 2.50. This finding of decreased stress scores supports the conclusion of Hollenbach (2016) and Yuan (2011). Course examinations were a stressor for both the control and intervention groups. The control group rated examination stress at an average of 3.80, whereas the pre-intervention group rated them an average of 3.54. The post-intervention score was 2.73. Course workload was also rated similarly. The control group rated stress of course workload an average of 3.80. The pre-intervention group scored course workload stress a 3.54, and the post-intervention group rated this stressor a 2.73. These results are like the findings of Wildgust's study (1986). The decrease in stress scores may stem from the question-and-answer session provided by the upper-class mentors. This finding supports the study performed by Head (2015) that concludes providing a mentor would help decrease stress.

Although the data did not support a significant change between the pre-and postintervention groups, there was a significant improvement comparing the control and postintervention group. In addition, 90% of the respondents emailed the primary and coinvestigators, stating they felt the simulation onboarding day was beneficial in reducing their stress and anxiety. They also felt the onboarding class should continue for future classes.

Limitations

This study had several limitations. First, the sample was a convenience sample at a midmajor university. The sample size was small and included only nurse anesthesia students. The study was voluntary, so the research findings relied on the completed surveys. Some participants did not answer all questions on the survey, which could have influenced the results. In the intervention group, only 22 participants completed the post-intervention survey. If the additional participants in the simulation completed the post-intervention stress survey, results might have been altered. In addition, the control group was asked to answer questions retrospectively in relation to their stressors. The retroactive approach may have skewed data. The subjects in the study were of varying ages and maturity levels and may have different coping strategies. The study had to be completed in a specific time frame, so these constraints did not allow stress assessment once the intervention group began their clinical rotations, a high-stress time for nursing students (Chipas et al., 2012; Wunder, 2016). Another barrier to implementing this project were the effects of COVID-19.

Recommendations for Future Study

Our data suggest that the onboarding simulation day did not cause a significant decrease in stress between the pre-intervention and post-intervention groups. However, it did show a significant decrease in stress in the control group versus the pre-intervention and the postintervention groups. A future study could be implemented earlier, and a post-assessment could occur later in the semester, perhaps after clinical check-offs or after the first week in the clinical setting. This study would allow for a parallel consideration of the skills learned in the simulation and skills evaluation by program faculty. In addition, further studies could be undertaken to assess the student's specific stressors and coping strategies across the different cohorts. As each individual manages stress differently, it is essential to understand how each participant views stress and evaluate their coping mechanisms.

Relevance and Recommendations for Clinical Practice

This project demonstrated that the use of a didactic, hybrid onboarding experience consisting of gas machine familiarization, medication set-up, perioperative anesthesia experience, and a question-and-answer session provided by upper-class mentors decreased stress between the control group and pre-intervention post-intervention groups. Although there was no significant change in the pre-intervention and post-intervention groups, the results show that providing this simulation experience does decrease stress and should be implemented in future cohorts.

Conclusion

As student registered nurse anesthetists progress through their programs, the stressors they experience change. They become more comfortable with their educational and clinical experiences. This study sought to assess if providing an onboarding simulation would decrease stress in first-year registered nurse anesthesia students. Published literature supports simulation as an avenue to increase students' confidence with their clinical skills (Yuan et. al, 2011). Seymour (2016) determined simulation decreases student stress. Our study revealed similar findings. Stress was decreased between the control and post-intervention group. This study was unique in that it encompassed elements of a project as well as research. The research findings demonstrated a difference in stress scores based on various factors and the stress experienced is unique to each student cohort. It was our goal to decrease stress in first year SRNAs. Based on the projects reception and the feedback we received it is our recommendation that the university implement an onboarding simulation experience led by upperclassmen for first year student registered nurse anesthetists to decrease their stress levels.

References

- Brown, Carlton G, PhD, RN,A.O.C.N., F.A.A.N. (2014). The iowa model of evidence-based practice to promote quality care: An illustrated example in oncology nursing. *Clinical Journal of Oncology Nursing*, *18*(2), 157-9.
- Cantrell, M. L., Meyer, S. L., & Mosack, V. (2017). Effects of simulation on nursing student stress: An integrative review. *Journal of Nursing Education*, 56(3), 139-144. doi:http://dx.doi.org/10.3928/01484834-20170222-04
- Chipas, A., Cordrey, D., Floyd, D., Grubbs, L., & Miller, S. (2012). Stress: Perceptions, manifestations, and coping mechanisms of student registered nurse anesthetists. *AANA Journal*, 80(4), S49–S55. https://search-proquestcom.libproxy.uncg.edu/docview/1321120425/749AEBBBB6C94D3APQ/1?accountid=1 4604
- Chipas, A., & McKenna, D. (2011). Stress and burnout in nurse anesthesia. *AANA Journal*, 79(2), 122–128.

https://doi.org/https://login.libproxy.uncg.edu/login?url=https://search.proquest.com/docv iew/870702290?accountid=146

- Head, E. G. (2015). The use of peer mentoring to decrease stress in student registered nurse anesthetists [Unpublished doctoral dissertation]. University of Southern Mississippi. https://search.proquest.com/central/docview/1734466366/abstract/1CB37F1A76C54D8B
 PQ/1
- Hollenbach, P. M. (2015). Simulation and its effect on anxiety in baccalaureate nursing students [research brief]. *Nursing Education Perspectives*, *37*(1), 45–47. https://doi.org/10.5480/13-1279

- Jimenez, C., Navia-Osorio, P., & Diaz, C. (2010). Stress and health in novice and experienced nursing students. *Journal of Advanced Nursing*, 66(2), 442–455. https://doi.org/10.1111/j.1365-2648.2009.05183.x
- Perez, E., & Carroll-Perez, I. (1999). A national study: Stress perception by nurse anesthesia students. *Journal of the American Association of Nurse Anesthetists*, 67(1), 79–86.
- Phillips, J. (2010). Exploring student nurse anesthetist stressors and coping using grounded theory methodology. *AANA Journal*, 78(6), 474–481.
- Reed Gerhrling, K. S. (1993). Betty neuman : the neuman systems model (Ser. Notes on nursing theories, v. 11). SAGE Publications. Retrieved March 22, 2022, from https://ebookcentral-proquest-

com.libproxy.uncg.edu/lib/uncg/reader.action?docID=1920458

Seymour, J. S. (2016). *The use of simulation to decrease stress in first year student registered nurse anesthetists* [Doctoral dissertation, University of Southern Mississippi]. http://search.proquest.com/

central/docview/1859075670/abstract/99E672A4C80547BFPQ/1

- Shearer, J. N. (2016). Anxiety, nursing students, and simulation: State of the science. *Journal of Nursing Education*, 55(10), 551–554. https://doi.org/10.3928/01484834-20160914-02
- Starcher, L. D. (2008). Stress and the student nurse anesthetist [Master's thesis, Mountain State University]. http://search.proquest.com/ central/docview/220113395/ abstract/A4CA0DA97BFB4D94PQ/1
- Tunajek, S. (2006). Student stress: A question of balance. AANA Journal, 60(5), 20. https://doi.org/http://search.proquest.com/docview/222228113/citation/524221239A2492 2PQ/1

Wildgust, B. (1986). Stress in the anesthesia student, 54(3), 272–278.

- Wunder, L. L. (2016). Effect of a nontechnical skills intervention on first-year student registered nurse anesthetists' skills during crisis simulation. AANA Journal, 84(1), 46–51. https://doi.org/https://login.libproxy.uncg.edu/login?url=https://search.proquest.com/docv iew/1772063564?accountid=14604
- Yuan, H., Williams, B., & Fang, J. (2011). The contribution of high-fidelity simulation to nursing students' confidence and competence: A systematic review. *International Nursing Review*, 59(1), 26–33. https://doi.org/10.1111/j.1466-7657.2011.00964.x

Appendix A

Results of single factor ANOVA, F-test, and T-test for analyzed data

Fear of academic failure

	Anova: Single	Factor									
							7				
	SUMMARY										
	Groups	Count	Sum	Average	Variance						
	control	25	87	3.48	1.01						
	pre	26	77	2.961538	0.758462						
	post	22	55	2.5	0.833333						
	ANOVA										
Sou	irce of Variat	SS	df	MS	F	P-value	F crit				
	Between Gro	11.29846	2	5.649231	6.514599	0.002543	3.127676				
	Within Grou	60.70154	70	0.867165							
	Total	72	72								
control vs n	re					pre vs post				control vs no	ost
	-					P. 2 10 post			F-Test Two-S	ample for Var	iances
F-Test Two-Sa	ample for Vari	ances			F-Test Two-S	ample for Var	iances			,	
										Variable 1	Variable 2
	Variable 1	Variable 2				Variable 1	Variable 2		Mean	3.48	2.5
Mean	3.48	2.961538			Mean	2.961538	2.5		Variance	1.01	0.833333
Variance	1.01	0.758462			Variance	0.758462	0.833333		Observation	25	27
Observation:	25	26			Observation	26	22		df	24	21
df	24	25			df	25	21		F	1.212	
F	1.331643				F	0.910154			P(F<=f) one-	0.330251	
P(F<=f) one-	0.240792				P(F<=f) one-t	0.407135			F Critical one	2.054004	
F Critical one	1.964306				F Critical one	0.501172					
t-Test: Two-S	ample Assumi	ng Equal Varia	nces		t-Test: Two-Sample Assuming Equal Variances			inces	t-Test: Two-S	ample Assum	ing Equal Va
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.48	2.961538			Mean	2.961538	2.5		Mean	3.48	2.5
Variance	1.01	0.758462			Variance	0.758462	0.833333		Variance	1.01	0.833333
Oheenvertiere	25	26			Observation	26	22		Observation	25	22
Observation:	0.881664				Pooled Varia	0.792642			Pooled Varia	0.927556	
Pooled Varia					Hypothesize	0			Hypothesize	0	
Pooled Varia Hypothesize	0				df	46			df	45	
Pooled Varia Hypothesize df	0										
Pooled Varia Hypothesize df t Stat	0 49 1.971227				t Stat	1.789562			t Stat	3.480876	
Pooled Varia Hypothesize df t Stat P(T<=t) one-1	0 49 1.971227 0.02718				t Stat P(T<=t) one-	1.789562 0.040054			t Stat P(T<=t) one-	3.480876 0.000561	
Pooled Varia Hypothesize df t Stat P(T<=t) one-i t Critical one	0 49 1.971227 0.02718 2.188883				t Stat P(T<=t) one- t Critical one	1.789562 0.040054 2.193023			t Stat P(T<=t) one- t Critical one	3.480876 0.000561 2.194529	
Pooled Varia Hypothesize df t Stat P(T<=t) one-t t Critical one P(T<=t) two-	0 49 1.971227 0.02718 2.188883 0.054359				t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	1.789562 0.040054 2.193023 0.080109			t Stat P(T<=t) one- t Critical one P(T<=t) two-	3.480876 0.000561 2.194529 0.001123	

Fear of clinical error

Anova: Single	Factor											
SUMMARY												
Groups	Count	Sum	Average	Variance								
control	23	101	4.39130435	0.43083004								
pre	26	91	3.5	1.22								
post	22	64	2.90909091	0.75324675								
ANOVA												
urce of Variat	22	df	MS	F	P-value	F crit						
Between Grc	25.1613038	2	12.5806519	15.3322378	3.1903E-06	3.13167197						
Within Group	55.7964427	68	0.82053592									
Total	80.9577465	70										
control vs. pre						pre vs. post					control vs. po	ist
F-Test Two-Sa	imple for Var	iances				F-Test Two-S	ample for Var	iances		F-Test Two-S	ample for Var	iances
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	4 39130435	3.5				Mean	3.5	2 90909091		Mean	4.39130435	2.90909091
Variance	0.43083004	1.22				Variance	1 22	0 75324675		Variance	0.43083004	0 75324675
Observation	22	35.1				Observations	26	22		Observations	22	32
df	23	25				df	25	21		df	23	21
F	0 35313938	23				£	1 61965517	21		F	0.57196402	21
P/Cc=fl one t	0.00909750					P/Ec=fl one t	0.12260762			P/Ec=fl one-t	0.10064028	
E Critical ene	0.40513668					E Critical and	3.04530846			E Critical and	0.49573673	
r critical one	0.45313008					P critical one	2.04333640			F Childan One	0.46373073	
t Test. Turo F	mole Assumi	on Headers 1	lasiansas			t Tasti Turo S	amala Assumi	ing Equal Var	innere .	t Tast Turo S	amala Ascum	ing Equal Vasi
t-reat. Two-5	Assum	ng onequal v	011011023			t-reat. 1w03	ampre Assum	ng calaal val		e-rest. rwo-s	ampre Assum	ng ciloat valia
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	4.39130435	3.5				Mean	3.5	2.90909091	1	Mean	4.39130435	2.90909091
Variance	0.43083004	1.22				Variance	1.22	0.75324675		Variance	0.43083004	0.75324675
Observations	23	26				Observations	26	22		Observations	23	22
Hypothesized	0					Pooled Varia	1.006917			Pooled Varia	0.58828936	
df	41					Hypothesized	0			Hypothesized	0	
t Stat	3.47850574					df	46			df	43	
P(Tcat) one-t	0.00060432					t Stat	2 0328308			t Stat	6 48013792	
t Critical one	2 20121173					P(Tcat) one-t	0.0220300			P(Tc=t) cont	3 65835.08	
D(Test) two t	0.00130965					t Critical and	2 10202250			t Critical and	3.10775747	
r(ix-c)two-t	0.00120805					off control to the	2.19302259			Critical one	2.13//5/4/	
t critical two	2.4953/642					P(IK=C) two-t	0.04786461			P(I<=t) two-t	7.316/E-08	
						t critical two	∠.48388205			t Critical two	2.49044582	

Mental Exhaustion

Anova: Singl	e Factor												
C110 40 44 004													
SUMMARY	<i>c</i>	6		Mandanasa	-								
Groups	Count	Sum	Average	variance									
control	25	104	4.16	0.8066667						-			
pre	25	86	3.44	1.09									
post	22	67	3.0454545	0.8073593									
ANOVA													
ource of Variat	SS	df	MS	F	P-value	F crit							
Between Gr	15.178232	2	7.5891162	8.3817979	0.0005512	3.129644							
Within Grou	62.474545	69	0.9054282										
Total	77.652778	71											
control yr. n					pro vc. port				control vr	port			
control vs. p					pre va. pose				control vs.	post			
F-Test Two-S	ample for Va	riances			F-Test Two-	Sample for Va	riances		F-Test Two	-Sample for Va	iriances		
_	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2		
Mana	VUITUDIE 1	vuriuble 2			Mana	vuriuble 1	2 OAE AE AE		Mana	Vulluble 1	2 OAFAFAF		
Variance	4.10	5.44			Verience	3.44	3.0454545		Verience	4.10	3.0454545		
Observation	0.8066667	1.09			Variance	1.09	0.6075595		Variance	0.8066667	0.6075595		
Observation	25	25			Observation	25	22		Observatio	n 25	22		
ar	24	24			ar	24	21		ar	24	21		
F	0.7400612				F	1.3500804			P	0.9991421			
P(F<=f) one-t	0.2331976				P(F<=T) one-	0.2452832			P(F<=T) One	-1 0.4954288			
F Critical on	0.5040933				F Critical on	2.0540043			F Critical o	n 0.4963803			
+ Tort: Two 9	ample Accur	ning Equal Va	riancos			t Tarti Tura	ample Accur	ning Equal Varia	20000	+ Tort: Two	Sample Accur	ming Equal Vari	20000
terest. Twos	sample Assu	ning Equal va	arrances			t-rest. two.	sample Assu	ning Equal varia	ances	t-test. two-	sample Assu	ning cquar vari	ances
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2	
Mean	4.16	3.44				Mean	3.44	3.0454545		Mean	4.16	3.0454545	
Variance	0.8066667	1.09				Variance	1.09	0.8073593		Variance	0.8066667	0.8073593	
Observation	25	25				Observation	25	22		Observation	25	22	
Pooled Varia	0.9483333					Pooled Varia	0.958101			Pooled Varia	0.8069899		
Hypothesize	0					Hypothesize	0			Hypothesize	0		
df	48					df	45			df	45		
t Stat	2.6140085					t Stat	1.3788716			t Stat	4.244203		
P(T<=t) one-	0.0059592					P(T<=t) one-	0.0873751			P(T<=t) one-	5.41E-05		
t Critical one	2.1902041					t Critical one	2.1945286			t Critical on	2.1945286		
P(T<=t) two-	0.0119185					P(T<=t) two-	0.1747502			P(T<=t) two-	0.0001082		
t Critical two	2.4799774					t Critical two	2.4859692			t Critical tw	2.4859692		

Successful completion of the national certification exam

	Anova: Singl	e Factor										
	SUMMARY											
	Groups	Count	Sum	Average	Variance							
	control	25	100	4	1.08333333							
	pre	26	69	2.6538462	1.3553846							
	post	22	51	2.3181818	0.8939394							
	ANOVA											
So	urce of Variat	SS	df	MS	F	P-value	F crit					
	Between Gro	38.328959	2	19.164479	17.05516	9.25E-07	3.1276756					
	Within Grou	78.657343	70	1.1236763								
	Tetal	116 0862	70									
	Iotal	116.9863	12									
ontrol vs. p	re						pre vs. post			control vs. p	ost	
-Test Two-	Sample for Va	riances				F-Test Two-S	Sample for Va	riances		F-Test Two-S	ample for Va	riances
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Aean	A dridble 1	2 6538462				Mean	2.68	2 3181818		Mean	A dridble 1	2 3181818
/ariance	1 0833333	1 3553846				Variance	1 3933333	0.8939394		Variance	1 0833333	0.8939394
Observation	25	26				Observation	25	22		Observation	25	22
if	23	25				df	23	21		df	23	21
-	0.7992811					F	1.5586441	~ ~		F	1.2118644	
P(F<=f) one-t	0.2928807					P(F<=f) one-t	0.153854			P(F<=f) one-t	0.330345	
E Critical on	0 5063395					E Critical on	2 0540043			E Critical on	2 0540043	
critical on	0.5005555					1 critical on	2.0340043			T Critical On	2.0340043	
-Test: Two-	Sample Assur	ning Equal Var	riances			t-Test: Two-S	Sample Assur	ning Equal Va	ariances	t-Test: Two-	Sample Assur	ning Equal V
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	4	2.6538462				Mean	2.6538462	2.3181818		Mean	4	2.3181818
/ariance	1.0833333	1.3553846				Variance	1.3553846	0.8939394		Variance	1.0833333	0.8939394
Observation	25	26				Observation	26	22		Observation	25	22
ooled Varia	1.222135					Pooled Varia	1.1447248			Pooled Varia	0.9949495	
lypothesize	0					Hypothesize	0			Hypothesize	0	
if	49					df	46			df	45	
Stat	4.3471707					t Stat	1.0830089			t Stat	5.7678099	
P(T<=t) one-	3.474E-05					P(T<=t) one-	0.1422244			P(T<=t) one-	3.448E-07	
Critical on	2.1888835					t Critical one	2.1930226			t Critical one	2.1945286	
P(T<=t) two	6.947E-05					P(T<=t) two-	0.2844488			P(T<=t) two-	6.897E-07	
Critical tw	2 4781495					t Critical two	2 483892			t Critical two	2 4859692	
, Grucar tw	£.4701403					c circuar two	2.403002			t critical two	2.4033092	

Preparedness as a competent practitioner

Anova: Single	e Factor										
SUMMARY											
Groups	Count	Sum	Average	Variance							
control	25	82	3.28	1.126666667							
pre	26	62	2.38461538	1.04615385							
post	22	44	2	0.57142857							
ANOVA											
irce of Variat	55	df	MS	F	P-value	F crit					
Between Grc	20.6417703	2	10.3208851	11.0817508	6.5897E-05	3.1276756					
Within Group	65.1938462	70	0.93134066								
Total	85.8356164	72									
control vs. pr	e				pre vs. post				control vs. po	st	
F. T									5 T T 6		
F-Test Two-Sa	ample for var	lances			F-lest IWO-5	ample for var	lances		F-Test Two-Sa	ample for var	lances
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.28	2.38461538			Mean	2.38461538	2		Mean	3.28	2
Variance	1.12666667	1.04615385			Variance	1.04615385	0.57142857		Variance	1.12666667	0.57142857
Observations	25	26			Observations	26	22		Observations	25	22
df	24	25			df	25	21		df	24	21
F	1.07696078				F	1.83076923			F	1.97166667	
P(F<=f) one-ta	0.426856				P(F<=f) one-ta	0.08162063			P(F<=f) one-ta	0.06018477	
F Critical one	1.96430563				F Critical one	2.04539846			F Critical one	2.05400431	
t-Test: Two-S	ample Assumi	ng Equal Var	iances		t-Test: Two-S	ample Assum	ing Equal Var	iances	t-Test: Two-S	ample Assumi	ing Equal Vari
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
					Moon	2 38/61538	2		Mean	3.28	2
Mean	3.28	2.38461538			wiedli	2.30401330	-		IVICAII		
Mean Variance	3.28 1.12666667	2.38461538			Variance	1.04615385	0.57142857		Variance	1.12666667	0.57142857
Mean Variance Observations	3.28 1.126666667 25	2.38461538 1.04615385 26			Variance Observations	1.04615385 26	0.57142857		Variance Observations	1.12666667 25	0.57142857 22
Mean Variance Observations Pooled Varia	3.28 1.12666667 25 1.0855887	2.38461538 1.04615385 26			Variance Observations Pooled Varia	1.04615385 26 0.82943144	0.57142857		Variance Observations Pooled Varia	1.12666667 25 0.86755556	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesized	3.28 1.12666667 25 1.0855887 0	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized	1.04615385 26 0.82943144 0	0.57142857 22		Variance Observations Pooled Varia Hypothesized	1.126666667 25 0.86755556 0	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesized df	3.28 1.12666667 25 1.0855887 0 49	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized df	1.04615385 26 0.82943144 0 46	0.57142857 22		Variance Observations Pooled Varia Hypothesized df	1.12666667 25 0.86755556 0 45	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesized df t Stat	3.28 1.12666667 25 1.0855887 0 49 3.06795201	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized df t Stat	1.04615385 26 0.82943144 0 46 1.45785322	0.57142857 22		Variance Observations Pooled Varia Hypothesized df t Stat	1.12666667 25 0.86755556 0 45 4.70103774	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	3.28 1.12666667 25 1.0855887 0 49 3.06795201 0.00175294	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	1.04615385 26 0.82943144 0 46 1.45785322 0.07583746	0.57142857 22		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	1.12666667 25 0.86755556 0 45 4.70103774 1.2358E-05	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesizec df t Stat P(T<=t) one-t t Critical one	3.28 1.12666667 25 1.0855887 0 49 3.06795201 0.00175294 2.18888346	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one	1.04615385 26 0.82943144 0 46 1.45785322 0.07583746 2.19302259	0.57142857 22		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one	1.12666667 25 0.86755556 0 45 4.70103774 1.2358E-05 2.19452863	0.57142857 22
Mean Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	3.28 1.12666667 25 1.0855887 0 49 3.06795201 0.00175294 2.1888346 0.00350587	2.38461538 1.04615385 26			Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	1.04615385 26 0.82943144 0 46 1.45785322 0.07583746 2.19302259 0.15167491	0.57142857 22		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	1.12666667 25 0.86755556 0 45 4.70103774 1.2358E-05 2.19452863 2.4716E-05	0.57142857 22

Knowledge to handle clinical situations first year

Anova: Single	Factor										
SUMMARY											
Groups	Count	Sum	Average	Variance							
control	25	82	3.28	1,12666667							
nre	26	62	2 38461538	1 04615385							
nost	22	44	2	0 57142857							
post				0.07242007							
ANOVA											
irce of variat	35	aj	IVIS	F	P-Value	FCrit					
Between Grc	20.6417703	2	10.3208851	11.0817508	6.5897E-05	3.12/6/56					
Within Group	65.1938462	70	0.93134066								
Total	85.8356164	72									
control us pr					pro us post				control vc. pr	vet.	
control vs. pr	e				pre vs. post				control VS. po	751	
F-Test Two-S	ample for Var	iances			F-Test Two-S	ample for Var	iances		F-Test Two-S	ample for Var	iances
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3 28	2 38461538			Mean	2 38461538	2		Mean	3 28	20110010 2
Variance	1 12666667	1 04615385			Variance	1 04615385	0 57142857		Variance	1 12666667	0 571/2857
Observations	1.12000007	1.04013383			Observations	1.04013383	0.37142837		Observations	1.12000007	0.3/14283/
	23	20			-ut	20	22		Je	23	22
ai r	1.07606070	25			ai r	1 02076022	21		a	1 07166667	21
F	1.07696078					1.83076923			F	1.97166667	
P(F<=f) one-t:	0.426856				P(F<=T) one-ta	0.08162063			P(F<=t) one-ta	0.06018477	
F Critical one	1.96430563				F Critical one	2.04539846			F Critical one	2.05400431	
t-Test: Two-S	ample Assumi	ing Equal Vari	ances		t-Test: Two-S	ample Assum	ing Equal Vari	iances	t-Test: Two-S	ample Assum	ing Equal Var
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.28	2.38461538			Mean	2.38461538	2		Mean	3.28	2
Variance	1.12666667	1.04615385			Variance	1.04615385	0.57142857		Variance	1.12666667	0.57142857
Observations	25	26			Observations	26	22		Observations	25	22
Pooled Varia	1.0855887				Pooled Varia	0.82943144			Pooled Varia	0.86755556	
	0				Hypothesized	0			Hypothesized	0	
Hypothesized					df	46			df	45	
Hypothesizec df	49					1 45795222			t Stat	4 70103774	
Hypothesized df t Stat	49 3.06795201				t Stat	1.43783322			t Stat	4.70103774	
Hypothesized df t Stat P(T<=t) one-t	49 3.06795201 0.00175294				t Stat P(T<=t) one-t	0.07583746			P(T<=t) one-t	1.2358E-05	
Hypothesized df t Stat P(T<=t) one-t t Critical one	49 3.06795201 0.00175294 2.18888346				t Stat P(T<=t) one-t t Critical one	0.07583746			P(T<=t) one-t t Critical one	1.2358E-05 2.19452863	
Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	49 3.06795201 0.00175294 2.18888346 0.00350587				P(T<=t) one-t t Critical one P(T<=t) two-t	0.07583746 2.19302259 0.15167491			P(T<=t) one-t t Critical one P(T<=t) two-t	1.2358E-05 2.19452863 2.4716E-05	

Course Examinations

Anova: Single	Factor											
CLINANAA DV												
Groups	Count	Sum	Averane	Variance								
control	25	85	3.4	1								
Dre	26	93	3 57692308	0.65384615								
nost	22	50	2 69191919	0 7034632								
post			2.00101010	0.7034032								
ANCN/A									-			
irce of Voriat		df	MC	£	Ruglug	E crit						
Between Gro	10 4427627	2	5 22138136	6 63106158	0.00230552	3 1276756						
Within Grour	55 1188811	70	0 78741259	0.05100150	0.00200002	5.1270755						
The second	55.1100011		0.10141255									
Total	65.5616438	72										
control vs. pre						pre vs. post				control vs. po	st	
F-Test Two-Sa	mple for Vari	ances				F-Test Two-Sa	ample for Vari	ances		F-Test Two-Sa	ample for Vari	ances
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.4	3.57692308				Mean	3.57692308	2.68181818		Mean	3.4	2.68181818
Variance	1	0.65384615				Variance	0.65384615	0.7034632		Variance	1	0.7034632
Observations	25	26				Observations	26	22		Observations	25	22
df	24	25				df	25	21		df	24	21
F	1.52941176					F	0.92946746			F	1.42153846	
P(F<=f) one-ta	0.14892567					P(F<=f) one-ta	0.42653394			P(F<=f) one-ta	0.20940892	
F Critical one	1.96430563					F Critical one	0.50117222			F Critical one	2.05400431	
t-Test: Two-Sa	imple Assumir	ng Equal Varia	ances			t-Test: Two-Sa	ample Assumi	ng Equal Varia	ances	t-Test: Two-S	ample Assumi	ng Equal Vari
_	Variable 1	Variable 2				_	Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.4	3.57692308				Mean	3 57692308	2.68181818		Mean	2 4	2.68181818
Variance	1	0.65384615				Variance	0.65384615	0.7034632		Variance	1	0.7034632
Observations	25	26				Observations	26	22		Observations	25	27
Pooled Varia	0.82339089	20				Pooled Varia	0.67649742			Pooled Varia	0.86161616	
Hypothesizer	0					Hypothesized	0			Hypothesized	0	
df	49					df	46			df	45	
t Stat	-0.6960702					t Stat	3 75680157			t Stat	2 64673161	
P(T<=t) one-t	0 24483675					P(T<=t) one-t	0.00024162			P(T<=t) one-t:	0.00558024	
t Critical one	2 18888346					t Critical one	2 19302259			t Critical one	2 19452863	
PIT<=t) two-t	0.48967351					P(T<=t) two-t	0.00048324			P(T<=t) two-t	0.01116049	
	3 47014040					t Critical turo	2 49399305			A Critical Auro	2 49506032	

Course Workload

Anova: Single	Factor											
SUMMARY												
Groups	Count	Sum	Average	Variance								
control	25	50/// 85	3.4	1								
ore	25	03	2 57603209	0.65294615								
pre	20	55	3.57092508	0.05584015								
post	22	59	2.58181818	0.7034632								
ANOVA												
rce of Variati	SS	df	MS	F	P-value	F crit						
Between Gro	10.4427627	2	5.22138136	6.63106158	0.00230552	3.1276756						
Within Group	55.1188811	70	0.78741259									
Total	65.5616438	72										
control vs. pre	2					pre vs. post				control vs. po	st	
F-Test Two-Sa	mple for Vari	ances				F-Test Two-Sa	ample for Vari	ances		F-Test Two-Si	Imple for Vari	ances
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.4	3.57692308				Mean	3.57692308	2.68181818		Mean	3.4	2.68181818
Variance	1	0.65384615				Variance	0.65384615	0.7034632		Variance	1	0.7034632
Observations	25	26				Observations	26	22		Observations	25	22
df	24	25				df	25	21		df	24	21
F	1.52941176					F	0.92946746			F	1.42153846	
P(F<=f) one-ta	0.14892567					P(F<=f) one-ta	0.42653394			P(F<=f) one-ta	0.20940892	
F Critical one	1.96430563					F Critical one	0.50117222			F Critical one	2.05400431	
t-Test: Two-Sa	imple Assumi	ng Equal Varia	ances			t-Test: Two-S	ample Assumi	ng Equal Varia	inces	t-Test: Two-S	ample Assumi	ng Equal Varia
	Variable 1	Variable 2					Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.4	3.57692308				Mean	3.57692308	2.68181818		Mean	3.4	2.68181818
Variance	1	0.65384615				Variance	0.65384615	0.7034632		Variance	1	0.7034632
Observations	25	26				Observations	26	22		Observations	25	22
Pooled Varia	0.82339089					Pooled Varia	0.67649742			Pooled Varia	0.86161616	
Hypothesizec	0					Hypothesized	0			Hypothesized	0	
df	49					df	46			df	45	
t Stat	-0.6960702					t Stat	3.75680157			t Stat	2.64673161	
P(T<=t) one-t:	0.24483675					P(T<=t) one-ta	0.00024162			P(T<=t) one-ta	0.00558024	
t Critical one	2.18888346					t Critical one	2.19302259			t Critical one	2.19452863	
P(T<=t) two-t	0.48967351					P(T<=t) two-t	0.00048324			P(T<=t) two-t	0.01116049	
t Critical two	2 47814849					t Critical two	2 48388205			t Critical two	2 48596922	

Financial constraints of the course

Anova: Single	Factor										
CLIMANAADV											
SOMMARY	Count	Cum	Augen 0.0	Variance							
control	25	Sum	Averuge 2.26	1 406667							
control	25	75	2 994615	1.400007							
pre	20	52	2.004015	1 11020							
post		55	2.403031	1.11035							
ANOVA											
urce of Variat	SS	df	MS	F	P-value	F crit					
Between Gro	10.59674	2	5,29837	3.956874	0.023547	3.127676					
Within Grou	93,73203	70	1.339029								
Total	104.3288	72			-						
F-Test Two-Sa	mple for Var	ances			F-Test Two-Sa	ample for Var	iances		F-Test Two-S	ample for Var	iances
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.36	2.884615			Mean	2.884615	2.409091		Mean	3.36	2.409091
Variance	1.406667	1.466154			Variance	1.466154	1.11039		Variance	1.406667	1.11039
Observation	25	26			Observation:	26	22		Observation	25	22
df	24	25			df	25	21		df	24	21
F	0.959426				F	1.320396			F	1.266823	
P(F<=f) one-	0.460703				P(F<=f) one-	0.260799			P(F<=f) one-	0.293918	
F Critical one	0.50634				F Critical one	2.045398		-	F Critical one	2.054004	
t. Tort: Two. S	mole Accum	ing Equal Varia			t-Test: Tup-S	ample Accum	ing Equal Vari	20.00	t. Tort: Two. S	ample Accum	ing Equal Var
t-rest. Iwo-se	sinple Assum	ing cyuai vain	ances		t-165t. 1W0-3	ampie Assum	ing Equal vali	ances	(-1651.1WO-3	ample Assum	ing cquai vai
	Variable 1	Variable 2				Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.36	2.884615			Mean	2.884615	2.409091		Mean	3.36	2.409091
Variance	1.406667	1.466154			Variance	1.466154	1.11039		Variance	1.406667	1.11039
Observation:	25	26			Observation:	26	22		Observation	25	22
Pooled Varia	1.437017				Pooled Varia	1.30374			Pooled Varia	1.268404	
Hypothesize	0				Hypothesize	0			Hypothesize	0	
df	49				df	46			df	45	
t Stat	1.415747				t Stat	1.437655			t Stat	2.888302	
P(T<=t) one-	0.081587				P(T<=t) one-	0.07865			P(T<=t) one-	0.002968	
t Critical one	2.188883				t Critical one	2.193023			t Critical one	2.194529	
P(T<=t) two-	0.163175				P(T<=t) two-	0.1573			P(T<=t) two-	0.005936	
t Critical two	2,478148				t Critical two	2.483882			t Critical two	2.485969	

Travel requirements of the course

SUMMARY	Count	C	4	Manlanas					
Groups	Count	Sum	Average	Variance					
control	25	93	3.72	0.79333333					
pre	26	85	3.26923077	1.32461538					
post	22	56	2.54545455	0.64069264					
ANOVA									
rce of Variat	SS	df	MS	F	P-value	F crit			
Between Gro	16.3078781	2	8.15393907	8.69953275	0.00042237	3.1276756			
Within Grou	65.6099301	70	0.93728472						
Total	81.9178082	72							
control vs. pr	re			pre. Vs post			control vs. po	ost	
F-Test Two-S	ample for Va	riances		F-Test Two-S	ample for Va	riances	F-Test Two-S	ample for Va	riances
	Variable 1	Variable 2			Variable 1	Variable 2		Variable 1	Variable 2
Mean	3.72	3.26923077		Mean	3.26923077	2.54545455	Mean	3.72	2.54545455
						0.04000004			
Variance	0.79333333	1.32461538		Variance	1.32461538	0.64069264	Variance	0.79333333	0.64069264
Variance Observation:	0.79333333 25	1.32461538 26		Variance Observation:	1.32461538	22	Observation:	0.793333333	0.64069264
Variance Observation: df	0.79333333 25 24	1.32461538 26 25		Variance Observation: df	1.32461538 26 25	0.64069264 22 21	Variance Observation: df	0.793333333 25 24	0.64069264 22 21
Variance Observation: df F	0.79333333 25 24 0.59891599	1.32461538 26 25		Variance Observation: df F	1.32461538 26 25 2.06747401	0.64069264 22 21	Variance Observation: df F	0.79333333 25 24 1.23824324	0.64069264 22 21
Variance Observation: df F P(F<=f) one-t	0.79333333 25 24 0.59891599 0.10675611	1.32461538 26 25		Variance Observations df F P(F<=f) one-t	1.32461538 26 25 2.06747401 0.04756189	22	Variance Observation: df F P(F<=f) one-t	0.79333333 25 24 1.23824324 0.31241968	0.64069264 22 21
Variance Observation: If : ?(F<=f) one-t : Critical one	0.79333333 25 24 0.59891599 0.10675611 0.50633952	1.32461538 26 25		Variance Observations df F P(F<=f) one-t F Critical one	1.32461538 26 25 2.06747401 0.04756189 2.04539846	22 21	Variance Observation: df F P(F<=f) one-t F Critical one	0.79333333 25 24 1.23824324 0.31241968 2.05400431	0.64069264
Variance Observation: df F P(F<=f) one-t F Critical one	0.79333333 25 24 0.59891599 0.10675611 0.50633952	1.32461538 26 25		Variance Observation: df F P(F<=f) one-t F Critical one	1.32461538 26 25 2.06747401 0.04756189 2.04539846	22 21	Variance Observation: df F P(F<=f) one-t F Critical one	0.79333333 25 24 1.23824324 0.31241968 2.05400431	0.64069264 22 21
Variance Observation: df F F P(F<=f) one-t F Critical one	0.79333333 25 24 0.59891599 0.10675611 0.50633952	1.32461538 26 25		Variance Observations df F P(F<=f) one-t F Critical one	1.32461538 26 25 2.06747401 0.04756189 2.04539846	22	Variance Observation: df F P(F<=f) one-t F Critical one	0.79333333 25 24 1.23824324 0.31241968 2.05400431	0.64069264 22 21
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S	0.79333333 25 24 0.59891599 0.10675611 0.50633952	1.32461538 26 25 ning Equal Va	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum	0.64069264 22 21 ning Equal Varia	Variance Observation: df F P(F<=f) one-t F Critical one ances t-Test: Two-S	0.79333333 25 24 1.23824324 0.31241968 2.05400431 ample Assum	0.64069264 22 21
Variance Observation: df = P(F<=f) one-t = Critical one :-Test: Two-S	0.79333333 25 24 0.59891599 0.10675611 0.50633952	1.32461538 26 25 ning Equal Va	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-5	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum	0.64069264 22 21 ning Equal Varia	Variance Observation: df F P(F<=f) one-t F Critical one ances t-Test: Two-S	0.79333333 25 24 1.23824324 0.31241968 2.05400431	0.64069264 22 21 ning Equal Vari
Variance Observation: df F P(F<=f) one-t F Critical one :-Test: Two-S	0.79333333 25 24 0.59891599 0.10675611 0.50633952 sample Assum	1.32461538 26 25 ning Equal Va <i>Variable 2</i>	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum Variable 1	0.64069264 22 21 ing Equal Varia	Variance Observation: df F P(F<=f) one-t F Critical one ances t-Test: Two-S	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1	0.64069264 22 21 ning Equal Variable 2
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean	0.79333333 25 24 0.59891599 0.10675611 0.50633952 Sample Assum Variable 1 3.72	1.32461538 26 25 ning Equal Va <i>Variable 2</i> 3.26923077	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum Variable 1 3.26923077	0.64069264 22 21 aing Equal Varia Variable 2 2.54545455	Variance Observation: df F P(F<=f) one-t F Critical on ances t-Test: Two-S Mean	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1 3.72	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance	0.7933333 25 24 0.59891599 0.10675611 0.50633952 sample Assum Variable 1 3.72 0.79333333	1.32461538 26 25 hing Equal Va <i>Variable 2</i> 3.26923077 1.32461538	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum Variable 1 3.26923077 1.32461538	0.64069264 22 21 ing Equal Varia Variable 2 2.54545455 0.64069264	Variance Observation: df F P(F<=1) one-t F Critical one ances t-Test: Two-S Mean Variance	0.79333333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1 3.72 0.79333333	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455 0.64069264
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation:	0.7933333 25 24 0.59891599 0.10675611 0.50633952 5 ample Assum Variable 1 3.72 0.7933333 25	1.32461538 26 25 hing Equal Va <i>Variable 2</i> 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation:	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum Variable 1 3.26923077 1.32461538 26	0.64069264 22 21 21 21 21 21 21 21 21 21 21 21 21	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one F Critical one F Critical one Mean Variance Observation:	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1 3.72 0.7933333 25	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455 0.64069264 22
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation: Pooled Varia	0.7933333 25 24 0.59891599 0.10675611 0.50633952 5 ample Assum Variable 1 3.72 0.7933333 25 1.0643956	1.32461538 26 25 hing Equal Va <i>Variable 2</i> 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one-t t-Test: Two-S Mean Variance Observation: Pooled Varia	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum <i>Variable</i> 1 3.26923077 1.32461538 26 1.01238978	0.64069264 22 21 21 21 21 21 21 21 21 21 21 21 21	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one F Critical one F Critical one F Critical one Mean Variance Variance Observation: Pooled Varia	0.79333333 25 24 1.23824324 0.31241968 2.05400431 	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455 0.64069264 22
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesize	0.79333333 25 24 0.59891599 0.10675611 0.50633952 Sample Assum Variable 1 3.72 0.7933333 25 1.0643956 0 0	1.32461538 26 25 ing Equal Va Variable 2 3.25923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation Pooled Varia Hypothesize	1.32461538 26 25 2.06747401 0.04756189 2.04539846 3.04539846 3.26923077 1.32461538 26 1.01238978 0	0.64069264 22 21 21 21 21 21 21 21 21 21 21 21 21	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one Test: Two-S Mean Variance Observation Pooled Varia Hypothesizet	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1 3.72 0.7933333 25 0.72210101 0	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455 0.64069264 22
Variance Dbservation: df F F Critical one-t F Critical one- t-Test: Two-S t-Test: Two-S Mean Variance Dbservation: Pooled Varia Hypothesize: df	0.7933333 25 24 0.59891599 0.10675611 0.50633952 3.00633952 0.7933333 25 1.0643956 0.0 0.0 49	1.32461538 26 25 ing Equal Va <i>Variable 2</i> 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesized	1.32461538 26 25 2.06747401 0.04756189 2.04539846 2.04539846 3.26923077 1.32461538 26 1.01238978 0 0 46	0.64069264 22 21 21 21 21 21 21 21 21 21 21 21 21	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one K-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesize df	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum <i>Variable 1</i> 3.72 0.7933333 25 0.72210101 0.045	0.64069264 22 21 21 variable 2 2.54545455 0.64069264 22
Variance Observation: df F F Critical one- t-Test: Two-S t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesize df t Stat	0.7933333 25 24 0.59891599 0.10675611 0.50633952 iample Assur Variable 1 3.72 0.7933333 25 1.0643956 0 9 49 1.5598194	1.32461538 26 25 ing Equal Va <i>Variable 2</i> 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Variance Observation: Pooled Varia Hypothesize- df t Stat	1.32461538 2.6 2.05747401 0.04756189 2.04559846 ample Assun Variable 1 3.26923077 1.32461538 2.6 1.01238978 0 4.6 2.48317788	0.64069264 22 21 ing Equal Varia Variable 2 2.54545455 0.64069264 22	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one F Critical one F Critical one F Critical one Mean Variance Variance Variance Observation: Pooled Varia Hypothesize df t Stat	0.7933333 25 25 23 24 23 24 23 24 205400431 205400431 205400431 205400431 205400431 205400431 205720101 20733333 205 2072210101 0 45 4.72828088	0.64069264 22 21 ning Equal Vari Variable 2 2.54545455 0.64069264 22
Variance Observation: df F F P(F<=f) one-t F Critical one t-Test: Two-S t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesize df t Stat P(T<=t) one-t	0.7933333 25 24 0.59891599 0.10675611 0.50633952 Variable 1 3.72 0.7933333 25 1.0643956 0 0 49 1.5598194 0.06261932	1.32461538 26 25 ing Equal Va <i>Variable</i> 2 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one- t-Test: Two-S Test: Two-S Constant Variance Observation: Pooled Varia Hypothesize df t Stat P(T<=t) one-t	1.32461538 26 25 2.06747401 0.04756189 2.04539846 ample Assum Variable 1 3.26923077 1.32461538 26 1.01238978 0 46 2.48317788	0.64069264 22 21 ing Equal Varia Variable 2 2.55454555 0.64069264 22	Variance Observation:	0.7933333 25 24 1.23824324 0.31241968 2.05400431 ample Assum Variable 1 3.72 0.7933333 25 0.72210101 0 4.72828088 1.1301e-05	0.64069264 22 21 Ning Equal Variable 2 2.54545452 0.64069264 22
Variance Observation: df F P(F<=f) one-t F Critical one t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesized df t Stat P(T<=t) one-t t t Critical one	0.7933333 25 25 28 28 4 0.5981599 0.10675611 0.50633952 3.05033952 3.72 0.79333333 25 1.0643956 0 49 1.5598194 0.06261932 2.18888346	1.32461538 26 25 iing Equal Va <i>Variable</i> 2 3.26923077 1.32461538 26	riances	Variance Observation: df F P(F<=f) one-t F Critical one- t-Test: Two-S t-Test: Two-S t-Test: Two-S Variance Observation: Pooled Varia Hypothesize: df t Stat P(T<=t) one-t t t Critical one- t t Critical one-	1.32461538 266 25 2.06747401 0.04756189 2.04539846 3.26923077 1.32461538 1.32461538 26 1.0128978 0 46 2.48317788 0.00836452 2.19302259	0.0406204 22 21 sing Equal Varia Variable 2 2.54545455 0.64069264 22	Variance Observation: df F P(F<=) one-t F Critical one critical one critical one critical one critical one variance Observation: Pooled Varia Hypothesize df t Stat P(T<=t) one-t t Critical one t Critic	0.7933333 25 24 1.2824324 0.31241968 2.05400431 ample Assum Variable 1 3.72 0.79333333 25 0.72210101 0 45 4.72828088 1.1301E-05 2.19452863	0.64069264 22 21 21 21 21 21 21 21 21 21 21 21 21
Variance Observation: df F F P(F<=f) one-t F Critical one F Critical one Mean Variance Observation: Pooled Varia Pooled Varia Hypothesizer df t Stat P(T<=t) voe-t t Critical one P(T<=t) two-	0.7933333 25 24 0.5981599 0.10675611 0.50633952 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.32461538 26 25 ing Equal Va <i>Variable 2</i> 3.26923077 1.32461538 26	riances	Variance Observation: df F P[F<=f] one-t F Critical one t-Test: Two-S Mean Variance Observation: Pooled Varia Hypothesize- df t Stat P[T<=f] two- P[T<=f] two-	1.32461538 266 25 2.06747401 0.04756189 2.04539846 3.2692307 1.32461538 2.04539846 1.01288978 0 46 2.48317788 0.00836452 2.19302259 0.01672905	0.0405204 22 21 ing Equal Varia Variable 2 2.54545455 0.64065264 22	Variance Observation: df F P(F<=f) one-t F Critical one F Critical one Variance Mean Variance Observation: Pooled Varia Hypothesize df t Stat P(T<=t) one-t t Stat P(T<=t) two-f	0.7933333 25 24 1.2824324 0.31241968 2.05400431 3.72 0.7933333 25 0.72210101 4.7282808 1.1301605 2.19452863 2.2601605	0.64069264 22 21 Ning Equal Vari Variable 2 2.54545455 0.64069264 22

Relationship with hospital staff

Anova: Single	Factor								
CLIBADAADY									
Groups	Count	Sum	Auerope	Variance					
control	25	50m 84	Averuge 3.36	1 37333333					
ore	25	67	2 57692308	0.41384615					
nost	22	46	2 09090909	0.56277056					
post	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40	2.03030303	0.50277050					
ANOVA									
irce of Variati	SS	df	MS	F	P-value	Fcrit			
Between Gro	19.4455273	2	9,72276367	12.6212674	2.0862E-05	3.1276756			
Within Group	53.9243357	70	0.77034765						
Total	73.369863	72							
control vs. pre	2			pre vs post			control vs. p	ost	
F-Test Two-Sa	mple for Vari	ances		F-Test Two-Sa	ample for Vari	ances	F-Test Two-	ample for Vari	ances
	Variable 1	Variable 2			Variable 1	Variable 2		Variable 1	Variable 2
Varianco	1 22222227	2.5/692308		Wasianse	2.5/692308	2.09090909	Mean	3.36	2.09090905
Observations	1.32333333	0.41384015		Observations	0.41384015	0.502//056	Obtornation	1.32333333	0.50277058
ouser valuons	25	20		df	20	22	df	25	24
F	3 1976456	25		F	0 73537278	21	F	2 35146154	21
P(F<=f) one-t=	0.00266644			P(F<=f) one-t:	0.2295479		P(F<=f) one-t	0.02588905	
E Critical one	1 96430563			E Critical one	0.50117222		E Critical on	2 05400431	
· critical one	1.90430303			r critical one	0.30117222		P childron	2.03400431	
t-Test: Two-Sa	ample Assumi	ng Unequal V	ariances	t-Test: Two-S	ample Assumi	ng Equal Varia	nces t-Test: Two-	ample Assumi	ng Equal Var
	Variable 1	Variable 2			Variable 1	Variable 2		Variable 1	Variable 2
Mean	3.36	2.57692308		Mean	2.57692308	2.09090909	Mean	3.36	2.09090909
Variance	1.32333333	0.41384615		Variance	0.41384615	0.56277056	Variance	1.32333333	0.56277056
Observations	25	26		Observations	26	22	Observation	25	22
Hypothesized	0			Pooled Varia	0.48183338		Pooled Varia	0.96840404	
	37			Hypothesized	0		Hypothesize	0	
df				df	46		df	45	
df t Stat	2.98435785				2 41700595		t Stat	4.41160736	
df t Stat P(T<=t) one-t:	2.98435785 0.00250582			t Stat	E1121000000				
df t Stat P(T<=t) one-ti t Critical one-	2.98435785 0.00250582 2.20961526			r Stat P(T<=t) one-ta	0.00983585		P(T<=t) one-	3.1663E-05	
df t Stat P(T<=t) one-ti t Critical one- P(T<=t) two-t	2.98435785 0.00250582 2.20961526 0.00501165			t Stat P(T<=t) one-ta t Critical one-	0.00983585		P(T<=t) one- t Critical one	3.1663E-05 2.19452863	
df t Stat P(T<=t) one-t: t Critical one- P(T<=t) two-t t Critical two	2.98435785 0.00250582 2.20961526 0.00501165 2.506907			t Stat P(T<=t) one-ta t Critical one- P(T<=t) two-t	0.00983585 2.19302259 0.01967169		P(T<=t) one- t Critical one P(T<=t) two-	3.1663E-05 2.19452863 6.3327E-05	

Relationship with preceptor

Anova: Singl	e Factor									
CLIMANAADV										
Groups	Count	Sum	Average	Variance	-					
control	25	89	3 56	1 34						
nre	25	73	2 80769231	0.64153846						
pre	20	50	2.00703231	0.68398268						
post	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	2.2/2/2/2/2/	0.00350200						
4 10 1/4										
ANUVA		df	MC	r	Dualua	E crit				
Detween Cr	33	uj 2	0.00222461	F 11.0592476	6 70705 OF	2 1276756				
Within Group	62 5620070	70	0.00274426	11.0383470	0.70792-03	3.12/0/30				
within Grou	62.5620979	/0	0.89374420							
Total	82.3287671	72								
control vs. pr	re				pre vs. post			control vs. p	ost	
F-lest Iwo-S	ample for Va	riances		F-lest Iwo-5	ample for Va	riances		F-lest Iwo-5	ample for Va	riances
	Variable 1	Variable 2			Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.56	2.80769231		Mean	2.80769231	2.27272727		Mean	3.56	2.27272727
Variance	1.34	0.64153846		Variance	0.64153846	0.68398268		Variance	1.34	0.68398268
Observation	25	26		Observation	26	22		Observation	25	22
df	24	25		df	25	21		df	24	21
F	2.08872902			F	0.93794547			F	1.95911392	
P(F<=f) one-t	0.03660515			P(F<=f) one-t	0.43497826			P(F<=f) one-t	0.06191604	
F Critical one	1.96430563			F Critical one	0.50117222			F Critical one	2.05400431	
t-Test: Two-S	Sample Assum	ning Equal Va	riances	t-Test: Two-S	Sample Assun	ning Equal Va	riances	t-Test: Two-S	Sample Assun	ning Equal Varia
	Variable 1	Variable 2			Variable 1	Variable 2			Variable 1	Variable 2
Mean	3.56	2.80769231		Mean	2.80769231	2.27272727		Mean	3.56	2.27272727
Variance	1.34	0.64153846		Variance	0.64153846	0.68398268		Variance	1.34	0.68398268
Observation	25	26		Observation	26	22		Observation	25	22
Pooled Varia	0.98364207			Pooled Varia	0.66091517			Pooled Varia	1.03385859	
Hypothesize	0			Hypothesize	0			Hypothesize	0	
df	49			df	46			df	45	
t Stat	2.70799928			t Stat	2.27158992			t Stat	4.33084275	
P(T<=t) one-t	0.00464759			P(T<=t) one-t	0.01391737			P(T<=t) one-t	4.1035E-05	
t Critical one	2.18888346			t Critical one	2.19302259			t Critical one	2.19452863	
P(T<=t) two-	0.00929518			P(T<=t) two-	0.02783473			P(T<=t) two-	8.207E-05	
t Critical two	2.47814848			t Critical two	2.48388205			t Critical two	2.48596923	

Overall stress score

Anova: Single	Factor								
CLINANAA DV									
Groups	Count	Sum	Average	Variance					
Groups	Count	Sum	Averuge	Variance					
control	25		5.50	0.59					
pre	26	/8	3 96363636	0.64					
post	22	63	2.80303030	0.79004329					
ANOVA	22	df	MC	F	Duglug	E crit			
Potwoon Gro	55	uj 2	2 20577922	F 4 0247502	0 00099767	2 1276756			
Between Gro	6.59155666	2	3.293/7833	4.9347595	0.00988767	3.1270750			
within Group	46.7509091	70	0.00787015						
Tatal	52 2424659	70							
Total	53.3424058	12							
control							ابتدا معقومه	t	
control vs pre	;			pre vs post			control vsl po	151	
E Test Two S	ample for Var	inners		E Test Two S	ample for Har	iancos	E Test Two S	ample for Ver	iances
r-rest two-sa	ample for var	ances		r-rest rwo-sa	ample for var	lances	r-rest TWO-S	ample for var	ances
	Variable 1	Variable 2			Variable 1	Variable 2		Variable 1	Variable 2
Mean	3.56	3		Mean	3	2.86363636	Mean	3.56	2.86363636
Variance	0.59	0.64		Variance	0.64	0.79004329	Variance	0.59	0.79004329
Observations	25	26		Observations	26	22	Observations	25	22
df	24	25		df	25	21	df	24	21
F	0.921875			F	0.81008219		F	0.74679452	
P(F<=f) one-t	0.42215333			P(F<=f) one-t;	0.30469319		P(F<=f) one-t;	0.24392614	
F Critical one	0.50633952			F Critical one	0.50117222		F Critical one	0.49638026	
t-Test: Two-S	ample Assumi	ing Equal Vari	ances	t-Test: Two-S	ample Assum	ing Equal Variances	t-Test: Two-S	ample Assum	ing Equal Va
	Variable 1	Variable 2			Variable 1	Variable 2		Variable 1	Variable ?
	variable 1	2 0110016 2		Mean	2 0110010 1	2 86363636	Mean	3 56	2 86363636
Mean	3 56			mean		0.70004220	Variance	0 50	0.79004220
Mean	3.56	0.64		Variance	064			0.39	3.75004325
Mean Variance Observations	3.56 0.59	0.64		Variance	0.64	0.79004329	Observations	25	22
Mean Variance Observations	3.56 0.59 25	0.64		Variance Observations Pooled Varia	0.64 26	22	Observations Pooled Varia	25	22
Mean Variance Observations Pooled Varia	3.56 0.59 25 0.6155102	0.64 26		Variance Observations Pooled Varia	0.64 26 0.70849802	22	Observations Pooled Varia	25 0.68335354	22
Mean Variance Observations Pooled Varia Hypothesizec	3.56 0.59 25 0.6155102 0	0.64		Variance Observations Pooled Varia Hypothesized	0.64 26 0.70849802 0	22	Observations Pooled Varia Hypothesized	25 0.68335354 0	22
Mean Variance Observations Pooled Varia Hypothesized df	3.56 0.59 25 0.6155102 0 49	0.64		Variance Observations Pooled Varia Hypothesized df	0.64 26 0.70849802 0 46	22	Observations Pooled Varia Hypothesized df	25 0.68335354 0 45	22
Mean Variance Observations Pooled Varia Hypothesized df t Stat	3.56 0.59 25 0.6155102 0 49 2.54824974	0.64		Variance Observations Pooled Varia Hypothesized df t Stat	0.64 26 0.70849802 0 46 0.55925084	22	Observations Pooled Varia Hypothesized df t Stat	25 0.68335354 0 45 2.88168017	22
Mean Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	3.56 0.59 25 0.6155102 0 2.54824974 0.00700595	0.64		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	0.54 26 0.70849802 0 46 0.55925084 0.2893517	22	Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t	25 0.68335354 0 45 2.88168017 0.00302095	22
Mean Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one	3.56 0.59 25 0.6155102 0 49 2.54824974 0.00700595 2.18888346	0.64		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one-t	0.54 26 0.70849802 0 46 0.55925084 0.2893517 2.19302259	22	Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one	25 0.68335354 0 45 2.88168017 0.00302095 2.19452863	22
Mean Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	3.56 0.59 25 0.6155102 0 2.54824974 0.00700595 2.1888346 0.01401189	0.64 26		Variance Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	0.64 26 0.70849802 0 46 0.55925084 0.2893517 2.19302259 0.5787034	22	Observations Pooled Varia Hypothesized df t Stat P(T<=t) one-t t Critical one P(T<=t) two-t	25 0.68335354 0 45 2.88168017 0.00302095 2.19452863 0.0060419	22

Appendix B

Stress and the Anesthesia Student Questionnaire

```
1. Age _____

2. Marital Status, S. M. 1
```

```
2. Marital Status. S___ M___ D___W___
```

I. II.

Please rate source of stress (school stress factors) on a scale of 1-5, with 1 being no stress, 2 being mild stress, 3 being moderate stress, 4 being highly stressful, and 5 being extremely stressful

- 1. Fear of Dismissal _
- 2. Fear of Academic failure _____
- 3. Fear of instructors' perception of being incompetent _____
- 4. Fear of clinical error _
- 5. Written clinical evaluations of performance _
- 6. Ongoing personal conflict with a specific instructor _____
- 7. Ongoing personal peer conflict _____
- 8. Mental exhaustion _____
- 9. Physical exhaustion _____
- 10. Ineffective time management _____
- 11. Adjusting to different styles of instruction
- 12. Lack of autonomy and control over schedule and assignments _____
- 13. Fear of reprimand for utilizing open-door policy _____
- 14. Successful completion of the national certification exam _____
- 15. Preparedness for graduation as a competent practitioner _____
- 16. Expected Vigilance despite increased fatigue and workload _____
- 17. Other (please specify)_

Please rate source of stress (personal stress factors) on a scale of 1-5, with 1 being no stress, 2 being mild stress, 3 being moderate stress, 4 being highly stressful, and 5 being extremely stressful

- 1. Relationship with your children while in anesthesia school _____
- 2. Relationship with your significant other while in anesthesia school _____
- 3. Relationship with your classmates while in anesthesia school _____
- 4. Body image while in anesthesia school _
- 5. Financial issues while in anesthesia school
- 6. Lack of personal time while in anesthesia school _____
- 7. Problems with eating while in anesthesia school _____
- 8. Problems with sleeping while in anesthesia school _____
- 9. Adequate time for exercise while in anesthesia school _____

- 10. New problems with blood pressure or other vital signs since beginning anesthesia school _____
- 11. Availability of resources for educational purposes ____
- 12. Adequate knowledge to handle clinical situations first year _____
- 13. Adequate knowledge to handle clinical situations second year _____
- 14. Adequate knowledge to handle clinical situations third year _____

Please rate source of stress (specific stress factors) on a scale of 1-5, with 1 being no stress, 2 being mild stress, 3 being moderate stress, 4 being highly stressful, and 5 being extremely stressful

- 1. Theoretical content of course _____
- 2. Examinations of the course
- 3. Assignments of the course _____
- 4. Workload of the course
- 5. Classroom hours of the course _____
- 6. Financial constraints of the course _____
- 7. Travel requirements of the course _____
- 8. Clinical placements _____
- 9. Death of a patient _____
- 10. Relationships with hospital staff _____
- 11. Relationships with preceptors _
- 12. Relationships with anesthesiologists. ____
- **13. Relationship with clinical coordinators**
- 14. Other

(please

specify)

Have any of the above identified stressors caused you to consider dropping out of the anesthesia program? Yes_____ No_____

Did any of your classmates drop out of the anesthesia program because of stress related factors? Yes ____ No____

Please rate your overall stress score on a scale of 1-5, with 1 being no stress, 2 being mild stress, 3 being moderate stress, 4 being highly stressful, and 5 being extremely stressful.

Questionnaire adapted with permission from Laura Starcher Moon (2008)

Thank you for your time and cooperation in completing this survey