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Abstract:  
 
Global change is impacting plant community composition, but the mechanisms underlying these 
changes are unclear. Using a dataset of 58 global change experiments, we tested the five 
fundamental mechanisms of community change: changes in evenness and richness, reordering, 
species gains and losses. We found 71% of communities were impacted by global change 
treatments, and 88% of communities that were exposed to two or more global change drivers 
were impacted. Further, all mechanisms of change were equally likely to be affected by global 
change treatments—species losses and changes in richness were just as common as species gains 
and reordering. We also found no evidence of a progression of community changes, for example, 
reordering and changes in evenness did not precede species gains and losses. We demonstrate 
that all processes underlying plant community composition changes are equally affected by 
treatments and often occur simultaneously, necessitating a wholistic approach to quantifying 
community changes. 
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Article:  
 
Introduction 
 
 Global environmental change is altering environmental conditions and species 
interactions (Turner et al., 2020; Tylianakis et al., 2008; Vitousek, 1994), which collectively 
have broad effects on plant community composition (Clark et al., 2001; Ellis et al., 2012; 
Franklin et al., 2016). Using multivariate measures of community composition, global syntheses 
of observational and experimental studies have documented community composition changes 
over time (Blowes et al., 2019; Dornelas et al., 2014) and in response to experimental 
manipulations of global change drivers (GCDs) (Komatsu et al., 2019). However, using 
multivariate measures to document changes in community composition does not yield insights 
into the processes underlying these changes. In some cases, temporal changes in community 
composition reflect losses and gains of species (Blowes et al., 2019; Dornelas et al., 2014). In 
other cases, changes in community composition reflect internal community dynamics such as 
reordering—the change in species ranks based on their abundances (Jones et al., 2017)—or 
changes in evenness. Thus, to generate greater insights into the consequences of environmental 
change on communities, we need to understand how determinants of composition change 
respond to GCDs across a range of ecosystem types. 
 Community composition, the identities and abundances of species, can only change in 
five ways (reviewed in Avolio et al., 2015, 2019). Observed changes in community composition 
are based on physiological responses of species that alter species interactions (such as 
competition and herbivory), which in turn affects rates of growth, births and deaths and 
ultimately the abundances of species in a community (Vellend, 2010). Changes in abundances 
can result in a change in (1) evenness and (2) reordering of species ranks in a community. 
Reordering results from changes in the relative abundances and the resultant rank of species in 
the community (Collins et al., 2008). If deaths outnumber births, eventually, a species will be (3) 
lost and become locally extinct. Species may be (4) gained though colonisation processes. 
Finally, the gains and losses of species (i.e., species turnover) may or may not affect (5) richness 
depending on whether these processes balance. These five determinants of community change 
are hypothesised to occur in a hierarchical progression in response to GCDs that chronically alter 
resource availability (Smith et al., 2009). First, through physiological responses, which result in 
changes in abundances and reordering and changes in evenness, followed by turnover of species. 
Although the processes determining community change in response to GCDs are hypothesised to 
be predictable, this has never been directly studied. Further, understanding how and when 
different processes of community change occur is important for gaining a predictive 
understanding of plant community changes over time. 
 Global changes that alter resource supply can affect all aspects of community change. For 
example, irrigation has been found to cause dominant species to become more abundant, 
reducing evenness (Collins et al., 2012; Kardol et al., 2010). Nutrient additions can result in 
species gains with nitrophilous species immigrating into communities (Robinson et al., 1998), 
and species can be lost because of reduced niche space imposed by light limitations (Borer et al., 
2014; Harpole et al., 2016; Hautier et al., 2009). Reordering has been reported with elevated 
CO2 (Langley & Megonigal, 2010) and climatic extreme events of drought and heatwave 
(Hoover et al., 2014). However, GCDs rarely occur in isolation (Yue et al., 2017), and thus, 
comanipulation of multiple resources may accelerate or exacerbate community changes (Harpole 



et al., 2016; Kimmel et al., 2019; Koerner et al., 2016; Zavaleta et al., 2003). Komatsu et al., 
(2019) found community composition became more different from controls in treated plots that 
had a greater number of experimental manipulations. Moreover, nonresource manipulations, 
such as heatwaves or grazing, can interact with resource manipulations to either magnify or 
dampen their effects. For example, Koerner et al., (2014) found more variable precipitation 
patterns delayed recovery from a grazing event, while conversely, Kaarlejärvi et al., (2017) 
found that herbivory reversed the effects of warming in a tundra community. 
 Given the multiple GCDs and the numerous ways plant communities can respond, 
synthesis across community types and GCDs is needed to determine which processes of 
community change, if any, are generalisable. We use a collection of GCD experiments in the 
Community Responses to Resource Experiments (CoRRE) database that includes experiments 
where at least one plant resource that is experimentally manipulated, sometimes in combination 
with non-plant resource manipulations, to study patterns of community change. Plant resource 
manipulations include CO2, water and nutrient (e.g., nitrogen and phosphorus) additions and 
altered precipitation patterns. Non-plant resource manipulations include elevated temperature, 
burning, herbivory and tilling regimes. Using the CoRRE database, Komatsu et al., (2019) found 
that GCD treatments caused the composition of treated communities to be more dissimilar from 
control communities. However, because this analysis was based on multivariate measures of 
community composition, the mechanisms underlying the differences between control and treated 
communities remains unknown. Here, we study the processes underlying community 
composition changes to investigate whether changes in richness and evenness, reordering and 
species gains and losses are affected by GCD treatments and if treatment effects differ by 
manipulation type (e.g., resources vs. nonresources) or treatment (e.g., elevated CO2). We 
hypothesised that all processes of community change will be affected by GCD treatments but 
that a progression of community change will occur from evenness to reordering to species gains 
and losses, as predicted by the Hierarchical Response Framework (Smith et al., 2009). Finally, 
we hypothesised that multiple resource additions will result in greater changes than single 
resource treatments. We addressed these hypotheses by leveraging data from a range of sites and 
assessed whether ecosystem attributes contribute to responsiveness of community change 
processes, because the response of a community to GCD treatments can depend on local abiotic 
conditions (Seabloom et al., 2021; Walker et al., 2006). 
 
Methods 
 
Data 
 
 We subset out datasets with five or more years of community data from the CoRRE 
database (corredata.weebly.com). The CoRRE database consists of 100+ experiments that 
manipulate at least one plant resource in an herbaceous ecosystem. Although an experiment had 
to include a resource manipulation treatment to be included in the CoRRE database, not all 
treatments in an experiment had to be resource manipulations; thus, we have nonresource 
treatments such as warming and herbivory. Each experiment in the database has species 
abundance data for every species recorded in each plot. Plots are assigned as either control or a 
treatment. This resulted in 58 experimental datasets and 219 control-to-treatment comparisons. 
Fifty-one of the experiments took place in intact communities, four were in communities that 
were planted or seeded at the start of the experiment and an additional three experiments added 



seeds/plants to intact communities. Fifty-one of the studies started collecting community data in 
the first 2 years of the experiment. See Table S1 for details. Across all experiments, we had 23 
common GCD treatments (e.g., N addition; Table 1). We grouped all treatments into four 
manipulation type categories: single resource treatment, multiple resource treatment, 
nonresource treatment and resource and nonresource combination treatment (Table 1). Of the 
single manipulation treatments, seven were replicated five or more times across four or more 
sites, and thus, we focus on these treatments specifically. These treatments included increases in 
CO2, water (irrigation), temperature, N, P and multiple nutrients (typically N and P together, but 
see Table 1 for more details) and altered precipitation variability (a change in the frequency or 
amount of rainfall events but not rainfall totals). 
 
Table 1 Global change driver treatments used across the 58 experiments 
Treatment Control-treatment 

comparisons 
Number of 
locations 

Notes 

Single resources treatments – 71 total control treatment comparisons 
CO2

a 7 4  
Drought 3 2  
Irrigationa 12 9  
Na 32 15  
Pa 9 4  
Precipitation 
variabilitya 

8 4  

Multiple resource treatments – 60 total control treatment comparisons 
3 resources 1 1 CO2, irrigation and N 
Irrigation + CO2 1 1  
Multiple nutrientsa 51 10 Includes some combination of N, 

P, K and other micronutrients 
N + CO2 3 3  
N + irrigation 4 4  

Nonresource treatments – 31 total control treatment comparisons 
Other nonresources 24 8 Nonresources include burning, 

mowing, herbivory, removal of 
herbivory, fungicide, plant 
diversity, plant community 
composition, soil depth, tilling 
and their combinations. 

Temperaturea 7 7  
Resource and nonresource treatments – 57 total control treatment comparisons 

CO2 + temperature 2 2  
Drought + 
temperature 

1 1  

Irrigation + other 
nonresource 

6 1 Nonresources include varying 
plant community composition 
and removing herbivory. 

Irrigation + 
temperature 

5 5  



Multiple nutrients + 
other nonresource 

12 4 Nonresources include burning, 
herbivory, removing herbivory, 
fungicide and their 
combinations.  

Multiple resources + 
temperature 

6 3 Resources include some 
combination of CO2, irrigation 
and N 

N + other 
nonresource 

15 6 Nonresources include burning, 
mowing, herbivory, plant 
community composition, stone, 
tilling and their combinations.  

N + temperature 3 3  
P + other nonresource 6 2 Nonresources include burning, 

mowing, herbivory and their 
combinations. 

Precipitation 
variability + 
temperature 

1 1  

Note: See Table S1 for more details. Control–treatment comparisons are how many times a 
particular treatment occurred across all 58 experiments; we count each treatment in an 
experiment as a replicate (there were 219 total control–treatment comparisons). To be included 
in the CoRRE database, an experiment had to include a resource manipulation treatment; 
however, several also had nonresource manipulation such as herbivory. In the notes column we 
include details about what the nonresource manipulations were in these experiments. 
a Single treatments that have five or more replicates and were performed at four or more 
locations (not including nonresources), enabling us to examine global change driver (GCD) 
treatment-specific responses to that treatment. 
 
Calculating temporal community changes between sampling periods 
 
 Avolio et al., (2019a) developed methods to directly quantify all five processes 
underlying community composition change using rank abundance curves that incorporate species 
identity. For each plot in each experiment, we studied year-to-year changes in evenness, rank, 
gains, losses and richness (Table S2), described in detail in Avolio et al., (2019). Briefly, no two 
measures are strongly correlated (all r < 0.51), and all are independent of the richness and 
evenness of the sampled community (Avolio et al., 2019). Changes in evenness measure 
temporal variation in abundances among species within a community, while changes in ranks 
reflect reordering of species abundances within the community. For the latter, an extreme 
example would be the rarest species becoming the most abundant or vice versa. Species gains 
result in greater richness and species losses result in lower richness; however, gains and losses 
can cancel each other out and result in no change in richness. We calculated how the five rank 
abundance curve (RAC)-based measures changed between consecutive time points (e.g., t1 to t2) 
using the codyn::RAC_change() function based on relative abundance data (Hallett et al., 2020). 
From RAC_change() output, we used the absolute value of richness and evenness change (Table 
S2), whereas all other community change measures are always positive. All code is available at 
github.com/mavolio/CoRRE-Community-Change-Paper. 



Statistical analyses 
 
 We performed all statistical analyses in R (R Foundation for Statistical Computing, 
Vienna, Austria) using a significance level of α = 0.05. We corrected all tests for multiple 
hypothesis testing using the Benjamini–Hochberg method (Benjamini & Hochberg, 1996) and 
gave details below. 
 To test whether the five processes of community change differed between control and 
treated plots, we fit nested generalised additive models (GAMs) on the cumulative measure of 
change over time for all replicates in a treatment (Figure S1). We used cumulative change to 
make the net effect of interannual changes more apparent. For example, many gains in only 1 
year of an experiment would result in a peak in gains in that year only, making it difficult to 
compare curve shapes across all years. However, these same data plotted as cumulative change 
would show a sharp increase in that year, and the curve would then level off (diagrammed in 
Figure S1). We fit Gaussian GAMs using the mgcv::gam() function (Wood, 2011). GAMs offer 
the flexibility needed to detect change over time because they allow for nonlinear relationships 
between response and predictor variables without needing to specify the exact functional 
relationship. For each treatment in an experiment, we fit two GAMs. The first GAM included an 
interaction term that fits separate lines for each treatment and control comparison. The second 
GAM was fitted without the interaction term, where the modelled relationship is just cumulative 
change as a function of time in both treated and control plots. Both GAMs included a random 
effect for plot ID to account for spatial variation among plots. We then compared the two models 
using a likelihood ratio test (function anova()) to determine which of the two models is best 
supported by the data. A significant p value (p < 0.05) means that treatment and control plots 
have different temporal trends of cumulative change over time. We used the Benjamini–
Hochberg correction to adjust p values from the GAM analysis for multiple hypothesis testing 
for each dataset using p.adjust() in R. Each dataset was corrected for five comparisons (the 
number of community change processes investigated) multiplied by the number of treatments; if 
an experiment had three treatments, we corrected for 15 multiple comparisons. To assess 
whether some types of GCD treatments were more likely to result in significant community 
changes than others, we performed an equal proportion analysis using prop.test() to compare the 
proportion of significant versus non-significant changes among community change processes 
across manipulation types (e.g., resources vs. nonresources) and different GCDs applied alone. 
We used Benjamini–Hochberg adjustment to correct for 10 multiple comparisons in the test of 
equal proportions analysis. 
 The GAM analysis determined whether a GCD treatment affected a community change 
process, but it did not quantify the magnitude of effect. To examine the magnitude of difference 
in community change between treatment and control plots, we used Glass's D. Glass's D is the 
average of the treatment minus the average of the control in a given year, divided by the standard 
deviation of the control in that year. We chose Glass's D because it allows for differences 
between the standard deviation of control and treated plots (McGaw & Glass, 1980), compared 
with Cohen's D and Hedges's G which assumes that the standard deviation of control and 
treatment groups are similar. A positive value of Glass's D indicates that the treated plots have 
greater community changes than the controls, and a negative number indicates the treatments had 
smaller community changes than the controls. We averaged Glass's D across all years of control–
treatment comparisons to have 219 datapoints, one for each control–treatment comparison. With 
this averaged data, we performed t tests to investigate whether Glass's D differed from zero and 



used Benjamini–Hochberg adjustment to correct for 60 multiple comparisons. For many GCD 
treatments, there were cases where the treatments were less than the controls and vice versa 
which could result in no net change. Therefore, we repeated these analyses using the absolute 
value of Glass's D. 
 Next, we assessed whether there was an order to community change (e.g., evenness 
changes occur before species are gained or lost). We did not include richness change in this 
analysis because changes in richness are the result of unbalanced gains and losses. For this 
analysis, we used 343 (out of a possible 876 [219 × 4 measures]) control–treatment community 
change measure comparisons where cumulative change differed significantly as determined by 
the GAM analysis when adjusted for multiple comparisons. For each community change process, 
we determined the year in which the treatment and control were most different based on the 
maximum Glass's D across all years of an experiment. We then assigned a sequence of 
community changes according to the year in which maximum change occurred. For example, if 
the maximum difference between control and treated plots for evenness change occurred in Year 
3 and the maximum difference in species gains occurred in Year 5, then evenness change 
occurred before species gains. In the case of ties, rank was assigned randomly. We then tallied 
the number of times an order of change was observed (e.g., evenness before species gains) for 
each control–treatment comparison. We performed a chi-square analysis to determine whether 
there were any differences in the frequency with which measures of community change occurred 
first. 
 Finally, to further evaluate whether environmental and ecosystem properties affected the 
magnitude of change of each community change process, we conducted multiple linear 
regressions on Glass's D (averaged over all years of the control–treatment comparisons, n = 219), 
using Benjamini–Hochberg adjustment to correct for five multiple comparisons. We used five 
site-level predictors: above-ground net primary production (ANPP; ranged from 66 to 1415 g 
m−2), mean annual temperature (MAT; ranged from −12℃ to 22℃), mean annual precipitation 
(MAP; ranged from 229 to 1526 mm), rarified regional species richness (SR) (regional SR; 
ranged from three to 60 species) and site evenness (ranged from 0.11 to 0.71), as presented in 
Komatsu et al., (2019). Briefly, ANPP estimates were provided by principal investigators at each 
site or estimated as the mean ANPP across all control plots in all years from contributed ANPP 
data from each experiment. MAT and MAP were obtained from WorldClim 
(www.worldclim.org). Rarified regional SR for a site was based on the total number of species 
observed over the course of the experiment in the control plots only. Site evenness was the 
average evenness of all control plots of a site across all years of the experiment measured using 
the Evar measure (Smith & Wilson, 1996). Sites with low evenness are dominated by a few 
species, and sites with high evenness are not as strongly dominated. Prior to the regression 
analysis, we first standardised predictor variables by subtracting the mean across all sites and 
dividing by the standard deviation. Correlations among predictor variables were all r < 0.39, 
except ANPP and MAT (r = 0.57), and variance inflation factors were all <2, indicating no 
serious collinearity (Quinn & Keough, 2002). We also investigated correlations between site 
predictors and changes in community change processes using Pearson's correlation coefficient 
and used Benjamini–Hochberg adjustment to correct for 25 multiple comparisons. The 
magnitude of GCD treatment never affected the magnitude of response (Figure S2), which was 
also found in two other studies using this same dataset, that the amount of N or water added was 
not correlated with the magnitude of effect on richness and community composition (Komatsu et 
al., 2019) or ANPP (Avolio et al., 2020). 



Results 
 
 In 156 out of 219 control–treatment comparisons, at least one process underlying 
temporal community change—change in richness and evenness, a shift in species ranks (i.e., 
reordering), or gains or losses of species—significantly differed between treatment and control 
plots (71%; Figure 1a). Additionally, all processes of community change were equally likely to 
be affected by GCD treatments (p = 0.478, χ2 = 3.496, df = 4). When we grouped all GCDs into 
manipulation type (e.g., resources vs. nonresources), all five community change processes were 
less likely to be affected by nonresources manipulations or nonresources and resources in 
combination, except for rank changes. Additionally, multiple resources more often resulted in at 
least one mechanism of community change than a single resource being manipulated alone 
(Table 2 and Figure 1b). When further subsetting the data to compare across individual GCD 
treatments, we found all processes of community composition change were equally sensitive to 
all treatments investigated here (Table 2 and Figure 1b). Overall, adding multiple nutrients 
resulted in at least one community change process being significantly affected in 92% of 
comparisons, followed by CO2 (86%), irrigation (75%), N (74%), temperature (71%), 
phosphorus (67%) and precipitation variability (63%; Figure 1b). When rare species were 
removed (those with less than 0.1% relative cover), the results remained similar, suggesting rare 
species did not drive community responses to GCD treatments (Figure S3). 
 When focusing on magnitude of the difference between the control and treatment for 
each process, we found, on average, GCD treatments resulted in higher richness and evenness 
change and species losses (Figure 2). Rank changes and species gains were split between being 
higher in treatments compared to controls and vice versa, resulting in no net directional 
differences between treatments and controls. With respect to manipulation type, we found that 
nonresource manipulations did not affect the magnitude of community change processes. In 
contrast, single resource manipulations resulted in greater evenness changes and species losses, 
while multiple resource manipulation resulted in greater evenness and richness change and 
species losses. When resources and nonresources were coapplied in a treatment, there were 
greater richness and evenness changes and species losses. For individual GCD treatments, only 
multiple nutrient additions resulted in greater evenness and richness changes (Figure 2). All other 
GCDs treatments did not affect the magnitude of any community change processes. When using 
the same data, but analysing absolute values of magnitude, we found that overwhelmingly, GCD 
treatments affected community change processes (Figure S4). 
 We found no evidence of a predictable progression to community change (Figure 3); all 
four processes, evenness, rank change and species gains and losses, were equally like to occur 
first for the communities examined (p = 0.856, χ2 = 0.773, df = 3). Evenness and rank changes 
alone were the most common community changes, followed by gains only, and then by losses 
followed by gains. We also considered whether losses preceded gains or vice versa. Gains 
without losses occurred 27 times and losses without gains occurred 26 times. Gains followed by 
losses occurred 25 times, and losses followed by gains 31 occurred times. 
 Finally, we found few effects of environmental or ecosystem properties (ANPP, MAP, 
MAT, regional SR and site evenness) on the magnitude of community change (Figure 4). 
Together, the site properties explained less than 5% variation for each community change 
process, with the exception of evenness change and species gains, for which 8% and 11% of the 
variation was explained, respectively. Evenness changes were greater in sites with higher MAP 
and lower site evenness. Species gains were greater in sites with a higher regional SR. None of 



these ecosystem properties affected the magnitude of richness and rank changes and species 
losses. 
  
 

 
Figure 1. In response to all global change driver (GCD) treatments, the proportion of 
communities where processes of community change were significantly different between 
treatment and control plots. (a) Overall for any process (top row) and for all processes of 
community change alone (n = 219). (b) Global change drivers grouped into manipulation type 
and GCD treatments for those treatments with enough replication (see Table 1 for sample sizes) 
 



Table 2. We performed an equal proportion analysis to assess whether different manipulation 
types (n = 219) or GCD treatments (n = 126) were equally likely to affect each measure of 
community change 
 Community 

change measure 
Chi-square Degrees of 

freedom 
Adj. p value 

Manipulation 
type 

Richness change 19.11 3 0.003 

 Evenness change 19.14 3 0.003 
 Rank change 12.10 3 0.070 
 Species gains 14.52 3 0.023 
 Species losses 21.10 3 0.001 
GCD treatment Richness change 12.15 6  0.587 
 Evenness change 12.59 6 0.501 
 Rank change 17.54 6 0.075 
 Species gains 10.74 6 0.956 
 Species losses 4.32 6 1.00 

Note: Data are plotted in Figure 3. Shown are the Benjamini–Hochberg adjusted p values for 10 
comparisons. Bolded values are significant at p < 0.05. 
GCD, global change driver. 
 

 
Figure 2. The magnitude of difference between treatment and control plots (measured with 
Glass's D) for each community change measure. Shown in black are all global change drivers 
(GCDs) together (n = 219), in grey are the GCDs grouped into manipulation types and then in 
colour are each GCD treatment for which we have enough replicates separately (see Table 1 for 
the number of replicates in the manipulation and GCD type categories). An asterisk denotes 



significant difference from zero, suggesting an overall magnitude change (either increase or 
decrease). See Figure S4 for a similar analysis on the absolute value of Glass's D 
 

 
Figure 3. The order of community changes (E = evenness, R = rank, G = gain and L = loss) in 
treatments that resulted in significant community change differences between treatment and 
control plots, grouped by which measure of community change occurred first. Single letters 
indicate that only that community change measure changed significantly between treatment and 
control plots. Multiple letters indicate the sequence of community changes. For example, EGR 
indicates that evenness changed first, species gains second and rank changes third 
 

 



Figure 4. Strength of relationships (effect size from standardised multiple regression) between 
the magnitude of differences between control and treated plots for all measures of community 
change (calculated with Glass's D) and environmental and ecosystem properties: above-ground 
net primary production (ANPP), mean annual precipitation (MAP), mean annual temperature 
(MAT), regional species richness (SR) and site evenness. There were 219 points in each multiple 
regression. Lighter coloured bars indicate higher partial R2 of the ecosystem property with the 
aspect of community change. Model R2 and significance are shown in the top left of each panel; 
*p < 0.05. All correlations are shown in Figure S5 
 
Discussion  
 
 It has long been known that plant communities are inherently dynamic and change over 
time (Cowles, 1899; Gleason, 1926), and more recently, plant community change with GCDs has 
been shown to be the norm (Komatsu et al., 2019). We found that GCD treatments equally 
affected all five processes of temporal community composition change but that there was no 
consistency in the order of community changes. In other words, contrary to what was 
hypothesised by the Hierarchical Response Framework (Smith et al., 2009), reordering within 
the extant community did not typically precede species gains or losses. We found similar 
frequency of significant changes among the five processes of community composition change, 
suggesting that all measures are similarly sensitive to GCDs. Species gains were as common as 
species losses, and the understudied process of shift in species ranks (reordering) was also 
equally common. These findings highlight the importance of studying all the ways communities 
can change and that there is no one ‘best’ measure. We generally found multiple resource 
treatments had the greatest effects on community change processes, in terms of frequency and 
magnitude of changes in these processes. In contrast, when resources and nonresources were 
comanipulated, the effects of the resource manipulations on the different processes were 
diminished. We also found that species gains were higher in more speciose ecosystems. 
However, the five ecosystem and environmental properties that we tested (MAT, MAP, ANPP, 
regional SR and site evenness) did not consistently affect the various ways communities can 
change. Our synthesis of GCD studies demonstrates the complex nature of community changes 
in response to resources and nonresource manipulations over time. 
 There are many ways to study community changes. While it is becoming increasingly 
agreed upon that richness may be a particularly poor measure for studying community change 
(Magurran, 2016), there is no consensus as to the best approach, and several methods have been 
suggested (e.g., Hillebrand et al., 2018; McGill et al., 2015). In this paper, we focus on the five 
fundamental ways community composition can change between two time points and quantified 
these changes using community change measures based on RACs (Avolio et al., 2015). We 
found that in 71% of control–treatment comparisons, at least one process of community change 
was significantly impacted by a GCD treatment; however, no one process of community change 
was more likely to occur than any other. Thus, studies that only focus on changes in richness or 
turnover (loss and gain of species) would miss the equally important processes of reordering and 
changes in evenness. Further, Avolio et al., (2019) found that reordering was more strongly 
correlated with multivariate measures of community composition changes than changes in 
richness, evenness and species gains and losses when analysing the codyn dataset (Collins et al., 
2017). Going forward, we suggest more studies examine all five processes of community change. 



 Global change is multifaceted and includes change in both plant resources and 
nonresources, such as temperature. Together, GCDs can be additive (i.e., not interact), 
antagonistic (dampen one another's effects) or synergistic (amplify one another's effects). When 
manipulated in isolation, nonresource manipulations in our database (including herbivory, 
burning and temperature) generally resulted in fewer community processes changing, and 
changes were lower in magnitude compared with responses to resource treatments. These 
nonresource treatments can influence resources indirectly. The combination of resource and 
nonresource manipulations also had fewer effects on the community change processes that were 
of lower magnitude than those resulting from resource manipulations alone, suggesting that 
nonresource manipulations dampen the effects of resource treatments. In a global grasslands 
study, the effect of adding nutrients was diminished in the presence of grazing (Borer et al., 
2014), which was attributed to herbivores alleviating the light limitation caused by nutrient 
additions. Most of our nonresource treatments were disturbances that remove biomass, such as 
herbivory or burning, and may result in diminishing the competitive effects of dominant species, 
as suggested by the intermediate disturbance hypothesis (Connell, 1978). Unfortunately, we do 
not have enough replication of the nonresource treatments except for temperature to further 
explore differences between temperature and disturbances. Additionally, although our study was 
unable to differentiate between additive or synergistic interactions, we did find that multiple 
resource manipulations more frequently resulted in changes in community processes and these 
changes were of a greater magnitude for evenness changes, compared with single resource 
additions. Using the CoRRE dataset, Komatsu et al., (2019) also found treatments that 
manipulated multiple resources had the greatest effect on a multivariate-based measure of 
community composition. In an annual grassland, multiple resource additions typically had 
additive effects (Zavaleta et al., 2003), resulting in greater community changes than a single 
resource treatment alone, probably because N and P are often colimiting (Harpole et al., 2011). 
While there are several examples of combinations of resources either dampening or amplifying 
effects (Langley & Hungate, 2014), our study suggested that dampening effects are less 
common, in contrast to what has been found in other studies (e.g., Leuzinger et al., 2011). 
 Comparing across GCD treatments, we found that all processes of community 
composition change were equally sensitive to all types of GCD treatments. However, when 
comparing the magnitude of a GCD treatment's effects on processes of community change, we 
found differences among GCD treatments. Multiple nutrients additions resulted in a greater 
magnitude of evenness and richness changes compared with controls. Because we took the 
absolute value of richness and evenness change, we only have insight into the magnitude not 
direction of these changes. It is established that multiple nutrients reduce plant diversity by 
reducing niches (Harpole & Tilman, 2007) or by changing the nature of the limiting factor 
(Jentsch & White, 2019), and perhaps this is the mechanism behind these findings. We also 
found that broadly, GCD treatments resulted in greater changes in evenness, richness and species 
losses overall. This was not the case for species gains and reordering, which, while very different 
in magnitude from the controls, were equally likely to be greater or lesser than the controls. 
Thus, while GCD treatments equally result in altered species gains and losses, species losses 
were consistently greater in treated plots, while species gains did not have a consistent 
directionality. We found no evidence of an ordered progression to community change. Changes 
in evenness, ranks, gains and losses were all roughly equally likely to precede each other. We 
also found that losses and gains co-occurred as frequently as losses without gains and gains 
without losses. Thus, we did not find any evidence that a loss must precede a gain or a gain must 



then result in a loss, as would be predicted if communities were saturated. That communities are 
not saturated with regard to plant richness has been a conclusion in invasion biology (Ladouceur 
et al., 2020; Sax et al., 2007; Stohlgren et al., 2008; Turnbull et al., 2000) and is supported by our 
study. It is easier to conceptualise how GCDs can result in a species being lost from a treated 
plot than how a single species might immigrate into a treated plot because dispersal is not 
targeted to treatment or control plots. Resource additions should also eliminate niches, although 
a species establishing in a plot can be impacted by GCD treatments that make conditions more 
favourable to the immigrating species. We need to further study into what might determine 
differential patterns in species gains in response to GCDs. Towards this end, Kaarlejärvi et al., 
(2017) had success by incorporating species traits into models to predict when a species would 
immigrate into a treatment plot, but much more needs to be learned with respect to what allows 
for immigration to occur. 
 We studied the effects of five ecosystem properties on the observed variation in 
community changes, and our models explained very little variation among sites. First, we found 
that MAT and ANPP were not important in determining the magnitude of GCD treatment effect 
on any of the processes of community change. Sites that had lower evenness, indicating they are 
dominated by a few species, saw greater changes in evenness. Additionally, sites with greater 
MAP had more changes in evenness, perhaps because these sites had greater dominance. This 
suggests that dominant species exert control on community change (Hillebrand et al., 2008) but 
do not determine how much a community will change. We saw more gains at sites with a higher 
regional species pool. This also makes intuitive sense, where there is a higher number of species 
dispersing into a plot, there are greater chances for species gains (Willems & Bik, 1998). A study 
of grassland responses to fertilisation found that the size of the species pool was negatively 
related to turnover (Hodapp et al., 2018); however, they did not tease apart gains and losses. 
Global change treatments have pervasive effects of processes of community composition change, 
which based on the variables we examine appear to be minimally impacted by local 
environmental conditions. 
 Perhaps the biggest conclusion we can draw from this analysis is that the only 
consistency in community responses to GCD treatments is that communities are changing. Only 
29% of all 219 GCD treatments examined here resulted in no community change relative to the 
controls in the five processes of community change. Further, only 12% of communities did not 
change when multiple resources were comanipulated, which is likely indicative of global plant 
community responses to on-going global change as GCDs do not occur in isolation. We found 
communities are consistently changing through all five key processes but that there were no 
common responses to the type of the GCD treatment and the progression in which the processes 
occur is not predictable. There are several unexplored mechanisms that, when studied, might lead 
to more generalisable findings, such as species response traits to the GCDs (Suding et al., 2008) 
and the traits and control of the dominant species (Avolio et al., 2019b). While not directly 
addressed here, changes in communities are linked to changes in ecosystem functioning (Avolio 
et al., 2014; Isbell et al., 2013; Langley & Hungate, 2014; Smith et al., 2009; Tilman et al., 
2014), and thus, ecosystem level effects should be expected as well. Community composition 
changes are complex, and multiple measures of the processes underlying change are necessary to 
have an in-depth understanding of what is determining community responses to GCDs. Simply 
put, no one measure of community change will rule them all. 
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