
RUDZINSKI, JAMES, Ph.D. The Bunk Bed Conjecture and the Skolem Problem.
(2021)
Directed by Dr. Clifford Smyth. 79 pp.

We present our results on two open problems, the Bunk Bed Conjecture and the
Skolem Problem. The 35-year-old Bunk Bed Conjecture is a natural conjecture on
connection events in a randomly disrupted network. We reduced this problem to a
counting problem on graphs. As part of that research, we developed a new algorithm
for calculating the inverse images of a monotone Boolean function. This algorithm
greatly improves the space complexity of the existing Hansel’s algorithm for this
problem. It is also parallelizable whereas Hansel’s algorithm is not. The 85-year-old
Skolem Problem is to prove or disprove the existence of a decision procedure to
determine whether a rational linear recurrence ever has a zero. We give a partial
decision procedure for the more general problem of deciding whether a rational linear
recurrence is non-negative. We give wide-ranging conditions under which our procedure
is guaranteed to terminate.

THE BUNK BED CONJECTURE AND THE SKOLEM PROBLEM

by

James Rudzinski

A Dissertation Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Doctor of Philosophy

Greensboro
2021

Approved by

Committee Chair

© 2021 James Rudzinski

ii

This dissertation is dedicated to my wonderful wife Sandi, whose support has been
immeasurable, and to our daughters Claire and Maycie. Thank you all for all of the
love, encouragement, and patience you have shown me throughout this endeavor.

iii

APPROVAL PAGE

This dissertation written by James Rudzinski has been approved by the following
committee of the Faculty of The Graduate School at The University of North Carolina
at Greensboro.

Committee Chair
Clifford Smyth

Committee Members
Gregory Bell

Igor Erovenko

Sebastian Pauli

Date of Acceptance by Committee

Date of Final Oral Examination

iv

ACKNOWLEDGMENTS

James Rudzinski was partially supported by funds from Clifford Smyth’s grants: NSA
MSP Grant H98230-13-1-0222 and a Simons Collaboration Grant 360486.

I would like to thank Dr. Clifford Smyth for his tremendous support over the
years. It is truly hard to express how grateful I am for everything he has done. At
different times he has been encouraging, supportive, patient, helpful, compassionate,
and caring. He has helped me not only to learn to be a better mathematician but a
better person as well. It has been a long journey with many ups and downs, but we
finally managed to finish this chapter. I look forward to the chapters ahead.

I would also like to thank the committee members. Dr. Sebastian Pauli was
particularly helpful with our discussions about algorithms and complexity analysis.
Dr. Sebastian Pauli, Dr. Gregory Bell, and Dr. Igor Erovenko have all been teachers
to me at one time, and I know that I have gained something important from each one
of those experiences. They have helped shape me into the mathematician I am now,
and I will continue to try to live up to their examples.

Finally, I would like to thank the UNCG Department of Mathematics and Statistics
for their support throughout the years.

v

Table of Contents

List of Figures . viii

1. Introduction . 1

2. The Bunk Bed Conjecture . 3
2.1. Introduction . 3
2.2. Simulation . 7
2.3. Proof of the Main Theorem . 8

3. Monotone Boolean Function Testing 10
3.1. Introduction . 10
3.2. Boolean Functions and The Main Problems 11
3.3. Correspondences Between Sets and 0-1 Vectors 16
3.4. Symmetric Chain Decompositions . 17
3.5. The Christmas Tree Decomposition 20
3.6. Our Christmas Tree Decomposition Algorithms 21

3.6.1. The Tree Tn on the Minimal Elements of CTD(n) 21
3.6.2. Our Recursive Algorithm to Produce CTD(n) 23
3.6.3. Our Non-recursive Algorithm to Produce CTD(n) 26
3.6.4. Our Parallel Algorithm to Produce CTD(n) 35

3.7. Algorithms for the Main Problems . 37
3.7.1. Our Algorithms . 37
3.7.2. Hansel’s Algorithm . 40

3.8. Performance of Our Algorithms Versus Hansel’s Algorithm 42
3.9. Testing of the Bunk Bed Conjecture 46

4. The Skolem Problem . 47
4.1. Introduction . 47

4.1.1. The Skolem Problem and the Positivity Problem 47
4.1.2. History . 47
4.1.3. Outline of the Chapter . 49

vi

4.2. Fundamentals . 50
4.2.1. Sequences, Series, and Polynomials 50
4.2.2. Reciprocals and The Geometric Series 55
4.2.3. Recurrences and Rational Functions 57
4.2.4. The Rational Non-Negativity Problem 61

4.3. Reductions . 62
4.3.1. Reduction to the Integer Case 62
4.3.2. Closure Under The Hadamard Product 62
4.3.3. Reduction to the Integer Case of the Positivity Problem . . . 65
4.3.4. Reduction to the Rational Non-Negativity Problem 65

4.4. Type F Polynomials . 66
4.5. Partial Decision Procedures for the Skolem and Positivity Problems . 71

5. Directions for Future Research . 74

References . 76

vii

List of Figures

2.1. A graph G. 4
2.2. The graph B = BB(G, {v, w, x, y}). 4
2.3. Post {x0, x1} in B is replaced by F6,7 and 6 posts in B′. 9

3.1. An SCD of B3, namely CTD(3). 19
3.2. A SCD of B3, namely CTD(3). The minimal string of each chain is in

bold. The unmatched 0’s in the minimal strings are underlined. . . . 19
3.3. An SCD of B4, namely CTD(4). The minimal string of each chain is

in bold. The unmatched 0’s in the minimal strings are underlined. . . 20
3.4. The tree T4 of the minimal elements of CTD(4). 22

viii

Chapter 1: Introduction

We present our results on two open problems in discrete mathematics, the Bunk Bed
Conjecture and the Skolem Problem.

The 35-year-old Bunk Bed Conjecture states that if two isomorphic networks,
subject to identical but independent probabilistic connection disruption processes,
have some pairs of sites identified, then the probability that two sites x and y in one
network remain connected is at least as large as the probability that sites x and z
remain connected where z is the isomorphic copy of y in the second network. We
prove that it is sufficient for the connection disruption probabilities to be all taken to
be 1/2 in order to prove this conjecture in full generality. This reduces the problem to
a counting problem over all possible sub-networks of the joint network.

To facilitate computer testing of this counting version of the Bunk Bed Conjecture,
we found a novel algorithm for computing the ideal f−1(0) of a monotone Boolean
function, f : Bn → {0, 1} where Bn = {0, 1}n is the Boolean lattice. Our algorithm
has space complexity that is polynomial in n as opposed to the exponential space
complexity of the classical Hansel’s algorithm for this problem. In addition, our
algorithm is easily parallelizable, whereas Hansel’s algorithm is not. This algorithm is
also of independent interest in the problem of counting the number of simplices in an
algorithmically defined abstract simplicial complex. We arrived at our results by the
development of novel algorithms for scanning through all the elements of the Boolean
lattice, following its so-called Christmas Tree Decomposition into symmetric chains.

The 85-year-old Skolem Problem is to find a decision procedure to determine
whether a rational linear recurrence ever has a zero term or to prove that this is
undecidable, i.e. that no such decision procedure can exist. This problem can be
reduced to the more general problem of deciding whether a rational linear recurrence is
non-negative or not. We give a novel partial decision procedure for the non-negativity
problem. While the procedure does not always terminate in all the cases where
the recurrence is non-negative, we give wide-ranging conditions under which it is
guaranteed to terminate.

We present our results on the Bunk Bed Conjecture in Chapter 2, our results on
computing the ideals of monotone Boolean functions in Chapter 3, and our results

1

on the Skolem problem in Chapter 4. We conclude with some directions for future
research in Chapter 5.

2

Chapter 2: The Bunk Bed Conjecture

2.1 Introduction

A bunk bed graph consists of two isomorphic graphs, called the upper and lower bunks,
and some additional edges, called posts; each post connects a vertex in the upper bunk
with the corresponding isomorphic vertex in the lower bunk. We assign a probability
to each edge with each edge in the upper bunk assigned the same probability as the
corresponding isomorphic edge in the lower bunk. The probabilities on the posts
are arbitrary. We then form a random spanning subgraph of the bunk bed graph by
deleting each edge independently with its prescribed probability.

The Bunk Bed Conjecture states that in the random subgraph the probability
that a vertex x in the upper bunk is connected to some vertex y in the upper bunk
is greater than or equal to the probability that x is connected to z, the isomorphic
copy of y in the lower bunk. We show that for each p ∈ (0, 1) the special case of the
Bunk Bed Conjecture in which all edge probabilities are p is equivalent to the full
conjecture.

We now give the formal definitions of these concepts and the statements of these
theorems.

Let G be a graph and let G0 and G1 be two disjoint isomorphic copies of G. Fix
graph isomorphisms from G to G0 and from G to G1. If x ∈ V (G) and e ∈ E(G),
then for i ∈ {0, 1}, let xi and ei be the isomorphic copies of x and e in Gi with
respect to those isomorphisms. Let T be a subset of V (G). The bunk bed graph
B = BB(G, T) is the graph consisting of G0 and G1 together with an edge {x0, x1}
for each x ∈ T . G0 and G1 are called the upper and lower bunks of B. We also define
ET (B) = {{x0, x1} : x ∈ T} to be the set of posts of B.

The terms bunk and post are used because the following “3-dimensional drawing”
of B is meant to evoke a bunk bed. Identical drawings of G0 and G1 are placed in two
horizontal planes with each vertex x0 of G0 positioned directly above the corresponding
vertex x1 of G1. This drawing of B looks a little like the drawing of a bunk bed with
the upper bunk G0 held above the lower bunk G1 by the posts in ET (B). See Figures
2.1 and 2.2 below.

3

v w

xy

z

Figure 2.1. A graph G.

v1 w1

x1y1

z1

v0 w0

x0y0

z0

Figure 2.2. The graph B = BB(G, {v, w, x, y}).

Note that the vertices of the upper bunk of B in Figure 2.2 are v0, w0, x0, y0, z0
and those of the lower bunk are v1, w1, x1, y1, z1.

An edge-probability function for a graph G is a function p : E(G) → [0, 1]. If
B = BB(G, T) is a bunk bed graph, we say that p : E(B)→ [0, 1] is symmetric if for
all edges e ∈ E(G), p(e0) = p(e1). Note that even if p is symmetric, this implies no
restriction on p(e) if e ∈ ET (B).

We define Gp to be the random spanning subgraph of G that is obtained from
G by the following edge percolation process: for each edge e ∈ E(G), independently
delete e with probability 1− p(e). Thus Gp takes on values in

span(G) = {H : H is a spanning subgraph of G}.

If p ∈ [0, 1] we write Gp to denote Gp where p(e) = p for all e ∈ E(G).
If x, y ∈ V (G), we write “x↔ y in Gp” for the event that Gp contains a path from

x to y.
We may now state the following conjecture.

4

Conjecture 2.1 (The Bunk Bed Conjecture).
Let G be a graph, T ⊆ V (G), and B = BB(G, T). Let p : E(B) → [0, 1] be

symmetric. Then, for all x, y ∈ V (G), we have

P (x0 ↔ y0 in Bp) ≥ P (x0 ↔ y1 in Bp).

This conjecture and several special cases have been part of probability folklore
since 1985 or earlier; see Section 1, note 5 of [vdBK01] or Conjecture 2.1 of [Lin11].
Although Conjecture 2.1 is intuitively plausible and some special cases have been
proved (it is true if G is outerplanar [Lin11]), no complete proof has been found.

We now state two special cases of Conjecture 2.1, each obtained by restricting to
constant valued p.

Conjecture 2.2 (The uniform version of the Bunk Bed Conjecture).
Fix p ∈ (0, 1). Let G be a graph, T ⊆ V (G), and B = BB(G, T). Then for all

x, y ∈ V (G) we have

P (x0 ↔ y0 in Bp) ≥ P (x0 ↔ y1 in Bp).

If we take p = 1/2 in Conjecture 2.2 we get:

Conjecture 2.3 (The counting version of the Bunk Bed Conjecture).
Let G be a graph, T ⊆ V (G), and B = BB(G, T). Then for all x, y ∈ V (G) the

number of spanning subgraphs of B in which x0 and y0 are connected is at least the
number of spanning subgraphs in which x0 and y1 are connected.

If G is a graph, an orientation of G is an assignment of a direction to each edge of
G. Let G⃗ be an orientation of G chosen uniformly at random from all of the possible
orientations of G. If x, y ∈ V (G) we may then speak of events such as “x→ y in G⃗”,
the event that there is a directed path from x to y in G⃗. The following theorem of
[McD80] and [Kar90] is of interest.

Theorem 2.4. Let G be a graph and x, y ∈ V (G). Then for all x, y ∈ V (G) we have

P (x↔ y in G1/2) = P (x→ y in G⃗).

With this result in hand, the following conjecture is equivalent to Conjecture 2.3.

Conjecture 2.5 (The directed version of the Bunk Bed Conjecture).
Let G be a graph, T ⊆ V (G), and B = BB(G, T). Then for all x, y ∈ V (G) we

have
P (x0 → y0 in B⃗) ≥ P (x0 → y1 in B⃗).

The main results of this chapter are the following theorem and its immediate
corollary.

5

Theorem 2.6. If p ∈ (0, 1) is fixed and

P (x0 ↔ y0 in BB(G, T)p) ≥ P (x0 ↔ y1 in BB(G, T)p)

for all graphs G, all subsets T ⊆ V (G), and all vertices x, y ∈ V (G), then Conjecture
2.1 is true.

Corollary 2.7. Conjectures 2.1, 2.2, 2.3, and 2.5 are all equivalent to one another.

We prove Theorem 2.6 by simulation: we create a sequence of new bunk bed graphs
Bn from B by replacing the edges of B with other graphs in such a way that

P (u↔ v in (Bn)p)→ P (u↔ v in Bp) as n→∞,

where the convergence is uniform over all choices of vertices u, v that are original
vertices of B.

We summarize this technique of simulation by edge-replacements in Lemmas 2.9
and 2.10 in Section 2.2. We then prove Theorem 2.6 in Section 2.3.

Notes:
(i) Conjecture 2.2 is an often-mentioned variant of Conjecture 2.1, see [Lin11]

for example. The equivalence of the two apparently has never been noted in print.
We believe the statement of Conjecture 2.5 is new. Linnusson uses Theorem 2.4 to
formulate another conjecture related to Conjecture 2.8 below [Lin11].

(ii) In Conjecture 2.1, it is equivalent to assume that all posts in BB(G, T) have
probability 1. This is because the posts {x0, x1} of BB(G, T) may be replaced by
internally vertex disjoint paths x0, x

′
0, x

′
1, x1 where x′

0 and x′
1 are added vertices,

{x′
0, x

′
1} is a new post of probability 1 and edges {x0, x

′
0} and {x′

1, x1} of the new
upper and lower bunks respectively are each given probability √p. This may also be
seen by applying the law of total probability, conditioning on the outcomes of the
random variable E(Bp) ∩ ET (B). In Conjectures 2.2 and 2.3 it is likewise equivalent
to assume that posts are always present.

(iii) One may also define BBi(G, T), the bunk bed graph consisting of G0 and G1

with x0 and x1 identified for each x ∈ T instead of connected by a post. Note that
BBi(G, T) may be a multi-graph; an edge e = {x, y} ⊆ T will become two distinct
edges e0 and e1 in BBi(G, T). Since posts may assumed to be always present, the
statements of Conjectures 2.1, 2.2, 2.3, and 2.5 with BB(G, T) replaced by BBi(G, T)
are also all equivalent to each other and Conjecture 2.1. In fact, Conjecture 2.1 is
stated in this form in [vdBK01].

(iv) The following special case of Conjecture 2.1 also appears in the literature: as
Question 3.1 of [Häg98], Conjecture 2.1 of [Häg03], and Conjecture 1.1 of [Lin11].

Conjecture 2.8. Fix p ∈ (0, 1). Let G be a graph and B = BB(G, V (G)). Then, for
all x, y ∈ V (G), we have

P (x0 ↔ y0 in Bp) ≥ P (x0 ↔ y1 in Bp).

6

The case where G = Kn and p = 1/2 has recently been proven [dB16]. We have
not been able to show that Conjecture 2.8 is equivalent to the Bunk Bed Conjecture.
Perhaps it is not.

2.2 Simulation

We now formalize the process of simulation in Lemmas 2.9 and 2.10. For notational
convenience we will denote Gp by G(p) in the following exposition.

Let G be a graph. For each e ∈ E(G), let (He,pe, xe, ye) be a 4-tuple where He is
a graph, pe : E(He)→ [0, 1] is an edge-probability function on He, and xe and ye are
distinct vertices of He. Let G′ be the graph obtained from the vertex disjoint union
G′′ = V (G) ⊔

⊔
e∈E(G) He by successively identifying vertices x and xe and y and ye

for each edge e = {x, y} ∈ E(G). The vertex resulting from the identifications of
x ∈ V (G) with other vertices in G′′ will also be called x and we view V (G) as a subset
of V (G′). Likewise, each edge f ∈ E(G′) is viewed as belonging to the unique He

from which it arose in G′. Let p′ : E(G′)→ [0, 1] be defined by setting p′(f) = pe(f)
if and only if f ∈ E(He). Informally, G′ is the graph obtained from G by replacing
each edge e with He and p′ is the edge-probability function on G′ that restricts to pe

on He.
We define a map π : span(G′) → span(G) as follows. If H ′ ∈ span(G′) then

H = π(H ′) is the spanning subgraph of G that retains e = {xe, ye} ∈ E(G) if
and only if xe ↔ ye in H ′ ∩ He. We define q : E(G) → [0, 1] by setting q(e) =
P (xe ↔ ye in He(pe)) for e ∈ E(G).

Lemma 2.9. The following statements hold.

1. If H ∈ span(G), then P (G(q) = H) = P (G′(p′) ∈ π−1(H)).

2. If H ′ ∈ span(G′) and H = π(H ′), then, for all x, y ∈ V (G), x↔ y in H ′ if and
only if x↔ y in H.

3. For all x, y ∈ V (G), P (x↔ y in G(q)) = P (x↔ y in G′(p′)).

We omit the proof of Lemma 2.9; the details are straightforward but tedious to
verify.

Lemma 2.10. Let G be a graph. For all ϵ > 0 there is a γ > 0 such that for all
p,q : E(G)→ [0, 1], if |p(e)− q(e)| < γ for all e ∈ E(G) then

|P (Gp ∈ A)− P (Gq ∈ A)| < ϵ

for all A ⊆ span(G).

7

Proof. For each A ⊆ span(G), fA(p) = P (Gp ∈ A) is a polynomial in the variables
p(e). Thus fA is continuous and even uniformly continuous for p in the compact set
[0, 1]E(G). Since G is finite, there are only finitely many A ⊆ span(G), so given ϵ > 0
we can find a bound γ > 0 that will apply uniformly to all fA.

2.3 Proof of the Main Theorem

We use the following class of 4-tuples as replacements in our proof of Theorem 2.6.
For integers j, k ≥ 1 and p ∈ (0, 1) we define Fj,k(p) = (Hj,k,p, h0, hk) where Hj,k is
the graph consisting of vertices h0 and hk and j internally vertex disjoint paths from
h0 to hk, each of length k, and where p(e) = p for all e ∈ E(Hj,k). Theorem 2.6 is an
immediate consequence of Lemma 2.11, listed below.

Lemma 2.11. Let G be a graph, T ⊆ V (G), and B = BB(G, T). Let p : E(B) →
[0, 1] be symmetric. Let p ∈ (0, 1) and ϵ > 0. Then there is another bunk bed graph
B′ = BB(G′, T ′) with V (G) ⊆ V (G′) and T ′ ⊆ V (G′), such that for all x, y ∈ V (G)
and i, j ∈ {0, 1},

|P (xi ↔ yj in Bp)− P (xi ↔ yj in B′
p)| < ϵ. (2.1)

Proof. Fix p ∈ (0, 1) and ϵ > 0. Let G be a graph, T ⊆ V (G), and B = BB(G, T).
Let p : E(B)→ [0, 1] be symmetric. We construct B′ as follows.

For each edge e ∈ E(G), we pick j = je ≥ 1 and k = ke ≥ 1, and replace e0 ∈ E(B)
by a copy of Fj,k(p) in the upper bunk of B′ and e1 ∈ E(B) by another copy of Fj,k(p)
in the lower bunk of B′. For each edge e = {x0, x1} ∈ E(B) with x ∈ T we pick
j = je ≥ 1 and k = ke ≥ 1 and replace e by Fj,2k+1(p). This action adds j x0-x1 paths
to B, each of length 2k + 1. For each such path P = (x0, h1, . . . , hk, hk+1, . . . , h2k, x1),
we view the sub-path x0Phk as belonging to the upper bunk of B′, hk+1Px1 as
belonging to the lower bunk of B′, and the edge {hk, hk+1} as being a post of B′.
These new posts are the post edges of B′. See Figure 2.3.

Let p′ : E(B′) → [0, 1] and q : E(B) → [0, 1] be as in Lemma 2.9. Note that
p′(e) = p for all e ∈ E(B′). Note that q is symmetric. By Lemma 2.10, we can pick
γ > 0 so that if

|q(e)− p(e)| < γ for all e ∈ E(B) (2.2)

then (2.1) will hold. It is not hard to show that we can pick je and ke so that
(2.2) will hold. We can take each ke to be odd and then each post edge e has
q(e) = 1− (1− p2k+1)j for some j, k ≥ 1. These numbers are dense in [0, 1].

8

B

x0

x1

=⇒

B′

x0

x1

k = 3

k = 3

Figure 2.3. Post {x0, x1} in B is replaced by F6,7 and 6 posts in B′.

Proof. (of Theorem 2.6) Let G, T , B, and p be as in the statement of Conjecture 2.1.
Fix p ∈ (0, 1). If we had

δ = P (x0 ↔ y1 in Bp)− P (x0 ↔ y0 in Bp) > 0

for some x, y ∈ V (G), then by applying Lemma 2.11 with ϵ = δ/3, we would have

P (x0 ↔ y1 in B′
p)− P (x0 ↔ y0 in B′

p)) > δ/3 > 0,

contradicting the assumption of the theorem.

9

Chapter 3: Monotone Boolean
Function Testing

3.1 Introduction

If S is a set, let P(S) = {A|A ⊆ S} be its power set. A Boolean function on S is
any function of the form f : P(S) → {0, 1} for some set S. A Boolean function is
monotone if for all subsets A and B of S, A ⊆ B implies f(A) ≤ f(B).

In this chapter, we describe our new algorithms for computing the ideal I(f) of a
given monotone Boolean function, f : P(S)→ {0, 1}, namely I(f) = f−1(0) = {A ⊆
S : f(A) = 0}. By calculating the ideal I(f), we mean listing all of its members.
Variants of this problem include listing all the maximal elements of I(f) or just
computing its size, |I(f)|. Our algorithms can handle these variants as well.

Note that if f is monotone and B ∈ I(f), i.e. f(B) = 0, then for all A ⊆ B,
f(A) = 0 and A ∈ I(f) as well. Thus I(f) is closed under taking subsets and so is,
by definition, an abstract simplicial complex. Thus our algorithms can list all the
members of, or list all the maximal elements of, or calculate the size of any simplicial
complex defined by a monotone Boolean function.

This problem originated from attempts to computationally test Conjecture 2.3. Let
G = (V,E) be a graph with vertex set V and edge set E. Let x and y be vertices of
G. Define the Boolean function fxy : P(E)→ {0, 1} such that for all subsets F of the
edge set E we have fxy(F) = 1 if and only if vertices x and y are connected in (V, F).
It is easy to see that fxy is monotone. This is because if a connection event holds
true in (V, F) it must hold true in (V, F ′) for all F ′ ⊇ F ; adding more edges cannot
destroy connectivity. Conjecture 2.3 is thus about the number of subgraphs (V, F) of
G for which fxy(F) = 1, i.e. about the number |f−1

xy (1)| = 2|E| − |f−1
xy (0)|. Conjecture

2.3 asserts |f−1
x0y0

(1)| ≥ |f−1
x0y1

(1)| for all x, y. As noted, we used our algorithms to test
various cases of Conjecture 2.3.

Our algorithm for computing I(f) compares very favorably with the existing
algorithm due to Hansel [Han66], both in memory requirements and in parallelization.
We focus on the number of computations of f(A) for particular subsets A of S that

10

these algorithms need to perform as, in typical examples, such calculations are the
ones that are most expensive to carry out. When given a monotone Boolean function
f on an n-element set S, Hansel’s algorithm requires memory space (i.e. number of
memory locations) on the order of 2n/

√
n and may need to evaluate f on the order of

2n/
√
n subsets of S. In contrast, our algorithm requires space on the order of n2 at

the expense of only a logarithmic factor more function evaluations, on the order of
2n log(n)/

√
n. The number of computations of f needed by any algorithm to list the

elements of I(f) can be on the order of 2n/
√
n so all of these algorithms are optimal

or nearly optimal in this sense.
The novel algorithm has the potential to finish computations even faster in some

cases where “tree trimming” is possible, but this is dependent on the given monotone
function. See Chapter 5 for a discussion of this.

In addition, our algorithm can be run in parallel whereas Hansel’s algorithm
cannot. If one has N processors available, the run time of the parallel version of our
algorithm is on the order of (1/N)2n log(n)/

√
n computations of f . With modern

parallel clusters containing thousands of parallel processors, this yields a significant
speed up. Note that as n increases, both algorithms will quickly become impossible to
run due to time requirements that are exponential in n. But on a parallel cluster, our
algorithm will be able to complete the analysis of many more small cases of n than
Hansel’s will be able to without running into space constraints. That significantly
extends the limits of computational exploration of conjectures on monotone Boolean
functions, including Conjecture 2.3.

The basis of our improved algorithm is our other new algorithm for producing the
so-called Christmas Tree Decomposition of P(S) into symmetric chains. This will be
explained in Section 3.5.

This chapter is organized as follows. In Section 3.2, we introduce Boolean functions
and the main problems on Boolean functions that we will consider. In Sections 3.3
and 3.4 we will introduce some standard notation and the concept of symmetric
chain decompositions. In Sections 3.5 and 3.6 we will introduce the Christmas Tree
symmetric chain decomposition and give our new algorithms for computing it. We
will use these algorithms to give algorithms for the main problems in Section 3.7.
We analyze the performance of all of these algorithms in Section 3.8. We close with
Section 3.9, where we will discuss how we used these algorithms to test various cases
of the Bunk Bed Conjecture.

3.2 Boolean Functions and The Main Problems

If S is a set, let P(S) = {A|A ⊆ S} be its power set. A Boolean function on a finite set
S is any function of the form f : P(S)→ {0, 1} for some set S. A Boolean function is
monotone if for all subsets A and B of S, A ⊆ B implies f(A) ≤ f(B).

11

If f : P(S) → {0, 1} is a monotone Boolean function, the ideal of f is the set
I(f) = f−1(0) = {A ⊆ S : f(A) = 0}. More generally, I is an ideal of subsets of a set
S if whenever B ∈ I and A ⊆ B then A ∈ I, i.e. I is “closed under taking subsets.”
An abstract simplicial complex is defined to be a non-empty ideal of finite sets.

The filter of f is defined to be the set F (f) = f−1(1) = P(S) \ I(f) = {A ⊆ S :
f(A) = 1}. More generally, F is a filter of subsets of a set S if A ∈ F and A ⊆ B ⊆ S
implies B ∈ F , i.e. F is “closed under taking supersets.”

Suppose we are given an algorithm to compute a particular monotone Boolean
function f : P(S)→ {0, 1}. We consider the following related problems.

Problem 3.1. List the elements of I(f) = f−1(0) = {A ⊆ S : f(A) = 0}.

Problem 3.2. List the maximal elements of I(f), i.e. the elements that are maximal
with respect to inclusion.

Problem 3.3. Compute |I(f)|.

Problem 3.4. List the elements of F (f) = f−1(1) = {A ⊆ S : f(A) = 1}.

Problem 3.5. List the minimal elements of F (f), i.e. the elements that are minimal
with respect to inclusion.

Problem 3.6. Compute |F (f)|.

We next discuss some interesting classes of monotone Boolean functions f and their
ideals and filters. In particular, we consider those arising from computationally defined
abstract simplicial complexes and those that arise from monotone graph properties.
This will demonstrate that Problems 3.1-3.6 are natural questions in those contexts.

We will first need the following theorem on how monotone Boolean functions give
rise to abstract simplicial complexes and filters and vice versa.

Lemma 3.7. We have the following statements.

1. Suppose S is a finite set and f : P(S)→ {0, 1} is a monotone Boolean function
with f(A0) = 0 for some A0 ⊆ S. Then I(f) is an abstract simplicial complex
of subsets of S.

2. Suppose ∆ is an abstract simplicial complex of subsets of a finite set S. Suppose
also that f : P(S) → {0, 1} is defined by setting f(A) = 0 for all A ∈ ∆ and
f(A) = 1 for all A ̸∈ ∆. Then f is a monotone Boolean function with f(A0) = 0
for some A0 ⊆ S. Also I(f) = ∆.

3. Suppose S is a finite set and f : P(S)→ {0, 1} is a monotone Boolean function.
Then F (f) is a filter of subsets of S.

12

4. Suppose F is a filter of subsets of a finite set S. Suppose also that f : P(S)→
{0, 1} is defined by setting f(A) = 0 for all A ̸∈ F and f(A) = 1 for all A ∈ F .
Then f is a monotone Boolean function. Also F (f) = F .

Proof. Proof of statement 1. We have that I(f) is not empty. The set A0 is in I(f)
since f(A0) = 0. Suppose now that A ⊆ B ∈ I(f). Since f is monotone, we have
0 ≤ f(A) ≤ f(B) = 0 and f(A) = 0 as well. So A ∈ I(f) and I(f) is closed under
taking subsets. Thus I(f) satisfies all the requirements to be an abstract simplicial
complex.

Proof of statement 2. By definition, I(f) = ∆. Since ∆ is not empty, it contains
some set A0. We have f(A0) = 0. The function f must be monotone. If it were not,
we would have A ⊆ B ⊆ S such that f(A) ̸≤ f(B). Then f(A) = 1 and f(B) = 0
and we have A ⊆ B ∈ ∆ with A ̸∈ ∆. This contradicts the assumption that ∆ is a
simplicial complex. We have proved that f satisfies all the stated conditions.

Proof of statement 3. Suppose A ∈ F (f) and A ⊆ B ⊆ S. Since f is monotone,
we have 1 = f(A) ≤ f(B) ≤ 1. Thus f(B) = 1 and B ∈ F (f) as well. Thus F (f) is
closed under taking supersets and is hence a filter.

Proof of statement 4. By definition, F (f) = F . Also, the function f must be
monotone. If it was not, then there would be sets A ⊆ B ⊆ S such that f(A) ̸≤ f(B).
This means that f(A) = 1 and f(B) = 0 or A ∈ F and B ̸∈ F . This contradicts the
assumption that F is a filter.

We say an abstract simplicial complex ∆ of subsets of a finite set S is computa-
tionally defined if there is some algorithm that, when given A ⊆ S as input, decides
whether A ∈ ∆ or not. Given such a simplicial complex ∆, define a Boolean function
f : P(S)→ {0, 1} by f(A) = 0 if and only if the algorithm determines that A ∈ ∆. By
part 2 of Lemma 3.7, this f is monotone and I(f) = ∆. Then Problem 3.1, listing all
the simplices of I(f) = ∆, Problem 3.2, listing all the maximal simplices of I(f) = ∆,
and Problem 3.3, computing the size of |I(f)| = |∆|, are all natural and important
questions.

Here is an example of a simplicial complex to which we can apply our algorithms.
Given a collection of balls B = {Bi : i ∈ S} in Rd, the Čech complex of B is the
simplicial complex Čech(B) = {A ⊆ S :

⋂
i∈A Bi ̸= ∅}. The Čech complex is a

central object of study in the rapidly growing field of topological data analysis [EH10].
Čech(B) is an abstract simplicial complex. Clearly if a set of balls has non-empty
intersection, then so does any subset of that set of balls and so Čech(B) is closed under
taking subsets. Here we adopt the typical convention that an empty intersection is the
whole space, i.e.

⋂
i∈∅ Bi = Rd. In particular, this intersection is considered not empty

and so ∅ ∈ Čech(B) and the complex is not empty. Note that reducing the number of
computations of

⋂
i∈ABi is important as these are typically computationally expensive

tasks to carry out. Our algorithms perform an optimal number of such calculations.

13

We say a filter F of subsets of a finite set S is computationally defined if there
is some algorithm that, when given A ⊆ S as input, decides whether A ∈ F or not.
Given such a filter f , define a Boolean function f : P(S)→ {0, 1} by f(A) = 0 if and
only if A ̸∈ F and f(A) = 1 if A ∈ F . By part 4 of Lemma 3.7, this f is monotone
and F (f) = F . Then Problem 3.4, listing all the elements of F (f) = F , Problem 3.5,
listing all the minimal elements of F (f) = F , and Problem 3.6, computing the size of
|F (f)| = |F |, are all natural and important questions.

We will now give many examples of filters. We first have to define a monotone
property of graphs. Given a set V of “vertices”, let S = {{v, w} : v, w ∈ V } the
set of all possible “edges” on V . The set of all graphs (V,E) with vertex set V can
thus be viewed as P(S). Since the vertex set V is the same for all graphs, each such
graph is uniquely determined by its edge set E ⊆ S and every E ⊆ S gives rise to
a unique graph (V,E). A property P of graphs is said to be monotone if for every
graph G = (V,E) that satisfies property P , we have that every graph H = (V,E ′)
with E ′ ⊇ E also satisfies P . In other words, a graph property is monotone if “it is
preserved by adding edges.” Let F = {E ⊆ S : (V,E) satisfies property P}. Since P
is monotone, we see that F is a filter of subsets of S. Define f : P(S) → {0, 1} by
setting f(E) = 1 if and only if (V,E) satisfies property P and by setting f(E) = 0
if and only if (V,E) does not satisfy property P . Then part 4 of Lemma 3.7 shows
that f is a monotone Boolean function and F (f) is the filter of all graphs (V,E) that
satisfy property P .

Dozens of interesting and well-studied properties of graphs are monotone. For
example, the properties that G is connected, that G contains a particular fixed type
of subgraph, or that the chromatic number of G is larger than some threshold k are
all monotone. Indeed, adding edges preserves all of these properties. So all of these
properties P give rise to monotone Boolean functions f for which the corresponding
filter F (f) is the set of graphs satisfying P . In this setting, Problem 3.4, i.e. listing all
graphs with property P (those in F (f)), Problem 3.5, listing the minimal graphs with
property P , and Problem 3.6, counting all graphs with property P , are all natural
and important questions.

In the rest of this chapter, we will restrict our attention to Problems 3.1-3.3. Indeed
we shall now show that algorithms for these problems can be re-purposed to solve
Problems 3.4-3.6.

We will first need the following definitions and lemma.
Suppose a set S and a Boolean function f : P(S) → {0, 1} are given. Define

Ac = S \ A for all A ⊆ S. Also define the Boolean function g : P(S)→ {0, 1} that is
complementary to f by setting g(A) = 1− f(Ac) for all A ⊆ S.

Lemma 3.8. Suppose S is a finite set and f : P(S)→ {0, 1} is a monotone Boolean
function. Let g be the complementary Boolean function corresponding to f . Then we
have the following statements.

14

1. Any algorithm to compute f can be re-purposed to compute g.

2. g is a monotone Boolean function.

3. F (f) = {Ac : A ∈ I(g)}.

4. Ac is a minimal element of F (f) if and only if A is a maximal element of I(g).

5. |F (f)| = |I(g)|.

Proof. Statement 1 is a triviality. If you have an algorithm that can compute f(A)
for any A ⊆ S, then that same algorithm can be used to compute g(A) = 1− f(Ac)
for any A ⊆ S.

Proof of statement 2. Suppose A ⊆ B ⊆ S. Then Bc ⊆ Ac and f(Bc) ≤ f(Ac)
since f is monotone. But then g(A) = 1 − f(Ac) ≤ 1 − f(Bc) = g(B). This shows
that g is monotone.

Proof of statement 3. We have F (f) = {A ⊆ S : f(A) = 1}. Re-indexing, we get
F (f) = {Ac ⊆ S : f(Ac) = 1} = {Ac ⊆ S : g(A) = 1− f(Ac) = 0} = {Ac ⊆ S : A ∈
I(g)}.

Proof of statement 4. Suppose now that Ac is a minimal element of F (f). By
definition of minimality, this is equivalent to the statement that f(Ac) = 1 and f(Bc) =
0 for all Bc ⊊ Ac. But this is equivalent to the statement that g(A) = 1− f(Ac) = 0
and g(B) = 1 − f(Bc) = 1 for all B ⊋ A. By the definition of maximality, this is
equivalent to the statement that A is a maximal element of I(g).

Statement 5 follows trivially from Statement 3.

Theorem 3.9. Let S be a finite set and let f : P(S)→ {0, 1} be a monotone Boolean
function. Suppose we have an algorithm that can compute f(A) for any A ⊆ S. Then
we have the following statements.

1. Any algorithm to solve Problem 3.1 can be re-purposed to solve Problem 3.4.

2. Any algorithm to solve Problem 3.2 can be re-purposed to solve Problem 3.5

3. Any algorithm to solve Problem 3.3 can be re-purposed to solve Problem 3.6

Proof. By part 1 of Lemma 3.8, the algorithm for computing f gives us an algorithm
to compute g. By part 2 of Lemma 3.8, g is monotone.

Suppose we have an algorithm to solve Problem 3.1. Then the following is an
algorithm to solve Problem 3.4. Given f , use the algorithm to solve Problem 3.1 to list
the elements A of I(g). However, as you go, list the complementary sets Ac instead.
By part 3 of Lemma 3.8, this lists the elements of F (f) = {Ac : A ∈ I(g)}.

Suppose we have an algorithm to solve Problem 3.2. Then the following is an
algorithm to solve Problem 3.5. Given f , use the algorithm to solve Problem 3.2 to

15

list the maximal elements A of I(g). However, as you go, list the complementary sets
Ac instead. By part 4 of Lemma 3.8 this lists the minimal elements of F (f).

Suppose we have an algorithm to solve Problem 3.3. Then the following is an
algorithm to solve Problem 3.6. Given f , use the algorithm to solve Problem 3.3 to
compute |I(g)|. By part 4 of Lemma 3.8, this also computes |F (f)| = |I(g)|.

Our goals in producing algorithms for Problems 3.1-3.3 (and hence, by Theorem
3.9, also for Problem 3.4-3.6) is to reduce the memory space required and time required
as much as possible. To measure the time our algorithms take, we focus on the number
of computations of f that the algorithms need to make. Typically, these computations
are the ones that are most time-consuming. Calculating whether a collection of balls
in Rd have a non-empty intersection is a computationally expensive task and so the
monotone Boolean function that computes the Čech complex is hard to compute.
Deciding whether a graph satisfies the monotone property of being at least 4-chromatic
is an NP-complete problem so there is no known efficient algorithm for computing the
corresponding monotone Boolean function [GJ79]. Indeed it is widely believed that
no efficient algorithm exists for this problem. Many monotone properties besides this
one example are NP-complete and thus hard to compute.

We shall see in Section 3.8 that if we are given an arbitrary Boolean function
f : P(S)→ {0, 1} on an n-element set S, then any algorithm to solve one of Problems
3.1 or 3.3 must, in the worst case, evaluate f(A) on all 2n subsets A of S. There we
shall also see that if f is monotone, there are algorithms that can solve Problems
3.1-3.3 slightly more efficiently, i.e. taking on the order of 2n/

√
n computations of f .

Remarkably, we will also see there that this seemingly mild improvement is in fact
optimal.

3.3 Correspondences Between Sets and 0-1 Vectors

In the rest of this chapter, we will identify subsets A ⊆ S of an n element set S with
n-dimensional 0-1 valued vectors in {0, 1}n. We will also identify Boolean functions
f : P(S)→ {0, 1} with n variable functions f : {0, 1}n → {0, 1}. The identifications
we adopt are all standard in discrete mathematics but, for the sake of completeness,
we define them all here.

If n is a positive integer, the Boolean lattice is Bn = {0, 1}n. That is, Bn is the set
of all n-tuples with all entries either 0 or 1. We often write such elements as strings, e.g.
we write (0, 1, 1, 0) as 0110 and so on. There is a simple bijection between Bn and P(S)
where S = {s1, . . . , sn} is an n-element set with its elements indexed in some definite
fixed order. If A ⊆ S, we identify A with its indicator vector xA = (x1, . . . , xn) ∈ Bn

where xi = 1 if si ∈ A and xi = 0 if si ̸∈ A. Thus the set A = {b, c} ⊆ S = {a, b, c, d}

16

would be identified with the indicator xA = (0, 1, 1, 0) ∈ B4 or xA = 0110. Note that
x∅ is the all 0’s string, x∅ = 00 . . . 0, and xS is the all 1’s string, xS = 11 . . . 1.

The Hamming weight or just weight of a string x ∈ Bn is defined to be |x| =
∑

i xi.
Note that |x| is “the number of 1’s in the string x,” i.e. the number of i such that
xi = 1 or i ∈ A. Thus we have |xA| = |A|.

We put the following partial order on Bn. If x = (x1, . . . , xn) and y = (y1, . . . , yn),
we set x ≤ y if and only if xi ≤ yi for all i. With this definition, we see that that if
A,B ⊆ S, then xA ≤ xB if and only if A ⊆ B. Indeed, the following statements are
equivalent: (i) xA ≤ xB, (ii) for all i, (xA)i = 1 implies (xB)i = 1, (iii) for all i, i ∈ A
implies i ∈ B, and (iv) A ⊆ B.

From now onwards, all of these identifications will be understood. We will write
P(S) interchangeably with Bn, A ⊆ S interchangeably with xA = (x1, . . . xn) =
x1x2 . . . xn, and |A| interchangeably with |xA|.

If f : P(S) → {0, 1} is a Boolean function then we define a corresponding
function f̃ : Bn → {0, 1} by setting f̃(xA) = f(A) for all A ⊆ S. For example,
suppose f : P(S) → {0, 1} with S = {a, b} is defined by setting f({a, b}) = 1
and f(∅) = f({a}) = f({b}) = 0. Then f̃ : {0, 1}2 → {0, 1} has f̃(11) = 1 and
f̃(00) = f̃(10) = f̃(01) = 0.

We say a Boolean function f : Bn → {0, 1} is monotone if for all x, y ∈ Bn, x ≤ y
implies f(x) ≤ f(y). Thus a Boolean function f : P(S)→ {0, 1} is monotone if and
only if the corresponding Boolean function f̃ : Bn → {0, 1} is monotone. Indeed,
the statement that A ⊆ B implies f(A) ≤ f(B) is equivalent to the statement that
xA ≤ xB implies f̃(xA) ≤ f̃(xB).

With these correspondences in mind, we will also call functions f̃ : Bn → {0, 1}
Boolean functions and identify f : P(S) → {0, 1} with its corresponding f̃ : Bn →
{0, 1}. We will also interchangeably say f is monotone if f(x) ≤ f(y) for x ≤ y in Bn

or f(A) ≤ f(B) for A ⊆ B ⊆ S.

3.4 Symmetric Chain Decompositions

Here we define a symmetric chain decomposition of a partially ordered set. In order
to do this, we will first have to define many other terms, e.g. poset, rank, chains,
saturated chains, etc.

If P is a set and ≤ is partial order on P , we say the pair (P,≤) is a partially
ordered set or poset for short. We will just write P for the poset if the partial ordering
≤ is understood from the context. We write a < b if a ≤ b and a ̸= b.

If (P,≤P) is any poset then then any subset Q of P determines another poset
(Q,≤Q) where ≤Q is the restriction of ≤P to the domain Q×Q. We say any such Q is
a subposet of P . An isomorphism of posets P and Q is any order-preserving bijection,
i.e. a bijection f : P → Q such that x ≤ y in P if and only if f(x) ≤ f(y) in Q. We

17

say a poset (P,≤P) contains a copy of another poset (Q,≤Q) if and only if there is a
subposet of P that is isomorphic to Q.

We say two elements a and b in a poset are comparable if a ≤ b or b ≤ a. Otherwise,
we say the elements are incomparable. A poset is totally ordered if every pair of
elements in it are comparable. If k is an integer with k ≥ 0 then a length k chain is
any poset that is isomorphic to the totally ordered poset Ck = {0, 1, 2, . . . , k} under
the usual ordering of the integers. A size k antichain is any poset isomorphic to the
poset Ak = {1, 2, . . . , k} with the empty partial order, i.e. with i and j incomparable
for all i ̸= j. Clearly any sequence of elements x0 < x1 < . . . < xk in a poset P
is isomorphic to Ck so we call such a sequence a chain of P . Similarly any subset
{y1, . . . , yk} of pairwise incomparable elements of a poset P is isomorphic to Ak, so
we call such a set an antichain of P .

The set Bn = {0, 1}n with its partial order, namely x ≤ y if and only if xi ≤ yi
for all i, is a partially ordered set that is isomorphic to the partially ordered set P(S)
with its partial order, namely A ≤ B if and only if A ⊆ B. The length k chains of
these posets correspond to sequences of subsets with A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊊ Ak and
the size k antichains in these posets correspond to the sets {A1, . . . , Ak} of subsets Ai

with no Ai contained in any other Aj with j ̸= i. The set L(S, k) = {A ⊆ S : |A| = k}
consisting of all size k subsets of S is an antichain with

(
n
k

)
elements. Similarly, the

corresponding set L(n, k) = {x ∈ Bn : |x| = k} in Bn consisting of all the weight k
strings in Bn is an antichain, also with

(
n
k

)
elements.

If a and b are two elements in a poset (P,≤) we say b covers a or a is covered by b
if a < b and there is no element z ∈ P such that a < z < b. We denote this by a⋖ b.
In Bn we have x⋖ y if and only if there is exactly one index i such that xi = 0 and
yi = 1, i.e. if “x has only one more 1 than y”. Analogously we have A⋖B in P(S) if
and only if B = A ∪ {i} for some i ̸∈ A, i.e. “B has one more element than A” .

A chain c0 < c1 < · · · < ck in a poset is saturated if and only if the < relations are
also covering relations, c0 ⋖ c1 ⋖ c2 ⋖ · · · ⋖ ck. So a chain c0 < c1 < · · · < ck in Bn

is saturated if and only if the weights |ci| satisfy |ci| = |ci−1| + 1 for all 1 ≤ i ≤ k.
Similarly a chain A0 ⊊ A1 ⊊ A2 ⊊ . . . ⊊ Ak in P(S) is saturated if and only if
|Ai| = |Ai−1|+ 1 for all 1 ≤ i ≤ k.

If there is an element 0̂ ∈ P such that x ≥ 0̂ for all x ∈ P , then we say 0̂ is the
zero-element of P . Note that if a zero-element exists, it is unique because if a and b
are both zero elements, then a ≥ b and b ≥ a and so a = b. Similarly, if there is an
element 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P , then we say 1̂ is the top element. If it
exists, 1̂ is also unique. In Bn, 0̂ = 00 . . . 0 and 1̂ = 11 . . . 1. Correspondingly, 0̂ = ∅
and 1̂ = S in P(S).

We say a poset is ranked if it has a zero element 0̂ and the property that for any
x < y, all saturated chains from x to y have the same length. In a ranked poset P ,
we define the rank function r : P → N by setting r(x) to be the common length of

18

111

110 101 011

100 010 001

000

Figure 3.1. An SCD of B3, namely CTD(3).

Chain 1 Chain 2 Chain 3
111
110 011 101
100 010 001
000

Figure 3.2. A SCD of B3, namely CTD(3). The minimal string of each chain is in
bold. The unmatched 0’s in the minimal strings are underlined.

each saturated chain from 0̂ to x. If P is a finite ranked poset, then the rank of P is
the maximum rank of any element in P , r(P) = maxx∈P r(x).

The Boolean lattice, Bn, is a ranked poset with rank function r(x) = |x| and the
isomorphic poset P(S) (for |S| = n) has rank function r(A) = |A|. The rank of these
posets is n, r(Bn) = r(P(S)) = n.

If P is a ranked poset, a symmetric chain is a saturated chain x0 ⋖ · · ·⋖ xk with
r(x0)+r(xk) = r(P). The rationale behind this name is that the ranks of the elements
in the chain will be symmetrically distributed about r(P)/2. Namely, a symmetric
chain will have an element x with r(x) = r(P)/2−ℓ/2 if and only if it it has an element
y with r(y) = r(P)/2 + ℓ/2. Indeed, if x = xi, then y = xk−i as we will see now. Note
that since the chain is saturated, r(xi) = r(x0) + i and r(xk−i) = r(xk) − i for all
0 ≤ i ≤ k. Thus r(xi) + r(xk−i) = (r(x0) + i) + (r(xk) − i) = r(x0) + r(xk) = r(P)
for all 0 ≤ i ≤ k. Since r(xi) + r(xk−i) = r(P), if r(xi) = r(P)/2 − ℓ/2, then
r(xk−i) = r(P)/2 + ℓ/2.

A symmetric chain decomposition, or SCD, of a ranked poset is a partition of the
elements of P into symmetric chains. See Figure 3.1 for an SCD of B3 and Figure
3.2 for the elements of the chains in that SCD. See Figure 3.3 for the elements of the
chains of an SCD for B4. Note that B3 is displayed in Figure 3.2 via a Hasse diagram,
one in which an edge is directed upwards from vertex x to vertex y if and only if x⋖ y.

19

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6
1111
1110 0111 1011 1101
1100 0110 1010 1001 0101 0011
1000 0100 0010 0001
0000

Figure 3.3. An SCD of B4, namely CTD(4). The minimal string of each chain is in
bold. The unmatched 0’s in the minimal strings are underlined.

3.5 The Christmas Tree Decomposition

Theorem 3.10. For all positive integers n, the poset Bn has a symmetric chain
decomposition. (Alternatively, for each finite set S, P(S) has a symmetric chain
decomposition.)

This theorem was first proven in [dBvETK51] via the construction of a specific
symmetric chain decomposition, CTD(n), the so-called Christmas Tree Decomposition.
The reason for this fanciful name is that when the elements of its chains are listed
in horizontal rows that are centered on the page, the shape of the text looks a little
like a silhouette of a Christmas tree; the horizontal lengths of the chains are long and
short in a seemingly organic, unpredictable way.

We now give the construction of CTD(n) as developed in [GK76]. We closely
follow the presentation of this construction in [Jor10]. For each binary sequence
x = x1 . . . xn ∈ Bn, we perform a so-called bracketing or parenthesis matching
procedure as follows. We represent each 0 with a left parenthesis “(” and each 1 with
a right parenthesis “)”. We scan through the characters of the string starting at the
left. Whenever we encounter a 0, i.e. a (, it becomes “unmatched”. Whenever a 1,
i.e. a), is encountered, it is matched to the rightmost unmatched 0, and this 1 now
becomes matched as well. If there are currently no unmatched 0’s, then this 1 is
unmatched. We continue in this manner until we reach the end of the string on the
right. This process matches a (to a) in the parenthesis string in the same way that a
mathematician scanning the string would naturally try to match parentheses.

We now have three sets associated with the given sequence x, the set of positions
of unmatched 0’s, U0(x), the set of positions of unmatched 1’s, U1(x), and the set of
matchings M(x) = {(a, b) : a 0 in position a is matched to 1 in position b}.

x = 1011011100010110

parentheses string for x =)())()))((()())(

U0(x) = {9, 16} U1(x) = {1, 4, 7, 8}

20

M(x) = {(2, 3), (5, 6), (10, 15), (11, 12), (13, 14)}

Note if a ∈ U1(x) and b ∈ U0(x) then a < b. In words, all unmatched ones precede
all unmatched zeros.

We next introduce a function τ which acts on the strings by changing the leftmost
unmatched 0 to a 1. The function τ is defined on all x ∈ Bn such that U0(x) ̸= ∅. For
x ∈ Bn with |U0(x)| = k, let Cx = {x, τ(x), τ 2(x), . . . , τ k(x)}. The Christmas Tree
Decomposition is

CTD(n) = {Cx : x ∈ Bn, U1(x) = ∅}.

Figures 3.2 and 3.3 exhibit CTD(n) for Bn for n = 3 and n = 4, respectively. The
minimal elements of the chains, those x with no unmatched 1’s (i.e. with U1(x) = ∅)
are listed in bold face. The positions of the unmatched 0’s, i.e. the positions in U0(x),
are underlined. Notice how the successive elements of each chain Cx are formed, the
unmatched 0’s are flipped one by one to 1’s proceeding from left to right.

Lemma 3.11. The number of chains in CTD(n) is Mn =
(

n
⌊n/2⌋

)
.

Proof. Let k = ⌊n/2⌋. Consider the level L(n, k) = {x ∈ Bn : r(x) = |x| = k}. We
will show that there is a one-to-one correspondence between each chain C in CTD(n)
and the unique element x in L(n, k) that is contained within it. This then shows that
the number of chains in CTD(n) is Mn =

(
n
k

)
= |L(n, k))|.

Since the chains in CTD(n) are symmetric chains in Bn, they each must contain an
element x with rank r(x) = n/2 if n is even, or elements x and y of ranks r(x) = ⌊n/2⌋
and r(y) = ⌈n/2⌉ if n is odd. Thus they each contain at least one element x of L(n, k).
Since the chains partition Bn, each element x in L(n, k) must be in exactly one chain
in CTD(n). L(n, k) = {x ∈ Bn : r(x) = |x| = k} is an antichain in Bn, i.e. contains
no two comparable elements. Since every pair of elements in a chain is comparable, no
chain can contain more than one element x of L(n, k). Thus the given correspondence
between CTD(n) and L(n, k) is a bijection, as claimed.

3.6 Our Christmas Tree Decomposition Algorithms

3.6.1 The Tree Tn on the Minimal Elements of CTD(n)

Let Sn = {x ∈ Bn : U1(x) = ∅} be the set of the minimal elements of the chains in
CTD(n). We will also sometimes refer to minimal elements as initial strings. Let x0

be the all zero string 0̂. Define σ : Sn \ {x0} → Sn so that σ(x) is obtained from the
string x by changing the leftmost matched 1 of x to a 0. We define a tree Tn = (Sn, E)
on the vertex set Sn by letting E = {(x, σ(x)) : x ∈ S \{x0}}. The tree T4 is exhibited
in Figure 3.4. The elements of S4, the minimal elements of CTD(4), are shown as the

21

0000

0001

00110101

00100100

Figure 3.4. The tree T4 of the minimal elements of CTD(4).

vertices and the unmatched 0’s within them are underlined. For each x ̸= x0, σ(x) is
drawn above x.

We show that Tn is a tree in the sense of graph theory, namely it is a connected
graph that contains no cycles. Clearly, given any vertex x in Tn, σk(x) will be the
all 0’s string x0 when k = |x|, as each application of σ removes a 1. Thus, every x in
Tn is connected by a path x, σ(x), σs(x), . . . , σk(x) = x0 to x0. Thus Tn is connected
as every vertex can be connected to every other through x0. To see that Tn contains
no cycle, suppose instead that it does contain a cycle C. C must contain a maximal
weight vertex x, say |x| = k. Since C is a cycle, there must be two distinct neighbors
y0 and y1 of x on the cycle. Since y has maximal weight and edges in Tn only connect
vertices whose weights differ by 1, we have |y0| = |y1| = k − 1. But there is only one
vertex y with weight |y| ≤ k − 1 that is a neighbor of x, namely y = σ(x). This is a
contradiction.

A rooted tree is a tree with a distinguished vertex r called the root of T . If x is
a vertex in a rooted tree T with root r and x ̸= r then there is a unique path in T
from x to r. We say every vertex y on this path is an ancestor of x and that x is a
descendant of each such vertex y. The ancestor y of x that is adjacent to x is called
the parent of x and x is called a child of y.

We view Tn as a rooted tree with root r = x0. If x ̸= x0 then the unique path
from x to x0 in Tn is x, σ(x), σ2(x), . . . , σk(x) = x0 where k = |x|. The vertices σi(x)
are the ancestors of x, σ(x) is the parent of x, and x is the child of σ(x). Thus we see
that the tree T4 is drawn in Figure 3.4 with the progenitor of the family, the root x0,
written at the bottom and parents drawn directly below their children and the later
descendants drawn above those children.

Every vertex x of Tn has U1(x) = ∅ and so is a minimal element of a chain
Cx ∈ CTD(n), namely Cx = {x, τ(x), τ 2(x), . . . , τ ℓ(x)} with ℓ = |U0(x)| . Thus we
can extend Tn to a tree T ′

n with vertex set Bn as follows. For each x ∈ Tn we add a path
x, τ(x), τ 2(x), . . . , τ ℓ(x) with ℓ = |U0(x)|. This tree has all the vertices of Bn because
CTD(n) is a partition of Bn. Additionally, the tree T ′

n has the important property

22

that every vertex x in Bn can be reached from x0 by a path in T ′
n, x0, x1, . . . , xm = x

in which each xi+1 has one more 1 than its parent xi.

3.6.2 Our Recursive Algorithm to Produce CTD(n)

We can now define our novel recursive algorithm, Recursive-CTD, that visits every
chain in CTD(n) and every vertex of Bn. More generally, if it is given a vertex x ∈ Sn

as an input, it will visit x and every descendant of x in T ′
n.

For any string x in Bn, let zx denote the number of zeros in the first consecutive
block of zeros in the string. Any string starting with a 1 would have zx = 0. Since
each x ∈ Sn has no unmatched ones, we have zx > 0 for all x ∈ Sn. Also let ux denote
the number of unmatched zeros within the first block of zeros, with 0 ≤ ux ≤ zx. Note
by the matching procedure all of the unmatched zeros must occur at the beginning of
the block of zeros. Also ux = zx only when x = x0 (when x is the all zero string). As
before U0(x) is the set of indices of all unmatched zeros in x. With these definitions,
we can now describe the recursive algorithm.

Algorithm 3.12. Algorithm: Recursive-CTD

Input: string x ∈ Sn and optional arguments zx, ux, U0(x)

Output: none, recursive procedure to visit every descendant of x in T ′
n

1. Calculate zx, ux, U0(x) if they are not provided as input.

2. Visit each element of Cx = {x, τ(x), . . . , τ k(x)} where k = |U0(x)| switching the
0’s in positions j ∈ U0(x) to 1’s sweeping left to right.

3. If ux ≤ 1, then return, i.e. end the current function call.

4. For i ∈ {2, . . . , zx} do

(a) child ← x

(b) child[i] ← 1

(c) m← min(i, ux)

(d) Call Recursive-CTD(child, i− 1,m− 2, U0(x) \ {m,m− 1}).

5. End for.

6. Return.

23

Before we discuss the correctness of the algorithm we will need a lemma. Define
the density of a string x, denoted δ(x), to be the weight of the string divided by the
string length n (this amounts to the “proportion” of 1’s in the string). Now define the
max density of a string, denoted µ(x), to be

µ(x) = max{δ(s) : s is a substring of x that starts at index 1}.

Lemma 3.13. A string x is a minimal chain element if and only if µ(x) ≤ 1/2.

Proof. The proof is via two contrapositive arguments. Any string with a density
greater than 1/2 must clearly contain unmatched ones, so µ(x) > 1/2 implies there
is a substring s of x with an unmatched 1 which will also be an unmatched 1 in the
whole string x. It follows by definition that x is not a minimal chain element in this
case.

Likewise any string x that is not a minimal element must contain an unmatched 1,
and, taking the substring s from index 1 up to that unmatched 1, it should be clear
that the density of s must be greater than 1/2. This follows since the last bit of s is
an unmatched 1 and, if there were at least as many zeros as ones in that substring s, it
would be impossible for that particular 1 to be unmatched by the matching procedure.
This in turn immediately gives the max density of x is also greater than 1/2, that is
µ(x) > 1/2.

We can also say that inserting a 1 anywhere from index 2 to index zx cannot
increase µ(x) to more than 1/2 as long as ux > 1.

Theorem 3.14 (Correctness of Recursive-CTD algorithm). When Algorithm 3.12,
CTD-recursive is called on x0 ∈ Tn, it will visit the minimal element of every chain
in CTD(n) and every string x ∈ Bn exactly once. More generally, when Recursive-
CTD is called on vertex x ∈ Sn it will visit every string Cy of CTD(n) for which
y is a descendant of x in Tn and every string x of Bn that is a descendant of x in
T ′
n exactly once. During the call of Recursive-CTD on any x in Tn, no more than
⌊n/2⌋ − |x| ≤ ⌊n/2⌋ recursive calls of Recursive-CTD will be stacked.

Proof. Suppose Recursive-CTD is called with x ∈ Sn. Every x ∈ Sn has an equal
number of matched ones and zeros. If y is a child of x (by definition x = σ(y)) then
since x has one fewer matched 1 than y, it must also have one fewer matched 0 than y.
But the string length of x is the same as the string length of y, so there must be two
more unmatched zeros in x than y. The additional unmatched zeros must appear in
the first block of zeros in x. This is because the first 1 in y must occur at some index
i before index zx and changing a 1 at index i in y back to a 0 in x can’t create any
additional unmatched zeros in x past index i due to the matching process. This means
we must have ux ≥ uy +2. Then ux ≥ 2 for any parent string x, since ux− 2 ≥ uy ≥ 0.

24

Thus for any string x if ux ≤ 1 we must conclude that x has no children. Then line 3
will correctly return and stop recursive calls for any string without children.

Now assume that ux > 1 so that x has at least one child y. By the definition of σ,
y has exactly one 1 at index 1 < i ≤ zx. We cannot have i = 1, because then zy = 0
contrary to the fact that zy > 0 for all y ∈ Sn. Any value of i in the range 1 < i ≤ zx
will correspond to a valid child string of x. To see this, suppose the string x (with
ux > 1) has a child y that has a 1 inserted at index i for 1 < i ≤ zx (index 1 is clearly
not valid as mentioned previously). If the string x has any substring s (starting at
index 1) such that inserting a 1 at index i would increase the density of s to more than
1/2 that could only happen if the number of 1’s in s was either equal to the number
of 0’s in s or one less than the number of 0’s in s. But clearly this implies that s
has at most one unmatched zero and the number of unmatched zeros in x (contained
within the substring s) cannot exceed the number of corresponding unmatched zeros
in s. This means that ux ≤ 1, which is a contradiction. Therefore inserting a 1 in x
at index i for any 1 < i ≤ zx to visit child y cannot increase µ(y) to more than 1/2
and so y is a valid child since it is a valid initial string.

In the algorithm we insert a 1 at every valid index in the range 1 < i ≤ zx, and
clearly these are all of the possible children of x as well because by the definition of σ,
the preimage of x has to be σ−1(x) = {y : y has a 1 inserted at index i for 1 < i ≤ zx}
so long as ux > 1. So the set of “possible” children of x is clearly given by the preimage
of x under sigma combined with the above argument about which of those possible
strings are valid children (all of them except the string starting with a 1.)

We will now show that the correct optional arguments are passed to the recursive
function call in line 4d. Clearly, for any child y, zy = i − 1 so this argument is
correct. To show that the other arguments are correct, namely that uy = m− 2 and
U0(y) = U0(x) \ {m,m − 1}, we will have to consider two cases: i > ux and i ≤ ux.
Suppose first that i > ux and so m = min(i, ux) = ux (this case necessarily excludes
the zero string x = x0 since index i must be a matched 0 in x). In y, the 1 at position
i will be matched to 0 at position i− 1. Denote the index ux + 1 by i0 where i0 ≤ i.
Suppose the 0 at index i0 in x is matched to a 1 in position j > i0 in x (and hence
i0 ≤ i < j). The matching in y of positions i and i − 1 will change the matched
pair (i0, j) in x to a matched pair (i0 − 2, j) in y. In particular this must reduce
the total number of unmatched zeros in y before index i by exactly two and thus
uy = ux − 2 = m− 2. This also implies that U0(y) = U0(x) \ {m,m− 1}. In the case
i ≤ ux, the arguments are simpler. In this case, m = min(i, ux) = i. Again the 0 in
position i − 1 is matched to the 1 in position i and all other matched 0’s in y will
occur after position i. Thus uy = i− 2 = m− 2 and again U0(y) = U0(x) \ {m,m− 1}.

Thus we have shown that Line 4 calls Recursive-CTD on every child y of x.
Similarly, those recursive calls will call all the children of those children and so on,
until every descendant y of x in Tn is visited. Each time such a y is visited, Recursive-

25

CTD also visits all the elements of Cy. So Recursive-CTD will visit all the descendants
z of x in T ′

n as well. In particular, this means that if Recursive-CTD is called on the
all zeros string x0, the root of Tn, it will visit every vertex of Tn and T ′

n.
Each string x in Tn has no unmatched 1’s since U1(x) = ∅, and so each 1 in x is

matched to a 0. Thus there can be no more than ⌊n/2⌋ 1’s in x. Since each child in
Tn contains exactly one more 1 than its parent, a call to Recursive-CTD at recursive
depth ℓ that originated from an initial call to an input x is necessarily to a string x′

with |x′| = |x|+ ℓ ≤ ⌊n/2⌋. Thus no more than ℓ = ⌊n/2⌋−|x| ≤ ⌊n/2⌋ recursive calls
of Recursive-CTD will be stacked during a call of Recursive-CTD on any particular
x ∈ Tn. This proves the final claim of the theorem.

3.6.3 Our Non-recursive Algorithm to Produce CTD(n)

When the Recursive-CTD algorithm is called on x0, it will visit all the elements x ∈ Tn

and all the elements in Bn in a fixed order On. In this section, we will describe our
non-recursive algorithm to visit all the strings z ∈ Tn and in Bn in the same order.
Given inputs x, y ∈ Tn with x ≤ y in On, the algorithm will visit each z ∈ Tn with
x ≤ z ≤ y in On and also the descendants of these z in T ′

n, all in the same order as
they are visited in On.

We can easily use this algorithm to parallelize the process of scanning through
Bn. Indeed, if we have N parallel processors, we can split up the strings in Tn into
N consecutive intervals in On and have each processor simultaneously work through
its own interval. We shall see more of this in Section 3.6.4. As a side benefit, the
non-recursive version moves from string to string in Tn more quickly than the recursive
algorithm will.

Definition 3.15. For any given string we will define a chunk to be any maximal run
of consecutive 0’s. If a string begins with a 1, we say that the first chunk is just the
first maximal run of 1’s preceded by an empty run of 0’s. Similarly, if a string ends
with a 0, the last chunk will be the last maximal run of 0’s followed by an empty run
of 1’s.

Note that every string can be completely decomposed uniquely into chunks. Now,
recall that the initial strings of CTD(n) (the minimal chain elements) are precisely
those which contain no unmatched ones. We are therefore able to associate each
such initial string with a matrix M with exactly 3 columns and 1 or more rows. The
matrix M will essentially contain a compressed form of the information in the string
pertaining to the number of unmatched zeros, matched zeros, and matched ones within
each chunk of the string.

We will state this as a lemma:

Lemma 3.16. Each initial string corresponds to a unique matrix M with 3 columns
and at least 1 row. Each column corresponds to respectively, the number of unmatched

26

zeros, the number of matched zeros, and the number of matched ones within each
chunk respectively. The matrix row order also matches the string chunk order.

Proof. We may decompose each initial string into chunks. Because of the way matching
works any unmatched zeros in such a chunk must occur at the beginning of that
chunk. This is because by the matching process each matched one is always matched
to the closest leftmost zero available, making it impossible for any matched zeros to
proceed any unmatched zeros within any given chunk. Since each initial string does
not contain any unmatched ones, each chunk can therefore be represented by a triple
(a, b, c) of three numerical values. The value a represents the number of unmatched
zeros at the front of the chunk and may have a value of 0. The value b represents the
number of matched zeros in the chunk (following any unmatched zeros), and cannot
be less than the value for c. The value c represents the number of matched ones that
occur at the end of the chunk. For all but the last chunk in the string the value of c
within each chunk must be at least 1, but the last chunk in the string need not contain
any matched zeros or matched ones. However in every chunk there must be at least
one zero (the string of all 1’s is not an initial string). Therefore given any initial string
it is straightforward to implement the matching process and then capture the number
of unmatched zeros, matched zeros, and matched ones in each respective chunk of the
string as a unique row of the matrix M .

Note that the number of rows of M varies between 1 row and at most ⌈n/2⌉ rows
depending on the string it represents (the maximal case corresponding to strings
consisting entirely of 01 chunks except maybe the last chunk being just 0). Each row
in the matrix M will correspond to the triple of three numerical values representing
each chunk in the string.

For example, the string (with unmatched zeros underlined)

0000111000101100

would be represented by the matrix

M =

1 3 3
1 2 1
0 1 2
2 0 0

 .

In order to facilitate visiting the chain associated with each initial string it will
be useful to store some information in an additional matrix R. The matrix R will
have two columns and a variable number of rows. Each row of R will contain two
integers representing the starting and stopping index corresponding to each maximal
substring of unmatched zeros within the initial string. The start and stop index may
be the same which happens for each singular unmatched zero in the string. The

27

number of rows of R varies between 0 rows and at most ⌈n/3⌉ rows depending on
the corresponding string (with the maximal case corresponding to strings consisting
entirely of 001 chunks except maybe the last chunk being just 0 or 00). The R matrix
only contains information pertaining to the unmatched zeros in the string, so in
particular it is possible for the R matrix to be an empty matrix with 0 rows (as in
any string of all 01 chunks for example). An empty R matrix simply indicates that
the chain contains exactly one string, the initial string.

For example, the string (with unmatched zeros underlined)

0000111000101100

would be associated with the matrix

R =

 1 1
8 8
15 16

 .

While it is technically possible to obtain the same information contained in R
from the matrix M we can typically save time in the long run by maintaining and
updating both matrix M and matrix R between each initial string since such updates
will always be relatively fast. In particular, we will only ever need to interact with the
first two rows of either matrix M or R between any two initial strings. We will see
that the updates that one needs to perform on M and R to move between strings are
confined to the first and second rows of these matrices. Since these rows have either 3
or 2 elements each, this update can be done in constant time. By way of contrast,
moving from string x to another string in the recursive algorithm requires deleting
elements from U0(x), a list of possibly n indices. These elements can only be found by
searching a list of up to n integers which still takes ⌈log2(n)⌉ steps even if the lists
are maintained in increasing order.

It should be noted that implementing this with matrices is only one of many
possible methods. In particular, since we only ever modify the first two rows of both
M and R the same information could be stored using linked lists or stacks which might
be more memory efficient. However the process is perhaps more clearly conveyed using
matrices.

Depending on the intended application of this algorithm it may or may not be
necessary to keep track of the actual initial strings themselves. In some cases it
will be sufficient to store and update only the matrices M and R. For example, in
cases where the binary string is being used to represent some object it is possible to
update the object using the information in M and R without ever needing the actual
string. If the binary string were representing potential edges of a graph for example,
the graph itself could be updated using only the information contained in M and
R without needing the actual string. However, some applications may require the

28

string itself to be computed. In these cases it will be best to simply store the string
and modify it directly to get each new string. While the average time to do this will
typically be small, being related to the size of the first consecutive substring of 1’s
within the proceeding string, the worst case scenario for computation time to update
the string will be ≤ c · n for some small constant c. (Each row of M tells you what
the corresponding chunk of the string is and scanning through M takes at most n/2
steps.) This means that if it is necessary to update each string that the worst case
computation time will actually be significantly worse than not tracking the string
itself at all. However it should be noted that the average computation time will be
lower than the worst case computation time.

Now we may proceed to describe the non-recursive version of the algorithm. Note
that in practice it is possible to simply pass the algorithm a single starting string x
along with a fixed number of loops to perform (instead of an ending string y) which is
computationally more efficient. However, for clarity and ease of proofs we present the
algorithm in terms of two input strings, a starting string x and an ending string y.

Algorithm 3.17. Algorithm: Non-recursive-CTD

Input: Strings x, y in Tn with x ≤ y in On.

Output: None. Visits each string z ∈ Tn (and their descendants in T ′
n) between

x and y in the order On. In particular, this algorithm can visit all of
Bn.

1. Initialization.

(a) Initialize M and R for x. Note, if x = 0̂, then M ← [n, 0, 0] and R← [1, n].

(b) Set current string s to x.

(c) END ← False

2. while END = false do

(a) call Visit-chain(s,R)

(b) if s = y

END ← true

(c) else

i. call Update-string(s,M)
ii. call Update-R-matrix(M ,R)
iii. call Update-M-matrix(M)

29

3. end while

Algorithm 3.18. Algorithm: Visit-chain

Input: String s ∈ Tn, matrix R for x, optional Boolean function f .

Output: Visits each string in the chain corresponding to s, possibly outputs f
evaluated at each element in the chain.

1. for each row i of R do

(a) for j ∈ {Ri,1, Ri,1 + 1, . . . , Ri,2} do

i. s(j)← 1

ii. Optionally evaluate f(s).

(b) end for

2. end for

3. for each row i of R do

(a) for j ∈ {Ri,1, . . . , Ri,2} do
s(j)← 0

(b) end for

4. end for

Algorithm 3.19. Algorithm: Update-string

Input: current string s ∈ Tn, current matrix M for s

Output: None, update s to the next string to be visited (by either changing
the second 0 to a 1 or by changing the first block of 1’s followed by a
0 to a block of 0’s followed by a 1).

1. if M1,1 > 1 then

s(2)← 1

2. else if M1,1 ≤ 1 then

(a) for i ∈ {1, . . . ,M1,3} do
s(M1,1 +M1,2 + i)← 0

(b) end for

(c) s(M1,1 +M1,2 +M1,3 + 1)← 1

30

3. end if

Algorithm 3.20. Algorithm: Update-R-matrix

Input: Current matrices M and R

Output: none, updates R to be the R-matrix for the updated string

1. Case 1: M1,1 > 2

R1,1 ← 3

2. Case 2: M1,1 = 2

Remove first row R1 from R (note R can become an empty matrix)

3. Case 3: M1,1 < 2 and M2,1 ≥ 2

(a) Remove the first M1,1 rows of R

(b) R1,1 ← R1,1 + 1

(c) Insert [1, 2 · (M1,3 − 1) +M1,1 + 1] as new first row of R

4. Case 4: M1,1 < 2 and M2,1 < 2 and 2 · (M1,3 − 1) +M1,1 +M2,1 ̸= 0

(a) Remove the first (M1,1 +M2,1) rows of R

(b) Insert [1, 2 · (M1,3 − 1) +M1,1 +M2,1] as new first row of R

5. Case 5: 2 · (M1,3 − 1) +M1,1 +M2,1 = 0

There is no change to R

Algorithm 3.21. Algorithm: Update-M-matrix

Input: Current matrix M

Output: none, updates M to be the M -matrix for the updated string

1. Case 1: M1,1 > 1

(a) M1,1 ←M1,1 − 2

(b) Insert [0, 1, 1] as new first row of M

2. Case 2: M1,1 ≤ 1 and M2,1 > 0

(a) M2,1 ←M2,1 − 1

(b) M1 ← [M1,1 +M1,2 +M1,3 − 1, 1, 1]

31

3. Case 3: M1,1 ≤ 1 and M2,1 = 0 and M2,2 > 1

(a) M2,2 ←M2,2 − 1

(b) M1 ← [M1,1 + 2 · (M1,3 − 1),M1,2 −M1,3 + 2, 1]

4. Case 4: M1,1 ≤ 1 and M2,1 = 0 and M2,2 = 1

(a) Replace the first two rows of M with the new first row
[M1,1 + 2 · (M1,3− 1),M1,2−M1,3 + 2,M2,3 + 1] (this needs to be computed
before the rows are deleted)

5. Case 5: M1,1 ≤ 1 and M2,1 = 0 and M2,2 = 0

This case only applies to a single initial string which is the final possible
string of Tn in the order On. It is therefore ruled out by the test for the end
condition in the main algorithm since this is the largest possible choice for y as
input to the algorithm. Note that it is possible in this algorithm for the matrix
M to acquire a row of all zeros at the bottom, indicating an empty chunk, but
this never effects the procedure and it is still clear which string the matrix M
represents. The only string that would ever witness this row of zeros is the final
possible string of Tn in the order On which is ruled out in the main algorithm
as stated.

The non-recursive algorithm works by following some simple rules:
1) Always insert a 1 first if possible, always at index 2. This is always possible

if the string has children, that is if ux > 1. This means that if a string has a child
then the algorithm always starts by visiting the first “leftmost” child and therefore is
always going up and left if possible.

2) If it is not possible to insert a 1 then instead “push” the first block of ones
forward (this includes “blocks” consisting of single ones). To do this means to flip
every 1 in the entire first block of ones to zeros, and also simultaneously flip the single
0 bit that immediately follows that block of ones. For example, a string with ux ≤ 1
that starts with 0000111100 . . . would be changed to 0000000010 Here the part
that gets flipped is underlined but nothing else changes.

It is apparent that this works to visit the next unvisited ancestor’s sibling. In the
process of removing each successive 1 evidently a path back to the root is followed.
Suppose that the block of 1’s has its last 1 at some index i1. Let a be the ancestor of
x that has all 0’s up to the index i1 and has a 1 at index i1. If the first block of 1’s has
k ones then this ancestor would be a = σk−1(x). Technically, for a string with a single
1, where k = 1, this would be σ0(x). We can define σ0(x) as the identity function,
so the ancestor in question would be x itself, i.e. if k = 1 then a = x. The farthest
rightmost child in the subtree of a is the string with ones inserted at the rightmost

32

possible indices (in front of index i1 by definition) each time, until no further ones can
be inserted. So the rightmost descendant of a is a string with all zeros followed by
all ones until index i1 is reached, and such that this descendant x of a has ux ≤ 1. If
ux was greater than 1, then x would have children and therefore would not be the
rightmost possible descendant of a. So this shows that if ux ≤ 1 then x must indeed
be the rightmost descendant of its ancestor a = σk−1(x). Therefore the next node to
be visited in the tree has to be the sibling of the ancestor a (since we are following a
depth search first pattern). But the sibling of a is the string with the first 1 of a (at
index i1) shifted to the right one index (to index i1 + 1). There must be a zero after
this 1 because of the definition of a. The only possible string without a zero available
after index i1 has to be the final string in the entire tree, consisting of all zeros followed
by all ones and with ux ≤ 1, so the algorithm also knows it must terminate in that
case.

Theorem 3.22 (Correctness of Non-recursive CTD algorithm). When called on inputs
x and y in Tn with x ≤ y in On Algorithm 3.17, Non-recursive-CTD, visits every
element z ∈ Tn in the interval [x, y] in On and all elements in the chains Cz in
CTD(n), all in the order On. It will visit each of these strings exactly once.

Proof. Recall that Sn = {x ∈ Bn : U1(x) = ∅} is the set of minimal or initial elements
of the chains Cx in CTD(n). We define a function Rev : Sn → S, where Rev(x) is the
reversed binary string. For example Rev(01001) = 10010. Next we define a function
V al : Bn → N which returns the binary value of a given string in Bn. Finally we
define the function f : Sn → N by f(x) = V al(Rev(x)) for all x ∈ Sn. For example
f(01001) = V al(Rev(01001)) = V al(10010) = 18.

We first describe how the algorithm works when x is the first string in On and y is
the last.

Let Sfirst and Slast represent the first and last initial strings visited by the Recursive-
SCD algorithm, that is Sfirst is the initial string comprised of all zeros while Slast is
the initial string comprised of ⌈n/2⌉ consecutive 0’s followed by ⌊n/2⌋ consecutive
1’s. (Note that f(Sfirst) = 0 and that f(Slast) = 2n − 2⌈n/2⌉.) We define a function
Next : Sn \ Slast → Sn by Next(x) is the next initial string visited by the non-
recursive algorithm. Since the algorithm clearly defines a unique next initial string for
every string this is a well-defined function. We will also define a function Previous :
Sn \ Sfirst → Sn which will map each initial string to the preceding string in the non-
recursive algorithm. We give an explicit high level description of Next and Previous
as follows.

Each initial string x may begin with a number of unmatched zeros ux. If ux > 1
then the Next function will simply change the second 0 in the string to a 1. Otherwise
the Next function will change the first block of 1’s followed by a 0 in the string to
a block of 0’s followed by a 1. This process uniquely defines the next string in the
algorithm for all strings except the last initial string Slast.

33

The Previous function will be the inverse of the Next function. Therefore, for
any initial string with a 1 in the second position the Previous function will change
that to a 0 in the second position. Otherwise, the Previous function will change
the first 1 and a block of 0’s before it into a 0 with a block of 1’s before it. The
size of the block of 0’s changed must be such that no larger block of 0’s could be
changed without creating unmatched 1’s which are not allowed in initial strings.
Such a change would necessarily leave exactly zero or one unmatched 0’s at the
beginning of the string. Converting any fewer 0’s to 1’s would leave at least two
unmatched 0’s at the beginning and thus Previous would fail to be an inverse to
Next. This process uniquely defines the previous initial string in the algorithm for all
strings except the first initial string Sfirst since it is the only string not containing
any 1’s. Thus the Previous function is also uniquely defined and is necessarily an
inverse of Next by definition. That is, we must have Next(Previous(x)) = x and
Previous(Next(x)) = x for all x ∈ Sn \ (Sfirst ∪ Slast).

We may now show that for all x ∈ Sn\(Sfirst∪Slast) that f(Previous(x)) < f(x) <
f(Next(x)). Let x be an arbitrary string in Sn. First to show f(x) < f(Next(x)) we
consider two cases. If x begins with at least two unmatched zeros, then Rev(x) ends
with two zeros, and Next(x) inserts a 1 into the second position so that Rev(Next(x))
is the same as Rev(x) except that Rev(Next(x)) ends in a 10. From this it is clear
that f(x) < f(Next(x)). To be precise, in this case f(x) + 2 = f(Next(x)). In
the other case we know by definition that Next(x) changes the first block of 1’s
followed by a 0 to 0’s followed by a 1. Let k be the index of the last 1 in the
string Rev(x). From the algorithm definition it is clear that finding Rev(Next(x))
is equivalent to binary addition of the string with a single 1 in index k to Rev(x).
Thus it is clear in this case also that f(x) < f(Next(x)). More precisely, in this
case we have f(x) + 2k−1 = f(Next(x)). Since x was arbitrary and by definition
Next(Previous(x)) = x then this also shows that f(Previous(x)) < f(x). Thus as
the algorithm proceeds through every initial string the value of f(x) for each string is
strictly increasing.

Now suppose for contradiction that there exists at least one string which is not
visited by the algorithm. Let s be the string that is not visited by the algorithm with the
smallest value for f(s). Then necessarily Previous(s) must be visited by the algorithm
since f(Previous(s)) < f(s), otherwise s would not have been the smallest valued
missed string. But since the algorithm visits Previous(s) and Next(Previous(s)) = s
then the algorithm must visit the string s as well. This contradiction shows that there
cannot be any initial strings that are missed by the algorithm. It also follows easily
from the fact the f is a strictly increasing function as each string is visited that no
string can be visited more than once. Thus every initial string must be visited exactly
once by the algorithm as claimed.

34

The algorithm will terminate precisely when there is at most one unmatched 0 at
the beginning of the string and there are no 0’s at all after the first block. This can
only happen for initial strings with exactly one block of 0’s followed by 1’s. However
for all initial string with exactly one block of 0’s and 1’s, all of them have at least two
unmatched 0’s at the front except for the block with exactly ⌈n/2⌉ consecutive 0’s
followed by ⌊n/2⌋ consecutive 1’s. We refer the this string as Slast. Any fewer number
of 1’s in the string would have two or more unmatched 0’s at the beginning of the
string, while any more 1’s in the string would necessarily have unmatched 1’s since
the total number of 1’s would exceed the total number of 0’s. It follows therefore that
there is a single unique string that satisfies the end condition. Furthermore it is clear
that for this string neither one of the two cases for the Next function are applicable,
and this is the only such sting with neither condition applicable. So the algorithm
must terminate upon encountering the string Slast. Additionally the string Slast must
be visited by the algorithm by the argument above showing that no strings are missed.
Therefore the algorithm must terminate, as desired.

Clearly, the way the algorithm is defined, it will also visit the elements of the
chains of CTD(n) in the order On. It will behave the same way on intervals [x, y]
in O(n) as it is defined to start the scanning at x and stop once it gets to y and its
chain.

3.6.4 Our Parallel Algorithm to Produce CTD(n)

Given Algorithm 3.17, Non-recursive CTD, is it clear how to parallelize this algorithm
to distribute the job of visiting every string in Tn and Bn amongst an arbitrary number
of parallel processors.

Algorithm 3.23. Algorithm: Parallel-CTD

Input: Integer N ≥ 1 and methods to assign tasks to N parallel processors.

Output: None. Visits every string in Tn and in Bn in the order On

1. Initialize. Find xi, yi ∈ Tn for 1 ≤ i ≤ n such that x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤
xN ≤ yN in On, the intervals [xi, yi] in On partition Tn, and each interval [xi, yi],
1 ≤ i ≤ N contains (plus or minus 1) 1/N fraction of all strings in Tn.

2. For 1 ≤ i ≤ n, call Non-recursive-CTD(xi, yi) on processor i.

In this thesis we will only use this algorithm as a subroutine to answer Problems
3.1-3.3 on monotone Boolean functions f : Bn → {0, 1}. Since we are only interested
in the number of computations of f that are made, the initialization step may be

35

carried out in any way as it involves no computation of f . The most obvious way
is to run Non-recursive-CTD on the whole of Bn. The elements z1, . . . , zm of Tn will
be produced one by one in the order of On where m = |Tn| = Mn =

(
n

⌊n/2⌋

)
. We can

select the xi and yi from the zj ∈ Tn as they are produced. Set ji = ⌊(i/N)Mn⌋ for
0 ≤ i ≤ N . For 1 ≤ i ≤ N , select xi = zji−1+1 and yi = zji . The intervals will partition
Tn and [xi, yi] will contain ji − ji−1 = ⌊(i/N)Mn⌋ − ⌊((i− 1)/N)Mn⌋ elements which
is indeed within 1 of (1/N)|Tn| = (1/N)Mn.

A better way to initialize the parallelization is by using an algorithm to determine
the kth minimal element in the order On instead of running Non-recursive-CTD on all
of Bn. This could be used to quickly determine the xi and yi needed for each interval
in the parallelization. We provide such an algorithm below but omit the proof of
correctness. This algorithm ends after at most n loops and therefore admits a much
faster method of initializing the parallelization.

Algorithm 3.24. Algorithm: kth element

Input: string length n, desired minimal string k with 1 ≤ k ≤ |Tn| =
(

n
⌊n/2⌋

)
Output: kth minimal element in the tree order of Tn

1. x← 0n (initialize x)

2. zx ← n (initial value for zx)

3. ux ← n (initial value for ux)

4. K ←
(

n
⌊n/2⌋

)
+ 1− k

5. for i ∈ {0, . . . , n− 1} do

(a) if ux < 2 or (n− i) < 2 then
return x

(b) end if

(c) y ← x

(d) yn−i ← 1 (change the 0 to a 1 at index n− i in y)

(e) zy ← n− i− 1 (compute new values for y)

(f) uy ← min(n− i− 2, ux − 2)

(g) T ←
(

zy
⌊uy/2⌋

)
(h) if K < T then

i. x← y (in this case keep the updates to y)

36

ii. zx ← zy

iii. ux ← uy

(i) else if K > T then
K ← K − T (in this case do not keep the updates to y)

(j) else if K = T then
return y

(k) end if

6. end for

3.7 Algorithms for the Main Problems

3.7.1 Our Algorithms

Suppose we are given a monotone Boolean function f : Bn → {0, 1} and wish to
solve Problem 3.1, list the elements of I(f) = {x ∈ Bn : f(x) = 0}, Problem 3.2,
list the maximal elements of I(f), or Problem 3.3, calculate |I(f)|. We will use our
algorithms to produce all the chains Cx in CTD(n) and their minimal elements x ∈ Tn.
Since these Cx’s are chains and f is monotone we can use binary search to find the
thresholds at which f(y) is last 0 as y increases through Cx.

Recall that if x ∈ Tn with k = |U0(x)| (the number of unmatched 0’s in x) then
Cx = {y0, . . . , yk} has k + 1 elements where yi = τ i(x) is x with its i left-most
unmatched 0’s flipped to 1’s. In particular, we have y0 ⋖ y1 ⋖ · · ·⋖ yk in Bn. Since f
is monotone we have f(y0) ≤ f(y1) ≤ · · · ≤ f(yk). We define the threshold of f with
respect to Cx to be t(f, x) = max{i : f(yi) = 0} with the special value t(f, x) = −1 if
every f value is 1. Thus f(yi) = 0 if i ≤ t(f, x) and f(yi) = 1 if i > t(f, x).

Lemma 3.25. If f : Bn → {0, 1} is monotone and Cx is a chain in Bn in CTD(n),
then t(f, x) can be found with at most ⌈log2(|Cx|+ 1)⌉ ≤ ⌈log2(n+ 2)⌉ evaluations of
f on elements of Cx.

Proof. If the number of elements in Cx is N = 2m − 1 then t(f, x) can be found by
binary search with only m evaluations of f . Indeed, if m = 1 then Cx = {x} and
evaluating f(x) is enough. If f(x) = 0 then t = 0 and if f(x) = 1, then t = −1.
We will complete the proof by induction. Suppose now that for some m ≥ 1, we
have proven that m evaluations are enough. We will show that m + 1 evaluations
are enough for a chain Cx of 2m+1 − 1 elements as follows. Evaluate f(y), where y
is the middle element of the chain. If f(y) = 0 then we are reduced to finding the
threshold amongst the 2m− 1 elements of the chain that come after y. If f(y) = 1, we
are reduced to finding the threshold amongst the 2m − 1 elements of the chain that

37

come before y. By the inductive hypothesis, both of these cases can be handled by m
further function evaluations for a total of m+ 1 evaluations.

Suppose now that the number of elements in the chain, N , satisfies 2m−1 ≤ N ≤
2m − 1. We can then pad the sequence of f values with 2m − 1−N , 1’s at the end to
bring it to a list of length 2m − 1 and then find the threshold in that list of values
using m tests of the values within that sequence and so at most m evaluations of f .
The threshold in that list will be the same as t(f, x). Note that we do not actually
have to double the amount of memory used for the padding. We can instead extend
the definition of f to just return 1 if called for a position beyond the length N of the
chain.

Now we prove the bound on the number of evaluations. Since 2m−1 < N + 1 ≤ 2m

we have that the number of evaluations needed is m = ⌈log2(N + 1)⌉. The maximum
possible number of elements in a chain Cx in CTD(n) or in any chain in Bn is n+ 1.
A chain can contain at most one element y at each possible rank 0 ≤ r(y) ≤ n. Thus
m ≤ ⌈log2(n+ 2)⌉ as claimed.

With this lemma in hand it is easy to design our algorithms for Problem 3.1-3.3.
Since the algorithms for these problems have so much in common, we will give all them
combined into one main algorithm. Any of our algorithms for producing CTD(n) can
be used as the main subroutine, but since we are primarily interested in parallelization,
we will use Algorithm 3.23, Parallel-CTD for this purpose. Let Mn =

(
n

⌊n/2⌋

)
be the

number of chains in CTD(n).

Algorithm 3.26. Algorithm: Main (combined algorithm for Problems 3.1-3.3)

Input: A monotone Boolean function f : Bn → {0, 1}, p ∈ {3.1, 3.2, 3.3},
methods to send and receive messages to and from N parallel proces-
sors.

Output: The solution to Problem p for f . If p = 3.1, all the elements of I(f)
are listed. If p = 3.2, all the maximal elements of I(f) are listed. If
p = 3.3, |I(f)| is returned.

1. Initialization.

(a) If p = 3.1, do nothing.

(b) If p = 3.2, each processor i sets Mi ← ∅ to be the current list of potential
maximal elements of I(f) that it has found.

(c) If p = 3.3, each processor sets Ci ← 0 to be the current count of elements
in I(f) that it has found.

2. Scanning Bn.

38

(a) Distribute ⌊(1/N)Mn⌋ ± 1 chains in CTD(n) to each processor using Algo-
rithm 3.23, Parallel-CTD.

(b) When a processor i is scanning Cx = {y0, . . . , yk} it first finds threshold
ti(f, x) using the binary search algorithm laid out in Lemma 3.25.

i. If p = 3.1, processor i does nothing if ti = −1 and otherwise sends
elements y0 through yti of its chain to the central processor to list out.

ii. If p = 3.2, processor i does nothing if ti = −1 and otherwise adds yti
to Mi.

iii. If p = 3.3, processor i does nothing if ti = −1 and otherwise adds ti+1
to Ci.

3. Finishing up.

(a) If p = 3.1, nothing more is done.

(b) If p = 3.2, all processors i send Mi to the central processor. Then the
central processor does the following.

i. M ←
⋃

i Mi

ii. M ′ ← ∅
iii. While M ̸= ∅ remove first element y of M if there is z ∈M with y < z

and otherwise add y to M ′ and remove all elements z of M with z < y.
iv. Return M ′.

(c) If p = 3.3, all processors i send Ci to the central processor. Then the
central processor returns C =

∑
i Ci.

Theorem 3.27. Algorithm 3.26 gives the correct outputs.

Proof. Suppose p = 3.1. Then in Line 2bi, processors i’s current chain Cx =
{y0, . . . , yk} has only elements y0, . . . , yti with f value 0, i.e. in I(f). Note that
there are no such elements when ti = −1. These elements are sent back one by one
to the central processor to list out. All the processors together go through all of the
chains in CTD(n). These chains partition Bn so all elements of I(f) are listed by the
central processor.

Suppose now that p = 3.2. Then in Line 2bii, Cx has no elements in I(f) if ti = −1.
If ti ≥ 0, then yti is the only possible element of the current chain Cx which could be
a maximal element of I(f). Mi will wind up being these maximal elements in all the
chains that processor i considers. In Line 3bi,

⋃
i Mi is the set of all the elements of

I(f) that are maximal with respect to the chain of CTD(n) that they are in. The
maximal elements of I(f) are necessarily the maximal elements of I(f) in their own
chains and so must all be contained in M . Line 3biii winnows down this set M to the

39

true set M ′ of maximal elements of I(f). Each element y in M is considered exactly
once. If y is not a maximal element of I(f) then there is another maximal element
z ∈ I(f) with y < z. This z will be the maximal element of its chain and so will
initially wind up in M . If z is considered before y, y will not be added to M ′. If z is
considered after y, then again y will not be added to M ′. If y is a maximal element,
then it will be added to M ′. Thus M ′ will end up being the set of maximal elements
of I(f). Note that it can be possible to filter down elements of M dynamically as
elements are added to it which would be computationally more efficient, but this
involves a more complex algorithm.

Suppose finally that p = 3.3. Then in Line 2biii, exactly ti + 1 elements of the
current chain belong to I(f). Ci will wind up being the number of elements of I(f) in
the chains that processor i considers. In Line 3c, C will wind up being the number of
elements in I(f) in all of the chains of CTD(n) and hence in all of Bn. So C = |I(f)|.

3.7.2 Hansel’s Algorithm

Hansel’s algorithm [Han66] is the classical algorithm for finding the thresholds t(f, x)
for each chain Cx in CTD(n). We introduce it here in order to compare its performance
to the performance of our algorithms for this problem. This will be done in Section
3.8

We will quote Knuth’s [Knu11] presentation of the algorithm. Recall that we have
been using the presentation of CTD(n) as given in [GK76]. Hansel’s algorithm uses
the initial presentation of CTD(n) as first given in [dBvETK51]. There CTD(n) is
given as the Christmas Tree Pattern, or CTP (n). This is an arrangement of the chains
in CTD(n) in rows with the elements of the chains read in increasing order from left
to right. The rows are centered so that strings x with |x| = k are in column k of the
table. We quote the exposition of CTP (n) given in [Knu11]. CTP (1) consists of a
singe row with two columns containing the bitstrings 0 ∈ B1 and 1 ∈ B1. CTP (2)
consists of two rows, given by

10

00 01 11

In general, CTP (n+ 1) is generated recursively from CTP (n) by replacing each
row σ1σ2 . . . σs by the two rows

σ20 . . . σs0

σ10 σ11 . . . σs−11 σs1

(If s = 1 the first of these two rows is omitted.)

40

It is shown in [GK76] that the rows of CTP (n) are the chains in CTD(n).
Following Knuth’s notation, given σ ∈ Bn we have the function r(σ) which returns

the row number of σ in the CTP (n). We also have the function s(m) which returns
the number of strings in row m of the CTP (n) for 1 ≤ m ≤Mn. This is the number
of elements in the corresponding chain. The function s(m) is uniquely determined by
the specific row ordering found in the CTP (n). The algorithm also uses the nimsum,
⊕, operation on Bn. The nimsum of x1, . . . , xk ∈ Bn is z = x1 ⊕ x2 ⊕ · · · ⊕ xk ∈ Bn

where zi =
∑

j=1(xj)i mod 2 for 1 ≤ i ≤ n. Finally, we also need the function
χ(m, k) which returns the bit string in column k of row m of the CTP, where
(n+ 1− s(m))/2 ≤ k ≤ (n− 1 + s(m))/2 (since each row is centered around one or
two middle columns in the CTP (n).

Hansel’s algorithm will determine a sequence of threshold values t(1), t(2), . . . , t(Mn)
such that

f(σ) = 1 ⇐⇒ |σ| ≥ t(r(σ)).

using at most two evaluations of f for each of the Mn chains in CTP (n). Note that
t(i) is the threshold of the minimum rank of an element in the ith chain whose f value
is 1. In contrast, our t value is the maximum location within the chain of an element
with an f value of 0. Each of these thresholds is easily obtained from the other as the
minimum 1 always comes one step after the maximum 0.

Hansel’s algorithm is now as follows.

Algorithm 3.28. Hansel’s Algorithm.

Input: Monotone f : Bn → {0, 1}.

Output: Threshold values t(i) each Ci in CTP (n).

1. for m ∈ {1, . . . ,Mn} do

(a) a← n+1−s(m)
2

(b) z ← n−1+s(m)
2

(c) while z > a + 1 do (perform a binary search using already computed
threshold values)

i. k ←
⌊
a+z
2

⌋
ii. σ ← χ(m, k − 1)⊕ χ(m, k)⊕ χ(m, k + 1)

iii. if k ≥ t(r(σ)) then
z ← k

iv. else if k < t(r(σ)) then
a← k

(d) end while

41

(e) if f(χ(m, a)) = 1 then
t(m)← a

(f) else if a = z then
t(m)← a+ 1

(g) else
t(m)← z + 1− f(χ(m, z))

2. end for

For justification that Hansel’s Algorithm is correct, see [Knu11].
Note that Hansel’s Algorithm can be used as a subroutine to solve Problems 3.1-3.3.

Once you have the threshold t(i) for a chain in CTP (n), i.e. also a chain CTD(n),
you have the thresholds for I(f) restricted to that chain. Thus you can use Hansel’s
Algorithm to iterate through the chains instead of the Parallel-CTD algorithm.

3.8 Performance of Our Algorithms Versus Hansel’s
Algorithm

We will define the space complexity, s(A, n), of our algorithms A to be the number of
memory locations used by A as a function of n. We will define the time complexity,
t(A, n), as the number of computations of the input Boolean function that are made
as a function of n.

We will only give upper and lower bounds on these space and time complexities in
terms of simpler functions k(n). Often we will give bounds that are only true up to a
constant factor. For instance, we will write statements such as t(A, n) = Ω(k(n)) to
mean t(A, n) ≥ ck(n) where c > 0 is some fixed but not precisely determined constant.
We will also write statements such as s(A, n) = O(k(n)) to mean s(A, n) ≤ Ck(n)
where C > 0 again is some fixed but not precisely determined constant. We write
f(n) = Θ(f(n)) to mean that we have both f(n) = O(k(n)) and f(n) = Ω(k(n)).
The constant factors are highly dependent on the internal workings of the computer
languages used to write the algorithms and the computers that they are run on, so
there is no value in trying to determine them precisely for any one choice of language
or computer.

If you are given an arbitrary Boolean function f , in particular one that is not
monotone, then there can be no non-trivial upper bound on the number of computations
of f you might need to make in order solve Problems 3.1 or 3.3.

Theorem 3.29. Given a general Boolean function f : Bn → {0, 1}, any algorithm A
to solve Problem 3.1 or 3.3 must, in the worst case, evaluate f(x) for every x ∈ Bn

42

or be able to break RSA cryptography. This remains true even if the algorithm to
compute f is accessible to A. Thus for any algorithm A that works on arbitrary
Boolean functions f , we have that t(A, n) = 2n.

Proof. We define two Boolean functions f and g on Bn. We will have f(x) = 1 for
all x ∈ Bn, except f(x0) = 0 for a single x0 ∈ Bn which may be chosen to be an
arbitrary element of Bn. On the other hand, we will have g(x) = 1 for all x ∈ Bn.
Thus I(f) = {x0} and I(g) = ∅.

The algorithms for f and g will be designed using RSA cryptography [RSA78].
Let RSA(x) the RSA encoding of bitstring x ∈ Bn defined in terms of the public
key and such that the private key is known only to the algorithm designer. The
designer picks x0 ∈ Bn however they like and designs the algorithm for f be f(x) = 1
if RSA(x) ̸= RSA(x0) and f(x) = 0 if RSA(x) = RSA(x0). The designer now picks
a string w such that RSA(x) ̸= w for all x ∈ Bn and designs the algorithm for g to
be g(x) = 1 if RSA(x) ̸= w and g(x) = 0 if RSA(x) = w. Thus we have I(f) = {x0}
and I(g) = ∅ as was desired.

Suppose we have an algorithm A for Problem 3.1, list I(F), or for Problem 3.3,
return |I(F)|. Suppose A is given access to the Boolean function F or even access to
the code for F . In order for A to distinguish between F = f and F = g it must, in
the worst case, evaluate F (x) for every x ∈ Bn. Even if the algorithm A has access to
the code for f or g, it will have access to only RSA(x0) or w. If A is somehow able to
not evaluate f or g on every input, it will have to somehow be able to get information
about the RSA decodings of these strings. There are no publicly known techniques
for doing this.

Knuth notes that one can do only a little better for monotone Boolean functions.

Theorem 3.30. Given a monotone Boolean function f : Bn → {0, 1} any algorithm
A must, in the worst case, make Mn =

(
n

⌊n/2⌋

)
evaluations of f or be able to break

RSA cryptography. This remains true even if A has access to the code for computing
f . Thus for any algorithm A that works on arbitrary Boolean functions f , we have
that t(A, n) = Ω(2n/

√
n) or that A is able to break RSA cryptography.

Proof. We define two monotone Boolean functions f and g on Bn. We define f(x) = 1
if |x| ≥ ⌈n/2⌉ and f(x) = 0 otherwise. We define g(x) = f(x) for all x except we define
g(x0) = 1 for exactly one x0 with |x0| = ⌊n/2⌋. This x0 may be chosen arbitrarily.
Thus the set of maximal elements M(f) of I(f) is M(f) = {x ∈ Bn : |x| = ⌊n/2⌋}
and M(g) = M(f) \ {x0}.

The designer of the code for f and g uses RSA cryptography. Let RSA(F) =
{RSA(x) : x ∈ I(F)} be the RSA encodings of all bitstrings x ∈ I(f). For F = f or
F = g set F (x) = 0 if RSA(x) ∈ RSA(F) and F (x) = 1 if RSA(x) ̸∈ RSA(F). Thus
f and g will have the claimed properties.

43

Suppose we have an algorithm A to solve Problems 3.1-3.3 for monotone Boolean
functions F . In order for this algorithm to distinguish between inputs F = f and
F = g it will, in the worst case, have to evaluate F (x) for all Mn inputs x with
x = ⌊n/2⌋. This remains true even if A has access to the code for F . If F = f or
F = g, all A will have access to is RSA(F), a set of RSA encodings. If A could make
fewer than Mn evaluations of F , it will have to somehow be able to get information on
the RSA decodings of these strings. There are no publicly known techniques for doing
this. Note that A can’t just count the number of strings in the lookup tables that f
and g are using as there is no guarantee that those strings are the RSA encoding of
any x.

For the lower bound on t(A, n), we need only use the standard fact that Stirling’s
asymptotic formula n! ∼ (n/e)n

√
2πn as n → ∞ implies Mn ∼

√
2
π
(2n/
√
n) as

n→∞.

It should be noted that [Knu11] only gives this t(A, n) = Mn lower bound for the
number of function evaluations in the case that you only have access to the results
of the computations. Our result adds that even having access to the code for f is
unlikely to improve this lower bound.

The following theorem gives bounds on the space complexities of our algorithms for
Problems 3.1-3.3 and shows how this compares with the space complexity of Hansel’s
algorithm. We see that the space complexity of our algorithms is polynomial in n
while Hansel’s Algorithm has space complexity that is exponential in n.

Theorem 3.31. . We have the following space complexity bounds.

1. The space complexity of Algorithm 3.12, Recursive-CTD, is s(A, n) = O(n2).

2. The space complexities of Algorithm 3.17, Non-recursive-CTD, Algorithm 3.23,
Parallel-CTD, and Algorithm 3.26, Main Algorithm, for Problems 3.1 and 3.3
are all s(A, n) = O(n) per processor.

3. The space complexity for Algorithm 3.26, Main Algorithm, for Problem 3.2 is
s(A, n) = O(Mn) = O(2n/

√
n).

4. The space complexity for Algorithm 3.28, Hansel’s Algorithm, for Problems
3.1-3.3 is s(A, n) = Ω(2n/

√
n)

Proof. It is clear that Recursive-CTD must maintain zx, ux, and U0(x) for all x for
which there are calls of Recursive-CTD stacked. Note zx and ux are single indices and
U0(x) is a list of up to n indices. By Theorem 3.14 at most n/2 function calls are
stacked at any one time. This gives the O(n2) upper bound in Statement 1.

44

As the definition of the M and R matrices in Subsection 3.6.3 make clear, these
matrices have at most n/2 rows and a constant number of indices per row. Since
maintaining M and R is the most space intensive task Non-Recursive-CTD and
Parallel-CTD face, this gives the O(n) bound. The Main algorithm uses Parallel-CTD
and, if working on Problems 3.1 or 3.3, need not maintain more memory. This gives
the O(n) upper bound here as well.

We are only able to prove the weaker O(2n/
√
n) bound on the Main Algorithm for

Problem 3.2. Its most expensive space requirement is to maintain the lists Mi and M
of all the potential maximal elements of I(f). As the function defined by f(x) = 1 if
and only if |x| > n/2 shows, the set of maximal elements that is contained in these
might contain Mn elements (and at most Mn) elements. Since Mn = Ω(2n/

√
n), this

gives the bound in Statement 3.
A careful analysis of Line 1 in Hansel’s Algorithm, one that is carried out in

[Knu11], shows that the calculation of a threshold t(i) is carried out in terms of
thresholds t(j) for earlier rows j < i in CTP (n). Thus the list of t values for all
Mn = Ω(2n/

√
n) rows of CTP (n) must be maintained.

The following theorem gives bounds on the time complexities of our Main Algorithm
for Problems 3.1-3.3 and shows how this compares to the time complexity of Hansel’s
algorithm.

Theorem 3.32. We have the following statements.

1. The time complexity of Algorithm 3.26, the Main Algorithm running on N
processors is t(A, n) = O((1/N)(2n log(n)/

√
n) per processor.

2. The time complexity of Algorithm 3.28, Hansel’s Algorithm is θ(2n/
√
n).

Proof. We first prove Statement 1. We see that each processor gets (1/N)Mn =
O((1/N)2n/

√
n) of the chains of CTD(n). By Lemma 3.25, each processor need only

make O(log(n)) evaluations of f per chain. Since the processors operate in parallel,
this gives the bound in the statement.

We now prove Statement 2. As mentioned in the proof of Theorem 3.31, each
computation of a threshold in Hansel’s Algorithm may require any of the previously
computed of thresholds. Thus there is no way to divide the chains up among processors
that can work in parallel. As proved in [Knu11], Hansel’s algorithm makes only 2
computations of f per chain. Thus its time complexity is t(A, n) = Θ(Mn) which
gives the bound.

As mentioned in the introduction of this chapter, Theorems 3.31 and 3.32 tell us that
our Main Algorithm has an important advantage over Hansel’s algorithm. The time
complexity of the Main Algorithm is a factor (1/N) log(n) less than that of Hansel’s
Algorithm. If your number N of parallel processors is within the thousands this is

45

significant. Furthermore the space complexity of the Main Algorithm is O(Nn) (for
N processors) as opposed to the Ω(2n/

√
n) of Hansel’s Algorithm. This significantly

extends the limits of computational exploration of conjectures on monotone Boolean
functions such as Conjecture 2.3. We say more about that in the next and final section
of this chapter.

3.9 Testing of the Bunk Bed Conjecture

We first came at these Problems through a special case of Problem 3.6 that originated in
computationally testing Conjecture 2.3 and several variants of it. Let B = BB(G, T) =
(V,E) be a bunk bed graph. Let x and y be vertices of B. Define the Boolean function
fxy : P(E)→ {0, 1}, such that for all subsets F of the edge set E we have fxy(F) = 1
if and only if vertices x and y are connected in (V, F). It is easy to see that fxy is
monotone. This is because if a connection event holds true in (V, F) it must hold true
in (V, F ′) for all F ′ ⊇ F ; adding more edges cannot destroy connectivity.

Conjecture 2.3 is thus about the number of subgraphs (V, F) of B for which
fxy(F) = 1, i.e. about the size of the filter |F (x, y)| = |f−1

xy (1)|. Conjecture 2.3 asserts
|F (x0, y0)| ≥ |F (x0, y1)| for all x, y. As noted, we used our algorithms to test various
cases of Conjecture 2.3.

In practice we could greatly improve the efficiency of our counting of |F (x, y)| in
two ways. If while searching the vertices F of the associated tree T ′

n on Bn = P(E)
we discovered that fxy(F) = 1, then we could add y to the count for |F (x, y)| for all
F ′ ≥ F . This was particularly helpful when F ∈ Tn as the entire subtree of Tn rooted
at F no longer had to be tested.

The second way we could improve performance was that as the algorithm scanned
T ′
n it mostly moved from sets F to F ∪ {e}. We would maintain the list of connected

components of the current spanning subgraph (V, F) as we went. Updating these
components after the addition of an edge was a trivial task. Either the edge joined two
components or it landed entirely within one component. Testing fxy(F) was then easy
too. Either x and y were both in the same component and fxy(F) = 1 or otherwise
fxy(F) = 0.

46

Chapter 4: The Skolem Problem

4.1 Introduction

4.1.1 The Skolem Problem and the Positivity Problem

If r = (rn)n≥0 = (r0, r1, r2, . . .) is a sequence in a ring R and there are constant
coefficients q1, . . . , qk ∈ R with qk ≠ 0 such that rn = q1rn−1 + q2rn−2 + · · ·+ qkrn−k

for all n ≥ k, then r is said to be a linear recurrence of order k in R with coefficients
q1, . . . , qk. The equation that rn satisfies is called a recurrence relation. Note that fixing
the values of the initial terms r0, . . . , rk−1 of r determines every term rn inductively,
as for all n ≥ k, the previously computed values of rn−1, . . . , rn−k can be substituted
into the recurrence relation to obtain rn.

In this chapter, we study two problems on linear recurrences, the Skolem Problem
and the Positivity Problem.

The Skolem Problem is the following question: “Given the coefficients and initial
terms of a linear recurrence rn, does there exist a term rn such that rn = 0?”

The Positivity Problem is the question: “Given the coefficients and initial terms of
a linear recurrence rn, do we have rn ≥ 0 for all n ≥ 0?”

The integer cases of these problems are to restrict the recurrences to integer
coefficients and integer initial terms.

A positive resolution to these problems would be to prove that they are decidable,
i.e. to prove the existence of an algorithmic decision procedure that would take the
coefficients and initial terms as input and give the correct answer to the question as
output. A negative resolution would be to prove that they are undecidable, that no
such decision procedure can exist.

We note that the Positivity problem should perhaps instead be called the Non-
negativity Problem but its name has been set in the literature [OW12].

4.1.2 History

Perhaps the most well-known linear recurrence is the Fibonacci sequence, the order
2 linear recurrence (Fn)n≥0 in the integers defined by setting F0 = 0, F1 = 1, and

47

Fn = Fn−1 + Fn−2 for all n ≥ 2. Leonardo of Pisa, also known as Fibonacci, explicitly
introduced this sequence in his Liber Abaci of 1202. See [Pis02] for a translation of
this work into modern English. This sequence also appears, albeit more cryptically, in
earlier works. The earliest known is the Pingala in Sanskrit, dating to 450-200 BC
[Sin85].

The theory of linear recurrences permeates many fields of mathematics and com-
puter science. The book [EvdPSW03] provides a comprehensive introduction to the
vast literature on linear recurrences, summarizing the work contained in over 1300
papers.

The Skolem Problem is viewed as originating in Skolem’s paper [Sko35] from 1935.
He did not state the problem there in so many words, but rather proved the theorem
that the set of indices of the zero terms in a linear recurrence in the rational numbers
is the union of a finite set and a finite number of arithmetic progressions. At that
time, questions on algorithms had not yet assumed the importance to the research
community that they have today, but it is now customary to view the Skolem Problem
as a question of decidability [OW12]. Viewed in this light, a positive resolution to the
Skolem Problem would be to show that it is a decidable question. This would entail
finding or proving the existence of a decision procedure for the question, a well-defined
algorithm that takes q1, . . . , qk and r0, . . . , rk−1 as inputs and, in all cases, takes finite
time to correctly decide whether or not there exists an integer n such that rn = 0. A
negative resolution would be to find a proof that this is an undecidable question, i.e.
to find a proof that no such decision procedure can exist.

As mentioned, the first result on the Skolem Problem is Skolem’s 1935 proof of
the following theorem for the field of rational numbers.

Theorem 4.1 (Skolem-Mahler-Lech Theorem). Let k be a field of characteristic 0 and
let r = (rn)n≥0 be a linear recurrence in k. Then the zero set of r, i.e. {n ≥ 0 : rn = 0}
is the union of a finite set and a finite number of arithmetic progressions.

Mahler quickly extended Skolem’s result on the rationals to the field of algebraic
numbers in [Mah35]. Lech proved the general characteristic 0 case in 1953 in [Lec53].
These results are all ineffective in the sense that they do not give an algorithmic
procedure to determine the zero sets. However, in a breakthrough 1976 result, Berstel
and Mignotte gave an algorithmic approach to determine all the arithmetic progressions
that make up the zero set [BM76]. See [Han86] for an elementary demonstration of
this algorithm.

In 2002, Blondel and Portier proved the decidability of the rational case is NP-hard
[BP02], which can be viewed as one measure of how hard it will be to solve the Skolem
Problem. Their result was for integer linear recurrences, but it is a folklore result that
the rational case reduces to the integer case. See Section 4.3.

Partial progress has been achieved by restricting the question to linear recurrences
of a fixed order. The decidability of the order 1 case is trivial. The decidability of

48

the order 2 case is relatively straightforward and is considered folklore. The first real
progress on low orders was achieved in the 1980s by Mignotte, Shorey, and Tjideman
[MST84] and, independently, Vereshchagin [Ver85], who proved the decidability of the
problem for order 3 and order 4 recurrences. The proofs in these papers are complex
and deep, using p-adic techniques, Galois theory, and versions of Baker’s Theorem on
linear forms in logarithms (which earned Baker a Fields Medal in 1970).

The fact that the Skolem Problem has remained open for over 80 years has been
described by Terence Tao as “faintly outrageous” [Tao07] and by Richard Lipton
as a “mathematical embarrassment” [Lip09]. These comments might be viewed as
expressing the hope that there is further progress to be made via an approach that
cleverly circumvents the deep mathematics that has seemed necessary to make progress
so far.

It is a folklore result that a positive resolution to the Positivity Problem would
also give a positive resolution to the Skolem Problem. Indeed, as we will demonstrate
in Section 4.3, there is an explicit algorithm to transform any order k instance of the
Skolem Problem into an equivalent instance of the Positivity Problem on an integer
sequence of order k2+1 or less. Thus the Positivity Problem is also viewed has having
been open as long as the Skolem problem [OW14]. However, the earliest explicit
references to the Positivity Problem date back to the 1970s in [BM76], [Sal76], and
[Soi76].

As with the Skolem Problem, the rational case of the Positivity Problem reduces
to the integer case (see Section 4.3). As noted in [BDJB10], the NP-hardness result
for the Skolem Problem on integer linear recurrences given in [BP02] translates to a
proof of the co-NP hardness of the Positivity Problem on integer linear recurrences.

Progress on low order cases of the Positivity Problem is more preliminary than
that in the Skolem Problem. In 2006, Halava, et. al, showed that the order 2 case is
decidable [HHH06]. In 2009, Laohakosol and Tangsupphathawat showed the order 3
case is decidable [LT09]. These proofs are based on elementary estimates on the roots
of the degree k polynomial characteristic equation of an order k linear recurrence,
using the formulas for such solutions in terms of radicals. As such, these methods
cannot be extended past the order 4 linear recurrences as polynomial equations of
degree greater than or equal to 5 have no general solution in radicals. However,
Ouaknine and Worrell showed all order 5 or less cases are decidable [OW14]. This
was a breakthrough result that used many sophisticated number theoretic techniques.
They note that resolving an order 6 or higher case would entail major breakthroughs
in the field of Diophantine approximation of transcendental numbers [OW14].

4.1.3 Outline of the Chapter

We organize this chapter as follows. We lay out some fundamental definitions and
results that we will need in Section 4.2. In Section 4.3 we will reduce all of our

49

decision problems to the fundamental problem of deciding the non-negativity of the
series coefficients of a rational function. In Section 4.4 we will introduce Type F
characteristic polynomials and show how it is possible to decide the non-negativity of
rational functions with these denominators. We will give a partial decision procedure for
the Skolem Problem and Positivity Problem for recurrences with Type F characteristic
polynomials in the final section, Section 4.5. There we will also show that unfortunately
this is not a complete decision procedure. We will show that it will not terminate if
the characteristic polynomial is not Type F and that there are many such polynomials.

4.2 Fundamentals

4.2.1 Sequences, Series, and Polynomials

We mostly follow the notations and conventions for sequences, polynomials, series,
and recurrences given in Stanley’s book, [Sta12]. However, for the convenience of the
reader, we organize and outline them here as well. We do adopt some notation that is
distinct from Stanley’s. In particular, we use ⋆ for convolution, · for the Hadamard
product, and introduce our own notation for the classes of linear recurrences we will
consider.

Let N = {0, 1, 2, . . .} be the natural numbers, including 0. We write Z, Q, R, and C
for the ring of integers and fields of rational, real, and complex numbers, respectively.

Let R be a ring. A sequence in R is a function r : N → R. The nth term of the
sequence r is r(n) or, as we sometimes denote it, rn. We will often write the sequence
r as (r(n))n≥0 or (rn)n≥0.

Let R∞ be the set of sequences in R. We say two sequences p and q in R∞ are
equal if and only if p(n) = q(n) for all n ∈ N. We let R act on R∞ via the action
r · (rn)n≥0 = (r · rn)n≥0. We define addition on R∞ by

(pn)n≥0 + (qn)n≥0 = (pn + qn)n≥0.

R∞ is an R module with respect to these two operations. The 0-element of R∞ is
the 0-sequence 0 = (0)n≥0. If r1, . . . , rk ∈ R and p1 = (p1n)n≥0, . . . , pk = (pkn)n≥0 are
sequences in R∞, then the R-linear combination of p1, . . . , pk with weights r1, . . . , rk
is the sequence

r = r1p1 + · · ·+ rkpk

defined by

r(n) =
k∑

j=1

rjpj(n), for all n ≥ 0.

50

A formal power series in the indeterminate x with coefficients in R is the formal
symbol

r(x) =
∑
n≥0

rnx
n

where r = (rn)n≥0 is a sequence in R∞. Let R[[x]] denote the set of all such series.
The 0-series 0 =

∑
n≥0 0x

n is the 0-element of R[[x]]. If r ∈ R then the power series
r +

∑
n≥1 0x

n is called a constant power series. We often denote this series just by
r. Thus 0 is a notation for the 0-element. If r(x) =

∑
n≥0 rnx

n, we say that r0 is the
constant term of r(x). In general we write [xn]r(x) for rn, the coefficient of xn in r(x).
Thus [xn] : R[[x]]→ R is an R-linear map.

We will often use the maps G : R∞ → R[[x]] and C : R[[x]]→ R∞ defined by

G((rn)n≥0) =
∑
n≥0

rnx
n

and

C

(∑
n≥0

rnx
n

)
= (rn)n≥0.

Clearly these maps are R-linear maps, are bijections, and are inverses of each other.
If r = (rn)n≥0 is a sequence in R∞ then

gr(x) = G(r) =
∑
n≥0

rnx
n

is the generating function of r in R[[x]]. As already noted, the map g(·)(x) is R-linear,
i.e.

gar+bs(x) = agr(x) + bgs(x)

for all a, b ∈ R and all r, s ∈ R∞. If r(x) =
∑

n≥0 rnx
n is a power series in R[[x]] then

C(r(x)) = (rn)n≥0

is the sequence of coefficients of r(x), a sequence in R∞.
We define the action of R on R[[x]] via r · r(x) = G(r ·C(r(x))) and the operation

of addition in R[[x]] via r(x) + s(x) = G(C(r(x)) + C(s(x))). It is straightforward to
show that R[[x]] is an R-module with respect to these operations. The notation we
will usually use for these operations is standard,

r · r(x) = r ·
∑
n≥0

rnx
n =

∑
n≥0

r · rnxn

and
r(x) + s(x) =

∑
n≥0

rnx
n +

∑
n≥0

snx
n =

∑
n≥0

(rn + sn)x
n.

51

Thus
∑

n≥0 rnx
n =

∑
n≥0 snx

n if and only if rn = sn for all n ∈ N.
If r1, . . . , rk ∈ R and p1(x) =

∑
n≥0 p1nx

n, . . . , pk(x) =
∑

n≥0 pknx
n ∈ R[[x]], then

the R-linear combination of p1(x), . . . , pk(x) ∈ R[[x]] with weights r1, . . . , rk is

r1p1(x) + · · ·+ rkpk(x) =
n∑

j=1

rkpk(x) =
∑
n≥0

(r1p1n + · · · rkpkn)xn.

A sequence r in R∞ is finitely supported or eventually 0 if and only if there exists
N ∈ N such that rn = 0 for all n > N . Equivalently, this means rn ̸= 0 only finitely
often. Let R∞

0 be the set of finitely supported sequences in R∞. Clearly when R∞
0

is viewed as a subset of R∞ it is closed under the action by R and the operation of
addition. Thus R∞

0 is a submodule of R∞.
A power series gr(x) =

∑
n≥0 rnx

n ∈ R[[x]] with coefficient sequence r = (rn)n≥0 is
said to be a polynomial if and only if r is a finitely supported sequence, say rn = 0 for
n > N . We then say that gr(x) =

∑N
n=0 rnx

n is a polynomial in the indeterminate x
with coefficients in R or, more simply a polynomial if x and/or R are understood. We
let R[x] be the ring of polynomials in indeterminate x with coefficients in R. R[x] is a
submodule of R[[x]].

Given a polynomial r(x) =
∑

n≥0 rnx
n ∈ R[x] we define the degree of r(x) in x to

be deg(r(x)) = −∞ if (rn)n≥0 is the 0-sequence and deg(r(x)) = max{n ∈ N : rn ̸= 0}
otherwise. As is well-known,

deg(r(x) + s(x)) ≤ max(deg(r(x)), deg(s(x))).

If R has no zero-divisors, deg(ar(x)) = deg(r(x)) for all a ̸= 0 and, more generally,

deg(r(x)s(x)) = deg(r(x)) + deg(s(x)).

If we adopt the convention that n + −∞ = −∞ for all n ∈ N, then these formulas
remain true even if r(x) or s(x) are the zero polynomial. For convenience in writing
proofs with polynomials r(x), we identify the formal expressions r(x) =

∑
n≥0 rnx

n =∑N
n=0 rnx

n for all N ≥ deg(r(x)).
Given a series r(x) =

∑
n≥0 rnx

n ̸= 0 we define the min-degree min deg(r(x))
to be the minimum value of k such that rk ̸= 0. Note that min deg(r(x)s(x)) =
min deg(r(x)) + min deg(s(x)).

We adopt all the customary conventions and notations for elements and operations
in R[x]. The 0-polynomial is the polynomial 0 =

∑
n=0 0x

n. Two polynomials∑N
n=0 rnx

n and
∑

n≥0 snx
n are equal if and only if rn = sn for all n with 0 ≤ n ≤ N .

If r ∈ R then

r ·
N∑

n=0

rnx
n =

N∑
n=0

r · rnxn.

52

We set
N∑

n=0

rnx
n +

N∑
n=0

snx
n =

N∑
n=0

(rn + sn)x
n.

If r1, . . . , rk ∈ R and p1(x) =
∑N

n=0 p1nx
n, . . . , pk(x) =

∑N
n=0 pknx

n then the R-linear
combination of p1(x), . . . , pk(x) with weights r1, . . . rk is the polynomial

r1p1(x) + · · · rkpk(x) =
k∑

j=1

rjpj(x) =
N∑

n=0

(
k∑

j=1

rjpjn)x
n =

N∑
n=0

(r1p1n + · · ·+ rkpkn)x
n.

If r = (rn)n≥0 and s = (sn)n≥0 are two sequences in R∞, we define the convolution
of r and s to be the sequence t = r ⋆ s = (tn)n≥0 in R∞ given by

tn =
n∑

k=0

rksn−k

for all n ≥ 0. Clearly the convolution of two finitely supported sequences is another
finite supported sequence so R∞

0 is closed under convolution. If R is commutative, we
have that ⋆ is a bilinear operation: if a1, . . . , ak, b1, . . . , bℓ ∈ R, r1, . . . , rk, s1, . . . , sℓ ∈
R∞, then (

∑k
i=1 airi) ⋆ (

∑ℓ
j=1 bjsj) =

∑k
i=1

∑ℓ
j=1 aibj(ri ⋆ sj).

If r(x) =
∑

n≥0 rnx
n and s(x) =

∑
n≥0 snx

n are two power series in R[[x]], we
define their product to be the power series t(x) = r(x)s(x) =

∑
n≥0 tnx

n where the
sequence (tn)n≥0 is the convolution of the sequences (rn)n≥0 and (sn)n≥0. Thus we
write

r(x)s(x) =
∑
n≥0

(
n∑

k=0

rksn−k)x
n.

Note that for generating functions we have gr⋆s(x) = gr(x)gs(x).
Note that the result of the action of r on the power series r(x) =

∑
n≥0 rnx

n

defined as r · r(x) =
∑

n≥0 r · rnxn is also the product of the constant series r and r(x).
Since R∞

0 is closed under convolution, R[x] is closed under taking products.
From now on we assume that R is a commutative ring with identity. Most often, we

will consider the rings Z, Q, R, C. It is a standard theorem that if R is a commutative
ring, then R[[x]] and R[x] are commutative rings with respect to addition (defined
before) and this product, see [Sta12].

It is a standard fact in algebra that if R is commutative and x0 ∈ R, then the
substitution map ϕx0 : R[x] → R given by ϕx0(r(x)) = r(x0) =

∑N
n=0 rnx

n
0 (where

r(x) =
∑N

n=0 rnx
n) is a ring homomorphism.

Recall that the members of R[[x]] are defined to be formal objects. Even if R is a
subring of C, we are generally not concerned with any issues of the convergence of a
specific power series in R[[x]] at a specific value of x ∈ R. However, if r(x) =

∑
n≥0 rnx

n

53

we will find it convenient to write r(0) = r0. Note that, with this convention, if
t(x) = r(x)s(x) then t0 = t(0) = r(0)s(0) = r0s0 and so the substitution map
ϕ0(r(x)) = r(0) = r0 is a ring homomorphism from R[[x]] to R.

We will sometimes write infinite sums of elements in R[[x]]. We will only do this if
the sum is well-defined, i.e. the process for determining the nth coefficient of the sum
is finite.

For example, if r(x) =
∑

n≥0 rnx
n and p(x) =

∑
n≥0 pnx

n with p0 = p(0) = 0 we
will write s(x) = r(p(x)) =

∑
n≥0 rnp

n(x). We have that s(x) is well-defined. Since
p(0) = 0, we have min deg p(x) ≥ 1 and so min deg pk(x) ≥ k(min deg p(x)) ≥ k. Thus
we have [xn]pj(x) = 0 for all j > n and so [xn]

∑
j>n rjp

j(x) = 0. Thus

[xn]s(x) = [xn]
n∑

j=0

rjp
j(x)

is determined by a finite number of additions and multiplications in R involving the
coefficients of r(x) and p(x).

If p(x) ∈ R[[x]] and p(0) = 0 we define the substitution map ϕp(x) : R[[x]]→ R[[x]]
by ϕp(x)(r(x)) = r(p(x)) where r(p(x)) is as defined in the previous paragraph.

Theorem 4.2. Let R be a commutative ring and let p(x) ∈ R[[x]] with p(0) = 0. Then
the substitution map ϕp(x) : R[[x]]→ R[[x]] is a ring homomorphism.

Proof. It has already been proven that ϕp(x) is a well-defined map. Let r(x) =∑
n≥0 rnx

n and s(x) =
∑

n≥0 snx
n be two series in R[[x]]. Then ϕp(x)(r(x) + s(x)) =

ϕp(x)(
∑

n≥0(rn + sn)x
n) =

∑
n≥0(rn + sn)p

n(x) =
∑

n≥0 rnp
n(x) +

∑
n≥0 snp

n(x) =
ϕp(x)(r(x)) + ϕp(x)(s(x)). Also we have

ϕp(x)(r(x)s(x)) = ϕp(x)

(∑
n≥0

(
n∑

j=0

rjsn−j

)
xn

)

=
∑
n≥0

(
n∑

j=0

rjsn−j

)
pn(x)

=
∑
n≥0

n∑
j=0

(rjp
j(x))(sn−jp

n−j(x))

=

(∑
n≥0

rnp
n(x)

)(∑
n≥0

snp
n(x)

)
= ϕp(x)(r(x))ϕp(x)(s(x)).

54

4.2.2 Reciprocals and The Geometric Series

A reciprocal or multiplicative inverse of p(x) ∈ R[[x]] is a power series q(x) such that
q(x)p(x) = p(x)q(x) = 1. If q(x) is the reciprocal of p(x), then we write q(x) = 1/p(x)
or q(x) = (p(x))−1.

Theorem 4.3. Let R be a commutative ring. An element p(x) ∈ R[[x]] has a reciprocal
if and only if p(0) is a unit in R. In this case the reciprocal q(x) =

∑
k≥0 qkx

k is
unique and qk can be recursively defined by q0 = 1/p0 and

qk = −(1/p0)
k∑

j=1

pjqk−j

for all k > 0.

Proof. Suppose p(0) is not a unit. Then there is no series q(x) such u(x) = p(x)q(x) =
1. If there were, then we would have 1 = u(0) = p(0)q(0) which would contradict the
assumption that p(0) is not a unit.

Suppose now that p0 = p(0) is a unit. We now show that there is a unique series
q(x) such that u(x) = p(x)q(x) = 1. If q(x) satisfies that equation, we prove, by
induction on k, that qk = [xk]q(x) is uniquely defined by the recursive process given
in the statement of the theorem.

We must have 1 = u(0) = p(0)q(0) = p0q0. Thus q0 = 1/p0 is the unique inverse of
p0 in R and qk is uniquely defined for k = 0. Suppose now that for some k ≥ 1, qj is
uniquely defined for 0 ≤ j < k. We will show that qk is also uniquely defined by the
given formula, completing the proof by induction.

For k ≥ 1 we have

0 = [xk]u(x) =
k∑

j=0

pjqk−j = p0qk +
k∑

j=1

pjqk−j.

We solve this equation for qk = −(1/p0)
∑k

j=1 pjqk−j . Now for all j with 1 ≤ j ≤ k we
have 0 ≤ k − j < k and so qk−j is uniquely defined. This means that qk is uniquely
defined as well.

If R is a commutative ring with identity, we adopt the convention that q0(x) = 1
for all q(x) ∈ R[[x]].

Theorem 4.4 (The geometric series). If R is a commutative ring with identity, then
the reciprocal of p(x) = 1− x is the series q(x) = 1/(1− x) =

∑
n≥0 x

n.

55

Proof. By Theorem 4.3 we know that p(x) = 1− x has a unique reciprocal q(x) since
p(0) = 1 is a unit. We use the formulas given in that theorem to determine the unique
sequence of coefficients of q(x) =

∑
n≥0 qnx

n. We show, by induction on k, that qk = 1
for all k. We have q0 = 1/p0 = 1. For k ≥ 1 we have

qk = −(1/p0)
k∑

j=1

pjqk−j = −(1/p0)p1qk−1 = qk−1 = 1.

This follows by the facts that p0 = 1 and p1 = −1 and pj = 0 for j > 1.
We can also prove this statement by a “guess and verify” approach. As before, we

know from Theorem 4.3 that p(x) has a unique reciprocal. We now set q(x) =
∑

n≥0 x
n

and verify that p(x)q(x) = 1, thereby proving that q(x) is the reciprocal of p(x). We
have

u(x) = p(x)q(x) = (1− x)
∑
n≥0

xn = 1
∑
n≥0

xn − x
∑
n≥0

xn

since R[[x]] is a ring and hence has the distributive property. Thus

u(x) =
∑
n≥0

xn −
∑
n≥0

xn+1 =
∑
n≥0

xn −
∑
n≥1

xn = 1.

Theorem 4.5. Let R be a commutative ring with identity. If p(x) ∈ R[[x]] and
p0 = p(0) is a unit then the reciprocal of p(x) is given by the formula

1

p(x)
=

1

p0

∑
n≥0

(
1

p0

)n

qn(x)

where q(x) = −(p(x)− p0).

Proof. We have p(x) = p0 − q(x) so

1

p(x)
=

1

p0 − q(x)
=

1

p0(1− 1
p0
q(x))

=
1

p0

1

1− 1
p0
q(x)

=
1

p0
ϕ 1

p0
q(x)

(
1

1− x

)
=

1

p0
ϕ 1

p0
q(x)

(∑
n≥0

xn

)
.

For the last equality, we use the geometric series expansion for 1/(1 − x) given in
Theorem 4.4. Note that the substitution map ϕQ(x) we used, with Q(x) = 1

p0
q(x), is

well-defined as Q(0) = (1/p0)q(0) = 0, since q(0) = −(p(0)− p0) = 0.

56

Applying the substitution map in the last equation, we get

1

p(x)
=

1

p0

∑
n≥0

(
1

p0

)n

qn(x)

as claimed.

Corollary 4.6. Let R be a commutative ring with identity. Let p(x) ∈ R[[x]] with
p(0) = 0. Then we have the following formulas:

1

1− p(x)
=
∑
n≥0

pn(x),

1

1 + p(x)
=
∑
n≥0

(−1)npn(x).

Proof. If one applies Theorem 4.5 to the right-hand sides of the equations above, one
gets q(x) = p(x) for the first equation and q(x) = −p(x) for the second.

4.2.3 Recurrences and Rational Functions

Let R be a commutative ring with identity and let k be a positive integer. A sequence
r = (rn)n≥0 ∈ R∞ is a linear recurrence of order k if and only if there are ring elements
q1, . . . , qk with qk ̸= 0 such that rn = q1rn−1 + q2rn−2 + · · · + qkrn−k =

∑k
j=1 qjrn−j

for all n ≥ k. This formula for rn with n ≥ k is called a recurrence relation. The
constants, q1, . . . , qk are called the coefficients of the recurrence relation. The terms
r0, . . . , rk−1 of r are called the initial terms of the sequence. Note that once the order,
the coefficients, and the initial terms of a linear recurrence are specified, the rest of
the terms, i.e. rn for n ≥ k, are uniquely determined, inductively, by substituting
previously computed values rn−1, . . . , rn−k into the recurrence relation to obtain rn.

If q1, . . . , qk ∈ R and qk ̸= 0, let

Lk(R; q1, . . . , qk)

be the set of linear recurrences of order k in R with coefficients q1, . . . , qk. Let

Lk(R) =
⋃
{Lk(R; q1, . . . , qk) : q1, . . . , qk ∈ R, qk ̸= 0}

be the set of linear recurrences of order k. Let

L(R) =
⋃
k≥1

Lk(R)

57

be the set of linear recurrences. Let

Gk(R, q1, . . . , qk) = {gr(x) : r ∈ Lk(R; q1, . . . , qk)}

be the set of generating functions of linear recurrences in Lk(R; q1, . . . , qk). We define
Gk(R) and G(R) analogously.

The characteristic polynomial of a linear recurrence r with coefficients q1, . . . , qk
with qk ̸= 0 is defined to be

qr(x) = 1−
k∑

j=1

qjx
j.

Note, that our definition is distinct from the common definition that p(x) = xkq(1/x) =
xk −

∑k
j=1 qjx

k−j is the characteristic polynomial. We use our definition as it leads to
nicer phrasings of our theorems. We will also write

L(R, q(x)) = Lk(R; q1, . . . , qk)

for the set of linear recurrences with characteristic polynomial q(x) and

G(R, q(x)) = Gk(R; q1, . . . , qk)

for the corresponding set of generating functions.

Theorem 4.7. Fix a degree k characteristic polynomial q(x) = 1−
∑k

j=1 qjx
j ∈ R[x]

with qk ̸= 0. Then we have the following statements.

1. If r = (rn)n≥0 is a linear recurrence with characteristic polynomial q(x) and
k-tuple (r0, . . . , rk−1) ∈ Rk of initial terms, then there is a unique k-tuple of
coefficients (p0, . . . , pk−1) ∈ Rk such that

gr(x) =
∑
n≥0

rnx
n =

∑k−1
n=0 pnx

n

q(x)
.

2. Conversely, if (p0, . . . , pk−1) ∈ Rk is a k-tuple of coefficients, then there is a
unique k-tuple (r0, . . . , rk−1) ∈ Rk such that if r = (rn)n≥0 is the linear recurrence
with characteristic polynomial q(x) and sequence of initial terms (r0, . . . , rk−1)
then, again,

gr(x) =
∑
n≥0

rnx
n =

∑k−1
n=0 pnx

n

q(x)
.

58

3. The correspondences between k-tuples of initial terms (r0, . . . , rk−1) ∈ Rk and
k-tuples of coefficients (p0, . . . , pk) ∈ Rk described in statements 1 and 2 are
bijective linear maps given by

pi = ri −
i∑

j=1

qiri−j, for all 0 ≤ i < k.

Proof. Extend the definition of the sequence qj to qj = 0 for j ≥ k so that q(x) =
1−

∑
j≥1 qjx

j. We have ∑k−1
n=0 pnx

n

q(x)
=
∑
n≥0

rnx
n

if and only if

k−1∑
i=0

pix
i = (1−

∑
j≥1

qjx
j)
∑
n≥0

rnx
n =

∑
i≥0

(ri −
i∑

j=1

qiri−j)x
i.

Since series can only be equal if they are equal term by term we see that this last
statement is true if and only if ri =

∑i
j=1 qiri−j for i ≥ k (i.e. (rn)n≥0 is a recurrence

with characteristic polynomial q(x)) and pi = ri −
∑i

j=1 qiri−j for 0 ≤ i < k (i.e. the
equations in statement 3).

Clearly the equations map (r0, . . . , rk−1) linearly and uniquely to (p0, . . . , pk−1).
They are also invertible. This is because if (p0, . . . , pk−1) is fixed, then (r0, . . . , rk−1)
is also uniquely determined by the system as we may use the equations in order of
increasing i with 0 ≤ i ≤ k − 1 to recursively solve for the ri in terms of the pi.

If q(x) ∈ R[x] has deg(q(x)) ≥ 1 and q(0) = 1, let

R(R, q(x)) = {p(x)/q(x) : p(x) ∈ R[x], deg(p(x)) < deg(q(x))}.

Theorem 4.7 has the following corollary.

Corollary 4.8. If R = Z, Q, or R, we have that the sequences in L(R, q(x)) are in
one-to-one correspondence with the rational functions in R(R, q(x)). The generating
function of each sequence r ∈ L(R, q(x)) is a rational function p(x)/q(x) ∈ R(R, q(x))
and each rational function p(x)/q(x) ∈ R(R, q(x)) is the generating function of a
sequence r ∈ L(R, q(x)).

Theorem 4.9. Given a characteristic polynomial q(x), the set of linear recurrences
L(R, q(x)) is closed under R-linear combinations. The set L(R) of general linear
recurrences is closed under linear combinations and convolutions.

59

Proof. By Theorem 4.7, if r, s ∈ L(R, q(x)) then there are polynomials pr(x), ps(x) of
degree less than deg(q(x)) such that

gr(x) =
pr(x)

q(x)
, and gs(x) =

ps(x)

q(x)
.

But then, if a, b ∈ R,

gar+bs(x) = agr(x) + bgs(x) =
apr(x) + bps(x)

q(x)
.

Since deg(apr(x) + bps(x)) < deg(q(x)), ar + bs ∈ L(R, q(x)) as well.
Suppose now that r, s ∈ L(R). Then r ∈ L(R, qr(x)) and s ∈ L(R, qs(x)) where

qr(x) and qs(x) are characteristic polynomials. In particular, we have qr(0) = qs(0) =
1. Also there are polynomials pr(x) and ps(x) with deg(pr(x)) < deg(qr(x)) and
deg(ps(x)) < deg(qs(x)) such that

gr(x) =
pr(x)

qr(x)
and gs(x) =

ps(x)

qs(x)
.

Let a, b ∈ R. Then

gar+bs = agr(x) + bgs(x) =
apr(x)qs(x) + bps(x)qr(x)

qr(x)qs(x).

Note that Q(0) = qr(0)qs(0) = 1 so Q(x) = qr(x)qs(x) is a characteristic polynomial.
Let P (x) = apr(x)qs(x) + bps(x)qr(x). We have

deg(P (x)) ≤ max(deg(pr(x)qs(x)), deg(ps(x)qr(x))).

Note that deg(pr(x)qs(x)) = deg(pr(x)) + deg(qs(x)) < deg(qr(x)) + deg(qs(x)) =
deg(qr(x)qs(x)) = deg(Q(x)) and similarly deg(ps(x)qr(x)) < deg(Q(x)) as well. Thus
deg(P (x)) < deg(Q(x)) and ar + bs ∈ L(R,Q(x)) is a linear recurrence with charac-
teristic polynomial Q(x).

Let t = r ⋆ s be the convolution of r and s. Then

gt(x) = gr(x)gs(x) =
pr(x)ps(x)

Q(x)
.

Since deg(pr(x)ps(x)) = deg(pr(x))+deg(ps(x)) < deg(qr(x))+deg(qs(x)) = deg(Q(x))
we have that t ∈ L(R,Q(x)).

60

4.2.4 The Rational Non-Negativity Problem

If p(x) =
∑

n≥0 pnx
n and q(x) =

∑
n≥0 qnx

n are two series in R[[x]], we say p(x) is
dominated by q(x) if and only if pn ≤ qn for all n ≥ 0. We denote this by p(x) ⊑ q(x)
or q(x) ⊒ p(x). Alternatively, we say q(x) dominates p(x).

We say p(x) is non-negative if pn ≥ 0 for all n ≥ 0. This is equivalent to
p(x) ⊒ 0 =

∑
n≥0 0x

n.
The following lemma describes situations under which non-negativity is closed.

Lemma 4.10. Let p(x), q(x) ⊒ 0. Then we have the following statements.

1. For all a, b ∈ R with a, b ≥ 0 we have ap(x) + bq(x) ⊒ 0

2. We have p(x)q(x) ⊒ 0.

3. If q(0) = 0 we have p(x)/(1− q(x)) ⊒ 0.

Proof. The first statement is trivial. For the second, note that p(x)q(x) =
∑

n≥0 tnx
n

where tn =
∑n

k=0 pkqn−k ≥ 0.
For the third statement, note that by Corollary 4.6 we have

s(x) =
p(x)

1− q(x)
= p(x)

∑
n≥0

qn(x) =
∑
n≥0

p(x)qn(x).

Since min deg(q(x)) ≥ 1, min deg p(x)qn(x) = min deg(p(x)) + n ·min deg(q(x)) ≥ n.
Thus [xk]p(x)qn(x) = 0 for n > k. Thus we have that the coefficient [xk]t(x) =
[xk]

∑k
n=0 p(x)q

n(x). But p(x)qk(x) is non-negative for all k, so the coefficient in
question is non-negative.

With this in mind we introduce the Rational Non-Negativity Problem.
The Rational Non-Negativity Problem is to decide, when given p(x), q(x) ∈ Q[x]

with q(0) = 1 whether p(x)/q(x) ⊒ 0. The integer case of this problem is the restriction
of the polynomials to Z[x].

Theorem 4.11. The Positivity Problem reduces to the Rational Non-Negativity prob-
lem. This is also true for the integer cases of these problems.

Proof. If there is a decision procedure for the Rational Non-Negativity Problem we
can use it to design a decision procedure for the Positivity Problem. Suppose a
linear recurrence r in Q (or Z) is given with characteristic polynomial q(x) ∈ Q[x]
(or Z[x]). Then by Theorem 4.7 and Corollary 4.8 we can explicitly determine a
polynomial p(x) ∈ Q[x] (or Z[x]) so that the generating function for r is p(x)/q(x).
The non-negativity of r is thus equivalent to the non-negativity of p(x)/q(x). We can
then answer this via the hypothetical decision procedure we have for these rational
functions.

61

4.3 Reductions

4.3.1 Reduction to the Integer Case

The following reduction is often stated in the folklore of the Skolem and Positivity
Problems.

Theorem 4.12. The Skolem and Positivity Problems reduce to their integer cases.

Proof. Given a linear recurrence (rn)n≥0 in Q, there is a positive integer B such that
the sequence Rn = Bn+1rn is a recurrence in Z with coefficients in Z.

Indeed, suppose q1 = a1/b1, . . . , qk = ak/bk and r0 = A0/B0, . . . , rk−1 = Ak−1/Bk−1

are rational numbers where ai, bi, Ai, Bi are integers with bi, Bi > 0 and suppose

rn =
k∑

i=1

qirn−i

for n ≥ k.
Let B =

∏k
i=1 bi

∏k−1
j=0 Bj. Then we have

Rn = Bn+1rn =
k∑

i=1

BiqiB
n−i+1rn =

k∑
i=1

BiqiRn−i.

The coefficients qiB
i = aiB

i/bi of this recurrence are integers as i ≥ 1 and bi is a
factor of B. The initial terms Ri = Bi+1ri = Bi+1Ai/Bi are also integers as i ≥ 0 and
Bi is a factor of B.

If we have a decision procedure for the integer case, we can transform an input
rational recurrence rn to an integer recurrence Rn = Bn+1rn and apply the decision
procedure to that. Since rn = 0 if and only if Rn = 0 and rn ≥ 0 if and only if Rn ≥ 0
we will have also decided the Skolem Problem or Positivity Problem for rn.

4.3.2 Closure Under The Hadamard Product

Given two linear recurrences r = (rn)n≥0 and s = (sn)n≥0 in a ring R, the Hadamard
product of r and s is the sequence t = (tn)n≥0 defined by tn = rnsn for n ≥ 0. See
[Sta12]. We write t = r · s for the Hadamard product. We have the following closure
result on the Hadamard product.

Theorem 4.13 (Hadamard Products of Complex Recurrences). If r and s are linear
recurrences in C of orders k and ℓ then the Hadamard product t = r · s is a linear
recurrence in C of order kℓ or less.

62

The standard proof of this theorem uses the following result, found in [Sta12].

Theorem 4.14. Let q(x) = 1 −
∑k

i=1 qix
i ∈ C[x] with qk ≠ 0 be a characteristic

polynomial of degree k. Let γ1, . . . , γℓ with 1 ≤ ℓ ≤ k be distinct non-zero complex
numbers and let m1, . . . ,mℓ be positive integers with

∑ℓ
i=1mi = k such that

q(x) =
ℓ∏

i=1

(1− γix)
mi .

Then rn is a linear recurrence in C with characteristic polynomial q(x) if and only if
there exist polynomials p1(x), . . . , pℓ(x) ∈ C[x] with deg(pi(x)) < mi such that

rn =
ℓ∑

i=1

pi(n)γ
n
i

for all n ≥ 0.

Proof. (of Theorem 4.13) Let q(x) =
∏ℓ

i=1(1− γix)
mi be the characteristic polynomial

for the recurrence r and let Q(x) =
∏L

j=1(1− Γjx)
Mj be the characteristic polynomial

for s. Then by Theorem 4.14,

rn =
ℓ∑

i=1

pi(n)γ
n
i

and

sn =
L∑

j=1

Pj(n)Γ
n
j

for all n ≥ 0 where we have deg(pi(x)) < mi for 1 ≤ i ≤ ℓ and deg(Pj(x)) < Mj for
1 ≤ i ≤ L. Thus

tn = rnsn =
∑
i,j

pi(n)Pj(n)(γiΓj)
n.

Let h(x) =
∏

i,j(1−γiΓjx)
miMj . Note that deg(pi(x)Pj(x)) = deg(pi(x))+deg(Pj(x)) ≤

(mi − 1) + (Mj − 1) ≤ miMj − 1. Note that the last inequality is equivalent to
(mi − 1)(Mi − 1) ≥ 0 which is true since mi,Mj ≥ 1. Thus Theorem 4.14 tells us
that tn is a linear recurrence in C with characteristic polynomial h(x). Note that
deg(h(x)) =

∑
i,j miMj =

∑
imi

∑
j Mj = deg(q(x)) deg(Q(x)).

We have the following theorem.

63

Theorem 4.15 (Hadamard Products of Integer Recurrences). If r and s are linear
recurrences in Z of orders k and ℓ, then the Hadamard product t = r · s is a linear
recurrence in Z of order kℓ or less.

This is often stated without proof in the literature and it is surprisingly difficult
to find a proof. We failed to find one. There is an outline of a proof in [Yua] but it
is missing the complete proof of significant details. We build that argument into a
complete proof here.

Proof. Set the same notation as in the proof of Theorem 4.13. Given a characteristic
function q(x) = 1−

∑k
i=1 qix

i, we form the k × k companion matrix M(q) defined by

M(q) =

0 1

0
. . .
. . . 1

0 1
qk qk−1 · · · q2 q1

All missing matrix entries in the above definition are taken to be 0’s. It is easy to
prove q(x) = det(I −M(q)x) by induction on k.

Since the roots of q(x) =
∏ℓ

i=1(1− γix)
mi are 1/γi with multiplicity mi each γi is

an eigenvalue of M(q) of multiplicity mi. Indeed, note that det(I −M(q)(1/γi)) = 0
implies that I −M(q)(1/γi) is singular and there is a non-zero vector v such that
(I −M(q)(1/γi))v = 0, or M(q)v = γiv.

The matrix M(q) is similar to a matrix J(q) = A(q)M(q)A−1(q) in Jordan canonical
form. This matrix J(q) will be upper triangular with mi copies of γi for each 1 ≤ i ≤ ℓ
down its diagonal. Similarly J(Q) = A(Q)M(Q)A−1(Q) will have Mj copies of Γj for
each 1 ≤ j ≤ L down its diagonal. Consider h(x) = det(I −M(q)⊗M(Q)x) where ⊗
is the matrix tensor product.

We have

h(x) = det((A(q)⊗ A(Q))(I −M(q)⊗M(Q)x)(A(q)⊗ A(Q))−1)

= det(I − (A(q)⊗ A(Q))(M(q)⊗M(Q))(A−1(q)⊗ A−1(Q)x)

= det(I − (A(q)M(q)A−1(q)⊗ A(Q)M(Q)A−1(Q)x)

= det(I − J(q)⊗ J(Q)x)

Since J(q)⊗ J(Q) will be upper triangular and will have miMj copies of γiΓj down
its diagonal for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ L, h(x) =

∏
i,j(1− γiΓjx)

miMj .
The proof of Theorem 4.13 tell us that t = r · s is a linear recurrence with

characteristic polynomial h(x). Since q(x) and Q(x) are integer polynomials, M(q)

64

and M(Q) are integer matrices and h(x) = det(I −M(q) ⊗M(Q)x) is an integer
polynomial. Thus the recurrence relation that t satisfies has integer coefficients, the
coefficients of h(x). Since rn and sn are integer sequences then so is tn, and so tn is
an integer linear recurrence.

4.3.3 Reduction to the Integer Case of the Positivity Problem

The following reduction is also often asserted in the literature, without a full proof.

Theorem 4.16. The integer case of the Skolem Problem reduces to the integer case
of the Positivity Problem.

Proof. Let (rn)n≥0 be an integer linear recurrence of order k. We construct another
integer linear recurrence (Rn)n≥0, given by Rn = r2n − 1. Then clearly Rn = −1 < 0
if and only if rn = 0. So (rn)n≥0 never has a zero if and only if (Rn)n≥0 is always
non-negative.

Since r2n is the Hadamard product of rn with itself, the proof of Theorem 4.15
constructs h(x) ∈ Z[x] of degree k2 that is the characteristic polynomial for r2n.
Theorem 4.7 shows us how to find the coefficients of a function p(x) ∈ Z[x] such that
the generating function for r2n is p(x)/h(x).

Theorem 4.4 tells us that the generating function of the constant sequence 1 is
1/(1 − x). So the generating function for Rn = r2n − 1 is p(x)/h(x) − 1/(1 − x) =
P (x)/(h(x)(1− x)) where P (x) = p(x)(1− x)− h(x).

Since deg(P (x)) ≤ deg(h(x)) < deg(h(x)(1 − x)) we have by Theorem 4.7 that
Rn = r2n − 1 is an integer linear recurrence of order deg(h(x)(1− x)) = k2 + 1 or less.

Now the decision procedure for the Positivity Problem on (Rn)n≥0 can be used to
decide the Skolem Problem for (rn)n≥0.

4.3.4 Reduction to the Rational Non-Negativity Problem

We have the following Theorem.

Theorem 4.17. The Skolem Problem and the Positivity Problem reduce to the Integer
Case of the Rational Non-Negativity Problem.

Proof. We saw that the rational cases of the Skolem Problem and Positivity Problem
reduced to the integer cases in Theorem 4.12. We saw that the integer case of the
Skolem Problem reduces to the integer case of the Positivity Problem in Theorem
4.16. We saw that the integer case of the Positivity Problem reduces to the integer
case of Rational Non-Negativity in Theorem 4.11.

65

4.4 Type F Polynomials

Here is a quick proof that 1/q(x) = 1/(1−x+x3−x4) is non-negative. (1+x+x2)q(x) =
1− x6 and so

1/q(x) = (1 + x+ x2)/(1− x6).

By Lemma 4.10, since P (x) = 1 + x+ x2 and Q(x) = x6 are both non-negative, we
have 1/q(x) = P (x)/(1−Q(x)) is non-negative.

With this as motivation, we define a characteristic polynomial to be Type F if and
only if there are polynomials f(x), Q(x) ∈ Q[x], with f(0) = 0 and Q(0) = 0, Q(x)
not identically zero, and Q(x) non-negative so that (1+ f(x))q(x) = 1−Q(x). We say
that f(x), Q(x) witness that q(x) is Type F. The following theorem will immediately
show the importance of q(x) being type F.

Theorem 4.18. Let q(x) ∈ Q[x] with q(0) = 1. If q(x) is type F, with witnessing
polynomials f(x), Q(x) ∈ Q[x], then, given input p(x) ∈ Q[x], it is decidable if
p(x)/q(x) is non-negative.

Before proving this, we need a little notation. Given x ∈ R, let

x+ = max(x, 0) and x− = max(−x, 0)

so that x = x+ − x−, x+, x− ≥ 0 and x+ ̸= 0 implies x− = 0 (and vice-vera). We call
x+ and x− the positive part and negative part of x. If p(x) ∈ R[[x]], let the positive
part of p(x) be

p+(x) =
∑
n≥0

p+nx
n

and the negative part be
p−(x) =

∑
n≥0

p−nx
n.

Thus p(x) = p+(x)− p−(x) and p+(x) and p−(x) are non-negative. Let supp(p(x)) =
{n : pn ̸= 0} be the support of p(x). So p+(x) and p−(x) have disjoint support, i.e.
supp(p+(x)) ∩ supp(p−(x)) = ∅.

Proof. Suppose q(x) is type F so that there exists f(x), Q(x) ∈ Q[x] with f(0) = 0 and
Q(0) = 0 and Q(x) not identically zero and Q(x) non-negative so that (1+f(x))q(x) =
1−Q(x). Suppose now that p(x) ∈ Z[x] is given. Then

p(x)

q(x)
=

P (x)

1−Q(x)

where P (x) = (1 + f(x))p(x) ∈ Z[x].

66

Set P0(x) = P (x) and find P1(x) so that we have

P (x)

1−Q(x)
=

P0(x)

1−Q(x)
= P+

0 (x) +
P1(x)

1−Q(x)
.

Clearing denominators and replacing P0(x) by P0(x) = P+
0 (x)− P−

0 (x) we get

P+
0 (x)− P−

0 (x) = P+
0 (x)(1−Q(x)) + P1(x)

or
P1(x) = P+

0 (x)Q(x)− P−
0 (x).

Recursively repeating this process on Pi(x)/(1−Q(x)) for 1 ≤ i ≤ k, we get

P (x)

1−Q(x)
= P+

0 (x) + P+
1 (x) + · · ·+ P+

k (x) +
Pk+1(x)

1−Q(x)

where we have Pi(x) = P+
i−1(x)Q(x)− P−

i−1(x) for all i with 1 ≤ i ≤ k + 1.
Suppose we have P−

k+1(x) = 0 that for some k. Then we have discovered that

P (x)

1−Q(x)
= P+

0 (x) + P+
1 (x) + · · ·+ P+

k (x) +
Pk+1(x)

1−Q(x)

= P+
0 (x) + P+

1 (x) + · · ·+ P+
k (x) +

P+
k+1(x)

1−Q(x)

Since the P+
i (x) and Q(x) are all non-negative, this proves that P (x)/(1−Q(x)) is

non-negative. From now on we will assume that P−
i (x) ̸= 0 for all i ≥ 0.

Suppose now we have P+
k+1(x) = 0 for some k. Then we will have discovered that

P (x)

1−Q(x)
= P+

0 (x) + P+
1 (x) + · · ·+ P+

k (x) +
Pk+1(x)

1−Q(x)

= P+
0 (x) + P+

1 (x) + · · ·+ P+
k (x)−

P−
k+1(x)

1−Q(x)

Since P−
k+1(x) ̸= 0, P−

k+1(x)/(1−Q(x)) has infinitely many positive terms. This shows
that P (x)/(1−Q(x)) has infinitely many negative terms. Also, since P+

0 (x)+P+
1 (x)+

· · ·+ P+
k (x) is a polynomial, P (x)/(1−Q(x)) eventually has only negative and zero

terms.
From now on we will also assume that P−

i (x) ̸= 0 for all i ≥ 0.
The polynomials P+

i (x) and P−
i (x) are non-negative and have disjoint support.

Further more P+
i (x)Q(x) is non-negative as well since Q(x) is non-negative. Thus we

have
P+
i (x) ⊑ P+

i−1(x)Q(x) ⊑ P+
0 (x)Qi(x)

67

and
P−
i (x) ⊑ P−

i−1(x) ⊑ P−
0 (x)

for all i ≥ 1.
Thus

min degP+
i (x) ≥ min degP+

0 (x) + imin degQ(x)

and
deg(P−

i (x)) ≤ deg(P−
0 (x))

for all i ≥ 1.
This also gives

P−
i (x) ⊑ P−

i−1(x) ⊑ · · · ⊑ P−
j (x)

for all i, j with 0 ≤ j < i ≤ k + 1 and so P−
k (x) and P+

j (x) have disjoint support for
all j ≤ k. This means P−

k (x) and fk(x) = P+
0 (x) + P+

1 (x) + · · ·+ P+
k (x) have disjoint

support.
Take k ≥ 1 big enough so that min degPk(x) ≥ min degP+

0 (x)+kmin deg(Q(x)) >
degP−

0 (x) ≥ degP−
k (x). Then we have

P (x)

1−Q(x)
= P+

0 (x) + P+
1 (x) + · · ·+ P+

k (x) +
Pk+1(x)

1−Q(x)

= fk(x) +
P+
k (x)

1−Q(x)
− P−

k (x)

1−Q(x)

= fk(x) +
P+
k (x)

1−Q(x)
− P−

k (x)Q(x)

1−Q(x)
− P−

k (x)

Let

gk(x) = fk(x) +
P+
k (x)

1−Q(x)

hk(x) =
P−
k (x)

1−Q(x)
=

P−
k (x)Q(x)

1−Q(x)
+ P−

k (x)

so that
P (x)

1−Q(x)
= gk(x)− hk(x)

Since P−
k (x) ̸= 0, [xd]P−

k (x) > 0 where d = deg(P−
k (x)). Since

hk(x) =
P−
k (x)Q(x)

1−Q(x)
+ P−

k (x) ⊒ P−
k (x)

and P−
k (x)/(1−Q(x)) is non-negative [xd]hk(x) > 0 as well. Since

min degP+
k (x)/(1−Q(x)) ≥ min degP+

k (x) > deg(P−
k (x)) = d

68

by choice of k and since fk(x) and hk(x) have disjoint support we have [xd]gk(x) = 0.
Thus

[xd]P (x)/(1−Q(x)) = [xd]gk(x)− [xd]hk(x) < 0

and P (x)/(1−Q(x)) has been proven to fail to be non-negative.

We see that Theorem 4.18 implicitly gives the following decision procedure.

Algorithm 4.19. Rational Non-Negativity Decision for Type F Denominators

Input: p(x), q(x) ∈ Q[x] and f(x), Q(x) ∈ Q[x] witnessing q(x) is Type F .

Output: Decision on whether p(x)/q(x) ⊒ 0 or not.

1. Compute P0(x) = P (x) = (1 + f(x))p(x), P+
0 (x), and P−

0 (x).

2. For k = 0, 1, 2 . . .

(a) Compute Pk+1(x) = P+
k (x)Q(x)− P−

k (x), P+
k+1(x), and P−

k+1(x).
(b) If P−

k+1(x) = 0, then end and return: “Yes. p(x)/q(x) ⊒ 0.”
(c) If P−

k+1(x) ̸= 0, and P+
k+1(x) = 0, then end and return: “No. p(x)/q(x) ̸⊒ 0,

[xn]p(x)/q(x) ≤ 0 for n > d, and [xn]p(x)/q(x) < 0 infinitely often for
n > d where d = deg(P+

0 (x) + · · ·+ P+
k (x)).”

(d) If P−
k+1(x) ̸= 0, and P+

k+1(x) ̸= 0 and min deg(P+
k+1(x)) > deg(P−

k+1(x)),
then end and return “No. p(x) ≥ q(x) ̸⊒ 0 and [xn]p(x)/q(x) < 0 for
n = deg(P−

k (x)).”

We have the following partial decision procedure that, when given a type F
polynomial q(x), will return f(x) and Q(x) witnessing this fact, but will not terminate
if q(x) is not Type F.

Algorithm 4.20. Witnesses for Type F Polynomials

Input: q(x) = 1 +
∑k

n=1 qnx
n ∈ Q[x] with q(0) = 1, deg(q(x)) ≥ 1

Output: If q(x) is Type F, f(x), Q(x) ∈ Q[x] will be returned witnessing this
fact. Otherwise, the algorithm does not terminate.

1. Set ℓ = 1.

2. Use linear programming to decide if the system of linear inequalities

−Qn = qn +
ℓ∑

j=1

qn−jfj ≤ 0, for 1 ≤ n ≤ k + ℓ

is feasible for f1, . . . , fℓ ∈ R or not by either producing a rational feasible solution
or proving no feasible solution exists. (We take qn = 0 for n > k or n < 0 and
q0 = 1.)

69

3. If the system is feasible, end and return “q(x) is Type F with f(x) =
∑ℓ

n=1 fnx
n

and Q(x) =
∑k+ℓ

n=1 Qnx
n as witnesses.”

4. If the system is not feasible, set ℓ← ℓ+ 1 and go to line 2.

Theorem 4.21. If q(x) is Type F, Algorithm 4.20 terminates and produces f(x), Q(x) ∈
Q[x] with f(0) = 0 and Q(x) = 0, Q(x) ⊒ 0 and Q(x) not identically 0 such that
(1 + f(x)) = 1−Q(x). Otherwise Algorithm 4.20 does not terminate.

Proof. Let ℓ ≥ 1 and let f(x) =
∑ℓ

n=1 fnx
n. Let Q(x) =

∑k+ℓ
n=1Qnx

n with Qn ≥ 0
and with some Qn ̸= 0. The equation (1 + f(x))q(x) = 1−Q(x) is equivalent to the
condition that [xn](1 + f(x))q(x) = [xn](1−Q(x)) for all 1 ≤ n ≤ k + ℓ which is the
system of linear inequalities in the description of the algorithm. Thus q(x) is of Type
F with f(x) of degree ℓ or less if and only if this linear system is feasible. Note that
since deg(q) ≥ 1 we cannot have Q(x) = 0.

If q(x) is Type F, there will be some ℓ for which this linear system is feasible. The
algorithm will find a feasible solution and hence produce f(x) and Q(x). Note that
the linear inequalities have integer coefficients and constants so a linear programming
algorithm like the simplex algorithm with a pivot rule guaranteed to terminate will
find a rational feasible point and hence produce f(x), Q(x) ∈ Q[x].

If the Algorithm terminates, it will have proved q(x) is Type F . Therefore it
cannot terminate if q(x) is not Type F.

Not all characteristic polynomials are type F as the following theorem shows.
Thus Algorithm 4.20 is only a partial decision procedure. It will not terminate for
recurrences with those characteristic polynomials.

Theorem 4.22. If a1, a2 > 0 the polynomial q(x) = 1 + a1x− a2x
2 is not type F .

Proof. Suppose there exists f(x) =
∑n

i=1 bix
i such that (1 + f(x))q(x) = 1 − Q(x),

i.e. such that
[xk](1 + f(x))(1 + a1x− a2x

2) ≤ 0

for 1 ≤ k ≤ n + 2. Suppose this is possible for some definite n = N > 1. Then we
will show it is possible for n = N − 1. By induction, this shows that this factorization
should be possible for n = 1. However we will show that this it is impossible for n = 1,
a contradiction.

Suppose first that n = 1. Then we have (1 + f1x)(1 + a1x − a2x
2) = 1 + (a1 +

b1)x+ (a1b1 − a2)x
2 − a2b1x

3 ⊆ 1. −a2b1 ≤ 0 implies b1 ≥ 0. We have a1 + b1 ≤ 0 if
and only if b1 ≤ −a1. But then 0 ≤ b1 ≤ −a1 < 0 a contradiction.

Now suppose A(x) = (1 + a1x − a2x
2)(1 +

∑N
n=1 fnx

n) ⊑ 1. We will show that
also B(x) = (1 + a1x− a2x

2)(1 +
∑N−1

n=1 fnx
n) ⊑ 1.

70

Now A(x) ⊑ 1 if and only if [xk]A(x) ≤ 0 for 1 ≤ k ≤ N − 1 and [xk]A(x) ≤ 0
for k = N,N + 1, N + 2. Also we have B(x) ⊑ 1 if and only if [xk]B(x) ≤ 0 for
1 ≤ k ≤ N − 1 and [xk]B(x) ≤ 0 for k = N,N + 1. For all 1 ≤ k ≤ N − 1 we
have [xk]A(x) = [xk]B(x). We’ll show [xk]A(x) ≤ 0 for k = N,N + 1, N + 2 implies
[xk]B(x) ≤ 0 for k = N,N + 1 to complete the proof.

Solving the equations [xk]A(x) ≤ 0 for k = N,N + 1, N + 2 for bn gives 0 ≤ bn ≤
min((a2/a1)bn−1, a2bn−2 − a1bn−1). This gives bn−1 ≥ 0 and −a2bn−2 + a1bn−1 ≤ 0.
These are equivalent to the equations [xk]B(x) ≤ 0 for k = N,N + 1, namely
−a2bn−2 + a1bn−1 ≤ 0 and −a2bn−1 ≤ 0.

4.5 Partial Decision Procedures for the Skolem and
Positivity Problems

We can now describe a partial decision procedure for the Positivity Problem. It
will terminate with the correct output if the sequence has a negative term or if the
characteristic polynomial is of Type F.

Algorithm 4.23. Positivity Problem for Type F Characteristic Polynomials

Input: A rational recurrence rn with characteristic polynomial q(x).

Output: The correct answer to the Positivity Problem if there exists n such
that rn < 0 or if q(x) is Type F. Otherwise, it will not terminate.

1. Use the method of Theorem 4.7 to find p(x) so that
∑

n≥0 rnx
n = p(x)/q(x).

2. Set ℓ = 1

3. Compute rℓ−1 using the input initial terms and coefficients and previously
computed rj.

4. If rℓ−1 < 0, end and return “The recurrence is not positive, since rℓ−1 < 0.”

5. Run step ℓ of Algorithm 4.20

6. If a witness f(x), Q(x) was found in Step 5, run Algorithm 4.19 with p(x), q(x), f(x), Q(x)
to decide whether or not p(x)/q(x) ⊒ 0, i.e. decide whether or not rn ≥ 0 for all
n.

7. If no witness was found in Step 5, set ℓ← ℓ+ 1 and go to step 3.

Theorem 4.24. Algorithm 4.23 operates as described and produces the correct output
when it terminates.

71

Proof. If there is an n such that rn < 0, the algorithm will find it. Either it will find
it directly in Step 3, or, according to Theorem 4.18, it will find it in Step 6.

If rn ≥ 0 and q(x) is of Type F, then by Theorem 4.21, step 5 will eventually
produce witnesses f and Q and then by Theorem 4.18, step 6 will produce the correct
decision.

If rn ≥ 0 and q(x) is not of Type F the algorithm will never terminate in step 3 or
step 6 and hence will never terminate.

We can use this algorithm to decide the Skolem Problem in some cases as well.

Algorithm 4.25. Skolem Problem for Type F Characteristic Polynomials

Input: A rational recurrence rn with characteristic polynomial q(x).

Output: The correct answer to the Skolem Problem if there exists n such that
rn = 0 or if the characteristic polynomial q(x) of the recurrence r2n− 1
is Type F. Otherwise it will not terminate.

1. Use the methods of Theorem 4.16 and Theorem 4.7 to find p(x) and q(x) so
that

∑
n≥0 snx

n = p(x)/q(x) where sn = r2n − 1.

2. Use the method of Theorem 4.7 to get the initial terms and coefficients of the
recurrence sn from p(x) and q(x).

3. Set ℓ = 1

4. Compute sℓ−1 using the input initial terms and coefficients and previously
computed sj.

5. If sℓ−1 < 0, end and return “The recurrence has a zero term rℓ−1 = 0.”

6. Run step ℓ of Algorithm 4.20

7. If a witness f(x), Q(x) was found in Step 6, run Algorithm 4.19 with p(x), q(x), f(x), Q(x)
to decide whether or not p(x)/q(x) ⊒ 0. If yes, sn ≥ 0 and rn ̸= 0 for all n. If
no, then sn < 0 and rn = 0 for some n.

8. If no witness was found in Step 6, set ℓ← ℓ+ 1 and go to step 4.

Theorem 4.26. Algorithm 4.23 operates as described and produces the correct output
when it terminates.

Proof. Since sn = r2n − 1, we have that sn < 0 if and only if rn = 0 and p(x)/q(x) ⊒ 0
if and only if rn ̸= 0 for all n. The rest of the proof is as in the proof of Theorem
4.24.

72

As we noted, the decidability of the Skolem Problem has been proven for orders
less than or equal to 4 and the decidability of the Positivity Problems has been proven
for orders less than or equal to 5. Our partial decision procedures for these problems
can decide a great many particular cases with all higher orders, all recurrences whose
characteristic polynomials are Type F.

73

Chapter 5: Directions for Future
Research

A few questions naturally come to mind for further research. Here are some we plan
to actively pursue.

The Bunk Bed Problem

1. A recent paper on the Bunk Bed Conjecture asserts that for every graph G there
is an ϵG > 0 such that if p > 1 − ϵG then the bunk bed conjecture is true for
BB(G, T) [HNNK21]. As they note, if there was an ϵ > 0 such that ϵG ≥ ϵ > 0
for every graph G, the Bunk Bed Conjecture would be true for some fixed p with
1 > p > 1− ϵ and hence, by our results, true in general. We plan to investigate
the possibility of getting a such a uniform lower bound ϵ.

2. We discovered experimentally that for all bunk bed graphs BB(G, T), the
stronger statement P (x0 ↔ y0) ≥ P (x0 ↔T y0) ≥ P (x0 ↔ y1) always held
where x0 ↔T y0 is the event that x0, y0, and some vertex of T are in the same
connected component. This is a conjecture not found in the literature. This
conjecture, if true, would be sharper than the bunk bed conjecture, as we often
have P (x0 ↔ y0) > P (x0 ↔T y0). We plan to investigate this conjecture further.

Monotone Functions

1. In practice, we have found our Boolean function algorithms are greatly sped
up by the following “tree trimming” trick. If a string x ∈ Tn has been found to
have f(x) = 1 then, since f is monotone, f(y) = 1 for every descendent y of x
in Tn and T ′

n. That means we don’t need to evaluate f on any of those y and
they can be skipped. We’d like to get some formal statement about how many
computations of f this will save us in the average case.

2. It is of interest to know all the minimal subgraphs H of a graph G that satisfy
some monotone property, such as χ(H) ≥ 4. Our algorithms can find these
to give us experimental evidence for existing conjectures about such minimal
examples.

74

The Skolem Problem

1. Can we characterize type F polynomials? Their roots seem to lie in a restricted
area of the complex plane.

2. Can we extend our decision procedure Algorithm 4.19 for p(x)/q(x) ⊒ 0 to a
larger class of polynomials q(x) than type F?

75

References

[BDJB10] Paul C. Bell, Jean-Charles Delvenne, Raphaël M. Jungers, and Vincent D.
Blondel, The continuous Skolem-Pisot problem, Theoret. Comput. Sci.
411 (2010), no. 40-42, 3625–3634. MR 2724090

[BM76] Jean Berstel and Maurice Mignotte, Deux propriétés décidables des
suites récurrentes linéaires, Bull. Soc. Math. France 104 (1976), no. 2,
175–184. MR 414475

[BP02] Vincent D. Blondel and Natacha Portier, The presence of a zero in
an integer linear recurrent sequence is NP-hard to decide, vol. 351/352,
2002, Fourth special issue on linear systems and control, pp. 91–98. MR
1917474

[dB16] Paul de Buyer, A proof of the bunkbed conjecture for the complete graph
at p = 1

2
, http://arxiv.org/abs/1604.08439 (2016).

[dBvETK51] N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk,
On the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951),
191–193. MR 0043115

[EH10] Herbert Edelsbrunner and John L. Harer, Computational topology, Amer-
ican Mathematical Society, Providence, RI, 2010, An introduction. MR
2572029

[EvdPSW03] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas
Ward, Recurrence sequences, Mathematical Surveys and Monographs,
vol. 104, American Mathematical Society, Providence, RI, 2003. MR
1990179

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of np-completeness (series of books in the mathematical
sciences), first edition ed., W. H. Freeman, 1979.

76

[GK76] Curtis Greene and Daniel J. Kleitman, Strong versions of Sperner’s
theorem, J. Combinatorial Theory Ser. A 20 (1976), no. 1, 80–88. MR
389608

[Häg98] Olle Häggström, On a conjecture of Bollobás and Brightwell concerning
random walks on product graphs, Combin. Probab. Comput. 7 (1998),
no. 4, 397–401. MR 1680084 (2000i:60050)

[Häg03] , Probability on bunkbed graphs, Proceedings of FPSAC’03, For-
mal Power Series and Algebraic Combinatorics (2003).

[Han66] Georges Hansel, Sur le nombre des fonctions booléennes monotones de
n variables, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1088–A1090.
MR 224395

[Han86] G. Hansel, Une démonstration simple du théorème de Skolem-Mahler-
Lech, Theoret. Comput. Sci. 43 (1986), no. 1, 91–98. MR 847905

[HHH06] Vesa Halava, Tero Harju, and Mika Hirvensalo, Positivity of second
order linear recurrent sequences, Discrete Appl. Math. 154 (2006), no. 3,
447–451. MR 2203195

[HNNK21] Tom Hutchcroft, Petar Nizić-Nikolac, and Alexander Kent, The bunkbed
conjecture holds in the p ↑ 1 limit, https://arxiv.org/abs/2110.00282
(2021).

[Jor10] Kelly Kross Jordan, The necklace poset is a symmetric chain order, J.
Combin. Theory Ser. A 117 (2010), no. 6, 625–641. MR 2645181

[Kar90] Richard M. Karp, The transitive closure of a random digraph, Random
Structures Algorithms 1 (1990), no. 1, 73–93. MR 1068492 (91j:05093)

[Knu11] Donald E. Knuth, The art of computer programming. Vol. 4A. Combi-
natorial algorithms. Part 1, Addison-Wesley, Upper Saddle River, NJ,
2011. MR 3444818

[Lec53] Christer Lech, A note on recurring series, Ark. Mat. 2 (1953), 417–421.
MR 56634

[Lin11] Svante Linusson, On percolation and the bunkbed conjecture, Combin.
Probab. Comput. 20 (2011), no. 1, 103–117. MR 2745680 (2012d:05355)

[Lip09] R.J. Lipton, Mathematical embarrassments (blog post),
https://rjlipton.wpcomstaging.com/2009/12/26/mathematical-
embarrassments/ (December 2009).

77

[LT09] Vichian Laohakosol and Pinthira Tangsupphathawat, Positivity of third
order linear recurrence sequences, Discrete Appl. Math. 157 (2009),
no. 15, 3239–3248. MR 2554793

[Mah35] Kurt Mahler, Einer arithmetische eigenschaft der taylor koeffizienten
rationaler funktionen, Proc. Akad. Wet. Amsterdam 38 (1935), 51–60.

[McD80] Colin McDiarmid, Clutter percolation and random graphs, Math. Pro-
gramming Stud. (1980), no. 13, 17–25, Combinatorial optimization, II
(Proc. Conf., Univ. East Anglia, Norwich, 1979). MR 592082 (81m:05119)

[MST84] M. Mignotte, T. N. Shorey, and R. Tijdeman, The distance between
terms of an algebraic recurrence sequence, J. Reine Angew. Math. 349
(1984), 63–76. MR 743965

[OW12] Joël Ouaknine and James Worrell, Decision problems for linear recur-
rence sequences, Reachability problems, Lecture Notes in Comput. Sci.,
vol. 7550, Springer, Heidelberg, 2012, pp. 21–28. MR 3040104

[OW14] , Positivity problems for low-order linear recurrence sequences,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM, New York, 2014, pp. 366–379. MR 3376387

[Pis02] Leonardo Pisano, Fibonacci’s liber abaci, Sources and Studies in the
History of Mathematics and Physical Sciences, Springer-Verlag, New
York, 2002, A translation into modern English of Leonardo Pisano’s ıt
Book of calculation, Translated from the Latin and with an introduction,
notes and bibliography by L. E. Sigler. MR 1923794

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Comm. ACM 21 (1978), no. 2,
120–126. MR 700103

[Sal76] Arto Salomaa, Growth functions of Lindenmayer systems: some new
approaches, Automata, languages, development, 1976, pp. 271–282. MR
0502273

[Sin85] Parmanand Singh, The so-called Fibonacci numbers in ancient and
medieval India, Historia Math. 12 (1985), no. 3, 229–244. MR 803579

[Sko35] Th. Skolem, Ein verfahren zur behandlg gewisser exponentialer gleichun-
gen, 163–188.

[Soi76] M. Soittola, On D0L synthesis problem, Automata, languages, develop-
ment, 1976, pp. 313–321. MR 0464748

78

[Sta12] Richard P. Stanley, Enumerative combinatorics. Volume 1, second ed.,
Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge Uni-
versity Press, Cambridge, 2012. MR 2868112

[Tao07] Terrence Tao, Open question: Effective skolem-mahler-lech theorem
(blog post), https://terrytao.wordpress.com/2007/05/25/open-question-
effective-skolem-mahler-lech-theorem/ (May 2007).

[vdBK01] J. van den Berg and J. Kahn, A correlation inequality for connection
events in percolation, Ann. Probab. 29 (2001), no. 1, 123–126. MR
1825144

[Ver85] N.K. Vereshchagin, The problem of appearance of a zero in a linear
recurrence sequence (in russian), Mat. Zametki 38 (1985), no. 2.

[Yua] Qiaochu Yuan, https://math.stackexchange.com/questions/2520025/algorithm-
for-computing-hadamard-product-of-two-rational-generating-
functions.

79

	List of Figures
	Introduction
	The Bunk Bed Conjecture
	Introduction
	Simulation
	Proof of the Main Theorem

	Monotone Boolean Function Testing
	Introduction
	Boolean Functions and The Main Problems
	Correspondences Between Sets and 0-1 Vectors
	Symmetric Chain Decompositions
	The Christmas Tree Decomposition
	Our Christmas Tree Decomposition Algorithms
	The Tree Tn on the Minimal Elements of CTD(n)
	Our Recursive Algorithm to Produce CTD(n)
	Our Non-recursive Algorithm to Produce CTD(n)
	Our Parallel Algorithm to Produce CTD(n)

	Algorithms for the Main Problems
	Our Algorithms
	Hansel's Algorithm

	Performance of Our Algorithms Versus Hansel's Algorithm
	Testing of the Bunk Bed Conjecture

	The Skolem Problem
	Introduction
	The Skolem Problem and the Positivity Problem
	History
	Outline of the Chapter

	Fundamentals
	Sequences, Series, and Polynomials
	Reciprocals and The Geometric Series
	Recurrences and Rational Functions
	The Rational Non-Negativity Problem

	Reductions
	Reduction to the Integer Case
	Closure Under The Hadamard Product
	Reduction to the Integer Case of the Positivity Problem
	Reduction to the Rational Non-Negativity Problem

	Type F Polynomials
	Partial Decision Procedures for the Skolem and Positivity Problems

	Directions for Future Research
	References

