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The overall purpose of this dissertation was to compare various observed score 

approaches in detecting differential item functioning among multiple examinee groups 

simultaneously. Specifically, this study contributes to the literature base by investigating 

a lasso-constraint observed score method (i.e., logistic regression lasso; LR lasso) in the 

context of multiple groups as well as features of test design related to test information 

targets. Given that a lasso-constraint method has not been extended for multiple groups 

using observed scores, comparisons are made with other observed score techniques (i.e., 

generalized Mantel-Haenszel χ2 and generalized logistic regression) while using item 

response theory to generate data (thus avoiding model-data congruity complications in 

the study design). 

Multiple variables were manipulated in a simulation study at the test-level (e.g., 

the location of the test information target relative to the central tendency of the examinee 

population, and the shape of the test information function), item-level (e.g., the location 

of DIF items relative to the test information target, and the percentage of DIF items), and 

for simulees (e.g., the amount of impact and sample size balance). The relative lack of 

literature which explores DIF as it relates to target test information functions provided the 

exigency for exploring it within this study, along with its typical absence in literature 

using IRT generation models. Practitioners may find the results useful in judging the 

merit of adopting the newer lasso method for detecting DIF within multiple groups as 

opposed to pre-existing methods. Furthermore, the test design features of this study allow 



 

 

for the interpretation to be less theoretical in nature and better aligned with standard 

operational practices, such as building exams to be optimized at test information targets, 

for example. 

The results provide consilience that the LR lasso method has inflated type I error 

overall with no additional benefit in power. In fact, even when type I error rates are 

comparable across methods, LR lasso has a lower hit rate in many instances (i.e., higher 

type II error rate). The sensitivity of LR lasso to detecting DIF items seems to be 

substantially influenced by having an increased number of DIF items on a form. 

Recommendations for practitioners, as well as limitations and directions for future 

research, are provided as well. 

Taken collectively, the results of the simulation study can be interpreted to 

support the claim that LR lasso fails to perform comparably with more established 

methods for multiple groups DIF detection across numerous instances but could 

potentially have merit in practical application in situations that have yet to be explored. 

While some limitations of LR lasso were noted within this study, there are a variety of 

other conditions which need to be explored before practitioners discard the method 

altogether (a few such studies are suggested). It may well be the case that the added 

complexity afforded by the regularization in estimating the group-specific model 

parameters through lasso constraints may confound the detection of the DIF items.  
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CHAPTER I 

INTRODUCTION 

 

 

The overall purpose of this dissertation is to compare various observed score 

approaches in detecting differential item functioning among multiple examinee groups 

simultaneously. Specifically, this study contributes to the literature base by investigating 

a lasso-constraint observed score method in the context of multiple groups as well as 

features of test design related to test information targets. Given that a lasso-constraint 

method has not been extended for multiple groups using observed scores, comparisons 

are made with other observed score techniques while using item response theory to 

generate data (thus avoiding model-data congruity complications in the study design). To 

support the overall purpose, the scope of the current chapter includes background 

information for differential item functioning, a detailed purpose and rationale, research 

questions, and definitions and notation of key terms used throughout the study. 

Background of the Problem 

Item-level bias in which the probability of a correct response among equally able 

persons differs in subgroups is known as differential item functioning (DIF; Tutz & 

Schauberger, 2015). DIF can also be defined as a violation of item-level invariance 

across subpopulations (Kamata & Vaughn, 2004). The Standards for Educational and 

Psychological Testing (hereafter referred to as the Standards; AERA, APA, & NCME, 

2014) provides a formal definition of DIF: 
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Differential item functioning occurs when different groups of test takers with 

similar overall ability, or similar status on an appropriate criterion, have, on 

average, systematically different responses to a particular item (p.16). 

 

 

It is important to clarify the difference between DIF and impact. Plainly stated, a 

group difference in ability or performance is not DIF. Impact refers to such differences in 

the overall distributions of the ability or performance of intact groups, and thus is a 

group-level measure (Dorans & Holland, 1993). DIF, on the other hand, is an item-level 

phenomenon. DIF is examined by first matching examinees in different groups on a 

criterion variable, typically ability or performance level. Because of this matching, DIF is 

unexpected as the groups have been made comparable with respect to the measured 

construct. 

To distinguish between groups (usually demographic groupings), terms are used 

to describe relative advantage or disadvantage with respect to responding correctly on an 

item. The reference group is the group which may potentially have an advantage in 

answering the item correctly, while the focal group is the group of concern because they 

may potentially have a disadvantage in answering the item correctly. As an example 

within the context of testing in the United States, and in the case of the usual DIF 

methods that assume two groups, the reference group tends to be Caucasian American 

examinees while the focal group would be a combination of students from other racial 

groups. As another example, males may be considered the reference group and females as 

the focal group. 

As it pertains to this study, when DIF is examined across more than two groups 

simultaneously there is one reference group and multiple focal groups. Given the 
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example of race described previously, the multiple groups of races would not be 

combined into one focal group, but each group would remain intact for the analysis and 

each be treated as a unique focal group. Often, all focal groups are combined into a single 

focal group to alleviate issues related to balance between groups (i.e., statistical power) 

and pairwise comparisons (i.e., increased type I family error rates). When multiple focal 

groups are combined, there is an underpinning assumption that the groups have roughly 

the same ability distributions and potentially the same level of disadvantage on a given 

item. However, when the groups are not truly comparable, multiple group methods which 

allow the groups to remain separated are warranted. 

Another example can be found whenever exams are administered in multiple 

languages (Angoff & Sharon, 1974; Ellis & Kimmel, 1992). Instead of designating 

English speaking examinees as the reference group and examinees with foreign language 

proficiency as a single focal group, each group of examinees speaking the same non-

English language would be permitted to exist as an independent focal group. Still yet, 

additional examples could include large classrooms within a school, schools within a 

country, and longitudinal differences for an admissions test (Magis, Tuerlinckx, & De 

Boeck, 2015). 

While the intention of this study does not specifically address the causes of DIF, it 

is important to understand some theoretical causes to underscore the importance of 

testing for DIF. As an earlier reference, Jenson (1980) posited the cultural difference 

hypothesis, which described that people from different cultural backgrounds could have 

differing levels of familiarity with test content. In a similar manner, Meredith and Millsap 
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(1992) made the argument that manifest variables are not sufficient measures for 

capturing the latent variables which actually cause DIF. To expand this idea, the manifest 

variables are correlated with the latent variables. For example, there is not an inherent 

physiological or psychological difference in intelligence between males and females 

which causes DIF; rather, there is likely a sociological/cultural phenomenon which 

reflects gender-normed behaviors and knowledge. Such phenomena are appropriately 

modeled as latent traits. However, latent variable procedures of DIF detection could 

suffer from model-data fit and estimation issues. 

On the other hand, issues of DIF are not always cultural in nature. Examinees may 

simply use different metacognitive skills in responding to items (Tatsuoka, Linn, 

Tatsuoka, & Yamamoto, 1988). Affective domains may also influence DIF, with such an 

example being females perhaps having an advantage with content involving social 

relationships (Stricker, 1981). Additional research supports this notion in finding that 

familiarity, interest, and emotional reactions may serve to be factors which impact item 

responses (Stricker & Emmerich, 1999). In the context of cross-lingual exams, Benítez 

and Padilla (2014) used cognitive interviews following quantitative DIF analyses to 

uncover that DIF may be caused by specific jargon which has different interpretations 

across languages.  

DIF is influenced by and related to other phenomena. Once a DIF item has been 

flagged, it is important to explore what potentially is causing the item to be biased. 

Differential distractor functioning (or differential alternative functioning), differential 

speededness, and differential omission are analyses which can be used to better 
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understand why subgroups of examinees have differential performance (Dorans & 

Holland, 1993). As an example, Ben-Shakur and Sinai (1991) explored how differential 

guessing tendencies between males and females were influenced by formula scoring as 

opposed to number correct scores. Formula scoring was found to provide an advantage to 

males in both samples they examined (i.e., ninth graders and applicants to Israeli 

universities). 

Among some of the more empirical DIF studies are those which attempt to 

experimentally cause DIF. There are multiple strengths with these studies. First, they 

contain typical features of real data that simulation studies do not fully capture. Second, 

they avoid the model-data congruity issue which faces many simulation studies. Third, 

different causes of DIF, as well as various categorizations of subpopulations of 

examinees, can be explored across multiple detection methods. However, there are no 

guarantees that an item intended to show DIF will do so. For example, a study by 

Scheuneman (1987) evaluated 16 hypotheses related to experimental (non-scored) test 

items which were manipulated to cause DIF on the Graduate Record Examination (GRE), 

and found that just 10 of the hypotheses supported DIF. The manipulations of item 

features were related to item format, vocabulary in antonyms, wording of the item stem, 

inference, test wiseness, key placement, and abstraction. Not all manipulations were 

detected as significant DIF. 

Other studies have used experimental manipulation to induce DIF. A 50-item 

vocabulary test was constructed by Subkoviak, Mack, Ironson, and Craig (1984) which 

contained 10 items that favored black students over white students. Their findings 
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supported using the area between item characteristic curves (ICCs) corresponding with a 

unidimensional three-parameter logistic model (U3PL) to detect DIF, when compared 

with the transformed item difficulty index (Angoff & Ford, 1973; Angoff, 1982) and two 

chi-squared approaches (Scheuneman, 1979; Camilli, 1979). Kim and Cohen (1991) later 

reanalyzed the same data to elaborate on IRT-based area measures for detecting DIF. 

Other researchers have experimentally manipulated features of language to construct DIF 

items, and found that using an iterative logit method was appropriate for detecting DIF 

when it was supposed to exist (Kok, Mellenbergh, & Van der Flier, 1985). Still yet, 

others altered item order within content clusters between males and females, and found 

significant differences in calibrated IRT difficulties (Plake, Patience, & Whitney, 1988). 

To combat the issues surrounding biased test items, the Standards (AERA, APA, 

& NCME, 2014) express the need for analyzing and reporting on issues surrounding item 

bias and, more specifically, DIF. In fact, chapter three in Part I of the Standards is 

devoted specifically to issues pertinent to fairness in testing. As it relates directly to DIF, 

suggestions surround the need for preventing construct irrelevant variance at all steps of 

the testing process (3.0), including minimizing all sources of construct-irrelevant variance 

which could stem from linguistic, communicative, cognitive, cultural, physical, or other 

characteristics (3.2), as well as including all subgroups when pilot testing items to screen 

for bias (3.3). The Standards also describe the need for documenting procedures used in 

evaluating item quality, including screening for DIF among major examinee groups 

(4.10). Although, relatively few suggestions are provided in how to obtain these goals. In 

consideration, psychometricians are free to use their professional judgement as to what 
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methods are appropriate to use in a given scenario. Unfortunately, not all methodologies 

are comparable in performance, even when they are designed for similar situations. 

Therefore, it is crucial to understand how error can be introduced through choice of 

methodology alone. 

Assuming that error associated with all those aforementioned portions has been 

successfully mitigated, there are errors potentially introduced by choice of methodology 

(which is one concern of this study). It is entirely possible that using a particular 

statistical method to detect DIF may not work properly in certain scenarios. For example, 

some methods (such as logistic regression; LR) are known to contribute to increased type 

I errors (i.e., false positives) whenever overall group differences exist in the midst of 

guessing behavior by examinees (DeMars, 2010). Of particular concern is the level of 

type II error (i.e., false negatives), which occurs when items that truly exhibit DIF are not 

detected. Practically speaking, type I errors could potentially lead to good items being 

removed from exam scoring, while type II errors could potentially allow biased items to 

be included in determining exam scores.  

An item which is flagged according to a statistical criterion does not necessarily 

mean that the item is biased against subgroups, nor does an item which is deemed 

appropriate guarantee that the item is not biased. Detecting DIF items is further 

complicated by data requirements and assumptions with more complex DIF detection 

techniques. Selecting a method which is too complex may accidentally result in modeling 

noise along with signal found in data because the model contains more parameters than 

necessary for describing the data. As such, it is possible that placing statistical constraints 
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(e.g., a lasso constraint) on existing methods may improve performance in these 

instances. 

Determining which items possess DIF in a given test can vary depending on the 

DIF detection method chosen, given that each method has different assumptions. While 

these differences are practically non-existent under ideal testing conditions (e.g., large 

numbers of examinees, excellent model-data fit, and unidimensionality), data which are 

not ideal will exacerbate differences between the methods. Unfortunately, matters are 

further complicated by the possibility of multiple types of DIF. 

Distinguishing between multiple types of DIF is important because DIF detection 

methods may be better suited for particular types of DIF. As such, different causes of DIF 

often result in different types of DIF. When considering item response functions, DIF can 

be viewed as uniform or non-uniform. Uniform DIF occurs whenever the same group is 

favored at any level of ability or performance. Stated differently, there is no meaningful 

interaction between group membership and ability level. This type of DIF is typically 

associated with a between-group difference in the difficulty of a given item. Uniform DIF 

frequently occurs if the DIF occurs in the correct response option, though it can also 

appear in the question stem, distractors, or supporting materials when answering an item.  

On the other hand, non-uniform DIF generally refers to when the relative 

advantage at any given level of ability or performance changes with respect to the other 

group(s). In other words, there is a meaningful interaction between group membership 

and ability. Non-uniform DIF can be observed as non-uniform non-crossing DIF or non-

uniform crossing DIF. In the former case, typically both the difficulty and discrimination 
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of an item change across groups in such a way that the item response functions do not 

intersect at any point along the ability continuum. In the latter case, the primary between-

group difference is the item discrimination, which causes the item response function to 

intersect at or near the difficulty of the item. This type of DIF is rarer, and is an 

interesting find because the relative advantage reverses depending upon what point of the 

ability continuum is observed. For example, focal group examinees with higher ability 

may be disadvantaged on the item while examinees with lower ability are advantaged 

when compared with the reference group. 

While multidimensional approaches can be used to account for secondary traits 

(e.g., SEM and MIRT), such traits which cause DIF are undesirable and cannot justifiably 

be supported as appropriately entering the item writing process as long as a single score 

is reported for interpretation and use. Nevertheless, one possibility could be to model a 

secondary dimension, and base the scoring using only parameters of the primary 

dimension. However, these modeling procedures can be complex and may not lead to 

stable estimates. Observed score approaches offer a parsimonious way of detecting DIF, 

and are used by major testing organizations (e.g., ETS, ACT) even in the present time.  

 The peculiar nature of detecting DIF is that many statistical tests for doing so 

analyze one item at a time, making an inherent assumption that there is not contamination 

in the total score introduced by other items. That is, an assumption is made that all other 

items except the one under examination are non-DIF items. However, this assumption is 

not necessarily the case, and is a very strict requirement to meet. Most DIF methods are 

performed at the item level, but approaches which fit a global model and can estimate 
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item-level parameters is a potential strategy that is less restrictive in the assumptions 

made on items. 

 As a way to control for ability level, many DIF models use the observed total 

score (i.e., a proxy for ability) as a matching criterion to match examinees between 

groups. This matching helps to lessen the chances that differences observed at the item-

level are influenced by differences in group ability (i.e., impact). However, if there are 

one or more DIF items on an exam, the matching criterion will be contaminated by 

construct-irrelevant variance. One strategy to potentially improve the matching criterion 

is item purification (Candell & Drasgow, 1988; Holland & Thayer, 1988; Lautenschlager 

& Park, 1988; Clauser, Mazor, & Hambleton, 1993; Fidalgo, Mellenbergh, & Muñiz, 

2000; Wang & Yeh, 2003; Wang & Su, 2004; as cited in Magis, Beland, Tuerlinckx, & 

De Boeck, 2010). Item purification is an iterative procedure which removes DIF items 

from the calculation of a total score or estimation of ability. A DIF method which is 

calculated for each item individually is first used. Any items with DIF are removed, and 

the calculations are performed again using the remaining items which were determined to 

be free of DIF. These steps are continued until none of the remaining items are flagged as 

having DIF, and the remaining items are used to determine the total score or ability 

estimate for matching. While purification minimizes issues related to DIF influencing the 

matching criterion, it introduces an additional confound if many items are removed 

because there are less data being used to determine the matching variable. 

The matching variable, even with improvements or estimation with a latent trait 

model, is not a perfect representation of ability. Absolute truth cannot be known with a 
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latent trait, nor can it be known in regards to how subgroups of examinees will interact 

with items. Consequently, it benefits greatly to speculate situations where the truth is 

assumed be to known, and deviation from truth can be quantitatively measured. 

Simulation studies accomplish this feat, which allow for absolute manipulation of a 

constructed reality (Baudrillard, 1994). That is, a study can be conducted which 

purposefully creates simulated data that contain DIF items, and various methods can be 

directly compared in how well they correctly identify DIF, as well as fail to recognize it. 

Purpose and Rationale 

Demographic information is often collected for variables which have more than 

two groups (e.g., race/ethnicity and language), and being able to explore DIF with these 

variables provides the exigency of this inquiry. Multiple researchers have asserted that a 

limitation of most existing DIF methods is that only two groups can be tested (Penfield, 

2001; Tutz & Schauberger, 2015; Oshima, Wright, & White, 2015). The purpose of this 

proposed study is to compare and contrast more traditional multiple group observed score 

(i.e., non-IRT) DIF detection methods (e.g., generalized Mantel-Haenszel χ2 and 

generalized logistic regression) with the more recently developed logistic regression lasso 

DIF technique (LR lasso DIF; Magis, Tuerlinckx, & De Boeck, 2015). In fact, this 

purpose was suggested by the authors: 

 

The method can easily be extended to more than two groups of respondents. It is 

straightforward to extend the definition of the DIF to any number of groups and to 

perform lasso penalization onto all DIF parameters for all groups simultaneously. 

One can then determine on the basis of the lasso approach which items function 

differently between which groups of respondents. The LR method has been 

extended to multiple groups’ framework before (Magis, Raîche, Béland & Gérard, 
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2011; Magis & De Boeck, 2011), so that it can be used as a basis of comparison 

(p. 131). 

 

 

Additionally, this study adds to the literature base through exploring how features 

of test design, specifically those surrounding information targets, may affect the extent to 

which DIF items can be correctly identified. A simulation study will be used to 

demonstrate and summarize scenarios which distinguish between the performances of the 

methods in detecting true DIF items. The proposed study aims to inform practitioners and 

researchers of situations where they may find the results useful in judging the merit of 

adopting the newer lasso method for detecting DIF within multiple groups as opposed to 

using the pre-existing methods. While several studies have explored detecting DIF in 

multiple groups, there are no studies to date which explore to use of lasso constraints 

while detecting DIF among multiple groups using observed score approaches. It is worth 

mentioning, however, that a recently developed DIF procedure for the Rasch model by 

Tutz & Schauberger (2015) examined its performance when there are multiple simulated 

groups. Applying the lasso constraint in the context of multiple groups has not been done 

for an observed score approach, and this study aims to fill the gap in the literature. 

However, observed score approaches have several limitations (Spray, 1989). First, 

an observed test score is not a perfect representation of an examinee’s latent ability, given 

that the measured scale is not perfectly reliable and is influenced by various sources of 

measurement error. Second, the observed scores reflect sampling errors. There is no 

guarantee that the samples for each subgroup are reflective of their respective 

populations, especially when sample sizes of particular subgroups decreases. Third, 
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because observed scores are summed across individual item scores, items with DIF 

directly influence the matching variable in an observed score DIF method. Thus, creating 

a study which manipulates variables related to these limitations advances the 

understanding of DIF detection in the presence of multiple groups. 

Research Questions and Study Variables 

This study was guided by two main research questions, each of which is 

composed of several subquestions. The aim of the first research question was to 

determine the comparability of the observed score DIF methods with respect to 

classification accuracy of DIF items. The evaluation of the DIF methods based upon 

absolute criterion are examined in subquestions 1a through 1d, because the ultimate goal 

of DIF methods is to correctly detect items which are biased against subgroups. These 

subquestions consider correct classification, type I error, type II error (specified in terms 

of hit rates), and consistency with truth. Subquestion 1e concerns relative comparisons 

among the methods by determining the extent to which they classify DIF items in a 

similar manner.  

The second research question was posited to determine how the methods are 

directly influenced by changes in types of independent variables which are commonly 

considered in DIF studies. These subquestions are directly related to the simulation 

conditions that are manipulated in this study. Specifically, visual inspection of 

conditional plots can answer what proportion of error can be directly attributed to 

characteristics at the test-level (e.g., the location of the information target relative to the 

examinee population and the shape of the test information function; subquestions 2a, 2b, 
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respectively), the item-level (e.g., the location of DIF items relative to the information 

target and the percentage of DIF items; subquestions 2c, 2d, respectively), and of 

simulees (e.g., the amount of impact and sample size; subquestions 2e, 2f, respectively). 

Specifying the research questions in this manner allowed for the interaction between 

simulation conditions to be examined, as opposed to examining each condition only in 

isolation. The research questions are explicitly stated as the following: 

1. How does the penalized LR DIF detection method (i.e., LR lasso) compare to 

more traditional non-IRT multiple-group methods (i.e., generalized Mantel-

Haenszel χ2 and generalized logistic regression) as it relates to: 

a. correct classification rate of DIF items? 

b. type I error rate in the classification of DIF items? 

c. hit rates (defined as one minus the type II error rate) in the classification of 

DIF items? 

d. phi correlations of true and detected DIF items? 

e. agreement statistics among methods? 

2. When detecting items that truly exhibit DIF, to what degree is classification error 

for each analysis model influenced by changes in: 

a. the location of the information target relative to the examinee population? 

b. the shape of the information function? 

c. the location of DIF items relative to the information target? 

d. the percentage of DIF items? 
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e. the amount of impact? 

f. sample size? 

Definition of Key Terms and Notation 

 A list of select terminology and abbreviations is provided in Table 1. The hope is 

that this table serves as a quick and accessible reference for readers as they encounter 

unfamiliar abbreviations and to clarify terminology that may be ambiguous due to 

multiple existing definitions. More detailed descriptions are provided throughout the text 

of this document where relevant. 

Study Organization 

A total of five chapters are used to describe this study in-depth. The current 

chapter was an introduction to DIF and described the importance of this study to the 

measurement field. In order to frame the study purpose and research questions, a review 

of relevant DIF literature is summarized in Chapter Two. Chapter Three is used to 

specify the simulation study design along with the methodologies that will be used to 

evaluate the results for each research question and subquestion. Chapter Four contains a 

presentation of the results, accompanied by summary tables and figures. Finally, Chapter 

Five comprises a discussion of the results, with consideration given to comparisons 

alongside the DIF literature more generally.
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Table 1. List of Selected Terms and Notation Along with Brief Definitions 

 

Term Description 

ai item discrimination 

bi item difficulty 

ci item lower asymptote for probability of correct response 

χ2 chi-squared 

D scaling constant (i.e., 1.000 or 1.702) used in logistic IRT models 

DIF differential item functioning 

ETS Educational Testing Service 

ICC item characteristic curve 

IRF item response function 

IRT item response theory 

GMH generalized Mantel-Haenszel 

GLM generalized linear model 

GLR generalized Logistic Regression 

GRE Graduate Record Examination 

k number of items 

LR logistic regression 

MH Mantel-Haenszel 

N number of examinees/simulees 

Q1 first quartile 

Q3 third quartile 

R right 

TCC test characteristic curve 

TIF test information function 

θn examinee/simulee ability level 

U2PL unidimensional two-parameter logistic model 

U3PL unidimensional three-parameter logistic model 

W wrong 

X total score obtained for the entirety of Form X 

xi item score obtained for item i on Form X 
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CHAPTER II 

LITERATURE REVIEW 

 

 

The current chapter is organized by first providing a synopsis of observed score 

approaches to detecting DIF, with descriptions flowing from simpler to more complex 

models for each of the three analysis models used in this study. Subsequent sections are 

devoted to providing background research related to conditions which are manipulated 

later in the simulation study that have been considered in previous studies. Finally, an 

overview of item response theory (IRT) is provided to inform later discussions 

surrounding the data generation model. While the emphasis of this study is observed 

score approaches, some literature from IRT approaches may appear because LR and IRT 

share similarities under the generalized linear model (GLM). 

Overview of Observed Score Multiple Groups DIF Methods 

 The following section provides a brief overview of the statistical techniques using 

observed scores to detect DIF items. Readers interested in more detailed coverage are 

referred to the foundational articles for each of the methods (as provided in each section). 

The models discussed hereafter are used as the analysis models later in this study.  

Mantel-Haenszel and Generalized MH 

 The development of DIF indices historically has included non-parametric 

approaches. In educational measurement, two similar approaches based upon χ2 (chi-

squared) were suggested in the late 1970s (Subkoviak, Mack, Ironson, & Craig, 1984). 

Scheuneman (1979) proposed a procedure similar to χ2 which used only correct item 
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responses to determine DIF. By conditioning on total score as a proxy for ability, the 

procedure calculated the probability of a correct response for each possible observed 

score category. Items with unequal probabilities across score categories were identified as 

DIF items. In the same year, Camilli (1979) described a χ2 statistic which used both 

correct and incorrect responses to reach a very similar statistical test. The strength of 

these conditioning procedures is that they do not make assumptions regarding the score 

distributions for each group. However, this type of non-parametric conditioning 

procedure was actually described decades before. 

Mantel and Haenszel (1959), outside of the context of educational statistics and 

psychometrics, introduced a χ2 procedure which allowed for a comparison of matched 

groups. The resulting statistical test is traditionally referred to as Mantel-Haenszel χ2 

(MH). It was later adapted by Holland and Thayer (1988; Holland, 1985) for detecting 

DIF as a hypothesis test on the constant odds ratio of getting an item correct for two 

groups across all ability levels.  

An item is considered to possess DIF when the MH test statistic exceeds a critical 

value that is established a priori. The calculation of MH is based upon a three-way 

contingency table (see Figure 1), with dimensions for the matching criterion (typically 

integer values spanning the range of observed values of the total score), frequencies of 

correct and incorrect item responses (or score categories in a polytomous case when 

using a generalized model), and categories (typically group membership for two groups, 

or more than two groups in a generalized model). The resulting MH statistic follows an 

asymptotic χ2 distribution with one degree of freedom (see Equation 1). The MH formula 
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differs from the usual χ2 formula because the denominator term is not the expectation, 

and the summation is over the matching criterion as opposed to all observations within a 

single contingency table. This difference is because MH conceptually (and not 

algebraically) is summing across individual χ2 tests conditional on the matching criterion. 

MH also incorporates Yate’s correction for continuity by subtracting 0.5 from the 

absolute difference in the numerator. To calculate Equation 1, the expectation (see 

Equation 2) and the variance (see Equation 3) terms are needed. 

 

Figure 1. Contingency Table for Any Given Score Level, m. This Figure Has Been 

Adapted From the One Provided by Dorans & Holland (1993). 

 

 

The null hypothesis (see Equation 4) states that there is no conditional association 

(i.e., across all permissible total scores, or bins/strata of score levels in scenarios with 

smaller sample sizes) between group membership and responding to an item correctly. 

The alternative hypothesis states that there is a conditional association between group 

membership and item response. Furthermore, the conditional association is a consistent, 

unidirectional difference (i.e., uniform DIF). 

 






m
rm

m
rm

m
rm

RVar

RER

)(

5.)(
2

  

 2

    (1) 



20 

 

N

RN
RE

tm

tmrm
rm )(      (2)  

)1(
)(

2 


NN

WNRN
RVar

tmtm

tmfmtmrm
rm     (3)  

1:0 
WR

WR
H

fmfm

rmrm
     (4) 

 An effect size measure of MH (αMH; see Equation 5) was provided by Mantel and 

Haenszel (1959). In view of the fact that the interpretation of odds ratios are bounded 

between zero and positive infinity, the log-odds of αMH (see Equation 6) are typically 

calculated so that the values are theoretically bounded between negative infinity and 

positive infinity, and are asymptotically normally distributed (Agresti, 2002). Sometimes, 

this calculation is linearly translated to the delta metric to ease interpretation of the log-

odds. ETS, as well as some other companies, use a transformation of the common-odds 

ratio for interpretation, a statistic known as MH D-DIF (see Equation 7; Holland & 

Thayer, 1988; Dorans & Holland, 1993). 
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Significantly positive values of MH D-DIF suggest that an item is biased against 

the focal group, while negative values of MH D-DIF suggest that the bias is against the 

reference group. A three-category classification system was developed to describe the 

magnitude of DIF detected in an item (Dorans & Holland, 1993). The three levels are 

“A” (negligible DIF), “B” (intermediate DIF), and “C” (large DIF). The absolute values 

of MH D-DIF, or the MH-LOR, are used along with significance testing to determine the 

level of DIF that an item exhibits. An item is designated as Level A if |MH D-DIF| is less 

than 1.0 delta unit (or |MH-LOR| < .426) or |MH D-DIF| is not significantly different 

from 0. An item is designated as Level C when both |MH D-DIF| is greater than 1.5 delta 

units (or |MH LOR| ≥ 0.638) and is significantly greater than 1.0. By default, any items 

which do not belong to Levels A or C are classified into Level B. 

The MH approach to detecting DIF makes a few assumptions. First, it inherently 

assumes unidimensionality of the scale score, given that a single total score is used to 

perform the matching for the hypothesis test. Second, the direction of bias between the 

two groups is assumed to be unidirectional across all levels of the matching variable, 

which means that MH is truly appropriate for detecting uniform DIF only. Third, a 

hypergeometric assumption is made with regards to the marginal totals. In calculating the 

expected values for the χ2 statistic, the marginal totals are assumed to be fixed at a given 

total score (or stratum). While the χ2 statistic is non-parametric, the resulting value is 

sample-dependent. Fourth, it is assumed that the two groups in the test are independent of 

each other. However, it is often the case that there are shared characteristics or 
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dependencies between the two groups (e.g., males and females may be similar with 

regards to school, community, culture, and socio-economic status). 

In the context of multiple groups, it is not appropriate to conduct a test of DIF for 

each focal group separately. As Penfield (2001) notes, there are three limitations to doing 

so: (1) inflated type I error rates; (2) decreased statistical power to detect DIF; and (3) 

increased run-time and computing resources. Alternatively, it is better to test for DIF 

among all groups simultaneously. The generalized Mantel-Hanszel procedure (GMH; 

Mantel & Haenszel, 1959; Somes, 1986) can be used to detect uniform DIF among 

multiple groups. In addition to better controlling for issues with statistical power, this 

technique also controls the type I error rate without requiring post hoc adjustments to 

familywise-error rates such as the Bonferonni correction or adjustments to the false 

discovery rate such as the Benjamini–Hochberg procedure (Kim & Oshima, 2013). 

Additionally, it also makes no assumptions concerning the cause of the item responses 

(unlike IRT-based approaches). 

GMH is essentially a measure of average partial association in a three-way 

contingency table. It differs from MH in that it potentially allows for more than two 

groups and/or polytomous item scores. Furthermore, it is potentially advantageous for use 

on polytomous data because it does not assume that the data are ordinal, and looks across 

the distribution of item scores without assuming a particular distributional form. The 

calculation for GMH χ2 is given by Equation 8. The GMH χ2 statistic is chi-squared 

distributed, with the degrees of freedom under the null hypothesis being equal to one less 

than the number of demographic groups (assuming dichotomous data, which simplifies 
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the second degree of freedom in the set). Like MH, the null hypothesis under GMH is no 

conditional association between group membership and response category.  

The formula contains bolded letters to indicate vectors of values. The vectors Ak 

(see Equation 9) and E(Ak) (see Equation 10) have a length one less than the number of 

groups (i.e., G-1), and V(Ak) is a covariance matrix of the same rank (see Equation 11). 

The vector Ak is analogous to the Rrm term from MH, and it represents the pivotal cells 

for each level of the matching variable. The expectation of this vector is given by 

Equation 10, and its variance in Equation 11. The plus sign that is included as a subscript 

indicates summation over that dimension. A general form of GMH also was given by 

Landis, Heyman, and Koch (1978) which allows it to more directly simplify to the MH 

procedure (as cited by Zwick, Donoghue, & Grima, 1993). 
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Additional advantages of using GMH include increased power under balanced 

designs, as well as not collapsing focal groups in a manner such that truly differential 

performance is subsequently undetected. While not considered in this study, GMH has a 

stronger literature base with applying the procedure to polytomous data, as opposed to 
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multiple groups (Welch & Hoover, 1993; Zwick, Donoghue, & Grima, 1993; Zwick & 

Thayer, 1996; Chang, Mazzeo, & Roussos, 1996; Zwick, Thayer, & Mazzeo, 1997; 

Ankenmann, Witt, & Dunbar, 1999; Camilli & Congdon, 1999; Penfield, 2001; Penfield 

& Algina, 2003; Meyer, Huyah, & Seaman, 2004; Wang & Su, 2004; Su & Wang, 2005; 

Kristjansson, Aylesworth, McDowell, & Zumbo, 2005). The limitations of GMH are that 

it cannot discern between uniform and nonuniform DIF (Kristjansson, Aylesworth, 

McDowell, & Zumbo, 2005), the power of the procedure is decreased by smaller sample 

sizes and impact (Welch & Hoover, 1993, as cited in Penfield & Lam, 2000), and type I 

errors may possibly be inflated when impact is present (Welch & Hoover, 1993). 

Logistic Regression and Generalized LR 

 As described by Agresti (2002), the generalized linear model can be described as 

composed of three components: the random component (i.e., the dependent variable and 

its probability distribution), the systematic component (i.e., the independent variables), 

and the link function (i.e., the relationship between the independent variables and the 

dependent variable). When predicting a dichotomous outcome, the GLM can be 

expressed as a logistic regression. More specifically, a logistic regression is expressed by 

having mixed effects independent variables (i.e., categorical and/or continuous 

predictors), a binomial dependent variable, and a logit link. Whenever the GLM is 

constrained using the logit link it is often referred to as a logit model. 

 Unlike linear regression, LR makes no assumptions regarding normality, linearity, 

homogeneity, and normally distributed error terms (Howell, 2010). However, the 

independent variables are assumed not to have multicollinearity. As usual, the estimation 
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method used makes additional assumptions in addition to those of the model itself. The 

model parameters of LR cannot be estimated using least squares methods due to the logit 

link, so maximum likelihood estimation (MLE) methods are typically used to perform the 

model estimation. Additionally, estimates are solved under MLE using iterations because 

no closed form solution exists. MLE assumes that data are independently drawn from a 

multivariate normal distribution (Myung, 2003). 

The premise behind LR as a DIF detection method is to predict item responses 

when using total scores and group membership as predictors. In short, an item is 

determined to be DIF based upon testing regression coefficients for statistical 

significance. The first substantial mention of an LR-like approach as a possible DIF 

detection method (in a non-IRT context) was made in the early-to-mid 1980s (Van der 

Flier, 1980; Mellenbergh, 1982; Van der Flier, Mellenbergh, Ader, & Wijn, 1984). An 

iterative logit model was used to correct for the influence that DIF items have on the total 

score, which is typically a limitation of observed score methods (others have used 

purification techniques to accomplish the same feat). This method built upon the 

contingency table approaches by using loglinear models to analyze the data, which is 

comparable to using the odds ratio estimator in the MH technique. Much like the later LR 

method for DIF detection (Swaminathan & Rogers, 1990), this method modeled the item 

difficulty as the intercept, and included parameters for the observed score category and 

group membership, in addition to an interaction effect of score category with group 

membership. However, it differed from the later LR method because it treated the 

observed scores as discrete unordered categories. 
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 More in line with the usual LR framework for dichotomous data with two groups, 

an LR framework was being studied prior to the more formal conception of the LR 

method (Spray & Carlson, 1986; Bennett, Rock, & Kaplan, 1987). Swaminathan and 

Rogers (1990) were the first to provide a detailed model which improved upon IRT 

methods by reducing issues related to sample size and model-data fit, and improved upon 

the previous logit models by better accounting for the continuous nature of the ability 

scale. 

Swaminathan and Rogers (1990) further provided a conceptual relationship 

between MH and LR which involves constraining the LR. Two assumptions must be 

made. First, the ability variable must be discrete (e.g., observed total scores). Second, 

there must be no interaction term between the ability variable and group membership, 

which excludes testing for non-uniform DIF. While this relationship is not exact (given 

that MH is non-parametric and LR is parametric, and both are based on different 

assumptions), the hypothesis for uniform DIF is being tested in both. 

However, Swaminathan and Rogers (1990) demonstrated that LR was more 

effective than MH in detecting non-uniform crossing DIF in their foundational paper, 

particularly across varying test lengths and sample sizes. Using the notation of Magis, 

Tuerlinckx, and De Boeck (2015) to keep consistency with their model described later, 

the LR model specified by Swaminathan and Rogers is given by Equation 12. 

GSYLogit igjijjijg  210)]1[Pr(     (12) 
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Using a logit link, the model specifies the probability of a correct response (Y=1) 

to a single dichotomously scored item, j, for examinee i belonging to group g. The 

intercept term, α0j, is related to the difficulty of the item. The first logistic regression 

coefficient, α1j, gives the change in log-odd units of the item-level scores for a single unit 

increase in the total test score, Si, of examinee i. The second logistic regression 

coefficient, α2j, describes the change in log-odd units of the item-level scores for a change 

in group membership from the reference group (0) to the focal group (1). This latter 

coefficient is of primary importance, because there should be no discernable difference 

with respect to item performance between the reference and focal groups. 

While there are multiple approaches to testing the null hypotheses, primarily two 

methods have been used in prior studies: the Wald test (Wald, 1939) and the likelihood 

ratio test. Both approaches are similar in that they can be conceived as being nested 

model comparisons, and they both share the same asymptotic chi-squared distribution. 

The Wald test is a significance test of a vector of parameters used to see if each 

parameter is significantly different from zero. Non-significant parameters can 

subsequently be omitted from the model. The Wald test was used by Swaminathan and 

Rogers (1990), which is a good reference for interested readers. As an alternative, the 

likelihood ratio test, not to be confused with the IRT-based DIF detection technique 

having the same name (Thissen, Steinberg, & Wainer, 1988), compares null and 

alternative hypotheses within the nested model comparison. The formula for the 

likelihood ratio test is provided in Equation 13. In words, Wilks’ lambda (Λ; Wilks,  
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1938) is equal to double the opposite of the natural log ratio of the maximized likelihoods 

of the nested models, where L0 is the null model and L1 is the alternative model. 
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  Table 2 highlights the comparisons made with respect to the model parameters. 

The basic model is written in abbreviated form, S + G + S*G, to indicate the predictors 

for observed score (S), group membership (G), and the interaction term (S*G).  

Table 2. Comparison of LR Model Parameters for the Three Null Hypotheses Tested in 

the Likelihood Ratio Test. 

DIF Type Null Alternative 
Difference in 

Nested Models 

Uniform S + G S G 

Non-Uniform S + G + S*G S + G S*G 

Both S + G + S*G S G + S*G 

 

 

Magis, Raîche, Béland, and Gérard (2011) were the first to build upon the LR 

technique to create a generalized model, namely the GLR method of DIF detection. As 

noted in their paper, Millsap and Everson (1993) suggested that LR could be expanded 

into the GLR. Moreover, Van den Noortgate and De Boeck (2005) presented a logistic 

mixed model capable of considering multiple groups, which was essentially a 

reformulation of an IRT model. Although flexible, their model involved the estimation of 

ability, which is circumvented in the GLR because it is an observed score approach. And 

compared with the GMH, the GLR potentially allows for a more direct detection of non-

uniform DIF through a significance test on its interaction term. However, if a test only 
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possesses one or more items with uniform DIF, including the interaction term in the 

model could potentially lessen the chance that uniform DIF is properly detected. 

 Equation 14 is the model equation for the GLR, where πig is the probability that 

respondent i from group g responds correctly to a dichotomous item. The reference group 

is g = 0, and non-zero values represent the focal groups. The common intercept and slope 

are given by α and β, respectively. The specific intercepts and slopes are given by αg and 

βg, where the specific coefficients for the reference group (i.e., α0 and β0) are constrained 

to be equal to zero. This constraint allows the interpretation of the focal group 

coefficients to be relative to the reference group. Three null hypotheses are included in 

the model. The null hypothesis for uniform DIF (see Equation 15) is characterized by 

uniform DIF being present if at least one intercept is significantly different from zero 

while having all slope parameters equal to zero. On the other hand, the null hypothesis 

for non-uniform DIF (see Equation 16) states that non-uniform DIF is characterized by at 

least one slope being significantly different from zero, irrespective of the value of the 

intercept parameters. Taken together, the null hypothesis for both types of DIF (see 

Equation 17) requires that all parameters be equal to zero across groups. 
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(DIF)     0......: 110   FFH     (17) 

 Seeing as the GLR has three null hypotheses and explicitly tests for non-uniform 

DIF, it theoretically has a benefit over the GMH. However, a potential limitation of GLR 

is that increasing the number of groups potentially also increases the type I error rate. 

Furthermore, the use of maximum likelihood in GLR could potentially be a limitation 

whenever item scores are subject to variance restriction because of extreme difficulty 

values. 

Logistic Regression Lasso Approach 

In linear algebra, vector norms are used to regularize estimation of prediction 

models. Two common examples of vector norms are the L1-norm (i.e., lasso) and L2-

norm (i.e., ridge regression), which serve as penalties in regularized estimation of a 

generalized linear model. Both are used to place constraints on model parameters. A 

major difference is that the lasso performs the shrinkage of parameters towards zero 

using absolute values, while ridge regression uses sum of squares to perform the 

penalization. In doing so, the lasso translates coefficients by a constant factor, while ridge 

regression scales coefficients by a constant factor. The translation allows the former to 

successfully obtain values of zero, and permits variable selection through the remaining 

non-zero coefficients. Ridge regression, on the other hand, does not perform variable 

selection and is not appropriate for DIF analyses because it cannot discern between 

predictors at the item-level. 

Recall that when the GLR is estimated, it performs the model parameter 

estimation through an item-by-item basis. The LR lasso DIF method provides a 
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theoretical improvement over the GLR by fitting a generalized linear model to an entire 

data set. The global nature of LR lasso allows for the relationships between items to be 

better captured. However, it does not escape the ipsative nature of DIF (i.e., the total 

score is a property of the test and not an external criterion). LR lasso places the lasso 

constraints on the variables for each item that describe differences in item performance 

given group membership. That is, not all items have a meaningful difference in group 

performance that should be explicitly modeled. Described within the context of LR lasso, 

logistic regression is a special case of the generalized linear model that can be estimated 

using lasso regularization. In fewer words, the LR lasso is a lasso penalized version of a 

generalized logistic regression. The lasso is performed using penalty terms (λ), which 

cause it to be a shrinkage estimator. Estimated coefficients for covariate terms (e.g., 

group membership) are multiplied by λ. Other LR terms (e.g., item difficulty and test 

score) are not influenced by λ. 

The LR lasso model (see Equation 18) bears resemblance to the original LR DIF 

method by having coefficients for test score and group membership. However, the 

coefficient for test score, Si, is constrained to be the same for all items for two reasons. 

First, it circumvents problems with model inconsistency because allowing items to be 

weighted differently is akin to a weighted sum, and defeats the purpose of using an 

observed score method where the total score is a sufficient estimate of ability. In this 

respect, the LR lasso model is more akin to the U1PL model than the U2PL model. 

Second, allowing different item weights potentially increases the type II error rate 

(DeMars, 2010, as cited in Magis, Tuerlinckx, & De Boeck, 2015). 
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 Given that MLE fits the entirety of the data, the penalized log likelihood (see 

Equation 19) must be maximized with respect to a vector of all parameters (see Equation 

20) simultaneously. For model identifiability, a constraint is added so that α21 is equal to 

zero. Given the summation of α2j in the penalized log likelihood, the estimated difference 

across all groups is multiplied by the penalty parameter, λ. The product of those two 

terms is referred to as the penalty term. 
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The optimal λ value can be determined based upon two primary methods. The 

first is using relative fit statistics describing information criteria (not to be confused with 

information in IRT), such as Akaike information criterion (AIC; Akaike, 1974), AIC 

correction for finite samples (AICc; Hurvich & Tsai, 1989; Burnham & Anderson, 2002), 

Bayesian information criterion (BIC; Schwarz, 1978), Corrected AIC (CAIC; Bozdogan, 

1987), Hannan–Quinn information criterion (HQIC; Hannan & Quinn, 1979), or 

weighted information criterion (WIC; Magis, Tuerlinckx, & De Boeck, 2015). Another 

method is cross-validation (CV; Hastie et al., 2009). CV splits data into a number of 

subsets (k), and the prediction error is accumulated through k-1 iterations in which each 

subset is removed and the model is refit during each iteration. To provide a comparison, 
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CV is used to select a λ value which minimizes prediction error, while BIC is used to 

provide the most parsimonious/conservative solution. 

The WIC is advocated by Magis, Tuerlinckx, and De Boeck (2015) because it 

provides an intermediate solution which differs from CV but also falls between the AIC 

(which is liberal) and the BIC (which is conservative) criteria. They reported that it 

outperformed the AIC, BIC, and CV criteria under most conditions for percentage of DIF 

items, DIF magnitude, and sample size and balance. WIC is a weighted average of AIC 

and BIC that allows the weighting for each to be influenced by characteristics of a given 

data set, such as sample size and number of items, because of how deviance terms and 

degrees of freedom are used in the calculation. Equation 21 provides the formula for 

WIC. The optimal penalty value is found by minimizing the WIC criterion conditional on 

ωi, where i refers to the weights on an interval inclusive of zero and one. 

)(*)1()(*)|(  BICAICWIC iii     (21) 

Item Response Theory and Dichotomous Data 

Models 

 IRT models exist for both unidimensional and multidimensional data, though the 

former is explicated herein to provide necessary background and justification for the 

simulation conditions described later. In educational testing, IRT models describe the 

probability of a correct response for an examinee with a given ability (θn) to a particular 

item. Item response functions (IRFs), plotted as item characteristic curves (ICCs), are 
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used to characterize how the probability of a correct response changes as ability-level 

changes. 

The most widely used models have three or fewer parameters in describing the 

item properties. These three properties are difficulty (bi), discrimination (ai), and lower 

asymptote (ci; also known as pseudo-guessing). Defined more specifically, item difficulty 

is the location on the ability scale where the probability of a correct response equals .5 

plus half of the lower-asymptote parameter, and is also the location on the θ scale where 

the inflection of the ICC occurs. Item discrimination is related to the slope of the item 

characteristic curve at the point of inflection, and is intended to model the extent to which 

an item can be used to distinguish between examinees of lower and higher abilities than 

the item difficulty. The lower asymptote sets a lower bound to the probability space, and 

is typically used to partially buffer for the impact of guessing in scored responses and 

improve model-data fit. It represents the probability of a correct response for an examinee 

with infinitely low ability. 

The unidimensional three-parameter logistic model (U3PL) uses all three of the 

aforementioned item parameters along with θn to calculate the probability of a correct 

response (see Equation 22). A scaling constant, D, of 1.702 has been used historically to 

allow the cumulative distribution function of the logit model to approximate that of a 

probit model. However, this practice has largely fallen out of favor, and the scaling 

constant usually equals one to retain the logit scale. Whenever ci is constrained to be 

equal to zero across all items, the model reduces to the unidimensional two-parameter 

logistic model (U2PL). Additionally, both ai and ci can be constrained to one and zero, 
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respectively, to yield the unidimensional one-parameter logistic model (U1PL). If the 

scaling constant (D) is set to unity also, it reduces mathematically to the Rasch model. 

The advantages of these unidimensional models are that they have simpler mathematical 

forms. However, they generally fail to capture the complex interaction among persons 

and items, which may actually involve a set of traits instead of a single ability (Reckase, 

2009). This recapitulates the philosophy held by Box and Draper (1987) that, 

“Essentially, all models are wrong, but some are useful” (p. 424). 
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Conceptually, IRT models are a special case of the GLM, as their notation can be 

expressed through transformations in slope-intercept form. In fact, changing the form of 

the model to other equivalent expressions can change the interpretation of the lower-

asymptote parameter (von Davier, 2009). Through the current parameterization of the 

U3PL, it is assumed that examinees with higher ability levels do not “slip,” which is 

incorrectly responding to an item when truly possessing the knowledge to answer it 

correctly (i.e., an accidental or careless mistake). However, the absence of this 

phenomenon being explicitly modeled in the U3PL does not mean that slipping does not 

occur. IRT models are employed to represent the probabilistic responses of examinees, 

and are descriptive instead of prescriptive. 

In that respect, IRT models are a smoothing function of the empirical ICC 

(Petersen, Cook, & Stocking, 1983), where there is better model-data fit as the two 

approach the same shape. Better fit results from having less residual variance which has 
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not been explained by the IRT model. For all the models explained above, there are 

additional assumptions for an upper asymptote of one and for perfect symmetry of the 

IRF. While having more parameters usually lends itself to describing data better, 

consideration must ultimately be given to sample size as it influences the likelihood of 

obtaining stability through convergence of item parameter estimates. 

Assumptions 

Assumptions of unidimensional IRT models include local independence, 

monotonicity, model-data fit, invariance of item parameters over comparable examinee 

samples, non-speededness, and a causal relationship between θn and item responses (De 

Ayala, 2009; Embretson & Reise, 2000; Hambleton & Swaminathan, 1985). Under the 

Rasch model, additional assumptions of sufficiency and specific objectivity (sometimes 

called objective measurement) are acknowledged. Whenever IRT models are applied to 

datasets in operational settings, certain assumptions are made regarding additional 

concepts, which include treating the standard error of estimate (SEE) around item 

parameter estimates as negligible when estimating θn so long as the SEE values are 

reasonably low given the sample size. 

These assumptions are important to note, because the appropriateness of a model 

is determined by the extent to which data corresponds with the assumptions that are 

made. Substantial violations of these assumptions will likely result in degradation of how 

the model performs with respect to accurately describing the data. For instance, violations 

of invariance can result in differential item functioning (DIF) across subgroups of 

examinees. 
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Specifying Test Information Targets 

 Test specification is the process of selecting items according to various 

constraints to build one or more test forms. The purpose of test specification is to provide 

guidelines to better ensure that various properties of the constructed exam forms are met, 

as well as provide the best possible estimates of ability for examinees (especially near cut 

points). Oftentimes, testing organizations use a content blueprint to guide item selection 

to ensure that the test is representative of the construct being measured. Ideally, a content 

blueprint is developed in such a way that every domain of a given set of content standards 

(or set of knowledge, skills, and abilities) are sampled adequately.  

Linear programming techniques are generally used as a means of building exam 

forms through optimizing objective functions (van der Linden, 2005). Statistical 

specifications are considered in this process and can be specified at various levels, such 

as the item level, stimulus level, item-set level, subtest level, test level, or multiple tests 

level. More specifically, constraints related to psychometric properties of the items are 

chosen to fall within specified ranges, with some examples being p-values and biserial (or 

point-biserial) correlations, word counts, response time, and the exclusion of enemy items 

on the same form. Exam-level features are sought after as well. Some examples may 

include test length, minimum reliability, and test information targets. 

 Test information targets are particularly important because they directly 

correspond with cut points used in test use and interpretation. It is customary practice to 

build exams so that there is a peak in the test information function at the location on the 

ability scale where decisions are being made about examinees (Hambleton & 



38 

 

Swaminathan, 1985, p. 104-115). A convenient feature of a TIF is that the information 

contributed by individual items is additive. Stated simply, the sum of the item 

information functions (IIFs) is equal to the TIF for each possible value of θn. Individual 

items cannot be studied in this manner under CTT because it is strictly a property which 

arises with IRT modeling. The discrimination parameters of items have more of an 

influence on the shape of a TIF when compared with item difficulty parameters. Hence, it 

is often preferred that items with better discrimination are selected during form building, 

because information has an inversely proportional relationship with the standard errors of 

estimate for θn. 

 Though, the values associated with a TIF cannot be readily interpreted as 

meaningful. The θ metric itself inherently lacks meaning and is statistically 

indeterminate. Subsequently, the choice of scaling for the θ metric directly influences the 

shape of a TIF. Scaling changes in the discrimination parameters also change the shape of 

a TIF. Despite an immediate intuitive understanding of TIF values being rather difficult 

to obtain, it is important to underscore the importance of the relative location of maximal 

information when compared with the intended cut points. If a TIF is not aligned with the 

intended cut point location(s), then test development has been misspecified with respect 

to its intended use and interpretation. 

Person Characteristics 

Sample Size 

Historically, DIF studies have explored the influence of small and/or unbalanced 

sample sizes on the effectiveness of detecting DIF items. In general, performance 
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degradation occurs as sample size decreases. Unbalanced designs often contain smaller 

samples for specific groups, which impacts the overall analysis. Studies have varied in 

suggesting a minimum sample size required for adequate power to detect DIF. One study 

reported the lack of statistical power to adequately detect biased items using a sample 

size of 300 within two-group dichotomous data (Candell & Drasgow, 1988). Others have 

suggested that 200 is a stable lower bound (Narayanan & Swaminathan, 1996). Still yet, 

sample sizes as low as 147 have been examined before using Mantel-Haenszel, but with 

conclusions related to instability of the estimates (Ryan, 1991). In the context of multiple 

groups DIF, Welch and Schauberger (2015) used 250 as a minimum sample size when 

calibrating with their Rasch Lasso approach.  

As such, observed score methods do not have the additional burden of estimating 

person ability, which allows the detection of DIF to be less demanding with respect to 

sample size requirements. This benefit was evidenced by Magis, Tuerlinckx, and De 

Boeck (2015) when they showed that 100 examinees in a two-group case had adequate 

DIF identification for both the LR and LR lasso methods. However, certain factors have a 

more detrimental influence when they occur in the midst of small sample sizes. The 

presence of impact may require that the minimum sample size be increased to 500 

examinees to avoid issues with increased type I error (Welch & Hoover, 1993). 

Moreover, items within the same exam having different item-total correlations (or 

discriminations) can inflate type I error, especially for MH (Roussos & Stout, 1996). 

Additional strategies can be used in cases when smaller sample sizes exist. 

McLaughlin and Drasgow (1987) advocated adjusting the significance level of hypothesis 
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tests to obtain a more rigorous nominal level rejection rate. As mentioned previously, 

thick matching can be used to circumvent having too few observations at any given score 

level. 

Impact 

 Impact (i.e., group differences in underlying ability or group differences in 

observed score means) has received considerable attention in DIF literature because of its 

potential influence on obfuscating the detection of DIF items. Methods which use 

matching variables are hampered because the increased distance between the distributions 

of values for groups effectively leads to floor and ceiling values that potentially do not 

have matches. Furthermore, methods using prediction models would seemingly be less 

influenced by impact because the estimated parameters are robust and arguably sample-

independent. However, the estimation methods used in those methods can make 

distributional assumptions and may have convergence issues as data become more 

extreme. Examinee test-taking strategies not only impose construct-irrelevant variance, 

but are perhaps different across different levels of ability. In the presence of impact, 

students who are part of groups with lower performance may have higher guessing 

tendencies (Uttaro & Millsap, 1994). In general, DIF analyses are performed using 

discrete outcome measures (which are typically scored dichotomously), meaning that 

there are less numeric information available, leading to additional complexity in 

distinguishing between the influence of impact and DIF on scored data. 

 Impact has been found to increase type I error rates for both Mantel-Haenszel 

(Holland & Thayer, 1988; Clauser, Mazor, & Hambleton, 1993; Welch & Hoover, 1993; 
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Penfield, 2000; Fidalgo, Ferreres, & Muniz, 2004; Li, Brooks, & Johanson, 2012) and 

logistic regression methods (Li & Stout, 1996; Narayanan and Swaminathan, 1996; 

Whitmore & Schumacker, 1999; DeMars, 2009; Güler & Penfield, 2009; Li, Brooks, & 

Johanson, 2012). In fact, simulation studies can amplify the influence of impact on 

observed score techniques by simultaneously using non-Rasch data generation models 

(Roussos & Stout, 1996). Though, having at least 40 items may not have as large of an 

influence compared with shorter tests (Uttaro & Millsap, 1994).  

Impact has a slightly stronger influence on GMH when compared with MH when 

there are only two groups, with the distribution of χ2 values obtained for the former 

increasing more than the latter (Zwick, Donoghue, & Grima, 1993). That is, given the 

same level of impact between two groups when analyzing dichotomous data, the GMH 

test statistic is slightly more prone to type I error than MH. On the other hand, if there are 

more than two groups being analyzed, GMH better controls for type I error than MH does 

(Penfield, 2001). In short, collapsing multiple focal groups may lead to increased error. 

Tian (1999; as cited in Kristjansson, Aylesworth, McDowell, & Zumbo, 2005) also found 

that GMH had increased type I error in the presence of impact. Finch (2016) found 

increased type I error rates for both GMH and GLR across conditions for sample size, 

level of DIF, and the presence of impact. The results also suggested that GMH may have 

superior performance in detecting DIF when compared to GLR when there are more than 

three unbalanced groups being tested simultaneously. Moreover, LR lasso was found to 

be promising for DIF detection in two groups when compared with LR in the presence of 

impact (Magis, Tuerlinckx, & De Boeck, 2015).
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  CHAPTER III 

DATA AND METHODOLOGY 

 

 

Simulation Design and Conditions 

 Given that the overall purpose of this study is to compare observed score DIF 

approaches for multiple groups, a simulation study is employed to determine the extent to 

which “truth” can be recovered across three different methods. The strength of a 

simulation approach is that the performance of each method can be evaluated against a 

known criterion (i.e., detected DIF items compared to generated DIF items), treating the 

generated parameters as absolute truth. The limitation of simulation studies is that they 

cannot perfectly capture the reality of the testing process and the nuances of real data, 

regardless of how many precautions are taken with writing code and stipulating 

conditions. Thus, simulation studies are not intended to prove any concepts, but rather to 

build an argument for situations where degradation of methodological performance can 

or cannot be readily observed. Furthermore, the robustness of models and estimators can 

be tested without any adverse impact on examinees. The term simulees is specified 

hereafter to refer to simulated examinees. The entire simulation study was conducted in 

the R programming environment (Revolution R Enterprise version 8.0 – 64 bit; R Core 

Team, 2015; Microsoft Corporation, 2015), with some additional analyses performed in 

SAS 9.4 (SAS Institute, 2012) to further analyze the results. 

Error is defined as any discrepancy between predicted DIF status and actual DIF 

status in this case, and this study offers insight into which observed score approach for
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detecting DIF among multiple groups has the best recovery given data that measure 

different features related to test information targets, as well as item-level characteristics 

and simulee population characteristics. Given the extent to which the simulated data 

mimic real data, the results potentially can be generalized to situations where non-IRT 

methodology is used because there are many conditions explored in the study. As a 

caveat, McLaughlin and Drasgow (1987) noted that generalizing the results of studies are 

often limited to samples containing normally distributed abilities, which is the case in this 

study. Plus, strict normality is difficult to find in practice (Micceri, 1989). 

 Specified in Table 3 is a summary of the conditions which were manipulated by 

the researcher. The summary table of simulation conditions allows for study variables to 

be manipulated at the test-level (e.g., the location of the information target relative to the 

central tendency of the examinee population, and the shape of the test information 

function), item-level (e.g., the location of DIF items relative to the information target, and 

the percentage of DIF items), and for simulees (e.g., the amount of impact and sample 

size). These conditions are likely to have an influence on predicting which items possess 

DIF above and beyond the error that results in detecting those items even in ideal 

situations. The relative lack of literature which explores DIF as it relates to target test 

information functions provided the exigency for exploring it within this study, along with 

its typical absence in literature using IRT generation models. Practitioners may find the 

results useful in judging the merit of adopting the newer lasso method for detecting DIF 

within multiple groups as opposed to pre-existing methods. Furthermore, the test design 

features of this study allow for the interpretation to be less theoretical in nature and better 
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aligned with standard operational practices, such as building exams to be optimized at 

test information targets, for example. 

All conditions were fully crossed for each analysis model. Constants held across 

all conditions were a total form length of 40 items (Donoghue & Allen, 1993; Raju, van 

der Linden, & Fleer, 1995; Fidalgo, Ferreres, & Muñiz, 2004), no missing data, and 250 

replications for each crossing of conditions. The rationale for selecting 40 items is that 

the reliability of the scale scores should not present an additional confound into the study, 

while still allowing for integer values to be obtained for the percentage of DIF items. 

Also, an exam consisting of 40 items presents itself as an acceptable lower bound for the 

number of scored items that may be included on an achievement test (e.g., an end-of-

grade exam for third grade students). Four groups have been used previously in studying 

DIF across multiple groups (Stark, Chernyshenko, & Drasgow, 2004; Magis, Raîche, 

Béland & Gérard, 2011). However, the simulation does not consider issues related to test 

speededness being observed, though it is acknowledged that some proportion of DIF 

could arise from speededness of a test. A detailed description of the conditions in the 

table and their corresponding levels is provided throughout the next section. 

Data Generation 

The simulated data sets (already assumed to be scored) were generated using a 

unidimensional three parameter logistic IRT (U3PL) model (see Equation 22). In the 

U3PL, the lower asymptote can model guessing behavior to some extent, which is a type 

of construct irrelevant variance (Wright, 1991). The incorporation of the lower asymptote 

parameter more closely resembles the complex reality of assessment data, wherein
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Table 3. Summary of Simulation Conditions Including the List and Count of Levels for 

Each Condition. 

 

*Constants:   Total test length of 40 items (Donoghue & Allen, 1993; Raju, van der Linden, & Fleer,  

1995; Fidalgo, Ferreres, & Muñiz, 2004). 250 replications for each crossing of 

conditions.

Condition Levels Totals Literature/Rationale 

Test Type 

•  Commensurate 
[𝑇𝐼𝐹𝑚𝑎𝑥 − �̅� ≈ 0] 

•  Disparate 
[𝑇𝐼𝐹𝑚𝑎𝑥 − �̅� ≈ -1.15] 

2 

Roughly 87.5% pass rate for 

disparate condition, which is 

comparable to first-time test-taker 

results (e.g., ABIM, 2015). 

TIF Shape 

•  Spread 
rtruncnorm(k, min=-2, max=2, 

mean = x, sd = 1.5) 

•  Narrow 
rtruncnorm(k, min=-2, max=2, 

mean = x, sd = .5) 

2 

Truncation range same as: 

DeMars (2009). 

SD of b-parameters is manipulated 

to reflect the amount of precision 

near the information target. 

DIF 

Location 

•  Near Information Target 
[Select items closest to target 

to be DIF items] 

•  Offset above 

Information Target 
[Select items closest to +1 

logit above the target to be 

DIF items] 

2 

As a practical example, DIF may 

be induced by new item types or 

revised content standards that 

subsequently causes the DIF item 

to be more difficult than the other 

items measured on a given form. 

Percentage 

of DIF Items 

•  0 %  (0 items) 

•  5 %  (2 items) 

•  10 %  (4 items) 

3 
Exactly as: 

Magis, Tuerlinckx, & De Boeck 

(2015) 

Impact 
 (�̅� + 𝜀,  in 

logit units to 

group means) 

•  {0, 0, 0, 0} 

•  {.00, -.17, -.33, -.50} 
2 

Same total range as: 
Jodoin & Gierl (2001). 

First group is the reference group. 

Sample Size 

•  Balanced: {500, 500, 

500, 500} 

•  Unbalanced: {800, 600, 

400, 200} 

2 

Total sample size used in: 
Magis, Tuerlinckx, & De Boeck 

(2015); French & Miller (1996). 

Minimum for unbalanced taken 

from: 

Narayanan & Swaminathan (1996). 

SUBTOTAL - 96 - 

Analysis 

Models 

•  Generalized Mantel-

Haenzsel χ2 

• Generalized Logistic 

Regression 

• LR lasso DIF 

3 - 

TOTAL - 288 - 
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response variability is more difficult to predict with lower performing examinees when 

item types and scoring processes allow for guessing behavior to be advantageous 

potentially. However, DIF detection is more likely to result in false positives when 

guessing behavior influences responses, especially in the presence of large group impact 

(DeMars, 2010), which ultimately hinders the interpretation of variability in errors 

attributed to impact. For this reason, study conditions include crossings where there are 

no DIF items but impact in examinees in order to have a baseline for comparison. Though 

not addressed in this study, it may be entirely possible that guessing behavior is 

positively correlated with examinee ability, with higher ability examinees being more 

likely to correctly guess through eliminating incorrect responses. 

While generating the data sets, all the relevant changes/shifts to item parameters 

were considered in calculating the probability of a correct response for each item and 

examinee per the U3PL. This matrix of model-implied probabilities was compared 

against a matrix of the same size containing random values from the uniform distribution, 

U(0,1). If the probability value in each cell was lower than the random uniform value in 

the same cell location in the comparison matrix, the scored item response was a zero. 

Otherwise, if the probability was higher than the corresponding random value, the scored 

item response was a one. This procedure is commonly used to prevent a deterministic 

model of data generation. Data were generated for each of four groups separately within a 

given replication, with the data being concatenated into a single data set for subsequent 

analysis. Ability parameters were sampled from a standard normal distribution for each 
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group, with any subsequent level of impact added to the ability parameters for each group 

after having been sampled. 

Test-Level Conditions 

Careful consideration must be given in selecting the U3PL generating parameters, 

as the resulting data must be at least adequate for use with the non-IRT analysis models. 

The true bi parameters were drawn from a truncated random normal distribution bounded 

between -2 and +2 logits (DeMars, 2009) of the intended test information target. This 

truncation was done largely with three reasons related to the observed score analysis 

models. First, it helped in preventing completely homogenous response patterns (e.g., all 

zeros or all ones). Second, it minimized the chance that a “difficulty” dimension would 

impact the results, because items with extreme difficulty parameters often have smaller 

variance when compared to other items on an exam. Extreme difficulty values would be 

more likely to impact procedures involving estimation (i.e., GLR and LR lasso) as 

opposed to calculations (GMH), thus presenting a bias which would not be purposefully 

manipulated through the study conditions. Third, the truncation better mimics an 

operational item selection process which typically avoids items with extreme difficulties 

(i.e., items with extreme p-values) and favors items closer to the intended cut score 

locations. 

The standard deviation of the difficulty parameters was directly manipulated to 

influence the shape of the target information function. Given that the moments chosen for 

the theoretical truncated distribution will not directly match that of a sampling 

distribution (which is not truncated), standard deviation values of 1.5 and 0.5 where 
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chosen in the generating distribution to subsequently yield empirical standard deviation 

values of 1.0 and 0.5, respectively, in the difficulty parameters on average. 

 The intended TIF target was also changed as a condition to mimic tests which 

have different purposes. Commensurate targets correspond with the central tendency of 

the examinee population, while disparate targets correspond with a non-central portion of 

the examinee population. Oversimplified examples would be achievement versus 

certification/licensure tests, respectively. However, it should be noted that 

certification/licensure tests are very rarely 40 items long, so cautions must be taken in 

such an overly simplistic interpretation, though the examples are convenient for 

describing instances in which TIF targets may change depending upon the type of exam. 

In this study, the TIF targets were set with respect to the average ability value of a 

standard normally distributed population of simulees. To clarify, two levels of this 

condition were used. First, the theoretical distribution of difficulty values was centered 

around zero to create a commensurate target. Second, the theoretical distribution of 

difficulty values was centered at -1.15 to create a disparate target. Under the standard 

normal distribution, roughly 87.5% of the area underneath the curve can be found at or 

above -1.15. This simulated level of pass/fail rate is comparable to first-time test-taker 

results (e.g., ABIM, 2015). 

The discrimination parameters were simulated to follow a lognormal distribution 

with a resulting mean of 1.00 and standard deviation of .1225 (Donoghue & Allen, 1993; 

Penfield, 2001). To control for “item quality” within each replication of the simulation, 

the same discrimination parameters were used for both the commensurate and disparate 
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testing scenarios. This constraint prevented the item discrimination from directly 

influencing the DIF detection not only across testing scenarios, but did not allow for the 

GLR and LR Lasso DIF procedures to have an inherent advantage over GMH, given the 

former better captures discrimination through estimation. 

The lower asymptote parameters were not simulated based upon a distributional 

assumption, but rather were set constant at 0.20 for all items based upon a consistent 

practice established in literature (Lautenschlager & Park, 1988; Park & Lautenschlager, 

1990; Mazor, Clauser, & Hambleton, 1992; Donoghue & Allen, 1993; Rogers & 

Swaminathan, 1993; Uttaro & Millsap, 1994; Allen & Donoghue, 1996; Narayanan & 

Swaminathan, 1996; Marañón, Garcia, & Costas, 1997; Penny & Johnson, 1999; Fidalgo, 

Mellenbergh, & Munoz, 2000; Penfield, 2001; Jodoin & Gierl, 2001; Hidalgo & Perez-

Pina, 2004; Wang & Su, 2004; Herrera & Gómez, 2008; DeMars, 2009; Güler & 

Penfield, 2009; DeMars, 2010). 

Item-Level Conditions 

Whenever DIF was introduced into the simulated data sets (that is, when the 

percentage of DIF items was a non-zero value), the magnitude of DIF was held constant 

at a total range of 0.8 logit units across the four groups (Rogers & Swaminathan, 1993; 

Penfield, 2001; Magis, Tuerlinckx, & De Boeck, 2015; Finch, 2016). To elaborate, the 

following values were added to the difficulty parameters for the four groups on the DIF 

items (once again, assuming the first group is the reference group): .00, .27, .53, and .80. 

The non-zero values were added to the three focal groups randomly across replications to 

more closely reflect the reality that certain subgroups are not always more disadvantaged 
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than others in the presence of DIF. However, the reference group remained the same 

across all replications, given that the reference group often does not change in standard 

operational practice in many settings. The approach of adding DIF to item parameters is 

like that done in other DIF studies (Lim & Drasgow, 1990; Kim & Cohen, 1991; Miller 

& Oshima, 1992; Gomez-Benito & Navas-Ara, 2000). The primary concern of this study 

is uniform DIF that is unidirectional/asymmetric with respect to groups (these constraints 

could be relaxed in future studies to explore non-uniform DIF and/or symmetric DIF). 

Considering the impact condition explained above, the focal groups which would 

potentially have lower observed performance have an increasing disadvantage on the DIF 

items. 

The percentage of DIF items was manipulated as an item-level condition. Three 

levels were chosen for this study: 0% (i.e., no items), 5% (i.e., two items), and 10% (i.e., 

four items). These levels were also used by Magis, Tuerlinckx, and De Boeck (2015). 

Historically, changing the percentage of DIF items has been studied in the DIF literature. 

Having no DIF items informed a baseline type I error rate under various crossings of 

conditions, while having up to 10% of an exam better informs type II error rates. In 

contrast, increasing the number of DIF items contaminates the matching variable (i.e., the 

total score) and may affect both type I error and power. 

The location of the DIF items relative to the TIF target was explored to see if 

there would be a difference between the methods. A calculated statistic like GMH may 

perform differently amid variance restriction of item scores when compared with a 

globally fitted model like the LR Lasso. As a practical example of how DIF location may 
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be impacted, DIF may be induced by new item types or revised content standards that 

subsequently causes the DIF item to be more difficult than the other items measured on a 

given form. As such, a new technology-enhanced item could introduce construct-

irrelevant variance that causes an item simultaneously to be more difficult and exhibit 

DIF. To introduce DIF location into simulated data within this study, two levels were 

considered:  items near the TIF target, and items offset from the TIF target. In conditions 

with non-zero DIF items, the relevant number of items closest to the observed 

information target (and not the theoretical distribution, to account for sampling 

fluctuations) were chosen to exhibit DIF. Likewise, for the items offset from the TIF 

target, the number of simulated DIF items closest to +1 logit unit above the TIF target 

exhibited DIF. It was not apparent that any previous DIF studies have explored DIF 

location relative to the TIF target, so this condition contributes novel information to the 

literature base. 

Simulee Conditions 

For simulees, a total sample size of 2000 was used as it represents a stable lower 

bound (French & Miller, 1996; Magis, Tuerlinckx, & De Boeck, 2015). The total sample 

size was distributed among four groups (Stark, Chernyshenko, & Drasgow, 2004). A 

standard normal distribution, N(0,1), was used to generate ability parameters for both the 

commensurate and disparate testing scenarios, though different samples were generated 

for them within each replication because the samples of simulees are assumed to belong 

to inherently different populations. In the presence of group-level impact, the four groups 

were assumed to have different means for the normal distribution. More precisely, the 
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distributions for the groups were as follows (with the first group being the reference 

group): N(0,1), N(-.17,1), N(-.33,1), and N(-.50,1). The values in the reporting herein are 

truncated at two decimal places, but precise fractions were used in the actual code. This 

range of a half logit is the same as that used by Jodoin and Gierl (2001) and others 

(Kristjansson, Aylesworth, McDowell, & Zumbo, 2005; Finch & French, 2007; Paek, 

2010; Finch, 2016). It is common for DIF studies to use a one logit range for impact, but 

doing so within the scope of this study would frequently lead to perfect response patterns 

in the conditions where shifts in items are already occurring due to the presence of DIF, 

test type, and DIF location, in addition to the shifts in ability distributions in the presence 

of impact. 

While the total sample size was not manipulated, the balance of the sample size 

was changed as a condition. A balanced design was specified so that each of the four 

groups had 500 simulees, in contrast to an unbalanced design where the four groups had 

800, 600, 400, and 200 simulees, respectively. The former could represent a case where 

an exam is administered in multiple languages, while the latter could represent different 

racial/ethnic groups. Moreover, the balanced design represented an ideal case statistically 

(with regards to statistical power, as derived for dichotomous LR DIF detection by Li, 

2015), though the unbalanced design was considered because of practical limitations 

which occur frequently. The minimum sample size of 200 in the unbalanced case was 

designated due to a finding by Narayanan and Swaminathan (1996) that supported using 

MH only if that sample size requirement was met in a focal group. Other studies support 

various minimum sample sizes (e.g., Güler & Penfield, 2009, suggest 200 to 250; 
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Swaminathan & Rogers, 1990, suggest 250), which is directly attributable to different bin 

sizes used in the matching variable in MH. In the case of thin matching, the number of 

bins equals the number of possible scores on an exam (i.e., the number of dichotomous 

items plus one). Only thin matching was explored in this study; thus 41 bins were used in 

the GMH procedure. 

Analysis Models 

Item purification was not performed with the analysis models. Lasso constraints 

inherently are a selection procedure, so allowing item purification would add an 

additional confound to the study because the results would be impacted by different 

selection procedures. Moreover, the intention of this study is not to study selection 

procedures, but to examine the benefit of using the lasso against a baseline (which is not 

having a selection/purification process in a multiple group setting). However, such a 

comparison would likely provide a fruitful investigation as a future study. 

The R package difR (Magis, Beland, Tuerlinckx, & De Boeck, 2010) was used to 

calculate the GMH statistics within each replication. Anchor items were not provided to 

the function (i.e., the total score was used as the matching criterion variable). Given a 

nominal α level of .05, the one-tailed hypothesis test was calculated using a threshold on 

a chi-squared distribution with the degrees of freedom equal to the total number of groups 

minus one (i.e., the number of focal groups in the analysis). At three degrees of freedom, 

the critical value is roughly 7.815. 

The R package difR was also used to estimate the GLR statistics within each 

replication. As it was with the other analyses, anchor items were not provided to the 
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function. Significance testing was based upon the likelihood ratio test, given that it is less 

impacted by estimation issues from smaller sample sizes when compared with the Wald 

test of significance (Agresti, 2002; as cited in Magis, Raîche, Béland, & Gérard, 2011). 

Additionally, post hoc group-level comparisons for significant findings were not required 

in this study, because DIF identification is of primary concern. Both uniform and non-

uniform DIF were tested (unlike the comparison made in Magis, Tuerlinckx, & De 

Boeck, 2015) because mostly identical results would be obtained between GMH and 

GLR if uniform DIF were only being tested, and because the benefit of GLR is that 

practitioners can simultaneously test for both types of DIF. 

The R code for LR Lasso DIF used by Magis, Tuerlinckx, and De Boeck (2015) 

was obtained through personal communication with Magis. Detailed description of the 

functions appears in the unpublished appendix of their paper. In summary, the code 

makes a call to the R package glmnet (Friedman, Hastie, & Tibshirani, 2010) to fit the 

lasso penalized logistic regression to a given data set in long-format. Additional functions 

are provided to obtain the optimal λ value given an information or CV criterion. For this 

study, the WIC was used and determined across 1000 weight values ranging from zero to 

one (i.e., analyzed at increments of .001). The code was adapted by the author of this 

study to accommodate for multiple groups. 

The overall shell of the R code for the study was written in a way to ensure that 

the full set of 250 replications was met across all conditions and analysis models. In 

keeping with many programming paradigms, a main function was written to run all the 

data generation and analyses of a given replication. To decrease the run time of the entire 
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simulation study, the main function was optimized with byte code compilation using the 

compiler package that is included in base R. The compiled main function was then placed 

inside of a try statement to prevent the study from crashing in the event of errors. The 

single line of code (i.e., the compiled main function surrounded by a try statement) was 

iterated through a repeat loop with logic evaluation of the replication count with a break 

from the loop occurring only after a successful run of a given replication. Writing the 

code in this manner ensured that all 250 replications contained only successful analyses. 

Subsequently, for loops were used to iterate through all possible combinations of 

condition levels. Global scoping assignment (i.e., the double arrow assignment operator) 

was used inside of the compiled main function to keep counts of replications to avoid 

variable confounding. 

Evaluation of Results 

 The first research question was analyzed across all 250 replications for each 

crossing of conditions. The correct classification rate (CCR) of DIF items was 

determined by the instances in which an item that did not exhibit DIF in the generating 

parameters was deemed to be a non-DIF item by a given analysis model, as well as the 

instances in which an item that exhibited DIF in the generating parameters was deemed to 

be a DIF item by the analysis model. Given that each replication was composed of 40 

items for a simulated exam, the overall proportion reflects the proportion of the 10,000 

(i.e., 250 times 40) items within a given crossing of conditions which were correctly 

classified.  
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Type I error rates were determined to be the proportion of items which were not 

generated to have DIF, but were indicated as having DIF by a given analysis model. In 

other words, it is the false positive rate for DIF identification. On the other hand, hit rates 

(also referred to as power) were defined as one minus the proportion of type II errors 

(i.e., false negatives) made by a given analysis model. That is, the type II errors are the 

proportion of items where DIF was induced in the generating difficulty parameters, but 

the analysis model failed to identify those items as having DIF. In general, type II errors 

in DIF detection can be argued as possessing a greater threat to validity than type I errors, 

because DIF items which are not detected can influence total scores (or ability estimates) 

by introducing construct irrelevant variance. For this reason, more emphasis is placed 

upon hit rates than type I errors in the interpretation of results. Phi correlations were 

computed within each replication as an additional measure of the success of each method 

in correctly predicting DIF items, given that they consider CCRs, type I errors, and type 

II errors simultaneously in one measure of association that’s appropriate for data which 

truly are dichotomous (which corresponds with the assumption made by the generation 

model as well as the typically binary nature of DIF flagging). 

Agreement statistics were also computed on the correct classification rates 

(CCRs) across replications as a relative comparison between methods to further answer 

research question one. Namely, these statistics were unweighted κ (kappa), weighted κ, 

percent exact agreement, percent adjacent agreement, and combined agreement. To 

further clarify, a quadratic weight was used in weighted κ so that more flagrant 

disagreements between the analysis models were more heavily penalized. Also, the 



57 

 

percent exact agreement of CCRs was calculated as the percentage of times in which the 

number of correctly classified items perfectly matched between analysis models. In other 

words, it is the percentage of replications where two methods had the same CCR. 

To clarify, this statistic does not consider if any two analysis models are correctly 

identifying the same items, just only the same number of items. Such an inquiry is not 

fully warranted because the data are simulated and the cause cannot be readily identified. 

Additionally, the percentage of adjacent agreement for CCRs captures scenarios in which 

the number of correctly classified items differ only by one item. Subsequently, the 

combined percentage agreement is the sum of exact and adjacent agreement. The 

combined agreement provides a general idea of the extent to which different analysis 

models are reaching similar conclusions with only minor differences. In summary, 

research subquestions 1a through 1d were calculated within replications, while research 

subquestion 1e was calculated across replications. 

To answer research question two, comparisons of the three DIF detection methods 

were analyzed marginally with respect to the six manipulated conditions. Such 

comparisons included comparative boxplots to inspect error variability with respect to 

CCRs, as well as line graphs to analyze type II error rates while conditioning on type I 

error rates. The boxplots included information across all replications (by levels within 

condition), but the line graphs only included replications where any percentage of DIF 

items were present. (i.e., replications containing data without true DIF items were 

excluded to better represent type II errors). Direct comparisons of type II error rates are 

more trustworthy when the amount of type I error is comparable between procedures, 
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given that the type II error rate of a given procedure is decreased unduly by inflated false 

positive rates. By examining fidelity of the procedures with respect to levels of the 

manipulated conditions, it is possible to generalize the findings at a larger grain-size 

(though, not broad-sweeping generalizations that would be aptly applicable to all the 

many nuanced scenarios practitioners encounter). In doing so, it is possible to obtain a 

general sense of the relative prevalence of the conditions in causing error in detecting 

DIF items. Operational practices would benefit from this knowledge because it provides 

guidance as to which testing conditions may potentially inhibit the detection of DIF 

items. 

 Descriptive statistics and visual inspection were also used to note relationships 

among the true classification of DIF items and the magnitude of the DIF statistics, in a 

manner similar to what was done by Penny and Johnson (1999). Furthermore, as inspired 

by Dorans and Kulick (1986), conditional plots were generated to better explain the 

relationship between classification accuracy of DIF items and differences in test 

information targets and the examinee location. Analyzing conditional relationships are 

crucial to informing the extent to which even seemingly smaller differences in the TIF 

and examinees could impact classification accuracy.
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CHAPTER IV 

RESULTS 

 

 

 The simulation study results are presented by research question. The findings for 

research question one (RQ1) are explained by the crossing of study conditions for correct 

classification rates, type I error rates, hit rates, and correlations between generated and 

detected DIF items. These explanations are accompanied by an overall comparison of the 

DIF detection methods without respect to specific crossing of conditions. Furthermore, 

the findings for research question two (RQ2) are organized by simulation condition (i.e., 

marginally). Particular interest is given to comparisons of CCRs, as well as type II error 

rates conditioned on type I error rates, for each method. 

Research Question One 

To restate RQ1, how does the penalized LR DIF detection method (i.e., LR lasso) 

compare to more traditional non-IRT multiple-group methods (i.e., generalized Mantel-

Haenszel χ2 and generalized logistic regression) as it relates to: 

a. correct classification rate of DIF items? 

b. type I error rate in the classification of DIF items? 

c. hit rates (defined as one minus the type II error rate) in the classification of 

DIF items? 

d. phi correlations of true and detected DIF items? 

e. agreement statistics among methods?



60 

 

Subsections within the following section are organized to address the various 

subquestions listed under RQ1. 

Correct Classification Rates 

 Table 4 contains the CCRs for the conditions where the test targets were 

commensurate with the location of the simulees and there was no simulee impact. To 

clarify, each cell in the table summarizes the 250 replications for that given crossing of 

conditions and pertinent analysis model. Overall, the LR lasso method had comparable 

performance in correctly identifying non-DIF items in the null cases where DIF was not 

introduced. That is, the rows in Table 4 that have zero DIF items all provided a similar 

result, and contain values that were very similar across all three methods. However, as 

the number of DIF items increased, degradation in LR lasso performance was noted. 

Even within the LR lasso columns, the difference between scenarios with two DIF items 

and four DIF items was at least a few percentage points. 

 Table 5 contains the CCRs for the conditions where the test targets were 

commensurate with the location of the simulees, but there was a half-logit span total in 

impact across the four simulee groups. Compared with the CCRs for LR lasso observed 

in the absence of impact, the presence of impact led to lower CCRs, particularly when the 

TIF shape was more spread. Also, unlike the results in the absence of impact, the CCRs 

for LR lasso were not comparable to GMH and GLR in the null conditions when impact 

was present. To explain the table tersely, the CCRs decreased more precipitously for LR 

lasso than GMH and GLR as the number of DIF items increased. 
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Table 4. Correct Classification Rates (as Percentages) for Commensurate Test Targets 

and No Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 94.96 95.24 94.99 94.99 95.17 95.50 

2 95.10 95.12 93.17 94.77 94.94 93.04 

4 93.40 93.53 89.53 93.02 93.32 89.49 

+1 

0 94.85 95.68 94.85 95.20 95.44 95.82 

2 94.59 95.18 93.87 94.38 94.66 93.18 

4 93.55 93.53 89.01 93.60 93.70 88.61 

1.5 

+0 

0 94.94 95.19 95.22 94.70 94.88 95.31 

2 94.29 94.24 92.57 95.04 94.74 92.87 

4 92.94 92.98 90.00 92.61 92.86 89.07 

+1 

0 95.01 94.95 95.24 95.05 94.96 95.07 

2 94.44 94.36 93.35 94.38 94.10 92.59 

4 92.75 93.14 89.20 93.19 93.12 89.18 

 

 

Table 5. Correct Classification Rates (as Percentages) for Commensurate Test Targets 

and a Half Logit Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 95.14 94.98 93.68 95.23 95.33 95.17 

2 94.96 94.43 92.05 94.40 94.14 91.67 

4 93.54 93.77 88.77 93.60 93.79 88.85 

+1 

0 94.68 94.85 94.01 94.68 95.16 94.75 

2 95.04 94.84 91.78 94.57 94.39 92.46 

4 93.25 93.48 88.53 92.93 93.29 88.51 

1.5 

+0 

0 95.04 94.54 93.15 94.85 94.69 93.00 

2 94.46 93.51 90.54 94.23 93.85 90.99 

4 92.59 92.09 86.80 92.75 92.81 87.11 

+1 

0 94.99 94.26 92.09 94.92 94.28 93.79 

2 93.97 93.67 89.33 94.41 93.63 90.50 

4 92.69 92.85 86.54 92.72 92.52 86.82 
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CCRs are contained in Table 6 for the conditions where the test targets were 

disparate with the location of the simulees (specifically, 1.15 logit units below the mean 

of the simulee samples that were generated) and there was no simulee impact. When 

compared with the commensurate scenarios in Table 4, the CCRs in Table 6 did not have 

many appreciable differences across methods and conditions. Though, a few noteworthy 

cases should be described. When the TIF shape was narrower and the sample size was 

unbalanced, LR lasso performance suffered in the null condition by roughly 1.5% 

percentage points (when compared to Table 4). On the other hand, LR lasso performance 

improved when the TIF shape was narrower and the sample size was unbalanced by 

roughly half a percentage point for scenarios when there were four DIF items located a 

logit above the maximum TIF point (also when compared to Table 4). 

Table 6. Correct Classification Rates (as Percentages) for Disparate Test Targets and No 

Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 94.97 95.04 95.12 94.42 94.68 94.04 

2 94.62 95.13 92.71 94.97 94.84 93.21 

4 93.42 93.86 89.13 94.00 93.73 89.43 

+1 

0 94.93 95.25 95.21 94.88 94.82 94.37 

2 94.71 94.91 92.78 94.83 95.05 92.62 

4 93.71 93.76 89.69 93.01 93.06 88.96 

1.5 

+0 

0 94.92 95.20 94.92 94.81 94.98 95.01 

2 94.29 94.33 92.47 94.56 94.84 93.23 

4 93.32 93.51 88.61 93.60 93.33 89.69 

+1 

0 95.09 95.03 95.22 95.03 95.20 95.35 

2 94.48 94.51 92.89 94.91 94.55 92.95 

4 93.50 93.34 89.16 93.53 92.93 89.57 
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CCRs are contained in Table 7 for the conditions where the test targets were 

disparate with the location of the simulees (i.e., 1.15 logit units below the mean of the 

simulee sample), but there was a half-logit span total in impact across the four simulee 

groups. When compared with the commensurate scenarios in Table 5, the disparate 

scenarios in Table 7 reflected a degradation in performance for the GLR. LR lasso had a 

substantial boost in performance across many of the conditions, particularly when the 

sample size was balanced. In fact, many of the deficits noted in Table 5 were improved in 

Table 7. GMH had some improvements between the commensurate and disparate 

scenarios, though not as drastic as LR lasso. Generally, GMH tended to have the highest 

CCRs across Tables 4 through 7, so the gains in performance would likely have been 

lesser because it appeared to be more robust to the variety in conditions. 

Table 7. Correct Classification Rates (as Percentages) for Disparate Test Targets and a 

Half Logit Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 95.14 93.73 94.35 95.02 93.49 94.42 

2 94.55 93.65 92.29 95.04 94.26 91.86 

4 93.55 92.73 89.55 93.65 92.95 88.46 

+1 

0 95.29 93.55 94.67 95.23 94.15 94.49 

2 94.83 93.40 92.73 94.71 93.98 91.79 

4 93.33 92.76 89.38 93.69 93.24 88.37 

1.5 

+0 

0 94.83 93.57 94.45 95.24 94.17 94.82 

2 94.68 93.21 91.14 95.02 93.77 92.34 

4 92.88 91.87 88.37 93.19 92.09 87.99 

+1 

0 95.24 93.41 95.26 94.72 94.01 94.94 

2 94.45 93.32 91.62 94.47 93.76 91.81 

4 93.45 92.28 88.08 93.54 92.53 88.02 
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Type I Error Rates 

 Table 8 is comprised of the type I error rates for the conditions where the test 

targets were commensurate with the location of the simulees and there was no simulee 

impact. As such, it is a counterpart to Table 4, and provides additional data that help with 

interpretation of fluctuations in CCRs. As it stands, the type I error rates in Table 8 

support the notion that LR lasso had an increased false positive rate more so with a 

narrow TIF when compared with a more spread TIF. On the contrary, an interesting and 

seemingly counterintuitive finding emerged between the balanced and unbalanced sample 

size conditions for LR lasso.  

Table 8. Type I Error Rates (as Percentages) for Commensurate Test Targets and No 

Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 5.04 4.76 5.01 5.01 4.83 4.50 

2 4.68 4.46 5.18 4.93 4.62 4.59 

4 5.68 5.07 6.21 6.17 5.33 5.57 

+1 

0 5.15 4.32 5.15 4.80 4.56 4.18 

2 5.18 4.42 4.47 5.33 4.94 4.22 

4 5.64 5.10 7.02 5.54 5.01 6.65 

1.5 

+0 

0 5.06 4.81 4.78 5.30 5.12 4.69 

2 5.18 5.01 5.74 4.44 4.61 4.41 

4 5.52 5.02 6.10 5.91 5.42 5.88 

+1 

0 4.99 5.05 4.76 4.95 5.04 4.93 

2 4.95 4.90 4.87 5.04 5.14 4.50 

4 5.59 4.86 6.68 5.40 5.15 5.30 

Upon further investigation and comparison with Table 12 (vide infra), it appeared 

that LR lasso was flagging fewer items more generally (for both true and false positives) 
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when the sample size was unbalanced. And in the case of Table 8, without the 

consideration of additional data in other tables, could lead to an erroneous conclusion that 

false positives were being reduced as an artifact of the method having improved 

performance in correctly discounting non-DIF items. 

Table 9 contains the type I error rates for the conditions where the test targets 

were commensurate with the location of the simulees, but there was a half logit total of 

simulee impact. It is a counterpart to Table 5 and provides additional data that help with 

interpretation of fluctuations in CCRs. When the TIF shape was spread and multiple DIF 

items existed, there was a notable difference in the performance of LR lasso between the 

balanced and unbalanced sample size scenarios.  

Table 9. Type I Error Rates (as Percentages) for Commensurate Test Targets and a Half 

Logit Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 4.86 5.02 6.32 4.77 4.67 4.83 

2 4.69 5.11 6.04 5.15 5.26 5.43 

4 5.29 4.75 6.87 5.54 5.02 5.68 

+1 

0 5.32 5.15 5.99 5.32 4.84 5.25 

2 4.58 4.61 6.20 5.01 5.10 4.71 

4 5.67 5.09 6.87 5.91 5.20 5.64 

1.5 

+0 

0 4.96 5.46 6.85 5.15 5.31 7.00 

2 4.74 5.52 7.32 5.01 5.29 6.19 

4 5.24 5.71 8.84 5.34 5.25 7.30 

+1 

0 5.01 5.74 7.91 5.08 5.72 6.21 

2 5.09 5.28 8.35 4.85 5.48 6.54 

4 5.41 5.18 8.71 5.48 5.63 7.51 
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At first, it appeared that LR lasso performance improved with an unbalanced 

sample size, but it was most likely due to fewer items being flagged altogether (in tandem 

with Table 13; vide infra). This finding was not surprising given the prevalence of impact 

and is interesting even when test information was spread (which would further have 

increased the variability in item scores for three groups affected by impact). 

Table 10 contains the type I error rates for the conditions where the test targets 

were disparate with the location of the simulees and there was no simulee impact. Similar 

to Table 9, if Table 10 is interpreted out-of-context, there was a false sense that LR lasso 

performance improved with unbalanced samples. Interestingly, LR lasso had a lower type 

I error rate than GMH and GLR in cases when the TIF shape was spread and there were 

multiple DIF items with unbalanced sample sizes. However, given the lower hit rates that 

were observed as well (see Table 14; vide infra), it seemed most likely that the disparate 

test target (without the presence of impact) reduced variability in item scores in such a 

way that the lasso regularization was not as effective. 

Table 11 is comprised of the type I error rates for conditions where the test targets 

were disparate with the location of the simulees and there was a half logit total of impact. 

It is a counterpart to Table 7. In general, there was a degradation in the performance of 

GLR and LR lasso when the information target was offset and simulee groups differed 

considerably. Like other tables with type I error rates, LR lasso falsely appeared to 

improve for unbalanced sample sizes (when compared with balanced sample sizes) with a 

spread TIF shape and multiple DIF items. Interestingly, with GLR in the null cases. Non-

DIF variability in the data increased the type I error rates for GLR more than LR lasso. 
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Table 10. Type I Error Rates (as Percentages) for Disparate Test Targets and No Simulee 

Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 5.03 4.96 4.88 5.58 5.32 5.96 

2 5.21 4.58 5.68 4.86 4.78 4.78 

4 5.87 5.03 7.02 5.46 5.28 5.99 

+1 

0 5.07 4.75 4.79 5.12 5.18 5.63 

2 5.06 4.72 5.70 5.06 4.68 5.05 

4 5.75 5.24 6.65 6.46 5.96 6.76 

1.5 

+0 

0 5.08 4.80 5.08 5.19 5.02 4.99 

2 5.30 5.04 5.60 5.17 4.67 4.14 

4 5.84 5.10 7.42 5.37 5.15 5.39 

+1 

0 4.91 4.97 4.78 4.97 4.80 4.65 

2 5.20 4.93 5.19 4.81 4.93 4.34 

4 5.47 5.08 6.76 5.52 5.71 5.15 

 

 

Table 11. Type I Error Rates (as Percentages) for Disparate Test Targets and a Half Logit 

Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 

0 4.86 6.27 5.65 4.98 6.51 5.58 

2 5.20 6.08 6.19 4.74 5.46 5.90 

4 5.89 6.33 7.19 5.75 6.19 7.36 

+1 

0 4.71 6.45 5.33 4.77 5.85 5.51 

2 5.00 6.35 5.56 5.09 5.73 5.98 

4 6.03 6.46 6.79 5.77 6.06 6.82 

1.5 

+0 

0 5.17 6.43 5.55 4.76 5.83 5.18 

2 5.00 6.34 7.12 4.70 5.84 5.22 

4 5.97 6.74 7.96 5.86 6.62 6.84 

+1 

0 4.76 6.59 4.74 5.28 5.99 5.06 

2 5.22 6.20 6.48 5.10 5.72 5.40 

4 5.48 6.39 7.88 5.54 6.35 6.91 

 

 



68 

 

Hit Rates 

 The tables in the following subsection (Tables 12 through 15) present the hit rates 

for all crossings of conditions. The tables omit rows for the null conditions because type 

II error was not possible in the absence of DIF items. To guide interpretation, the hit rates 

were calculated as one minus the ratio of missed DIF items over the number of generated 

DIF items. 

 Table 12 contains the hit rates for conditions when test targets were 

commensurate with the simulee population and there was no simulee impact. All three 

methods were adversely affected by having an increasing number of DIF items, 

particularly LR lasso. Additionally, an unbalanced sample size had an adverse effect on 

LR lasso that was not observed with GMH and GLR. 

Table 12. Hit Rates (as Percentages) for Commensurate Test Targets and No Simulee 

Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 95.60 91.60 67.00 94.00 91.20 52.60 

4 90.80 86.00 57.40 91.90 86.50 50.60 

+1 
2 95.40 92.00 66.80 94.20 92.00 48.00 

4 91.90 86.30 60.30 91.40 87.10 52.60 

1.5 

+0 
2 89.40 85.00 66.20 89.60 87.00 45.60 

4 84.60 80.00 61.00 85.20 82.80 49.50 

+1 
2 87.80 85.20 64.40 88.40 84.80 41.80 

4 83.40 80.00 58.80 85.90 82.70 44.80 

 Table 13, when compared with Table 12, appeared to have rather small 

differences with the introduction of impact. The largest differences were observed for LR 
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lasso when there was a narrow TIF shape. When the TIF shape was spread, the values 

were relatively close to the values found in Table 12. This finding has an implication for 

practitioners in that a TIF shape that is very targeted may cause as LR lasso to miss 

roughly half of the DIF items that may exist on a test form. 

Table 13. Hit Rates (as Percentages) for Commensurate Test Targets and a Half Logit 

Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 93.00 90.80 61.80 91.00 88.00 42.00 

4 88.30 85.20 56.40 91.40 88.10 45.30 

+1 
2 92.40 89.00 59.60 91.60 89.80 43.40 

4 89.20 85.70 54.00 88.40 84.90 41.50 

1.5 

+0 
2 84.00 80.60 57.20 84.80 82.80 43.60 

4 78.30 78.00 56.40 80.90 80.60 44.10 

+1 
2 81.20 79.00 53.60 85.20 82.20 40.80 

4 81.00 80.30 52.50 82.00 81.50 43.30 

  

 

Table 14 contains hit rates for when test targets are disparate with respect to the 

simulee population location and there was no simulee impact. In conjunction with Table 

10, there appeared to be both increased type I and type II errors for LR lasso. When 

compared with Table 12, the values for GMH and GLR were ever so slightly better. 

While a disparate test target would seem like a methodological hurdle because of 

restricted variance, it actually proves to be somewhat advantageous because all non-DIF 

items begin to look more similar under a disparate target (i.e., the majority of simulees 

are responding correctly), which causes any DIF items to be more distinctive. 
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Table 14. Hit Rates (as Percentages) for Disparate Test Targets and No Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 96.60 94.20 67.80 96.60 92.40 59.80 

4 92.90 88.90 61.50 94.60 90.10 54.20 

+1 
2 95.40 92.60 69.60 97.80 94.60 53.40 

4 94.60 90.00 63.40 94.70 90.20 57.20 

1.5 

+0 
2 91.80 87.40 61.40 94.60 90.20 47.40 

4 91.60 86.10 60.30 89.70 84.80 50.80 

+1 
2 93.60 88.80 61.60 94.40 89.60 45.80 

4 89.70 84.20 59.20 90.50 86.40 47.20 

 

  

Table 15 contains the hit rates for disparate test targets when there was simulee 

impact present. The TIF target was more aligned with impacted groups in these cases, so 

the hit rates would generally be expected to be better than those found in Table 13. 

However, the hit rates were fairly similar to Table 14. 

Table 15. Hit Rates (as Percentages) for Disparate Test Targets and a Half Logit Total of 

Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 95.00 94.60 69.60 95.60 94.40 55.20 

4 94.40 90.60 67.40 94.00 91.40 58.20 

+1 
2 96.60 95.00 65.80 96.00 94.20 55.40 

4 93.60 92.20 61.70 94.60 93.00 51.90 

1.5 

+0 
2 93.60 91.00 65.20 94.40 92.20 51.20 

4 88.50 86.10 63.30 90.50 87.10 48.30 

+1 
2 93.40 90.40 62.00 91.40 89.60 44.20 

4 89.30 86.70 59.60 90.80 88.80 49.30 
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Correlations Between Truth and Predicted 

 Phi coefficients were calculated to determine the strength of the association 

between the generated and detected DIF items. This statistic captures succinctly what the 

CCR on its own does not, which was the conglomeration of CCR, type I error, and type II 

error into a single value. As such, there was not a one-to-one relationship between the φ 

coefficient and the other values presented herein because the φ coefficient contributes 

novel information. Guidelines for interpreting Pearson-product moment correlation 

coefficients generally can be employed for ease of interpretation. However, given the 

slight data-distribution dependency of the statistic, smaller differences between φ 

coefficients should not be interpreted as particularly meaningful. 

 Tables 16 through 19 contain the association values across all crossings of 

conditions within the study. Rows for null conditions are not included because the φ 

coefficient cannot be calculated when one variable is a constant (i.e., no DIF items). 

Principally, LR lasso had weaker relationships between generated and detected DIF items 

when compared with GMH and GLR. Similar performance was noted between GMH and 

GLR in general. Paradoxically, Table 19 contains larger values than Table 17, which can 

be attributed to the previously described scenarios when the lasso regularization has a 

reduced type I error rate, given that the presence of impact caused the TIF target to be 

less disparate for the groups experiencing impact.



72 

 

Table 16. Phi Correlations of Predicted and Truth for Commensurate Test Targets and No 

Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 0.709 0.691 0.551 0.690 0.682 0.489 

4 0.728 0.717 0.499 0.720 0.710 0.493 

+1 
2 0.690 0.696 0.566 0.680 0.679 0.465 

4 0.736 0.717 0.493 0.735 0.724 0.467 

1.5 

+0 
2 0.650 0.638 0.513 0.677 0.649 0.420 

4 0.693 0.674 0.519 0.681 0.683 0.445 

+1 
2 0.652 0.633 0.534 0.646 0.627 0.368 

4 0.683 0.682 0.498 0.704 0.689 0.444 

 

 

Table 17. Phi Correlations of Predicted and Truth for Commensurate Test Targets and a 

Half Logit Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 0.700 0.660 0.492 0.665 0.636 0.365 

4 0.721 0.718 0.470 0.736 0.732 0.440 

+1 
2 0.693 0.672 0.450 0.672 0.660 0.426 

4 0.717 0.713 0.456 0.707 0.701 0.403 

1.5 

+0 
2 0.635 0.587 0.403 0.629 0.603 0.356 

4 0.656 0.644 0.436 0.671 0.671 0.384 

+1 
2 0.602 0.572 0.350 0.634 0.588 0.313 

4 0.672 0.675 0.393 0.673 0.665 0.347 
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Table 18. Phi Correlations of Predicted and Truth for Disparate Test Targets and No 

Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 0.693 0.705 0.516 0.712 0.690 0.503 

4 0.735 0.737 0.508 0.760 0.737 0.467 

+1 
2 0.690 0.688 0.532 0.709 0.703 0.437 

4 0.753 0.736 0.526 0.733 0.718 0.472 

1.5 

+0 
2 0.661 0.644 0.489 0.688 0.680 0.447 

4 0.730 0.716 0.478 0.730 0.702 0.484 

+1 
2 0.671 0.656 0.505 0.697 0.665 0.434 

4 0.725 0.700 0.503 0.733 0.698 0.451 

 

 

Table 19. Phi Correlations of Predicted and Truth for Disparate Test Targets and a Half 

Logit Total of Simulee Impact. 

   Balanced Sample Size Unbalanced Sample Size 

TIF 

Shape 

DIF 

Loc. 

DIF 

Items 
GMH GLR 

LR 

lasso 
GMH GLR 

LR 

lasso 

0.5 

+0 
2 0.683 0.653 0.531 0.705 0.671 0.447 

4 0.744 0.712 0.541 0.746 0.720 0.485 

+1 
2 0.701 0.639 0.519 0.697 0.663 0.456 

4 0.734 0.716 0.505 0.751 0.732 0.443 

1.5 

+0 
2 0.687 0.617 0.475 0.698 0.646 0.425 

4 0.706 0.669 0.498 0.720 0.676 0.409 

+1 
2 0.673 0.621 0.467 0.667 0.629 0.379 

4 0.725 0.679 0.468 0.729 0.697 0.413 

 

Agreement among Methods 

The values in Table 20 should be interpreted truly as a reflection of consistency, 

and not as a reflection of accuracy. The purpose of this table is to demonstrate how 

frequently the various methods gave identical results. Generally, the use of LR lasso had 

a tendency to flag a different set of items than GMH and GLR in roughly four out of 
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every five applications of the methods. While this finding was not substantially different 

than the consistency between GMH and GLR, it was notably lower. The values are 

relatively small in the column for percent exact agreement because the exact agreement 

means that the classification of 40 items within a given crossing of conditions and 

replication was completely identical across the two methods being compared (i.e., the 40 

items were flagged identically). CCRs are parsed by condition in the next section. 

Table 20. Agreement Measures for Correct Classification Rates among Methods across 

All Conditions and Replications. 

Methods being 

Compared 

Unweighted 

Kappa 

Weighted 

Kappa 

Percent 

Exact 

Agreement 

Percent 

Adjacent 

Agreement 

Percent 

Combined 

Agreement 

GMH & GLR .104 .470 27.61 42.06 69.68 
GMH & LR Lasso .041 .197 18.87 31.95 50.82 
GLR & LR Lasso .025 .159 17.38 30.61 48.00 

Research Question Two 

To restate RQ2, when detecting items that truly exhibit DIF, to what degree is 

classification error for each analysis model influenced by changes in: 

a. the location of the information target relative to the examinee population? 

b. the shape of the information function? 

c. the location of DIF items relative to the information target? 

d. the percentage of DIF items? 

e. the amount of impact? 

f. sample size? 
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Subsections within the following section are organized to address the various 

subquestions listed under RQ2. This presentation of the results allows for conditions to be 

collapsed marginally by simulation condition, with 8,000 or 12,000 replications 

contained for every box or line in each figure (figures for percentage of DIF items 

contained 8,000 replications, and all other conditions contained 12,000 replications). 

While collapsing the data in such a manner can obfuscate the complexities and nuances 

of the individual scenarios (which were already described in preceding tables), it also 

permits a wider range of variability in results for each condition and allows for results to 

be generalized to a larger subset of scenarios. It is important to note that the presentation 

of CCRs in this section is different than those in Tables 4 through 7, given that the 

boxplots below show distributional characteristics of CCRs and present findings at a 

higher grain-size. As a general description, the findings in this section consistently signal 

a less accurate performance of the LR lasso method when compared with GMH and 

GLR.  

Location of Information Target Relative to Simulee Population 

 The boxplots in Figure 2 are a comparison of the three methods when considering 

the location of the TIFs relative to the simulee population. The degradation of LR lasso 

performance was readily observed. In fact, the median CCR of LR lasso corresponded 

with the first quartile (Q1) of GMH and GLR for both commensurate and disparate TIF 

locations. A difference that was truly negligible can be seen in the plot between GMH 

and GLR on the lower tails (that is, only a single replication for the commensurate target 

conditions and just three replications for the disparate target conditions appeared at a 
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CCR of 30 items for GLR). As noted previously, the improved CCR for LR lasso 

between the commensurate and disparate target conditions was an artifact of fewer items 

being flagged in total and was primarily driven by a decrease in type I error rates. In other 

words, the LR lasso method did not truly perform better when the TIF was offset from 

the simulees. Instead, it made fewer mistakes because of reduced variability in the data 

(particularly in the absence of impact). 

Figure 3 portrays a similar outcome, with the type II error rate having very small 

gains in performance with a disparate target only when the type I error rate was zero. To 

further clarify interpretation of the figure, the relative spikes in performance should not 

be overinterpreted, as there were fewer replications that corresponded with the increasing 

type I error rates. It should be noted that most of the conditional plots throughout this 

section contain much longer lines for LR lasso, which elucidates that the longer tails in 

the CCR boxplots are primarily due to increased type I error rates. 
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Figure 2. Correct Classification Rates (in Number of Items) across All Replications For 

Conditions Parsed by Commensurate and Disparate Locations of Test Information 

Targets Relative to Simulee Populations. 
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Figure 3. Average Type II Error Rate (by Number of Items) for Various Levels of Type I 

Error Rates Parsed by Commensurate and Disparate Locations of Test Information 

Targets Relative to Simulee Populations. 

 

 

Shape of Information Function 

 The effects of the relative spread of the test information function can be found in 

Figures 4 and 5. As seen specifically in Figure 4, the performance of LR lasso was 

hampered as the TIF was spread further (via the variance of the item difficulties), though 

the median CCR was the same between the narrow and spread TIF conditions. GMH and 

GLR seemed to have similar performance in both cases and were not particularly 
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sensitive to changes in the spread of the items. Figure 5 confirms many of these same 

findings and shows that the type II error rates seemed to be comparable to Figure 3 when 

conditioned on type I error rates across cases for all methods. 

 

Figure 4. Correct Classification Rates (in Number of Items) across All Replications for 

Conditions Parsed by the Relative Spread of the Test Information Function. 
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Figure 5. Average Type II Error Rate (by Number of Items) for Various Levels of Type I 

Error Rates Parsed by the Relative Spread of the Test Information Function. 

 

 

Location of DIF Items Relative to Information Target 

 Figures 6 and 7 display the results for when the location of the DIF items was 

nearest the information target versus offset above the target. The findings closely mirror 

those found in Figures 4 and 5, with the tails of the LR lasso plots seemingly having 

minor differences when compared with those before. Stated differently, it appeared that 

the location of the DIF items with respect to the test information target had a similar 

effect on the methods as changing the spread of item difficulties. This finding perhaps 
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serves as a caution for test developers considering LR lasso when there are multiple cut 

points on a test scale, for example. 

 

 

Figure 6. Correct Classification Rates (in Number of Items) across All Replications for 

Conditions Parsed by Location of DIF Items Relative to the Test Information Target. 
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Figure 7. Average Type II Error Rate (by Number of Items) for Various Levels of Type I 

Error Rates Parsed by Location of DIF Items Relative to the Test Information Target. 

 

 

Percentage of DIF Items 

The effects of the presence of DIF items can be found in Figures 8 and 9. In 

Figure 8, LR lasso performance decreased as the number of DIF items increased. GMH 

and GLR only suffered once the test was comprised of 10% DIF items. Figure 9 portrays 

a lower than usual type II error rate for LR lasso when a test was composed of 5% DIF 

items. For all three methods the total score was used either as a conditioning variable or 

predictor variable. As the total score became increasingly contaminated by the presence 
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of DIF items, the less trustworthy it was for conditioning or predicting. Purification 

procedures are used normally to mitigate issues related to contamination of the total 

score. However, as mentioned previously, purification was not used in this study because 

it would have served as a confound in the comparison with the lasso regularization. Even 

without purification, GMH and GLR outperform LR lasso. One difference between GLR 

and LR lasso is that the coefficient for test score, Si, is constrained to be the same for all 

items with LR lasso. This constraint unintentionally ensures that any DIF items are 

always included in the prediction. 

 

Figure 8. Correct Classification Rates (in Number of Items) across All Replications for 

Conditions Parsed by Percentage of DIF Items. 
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Figure 9. Average Type II Error Rate (by Number of Items) for Various Levels of Type I 

Error Rates Parsed by Percentage of DIF Items. 

 

 

Amount of Impact 

 Figures 10 and 11 contrast the methods in the absence of impact versus a half 

logit total span of impact on simulees. Relatively speaking, GMH and GLR suffered only 

minor differences, with a slight increase in type I error rates (see Tables 8 through 11) 

that was not perceptible in Figure 10. LR lasso suffered noticeably more. When 

conditioned on type I error rates in Figure 11, the effect on type II error rates with LR 

lasso was not readily observed, however. 
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Figure 10. Correct Classification Rates (in Number of Items) across All Replications for 

Conditions Parsed by Presence of Impact. 
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Figure 11. Average Type II Error Rate (by Number of Items) for Various Levels of Type 

I Error Rates Parsed by Presence of Impact. 

 

 

Sample Size 

 Figures 12 and 13 compare conditions with balanced and unbalanced sample 

sizes. At first glance, Figure 12 seemingly portrays that LR lasso performed better with 

unbalanced samples. As described previously, it simply made fewer type I error mistakes 

as a result of reduced variability in the data. Figure 13 is helpful in better understanding 

that type II error rates, after accounting for type I error rates, in fact were lower for the 

balanced sample sizes. 
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Figure 12. Correct Classification Rates (in Number of Items) across All Replications for 

Conditions Parsed by Sample Size Balance. 
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Figure 13. Average Type II Error Rate (by Number of Items) for Various Levels of Type 

I Error Rates Parsed by Sample Size Balance. 
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CHAPTER V 

DISCUSSION 

 

 

This chapter provides commentary on trends for variables that were manipulated 

through the simulation study related to test-level characteristics, item-level 

characteristics, and simulee characteristics. Additionally, five practical scenarios are 

described using specific crossings of conditions found within the simulation study. 

Recommendations are made based upon all the preceding information, as well as 

extensions are suggested regarding possible effect size measure conceptualizations, 

limitations, and future research. 

Test-Level Characteristics 

 Figure 14 displays how changing the location of the TIF with respect to the 

simulee population directly influences the power to detect DIF. As seen in the figure, the 

ability to detect DIF is best when the location of all the simulee groups is commensurate 

with the maximum point of the TIF. Any deviations from that ideal scenario, such as a 

disparate TIF location, begins to limit the power in being able to detect differential item 

performance. 

Given the conditions of this study, however, there are exceptions. For example, 

the presence of impact can cause some simulee groups to drift closer to a disparate TIF 

target. Another example is when the TIF is spread. A comparison of the CCRs in Tables
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 4 and 6 showed that a spread TIF leads to improved performance with a disparate TIF 

location for both GMH and LR lasso. Particularly for LR lasso, there appeared to be a 

notable gain in performance due to the reduction in type I error rates observed between 

Tables 9 and 11. Contrary to expectation, this finding did not hold true for GLR in the 

presence of impact as was observed in Tables 5 and 7. This provides evidence that GLR 

seemed to be more strongly influenced by the presence of impact, which was not 

specifically studied by Magis, Raîche, Béland & Gérard (2011) in their initial formulation 

of the method. 

 

Figure 14. Correspondence of the Generating Ability Distributions and the TIFs by Test 

Type.  

Item-Level Characteristics 

 The location of the DIF items (i.e., near the information target or offset above the 

information target) had a different influence dependent upon the location of the TIF 

target (i.e., commensurate or disparate). Figure 15 shows the correspondence between the 
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generating ability distributions, a prototypical narrow TIF shape, as well as the locations 

of the DIF items. When the maximum TIF location is commensurate with the location of 

the simulee population distribution, the offset location of DIF items occurs where there is 

limited person information to accurately discriminate between the performance of the 

four groups. When the TIF location is disparate with respect to the simulee central 

tendency, having DIF items near the TIF target leads to a similar scenario where there is 

limited person information to adequately discern relative performance between groups. In 

fact, assuming balanced sample sizes and four DIF items, this similarity was confirmed 

when comparing hit rate percentages in Table 12 (GMH = 91.90 %; GLR = 86.30 %; LR 

lasso = 60.30 %) and Table 14 (GMH = 94.60 %; GLR = 90.00 %; LR lasso = 63.40 %). 

Furthermore, the similarity was seen in the type I error rate percentages in Table 8 (GMH 

= 5.64 %; GLR = 5.10 %; LR lasso = 7.02 %) and Table 10 (GMH = 5.87 %; GLR = 5.03 

%; LR lasso = 7.02 %). 

The percentage of DIF items had a profound impact on LR lasso performance. 

GMH and GLR only seemed to suffer in performance once the test contained at least 

10% DIF items. However, when a test contains 10% DIF items in practice, the 

effectiveness of DIF detection methods becomes less trustworthy in general. In that 

sense, GMH and GLR seemed to be equally efficient under typically observed scenarios 

in practice. 
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Figure 15. Correspondence of the Generating Ability Distributions and the TIFs by 

Location of DIF Items.  

 

 

Regarding LR lasso, the global estimation of the model provided for more optimal 

model-data fit. However, the penalty parameters (λ) were not as effective at modeling the 

noise introduced by the DIF items. That is, the penalty parameters should have been 

better at capturing meaningful group differences. Given the cleaner nature of simulated 

data analyzed in this study, it appeared that the parameters had the potential of modeling 

either pseudo-guessing behavior, or even slight misfit introduced by the non-unity 

discrimination parameters in the generation model, that was not fully captured by the 

other model parameters given the structural similarities with the Rasch model. 

Simulee Characteristics 

 As mentioned previously, there is a relationship between the presence of impact 

and the location of the TIF target. This finding can be further explained by Figure 16. In 

short, the presence of impact causes the focal groups to be closer to the disparate TIF 

target. However, it is important to note that if the TIF target were disparate in such a way 
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that the assessment would be targeting an ability level much higher than that of even the 

reference group, then the results would have been completely different (such an example 

could be a pre-test for a course). In such a case, the presence of impact would not have 

been somewhat advantageous to the methods because the presence of impact would have 

caused most of the impacted groups to have missed most of the items. The specifications 

of this simulation study led to situations where the presence of impact did not necessarily 

cause the methods to perform worse, because of the contribution of altering TIF targets 

simultaneously. 

Assuming commensurate targets, a comparison of type I error rates between Table 

8 (i.e., no impact) and Table 9 (i.e., impact present) shows that the presence of impact 

caused the LR lasso method to be too sensitive in detecting DIF by having led to much 

higher type I error rates. Also, as observed in Table 13, LR lasso hit rates suffered a 

smaller amount in the presence of impact. In fact, the change in hit rates between Table 

12 (i.e., no impact) to Table 13 (i.e., impact present) was more drastic for LR lasso than 

GMH and GLR.  

Interestingly, in viewing the same set of tables mentioned above, having 

unbalanced sample sizes actually lessened the effects of increased type I error rates. 

When there are ability differences in the focal groups (impact condition) there was an 

increase in type I error. Type I error did not increase as much when the groups were 

unbalanced. That may have occurred because, in the unbalanced condition, there were 

fewer people with the largest impact.  
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Figure 16. Correspondence of the Generating Ability Distributions and the TIFs by 

Presence of Impact. 

 

 

Practical Scenarios 

 Five scenarios are presented within this section to provide in-depth illustrations of 

when practitioners may reasonably consider the merits of using the LR lasso method over 

GMH and GLR. While the scenarios are not intended to be exhaustive by any means, 

they provide a starting place for understanding why a more complex methodology may 

be considered for potential changes in a testing program. 

Scenario One: A test is translated and administered in multiple languages, with no DIF 

or impact present across four linguistic groups. 

 

 Scenario one represents an ideal scenario where performance in detecting DIF is 

not confounded by multiple variables. This example is specified in Table 21 and could be 

understood as an achievement test that was translated into multiple languages and DIF is 

being tested across four linguistic groups. As such, the TIF is narrow near the central 

tendency of the simulees and no true DIF items with no impact observed across balanced 
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samples. Given that the scenario has no DIF items (and thus DIF location is not 

applicable), Table 22 represents 500 replications. Table 22 shows that there were no true 

differences across methods (i.e., about two items misidentified per form). 

Table 21. Specification of Condition Levels for Scenario One. 

Condition Level 

Test Type Commensurate 

TIF Shape Narrow 

DIF Location -- 

% of DIF Items No DIF Items 

Impact None {.00, .00, .00, .00} 

Sample Size Balanced {500, 500, 500, 500} 

 

 

Table 22. Simulation Results across 500 Replications for Scenario One. 

Evaluation GMH GLR LR lasso 

Correct Classification Rate 37.96 38.18 37.97 

Type I Error Rate 5.09 % 4.54 % 5.08 % 

 

 

Scenario Two: An achievement test is given in a single language in K-12, and there truly 

are no DIF items on the given test form. However, impact is present across four ethnic 

groups. 

Scenario two represents a more realistic scenario (when compared with scenario 

one) where performance in detecting DIF is confounded by the presence of impact. This 

example can be found in Table 23, and could be exemplifying a K-12 achievement test 

that is given to a diverse population of students and DIF is being tested across four ethnic 

groups. Similar to scenario one, the TIF is narrow near the central tendency of the 

simulees and no true DIF items observed across balanced samples. However, impact is 

present. Given that the scenario has no DIF items (and thus DIF location is not 

applicable), Table 24 represents 500 replications. Table 24 shows that LR lasso had slight 
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degradation in type I error. The presence of simulee impact caused the focal groups to 

drift further from the maximum TIF, and subsequently reduced the variability of 

responses from those subgroups collectively. Also, the performance of GMH and GLR 

did not suffer in the presence of impact (compared with Table 22), but LR lasso did more 

so. 

Table 23. Specification of Condition Levels for Scenario Two. 

Condition Level 

Test Type Commensurate 

TIF Shape Narrow 

DIF Location -- 

% of DIF Items No DIF Items 

Impact Half Logit {.00, -.17, -.33, -.50} 

Sample Size Balanced {500, 500, 500, 500} 

 

 

Table 24. Simulation Results across 500 Replications for Scenario Two. 

Evaluation GMH GLR LR lasso 

Correct Classification Rate 37.96 37.97 37.54 

Type I Error Rate 5.09 % 5.08 % 6.16 % 

 

 

Scenario Three: DIF may be induced on a K-12 exam by new item types or revised 

content standards. 

 

 State education agencies may frequently attempt to shift curricular focus by 

adopting updated sets of content standards for instructional purposes. Revisions to such 

content standards usually require significant changes to a state’s general assessment 

system (and sometimes alternate assessment system, depending upon the changes 

required in extended content standards). Sometimes in the midst of such changes, there 

may be strong stakeholder interest for including new item types (e.g., technology 
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enhanced items) on updated forms of the assessment. Scenario three captures how this 

study’s simulation conditions could be specified to mimic such a situation. 

 Table 25 describes a test designed to have a narrow test target commensurate with 

the simulee population location, where impact across four simulee groups of equal size is 

observed but the test has two DIF items near the information target. Table 26 summarizes 

the findings across 250 replications. Overall, GMH and GLR had similar performance. 

LR lasso had a higher type I error rate, likely due to the presence of both DIF items and 

simulee impact. 

 Given the presence of two DIF items, Figure 17 contains two boxplots that 

capture the magnitude of the LR lasso penalty parameters (λ) depending upon whether or 

not the items that were flagged were truly generated as having DIF or not. An interesting 

trend emerges where items that truly exhibited DIF tended to have negative λ values, and 

false positive items tended to have positive λ values roughly half of the time. Given that 

the model estimates λ values agnostically of whether or not items truly exhibit DIF, it 

was likely not an issue of bias in the estimates. In fact, the finding was not surprising 

because the nature of false positives could be such that the regularization of the group-

specific parameters could be tuned to where one or more focal groups appear to be 

favored on the items. In other words, the negative values on the true DIF items was signal 

that was consistent with the data generation model, whereas the false positive values are 

randomly distributed around zero, given the commensurate TIF target. 
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Table 25. Specification of Condition Levels for Scenario Three. 

Condition Level 

Test Type Commensurate 

TIF Shape Narrow 

DIF Location Near Information Target 

% of DIF Items 5 % (i.e., 2 items) 

Impact Half Logit {.00, -.17, -.33, -.50} 

Sample Size Balanced {500, 500, 500, 500} 

 

 

Table 26. Simulation Results across 250 Replications for Scenario Three. 

Evaluation GMH GLR LR lasso 

Correct Classification Rate 37.98 37.77 36.82 

Type I Error Rate 4.69 % 5.11 % 6.04 % 

Hit Rate 93.00 % 90.80 % 61.80 % 

Phi Correlation with Truth .70 .66 .49 

 

 

 

Figure 17. Magnitude of Penalty Parameters by Classification Type for Scenario Three. 
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Scenario Four: A new technology-enhanced item type could introduce construct-

irrelevant variance that causes an item simultaneously to be more difficult and exhibit 

DIF. 

 The type of test described in Scenario Four could be defined in terms of the 

condition instantiations provided in Table 27. To describe the table, the scenario could be 

a test designed to provide measurement precision where examinees are located, but given 

some newer innovative item types (hopefully in field test positions), there appears to be 

DIF in the items while they are simultaneously more challenging items. As may be 

expected in much of K-12 testing, for example, there is observed impact and unbalanced 

sample sizes. Table 28 shows that LR lasso decreased in overall accuracy considerably 

(with the CCR and φ) when compared with GMH and GLR, which appeared to be an 

artifact of fewer items being flagged (with the decreased type I error rate and hit rate). 

Both the DIF location and unbalanced sample sizes could be suspected as influential, and 

a comparison with Table 5 shows that the very presence of DIF items caused the 

accuracy of LR lasso to drop consistently. Thus, it appeared that global model fit was 

impacted by the noise introduced by the two DIF items. This effect is better understood 

when considering that the DIF items were most likely too difficult for the focal groups to 

respond correctly, and still really difficult even for the reference group. The subsequent 

variance restriction was particularly taxing on LR lasso because the regularization was 

being performed on item scores that began to behave more like a constant. Thus, fewer 

items tended to be flagged for DIF, including those that may truly be exhibiting DIF. 

Similar to Figure 17, the penalty parameters in Figure 18 were congruent with the data 

generation model having a commensurate TIF target. 
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Table 27. Specification of Condition Levels for Scenario Four. 

Condition Level 

Test Type Commensurate 

TIF Shape Narrow 

DIF Location Offset above Information Target 

% of DIF Items 5 % (i.e., 2 items) 

Impact Half Logit {.00, -.17, -.33, -.50} 

Sample Size Unbalanced {800, 600, 400, 200} 

 

 

Table 28. Simulation Results across 250 Replications for Scenario Four. 

Evaluation GMH GLR LR lasso 

Correct Classification Rate 37.83 37.76 36.98 

Type I Error Rate 5.01 % 5.10 % 4.71 % 

Hit Rate 91.60 % 89.80 % 43.40 % 

Phi Correlation with Truth .67 .66 .43 

 

 

 

Figure 18. Magnitude of Penalty Parameters by Classification Type for Scenario Four. 
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Scenario Five: A cohort of freshman students take an end-of-course exam for an 

orientation course/seminar (e.g., University 101) at their university. The exam was 

written to be relatively easy for the majority of students, but there are DIF items on the 

exam (yet there is no examinee impact). 

 Scenario five contains a disparate test target in the midst of 10% of the exam 

being comprised of items that exhibit DIF. Table 29 contains further specifications of a 

narrow TIF shape, with all DIF items residing near the TIF target, for four groups with 

balanced sample sizes performing equally well. Table 30 summarizes the results across 

250 replications. GMH and GLR performed similarly, but GMH had a slightly higher 

type I error rate. On the other hand, LR lasso performed appreciably worse than GMH 

and GLR. Scenario five arguably has fewer confounds with no impact, sample sizes are 

balanced, TIF shape is narrow, and DIF resides near the TIF target. Consistent with 

earlier results, having an increasing amount of DIF items disproportionately impacted LR 

lasso. This finding was especially true given the disparate test target. 

 Unlike Figures 17 and 18, the penalty parameter values in Figure 19 were similar 

between true DIF items and false positive items. While somewhat counterintuitive, the 

explanation provided for the disparate target plot in Figure 16 applies to this scenario. 

The impact observed across simulee groups shortened the gap between much of the 

simulee population and the TIF target, especially given the balanced sample size. Stated 

differently, there were more simulees near the TIF target that should have been offset had 

the groups been equal otherwise. The more apparent distinction between true DIF items 

and false positive items progressively disappeared because variance restriction was most 

noticeably observed in the reference group, while item score variability increased for the 

focal groups. 
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Table 29. Specification of Condition Levels for Scenario Five. 

Condition Level 

Test Type Disparate 

TIF Shape Narrow 

DIF Location Near Information Target 

% of DIF Items 10 % (i.e., 4 items) 

Impact None {.00, .00, .00, .00} 

Sample Size Balanced {500, 500, 500, 500} 

 

 

Table 30. Simulation Results across 250 Replications for Scenario Five. 

Evaluation GMH GLR LR lasso 

Correct Classification Rate 37.37 37.54 35.65 

Type I Error Rate 5.87 % 5.03 % 7.02 % 

Hit Rate 92.90 % 88.90 % 61.50 % 

Phi Correlation with Truth 0.74 0.74 0.51 

 

 

 

Figure 19. Magnitude of Penalty Parameters by Classification Type for Scenario Five. 
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Recommendations 

The results suggested that the LR lasso method had inflated type I error overall 

with no additional benefit in power. In fact, even when type I error rates were comparable 

across methods, LR lasso had a lower hit rate in many instances (i.e., higher type II error 

rate). The sensitivity of LR lasso to detecting DIF items seemed to be substantially 

influenced by having an increased number of DIF items on a form. That is, the increasing 

presence of DIF items decreased the chances of flagging them accurately. This finding 

was not surprising when considering the global specifications in using LR lasso to fit a 

given data set. Noise introduced by DIF (and impact) could not be correctly partitioned 

into the penalty terms (λ) via the shrinkage estimator, and the noise was likely impacting 

the quality of the parameter estimates in other parts of the model more globally (e.g. 

model terms for item difficulty and test score). Furthermore, conditions which decreased 

variability in item scores (e.g., an item becoming too easy or too difficulty with respect to 

the examinees) also led to diminution in the lasso regularization, and the method 

increasingly failed to yield non-zero penalty parameters (λ) because the data began to 

behave more as a constant. 

To be clear, the study results should not be interpreted as fully supporting that LR 

lasso is without merit in application. Across all conditions and replications that contained 

any simulated DIF items, LR lasso provided equal or superior hit rates in 40.57% of the 

simulated tests (or replications). Furthermore, LR lasso provided equal or lower type I 

error rates in 54.76% of the simulated tests, with 33.00% having lower type I error rates. 

However, LR lasso was more likely to flag an excessive number of items as having DIF, 



104 

 

with 5.38% of replications across all conditions (both those free of DIF items and those 

containing DIF items) having eight or more items (20% or more of the total test length) 

falsely flagged for DIF. 

As observed in multiple plots for scenarios with commensurate TIF targets, there 

was a proclivity for λ parameters to be positive roughly half of the time when items are 

falsely flagged for DIF. In theory, it is possible that a correction could be implemented to 

decrease type I error in one of two ways: (1) constrain the λ parameters during 

regularization to prevent positive values (which would be a non-trivial task and an 

arbitrary constraint), or (2) implement a post hoc correction of positive values that 

replaces them with zero. However, caution is strongly urged that trying to advantageously 

use such a trend (based upon simulated data alone) is without theoretical basis and would 

introduce risk to potentially increasing type II error because a small proportion of true 

DIF items have positive λ values. In other words, attempting to correct for type I error on 

the basis of positive λ values is not prudent and could have a slight adverse impact on 

type II error rates. A more statistically sound approach would be to use BIC instead of 

WIC to achieve a more parsimonious/conservative solution. 

Considerations of Effect Size Measures 

 Currently, the measurement field does not have any effect size indices upon 

which to interpret multiple group DIF results. Largely, the decision for determining if an 

item exhibits DIF is based upon tests of statistical significance. To illustrate, the log-odds 

ratio (alpha) exists to describe DIF magnitude for two-group comparisons via MH, but a 

similar metric does not exist for GMH. The LR lasso method at least avoids the 
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dependence upon significance testing within the context of multiple groups with the 

criterion of a non-zero group parameter. While not being a hypothesis test, per se, the 

criterion is based upon a difference from zero, which is conceptually similar to a 

hypothesis test and may not provide entirely different results (as was reflected in the 

simulation results too).  

A few complications arise in deriving an effect size based measure to describe the 

findings of a test for DIF among multiple groups. First, having multiple focal groups 

requires a procedure that compares each focal group with the reference group. This 

comparison could be done separately (i.e., pairwise) or simultaneously (i.e., 

multivariate/matrix-based calculations). If a pairwise procedure would be implemented, 

then potentially useful data between focal groups amongst themselves would need to be 

considered in the analysis. Otherwise, possibly meaningful information would be ignored 

for the sake of a traditional interpretation, which is not a prudent use of having additional 

data available. If a matrix-based computation is considered, care must be taken to ensure 

a standardized result. It is possible that an index conceptually similar to Cohen’s d (or 

Mahalanobis distance, or the ETS delta scale) could be computed using a matrix of mean 

differences that are post-multiplied by an inverse covariance matrix. Though, unless the 

measure of effect size(s) could be reduced to a single value, interpretation becomes 

complex with the need for conjunctive or disjunctive criterion for discerning when an 

item may or may not be exhibiting DIF. And if reduced to a single index, then post hoc 

explorations would be needed. Additionally, there is no guarantee that any matrices based 
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upon the assessment data would meet the requirements for definiteness and being non-

singular needed for various methods. 

Other options could exist as well. For instance, decomposition/factorization of 

matrix-based DIF information (and not like a singular value decomposition of scored 

assessment data like that done in more traditional dimensionality analyses) could 

eliminate the complexity of conjunctive or disjunctive criteria. However, simply having a 

flag for DIF does not indicate wherein the DIF lies among the multiple groups and post 

hoc procedures would be still required (much like those for ANOVA tests). While the 

GLR and LR lasso are suitable regression-based procedures, other regression-based 

procedures such as log-linear models could be used to analyze multivariate contingency 

table counts (assuming Poisson-distributed error terms). Other more traditional effect size 

measures for contingency tables, such as Phi (φ) and Cramer’s V, do not have optimal 

statistical properties because ranges of the indices are influenced by distributions of the 

data. 

Finally, the multiple groups DIF magnitude could be considered on a distance 

metric. For example, a distance measure could be used to explain relative differences 

between log odd ratios for each group. Doing so would capitalize on using contingency 

table information, while still maintaining an interpretation of log-odds that could be 

based on an effect size metric. Additionally, such a technique could allow for a more 

complex distance (e.g., Mahalanobis distance) to generalize to simpler distances for 

interpretation (e.g., normalized Euclidean distance) in the case of two groups. Moreover, 

such an approach could more globally consider relative differences in the log-odds ratios 
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between groups across items, which concurrently allows for DIF to be interpreted as the 

relative difference in item difficulties between the multiple groups (similar to the 

philosophy advocated by Bechger and Maris, 2015), thereby avoiding the usual issue of 

using the total score (which is always related to the items which are being tested for DIF) 

for DIF detection. DIF magnitude could be classified according to the number of 

discrepant focal groups, the degree to which DIF exists for each focal group, as well as 

the direction of DIF.  

Limitations and Future Research 

 As mentioned previously in this document, item purification was not performed 

with GMH and GLR. Inherently, the lasso constraints in LR lasso are a type of selection 

procedure, and comparisons with GMH and GLR using item purification adds additional 

selection procedures. As such, item purification would have presented itself to be a 

confound in this study given that the merits of using the lasso methodology needed to be 

compared against baseline performance (which is not having a selection/purification 

process in a multiple group setting), but perhaps it would not be confounding in future 

studies if the purpose of such studies examine specific scenarios where there may be 

expected differences between selection procedures. 

 Another limitation to the current study is that the generation models only included 

uniform DIF that is unidirectional/asymmetric with respect to groups. While this type of 

DIF is commonly observed, it is difficult to support using the results from this study to 

generalize more broadly to various types of DIF (non-uniform DIF and/or symmetric 

DIF). As an example, crossing non-uniform could be generated using the U3PL in a 
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future study in such a way that the DIF-inducing discrimination and difficulty parameters 

are chosen to allow uniform and non-uniform DIF to yield comparable levels of bias 

(Swaminathan & Rogers, 1990; Kristjansson, Aylesworth, McDowell, & Zumbo, 2005). 

To clarify further, changes in discrimination requires a scaling adjustment to the 

difficulty parameters to yield nearly equivalent differences in ICCs across groups (if this 

definition of DIF is used to establish equivalent amounts of DIF). Magis, Tuerlinckx, and 

De Boeck (2015) note that LR lasso is more akin to the Rasch model than the U2PL 

because the examinee’s total score used in the prediction is not a weighted sum score, so 

manipulating DIF through the discrimination parameter in the generating model would be 

a fruitful investigation to explore the effects on DIF detection imposed by the lasso 

constraints. This investigation could be coupled with further exploring convergence 

issues in terms of variability of the λ parameters. 

The effect of non-normal ability distributions on LR lasso should also be explored 

(either for two groups or multiple groups). McLaughlin and Drasgow (1987) discussed 

that the sphere of generalization for the results of studies are often limited to samples 

containing normally distributed abilities, which is the case in this study. Moreover, strict 

normality is difficult to find in practice (Micceri, 1989). Given the warranted nature of 

non-normality, there are multiple ways it could be explored. If the data generation model 

is unidimensional, the true ability distributions could be based upon the standard 

Gaussian distribution and a rescaled Beta distribution with skew of -.75 (Kristjansson, 

Aylesworth, McDowell, & Zumbo, 2005), and could be defined as 6*(rbeta(N, α=2.57, 

β=1) - .5) in order to correspond with roughly an 83% pass rate. If the data generation 
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model is multidimensional, the true ability distributions could be based upon the 

multivariate standard normal distribution and a rescaled dirichlet as a multivariate 

generalization of the beta distribution suggested above for the unidimensional model. 

Another limitation with the current study is that the generation model is 

unidimensional, when data are often impacted by multi-faceted sources of variability in 

reality. Therefore, data generation with a MIRT model could be explored (e.g., two-

dimensional MIRT 3PL). Under such a study design, the first dimension is the construct 

intended to be measured, and the second dimension is a nuisance dimension that perhaps 

contributes the DIF. However, care should be taken to ensure that DIF is a property of the 

item parameters, and not necessarily created in the examinee ability values. Other 

variations of the MIRT 3PL with differing numbers of nuisance dimensions could be 

explored in this context, with differing levels of association assumed between both 

intended and nuisance dimensions. 

Conclusion 

Taken collectively, the results of the simulation study can be interpreted to 

support the claim that LR lasso failed to perform comparably with more established 

methods for multiple groups DIF detection across numerous instances but could 

potentially have merit in practical application in situations that have yet to be explored. 

While some limitations of LR lasso were noted within this study, there are a variety of 

other conditions which need to be explored before practitioners discard the method 

altogether for use in multiple groups contexts (a few such studies were suggested above). 

It may well be the case that the added complexity afforded by the regularization in 
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estimating the group-specific model parameters through lasso constraints may confound 

the detection of the DIF items. 

The merits of this study, ultimately, are two-fold. First, LR lasso simply did not 

perform on par with other, more traditional DIF-detection methods such as the GMH and 

GLR methods, even under rather ideal measurement conditions. This finding suggests 

that further investigation of the LR lasso method within the context of multiple groups 

may be equally discouraging. Second, methodologically speaking, this study 

demonstrates the need for DIF research to consider multiple factors. Those factors 

include: (a) the measurement properties of the scale relative to the test purpose and to the 

reference and focal group sampling distributions and (b) the specific characteristics of the 

DIF-impacted items relative to both the examinees and to the score scale properties. That 

is, it seems naïve and certainly an oversimplification of reality to merely consider sample 

sizes and various magnitudes of proficiency score differences between reference and 

focal groups. Nor should it be exclusively about the number of items chosen to have DIF. 

DIF research should be about a complex system of sampling, scale properties, and item 

design and psychometric characteristics that need to be considered simultaneously, 

regardless of which DIF-detection methods are being compared. In that respect, this study 

provides an important example of how to include many of those factors in a study and 

then tease out pragmatically relevant findings. 

While the global specification of the LR lasso model seemed to be a promising 

attribute of the method, there was support from this study to believe that it could be at the 

crux of the classification errors that were observed. The method may be better supported 
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under the conditions originally explored by Magis, Tuerlinckx, and De Boeck (2015), 

which included dichotomously scored data and two groups. Ultimately, while the 

accurate detection of DIF items is paramount to psychometrics, efficient and effective 

preventative measures during item and test development should have precedence and 

ideally lead to situations where many limitations of DIF methodology are never observed 

incipiently. 
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