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Abstract: The spectral mass-specific scattering cross section σ[PIM](λ) is 

most important for the remote sensing inversion of the concentration of 

suspended mineral matter in the coastal ocean. This optical parameter is 

also important in optical theory and therefore the theoretical limits of this 

parameter are important. There are differing reports in the literature on the 

magnitude of σ[PIM](λ) and its spectral slope in different coastal ocean 

systems. To account for and predict these differences, I have applied a 

model of the size distribution of primary suspended mineral particles and 

aggregates of these particles to theoretical calculations of σ[PIM](λ). I utilized 

a model of mineral particle aggregates by Khelifa and Hill [Khelifa, A. and 

P.S. Hill, J. Hydraul. Res. 44, 390 (2006)] and Latimer's optical model of 

aggregates [Latimer, P., Appl. Opt. 24, 3231, (1985)]. I have been able to 

account for the variations in magnitude and spectral slope of σ[PIM](λ). This 

analysis will apply to not only inverting the concentration of suspended 

mineral matter but also provides the basis for inverting the processes of 

coagulation and aggregation of primary mineral particles in determining 

sedimentation rates, budgets, etc. 
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1. Introduction 

The scattering coefficient of the marine hydrosol is the source of remote sensing information 

about the suspended components in the ocean and the basis for mechanistic algorithms to 

invert the remote sensing reflectance and retrieve concentrations of materials of interest: 

suspended sediments, organic particulate matter, dissolved organic matter, chlorophyll 

concentration, etc [1–3]. The absorption coefficient of the marine hydrosol is routinely 

coupled with the scattering coefficient to generate remote sensing algorithms [4]. Furthermore 

the absorption coefficient is routinely partitioned by various methods into absorption due to 

phytoplankton, yellow substance, organic detritus, etc. to give more information about the 

materials suspended in the marine hydrosol [1,5]). However, the scattering coefficient is not 

routinely partitioned except to attribute scattering to molecular water and “particles.” 

Suspended particulate matter can be broadly classified into inorganic, often terrigenous, 

matter and organic matter, some terrigenous but usually autochthonous. The two broad 

categories of suspended particulates have different indices of refraction and therefore rather 

different scattering coefficients. These differing scattering coefficients generate different 

effects on the remote sensing reflectance. This factor is most pronounced in coastal ocean 

waters and our program in biogeo-optics is now making contributions to coastal ocean remote 

sensing algorithms by the accurate partitioning of the particulate scattering coefficient [6]. 

The method of Stavn and Richter [6] is a direct mechanism for partitioning the particulate 

scattering coefficient from the determination of the concentrations of suspended mineral and 

organic matter in the marine hydrosol. Various attempts to partition the particulate scattering 

coefficient utilized more indirect information to accomplish this. Stavn and Keen [7] did this 

on the basis of the biogeo-optical model in which the majority of hydrosol absorption was 

ascribed to chlorophyll and/or CDOM while total scattering was ascribed primarily to mineral 

matter. Complex nonlinear optimizations have been performed utilizing information on the 

remote sensing reflectance and concentrations of various modes of suspended matter [8]. 

Stavn and Richter [6] perform linear multiple regression of the particulate scattering 

coefficient against the concentrations of particulate inorganic matter (PIM) and particulate 

organic matter (POM), determined by loss-on-ignition analysis. The linear multiple regression 

applied is a new Model II type multiple regression that is valid where all the variables contain 

error and the independent variables are not controlled [6,9]. This new multiple regression 

yields partial regression coefficients of PIM and POM against the particulate scattering 
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coefficient which can be interpreted as mass-specific optical scattering cross sections [6]. 

These optical scattering cross sections plus the mass concentrations of mineral and organic 

matter can then be used to partition the particulate scattering coefficient into its major 

components, i.e. the scattering coefficient of suspended mineral matter and the scattering 

coefficient of suspended organic matter. PIM and POM can in principle be further partitioned 

to allow any number of functional relations between known inorganic and organic 

constituents and the particulate scattering coefficient. 

The spectral mass-specific scattering cross section [6] for suspended mineral matter 

σ[PIM](λ) has many uses. Much of the utility comes from the fact that the spectral mass-specific 

scattering cross section can be analyzed with the full power of optical theory. In addition, 

suspended mineral matter can be considered a semi-conservative oceanographic property, as 

is done with yellow substance (CDOM). Once suspended mineral matter has been added to 

the hydrosol by erosion, resuspension, etc. it acts as a conservative property. Suspended 

organic matter, however, is notoriously non-conservative (because of phytoplankton growth 

and blooms) and thus much more difficult to analyze. Furthermore, suspended mineral matter 

is the dominant optical component of much of the coastal ocean [6,10], the forcing function 

controlling a significant proportion of the optical environment, both for the emerging in-water 

signal in the visible region and the emerging “bright pixel” signal from the red/far-red region 

of the spectrum [11] that invalidates the “dark pixel” assumption of most remote sensing 

atmospheric correction algorithms. The mineral mass-specific scattering cross section can be 

used in remote sensing inversions to retrieve the mass concentration of suspended mineral 

matter. I will show that the spectral slope of this optical parameter appears to be useful for 

retrieving the state of aggregation of suspended minerals and the probable modal size of 

suspended mineral matter. 

Suspended fine-grained mineral matter is important in transporting adsorbed organic 

matter, chemical nutrients, and chemical contaminants. Particle size distribution (PSD) and 

composition determine time of suspension and transport of materials in estuarine and coastal 

systems. State of aggregation affects the settling velocity of mineral particulates through 

changes in relative porosity and thereby density. All of this affects the contribution of 

suspended mineral matter to biogeochemical cycles. Thus, it is important to be able to 

determine in field surveys the probable median or modal size of suspended matter and its state 

of aggregation. The state of aggregation is important because the porosity of the aggregate 

changes the density of the aggregate, its refractive index, and therefore its optical properties 

[12]. 

Theoretical optical relations of suspended matter proposed by Stavn and Richter [6] 

illustrate the interrelations of a particle's size, density, refractive index, and scattering cross 

section that generate σ[PIM](λ). They propose that σ[PIM](λ), determined from field 

measurements of the particle scattering coefficient and mass concentration of mineral matter, 

is an optical property of a “mean mineral particle,” averaged over all mineral species in 

suspension. This mean mineral particle can then be characterized by the known optical 

properties of minerals, density and refractive index, to yield a true optical scattering cross 

section of the mean particle. An advantage of analysis of suspended minerals is their optical 

properties (density and refractive index) tend to be similar and thus easy to characterize 

(Table 2). An analysis of mineral optical cross sections was also applied by Green et al. [10] 

for characterizing mineral particulates determined from flow cytometry counts of total 

suspended particulates in the New England continental shelf waters. Our theoretical 

determinations for σ[PIM](λ) can be checked by quantitatively analyzing the mineral species in 

suspension through such techniques as X-ray diffraction and Energy Dispersive Spectra from 

the samples filtered from the coastal marine hydrosol. These data allow the analysis of the 

changes in σ[PIM](λ) attributable to changes in the mineral component. Additionally, field 

determinations of particle size spectra will allow further analysis of the mass-specific 

scattering cross section against predictions made from standard particle size distribution 
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(PSD) models. The information we have at present indicates that laser-based particle sizing 

appears to have the best chance of not disturbing delicate structures of aggregates [12,13]. 

A primary requisite to calculating the theoretical limits on the mass-specific scattering 

cross section is the PSD. Numerous observations on PSD over several decades by many 

researchers have resulted in an agreed general exponential decrease or power law for particle 

concentrations as we go from smaller to larger particles, early enunciated well by Bader [14]. 

He hypothesized that the slope of the power law formulation of the log transformed PSD was 

constant. The latest information on PSD's in coastal waters, inland waters, some open ocean 

waters, and laboratory investigations [10, 13–21], especially mineral PSD's, indicates that the 

slope of the log transformed PSD is not constant but rather a function of the size of particle 

[22] 

 ( ) ( )
d d ,

m r
N r Cr r=  (1) 

where dN(r) is the number concentration per cm
3
 in the interval r, r + dr, and C is a constant 

related to the concentration of particles. Equation (1) is a generalized formulation only. Actual 

realistic slopes of the PSD can be quite complex. At present, at least two general formulations 

have been proposed to explain the variations in the power law exponent of the empirical 

particle size distribution: Jonasz and Fournier [23] and Risović [24]. Jonasz and Fournier [23] 

propose that the power law behavior of the marine particle PSD results from a summation of 

individual component particles, each component following a lognormal distribution. Thus, the 

slope of the total summed particles is no longer constant but will change, based on the 

individual particle distributions at a given size interval of the PSD. Risović [24] proposed that 

this same behavior is the result of the summation of individual component distributions, each 

individual component following a gamma distribution. Both distributions, lognormal and 

gamma, describe entities in which the particle size distribution is skewed to larger numbers on 

the short side of a modal size class and lower numbers on the larger side of the modal class. 

The particles that are skewed to larger sizes than the modal size class are distributed over 

more size classes and there are fewer particles per size class. Many observations confirm this 

formulation of the distribution of size classes of individual particle types. Sokolik and Toon 

[11] have modeled radiative transfer in the atmosphere by treating the individual components 

of mineral dust as lognormally distributed. Campbell [25] has reported on the lognormal 

character of suspended phytoplankton and Ulloa et al. [26] have reported on suspended 

bacterial particles exhibiting a gamma distribution. Mahmood [27] reports on the lognormal 

distribution of mineral matter, both suspended and in sediments. Risović and Martinis [22] 

have shown that the gamma distribution shape parameters can be applied directly to the m(r) 

exponent of Eq. (1). Risović and Martinis [22] have further demonstrated that the exponent 

m(r) in Eq. (1) is the result of the type of coagulation or aggregation process of primary 

particles into amorphous particle aggregates. 

Risović [24], in an extensive analysis of published PSD's, has proposed a model of particle 

size distribution in the sea made up of two components: component A (small sized) and 

component B (large sized), each described by 3 parameters of a generalized or extended 

gamma distribution. The extended gamma distribution has been well described by 

Deirmendjian [28,29] and Zdunkowski et al. [30]. The parameters of the two-component 

model published by Risović [24] describe a summation of all the gamma-distributed particle 

components in the ocean. They provide a useful starting point for analyzing the distribution of 

subsets of the total array of materials suspended in the ocean. Peng, et al. [17,18] have 

successfully applied extended gamma distribution parameters for the B component to the PSD 

of suspended minerals in freshwater lakes and rivers. An advantage of the gamma distribution 

is the distribution shape and location parameters associated with it that help in the description 

and visualization of a particle size distribution. For this study of the optical properties of 
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suspended minerals in the coastal ocean I have chosen the power and flexibility of Risović's 

approach for the PSD derived for this analysis. 

When considering the effects of suspended mineral matter on the optics of coastal ocean 

waters, there is increasing attention being given to the coagulation of small mineral particles 

(approximately 1 µm diameter) into larger amorphous aggregates. Boss et al. [12] point out 

the significance of mineral particulate aggregations and discuss their effects on some optical 

properties of suspended minerals and their aggregates. The aggregation of smaller mineral 

particles is significant because in a mineral aggregate the optical properties can no longer be 

modeled with unmodified Mie scattering theory. For example, the porosity of the mineral 

aggregate means that optically the aggregate becomes a mixture of mineral properties and 

water properties. Latimer [31], however, has proposed a simple optical theory for aggregate 

particles that involves Mie calculations for a coated sphere, the outer layer being the sum of 

the mineral mass of the aggregate and inner core being water. I have been able to apply the 

conclusions of Latimer to determine the theoretical optical properties of the mineral aggregate 

and its contribution to the mineral mass-specific scattering cross section σ[PIM](λ). I have 

chosen the model of Khelifa and Hill [32], favored by Boss et al. [12], for modeling mineral 

particle aggregates. The Khelifa-Hill model describes the aggregate as a fractal entity 

composed of smaller primary particles, such as clay particles of about 1 µm diameter or so. 

Risović and Martinis [33] have explored the interrelations of the fractal nature of suspended 

aggregates and the two-component model [24] of particle size distribution in the sea. The 

formation and breakup of aggregations is known to affect the particle scattering coefficient. 

The relative increase or decrease of total particles will correspondingly affect the magnitude 

of the particle scattering coefficient [12,34,35]. Furthermore, the tendency to scavenge either 

all particles equally or to remove some particle size classes preferentially will change the 

PSD. This will then affect the spectral scattering slope of the particle scattering coefficient 

[36]. The size range of suspended particles that will have the strongest effect on the particle 

scattering coefficient will be those of < 10 µm diameter [34]. 

The purpose of this exercise is to explore the theoretical optical properties of the mineral 

mass-specific scattering cross section and how they are affected by suspended mineral 

aggregates. This is inspired in part by the divergence of mineral mass-specific scattering cross 

section results reported by Stavn and Richter [6] for Mobile Bay,Alabama, USA and 

Southwest Pass, mouth of the Mississippi River, USA and by Bowers and Binding [37] and 

McKee and Cunningham [38] for the Irish Sea, UK. The results will be compared with 

literature values on the optical properties of air dust suspensions in seawater [19–21]. These 

results will also have a bearing on the issue of whether or not there is a spectral slope to the 

particle scattering coefficient in the ocean [39]. 

2. Methods 

I utilized a PSD reported by Sydor and Arnone [40] from St. Louis Bay, Mississippi, USA as 

a “template” on which to fit the PSD model, the extended gamma distribution as exemplified 

by the Risović [24] two-component model which consists of 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

d d d ,

exp , exp ,A A B B

A A B B

A A B B

N r C F r r C F r r

F r r b r F r r b r
µ γ µ γ

= +

= − = −  
 (2) 

where dN(r) the number of particles per cm
3
 in the interval of radius r, r + dr or ∆r µm, CA, 

CB cm
−3

 µm
−3

 are scale parameters related to the concentration of the A component (smaller 

particles) and B component (larger particles), µA and µB are parameters related to the modal 

values of the distributions of the two particle components, bA µm
−1

 and bB µm
−1

 are 

parameters of the width the of distribution of each component, and γA and γB are the shape 

parameters of each particle component's distribution. The A component exhibits a “steeper” 

shaped size distribution than the B component which exhibits a “flatter” shaped size 
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distribution. The γ parameters are the most variable components of the model. They are varied 

to generate the different types of distributions of the A component and the B component. 

They help determine whether there are relatively more or less smaller particles present. Any 

numerical concentration of any size range of the A component is determined in the same way 

as in a size range of the B component. For any radius interval ri = ru - rl = ∆r, where ru is the 

upper bound of the interval and rl is the lower bound of the interval, the particle concentration 

in a particular size range of this model is evaluated as follows 

 
( )

/ 2 / 2

/2 /2
d d ,

,

A
A iA

r r
b r

Ai A A i A i

A Ai
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∫ ∫
∑
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 ,
T A B

N N N= +  (5) 

where NA is the total number of A component particles, NB is the total number of B 

component particles, and NT is the total particle concentration. The numerical integrations to 

evaluate NA and NB [24] were performed with Simpson's Rule [41]. The primary components 

varied were CA and CB which are the major determinants of the relative amounts of smaller 

particles and larger particles in the PSD. The radius which approximately determines which 

components are dominant, in which size range, is the radius of about 1 µm (2 µm diameter). 

The smaller A component tends to dominate below this limit and the larger B component 

Table 1. Coastal Two-Component Mineral Model Parameters 

PSD Model CA CB bA bB µA µB γA γB 

Prim. Particle 

Dominant 

6.000 x 1023 1.550 x 1012 45.0 19.0 3.2 5.0 0.120 0.235 

         
Intermediate 

Dominance 

6.000 x 1022 1.750 x 1012 45.0 19.0 3.2 5.0 0.150 0.235 

         
Aggregate 

Dominant 

6.000 x 1023 1.750 x 1013 45.0 19.0 3.2 5.0 0.120 0.235 

tends to dominate above this limit. The parameters utilized in this study are in Table 1. The 

changes in the CA and CB parameters, generating differing amounts of the relatively small and 

large particles, were investigated for their effects on the mass-specific scattering cross section, 

σ[PIM](λ). 

I assumed that the approximately submicron range, colloidal, mineral particulates 

represent the A component in the Risović concept of a two component model of the PSD. It is 

well known that very small colloidal particles aggregate readily and relatively quickly to form 

particles in the range of about 0.1-1 µm diameter [42–44]. These particles are relatively stable 

and are distributed in a skewed manner to the larger particle sizes after the smaller particles 

have been aggregated to form the distribution around a modal diameter of about 1 µm. Such a 

distribution is a gamma-type or a lognormal-type. Then, various processes, fluid shear, 

sedimentation, turbulence, etc. combine to slowly form larger, amorphous aggregates from the 

primary particles generated by aggregation and packing of colloidal particles [33,36,45,46]. 

Furthermore, Risović and Martinis [22] have related the gamma coefficients (shape 

parameters) of two-component-type models to the major mechanisms of coagulation and 
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aggregation. Thus, the B component of a Risović-type two-component model then represents 

here the relatively amorphous mineral aggregates of greater than 1 µm radius (2 µm 

diameter). I am calling this the two-component mineral model. About the only data available 

from the marine environment to compare with these assumptions about the A and B 

components of a two-component-type model of suspended minerals are those of Green et al. 

[10], collected from the New England shelf waters. Two distinct mineral particle groupings, 

particles <3.5 µm and particles >3.5 µm diameter, are evident in their data. 

I modeled mineral aggregates of both montmorillonite and illite primary particles. The 

mineral aggregates were modeled from the fractal-based model of Khelifa and Hill [32]. The 

refractive indices of Montmorillonite and Illite were used to model the refractive index of the 

suspended mineral particles. Their refractive indices represent approximate limiting values of 

the optical properties of the typical clay minerals commonly found in the coastal ocean, with 

Montmorillonite often the dominant component [47–50]. And, other suspended mineral 

components have refractive indices close to that of clay minerals [48]. Thus, I assumed that 

the optical properties of clay minerals would serve as a model of the optical properties of 

suspended minerals in general. The Khelifa–Hill model was then utilized to determine the 

relevant physical characteristics of the aggregate particles. Kehlifa-Hill predicts the porosity 

and density of clay mineral aggregates up to 2000 µm diameter, the aggregates composed of 

primary particles, 1 µm diameter. It describes an amorphous mineral aggregate with fractal 

geometry. The fundamental concept of fractal geometry is the fractal dimension that, in this 

case, summarizes the shape and relative porosity of a mineral aggregate. The fractal 

dimension is analogous to the dimensions of real objects [46]. The fractal dimension of 3 

indicates a 3-dimensional spherical object, tightly packed primary particles perhaps. The 

Fractal dimension of 2 indicates a 2-dimensional object, which could be considered a “sheet” 

composed of randomly branching primary particles. The fractal dimension of 1 indicates an 

object composed of randomly collected particles in a predominantly linear structure. Fractal 

dimensions in between these limits would then have intermediate structural properties. The 

fractal dimension F for the clay mineral flocs was determined with the equation 

 ,
fD

F
d

β

α
 

=  
 

 (6) 

where α = 3.0, Df is the equivalent spherical diameter of the floc in µm, Dfc is the equivalent 

spherical diameter of a maximal characteristic floc size, here 2000 µm, Fc is the fractal 

dimension of the maximal characteristic floc size, d (primary particle diameter) = 1.0 µm, β = 

log(Fc/3)/log(Dfc/d). The Khelifa-Hill model [32] is expressed as a “median” value and an 

upper and lower model limit that account for the majority of the experimental and 

observational values of the clay mineral aggregation studies in their database. These three 

versions of the model illustrated in Khelifa and Hill [32] were utilized in this study. The 

model is based on a maximal size for a clay mineral aggregate, an assumed 2000 µm 

diameter, and a fractal dimension Fc of this maximal aggregate. The fractal dimension for a 

clay mineral aggregate decreases monotonically from 3.0 for an “aggregate” that is the 

diameter of the primary particle to the value of Fc for the maximal aggregate diameter. The 

three model versions are controlled by the value of Fc: 2.4, 2.0, and 1.6, for the maximal 

aggregate diameter. In turn, these values determine the value of β: – 0.02936,.− 0.0533, and − 

0.08270 respectively. The clay mineral aggregate models were referred to as the Low, 

Standard, and High Khelifa-Hill models. We can see that the dimension of the low fractal 

limit model predicts an aggregate that is relatively loosely and randomly organized. The high 

dimension model predicts a more tightly packed clay mineral aggregate. The Khelifa-Hill 

model then predicts the density of an aggregate or floc based on the fractal modeling of the 

aggregate. As a floc gets bigger its density becomes lower, i.e. the fractal dimension 

decreases, and this is important for predicting the settling velocity of the floc and for 
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estimating the optical properties of the floc [12]. Τhe effective density of the floc is termed 

the excess density and it was determined from 

 ( )
3

,
w

F

f

r s w

D

d
ρ ρ ρ ρ

−
 

− = −  
 

 (7) 

where ρs = density of the primary particle (montmorillonite or illite), ρw = the density of 

water, ρr = the density of the floc (montmorillonite or illite + water). These 3 densities made it 

possible to construct an optical model of the aggregate proposed by Latimer [31], a coated 

sphere, of the various sized montmorillonite or illite flocs. Latimer’s [31] model consists of 

the mass of the mineral portion of the floc condensed into a shell of montmorillonite or illite 

surrounding a core of water. The index of refraction used was that for either montmorillonite 

or illite and the imaginary components of the refractive indices were determined for the 

wavelengths utilized, Table 2 [48]. As per Latimer's specifications, coated sphere Mie 

calculations were performed to determine the scattering efficiency and particle scattering 

Table 2. Relative Refractive Indices of Clay Minerals. Real Component n and 

Imaginary Component n’ 

Clay 

Mineral 
n                                                             n' 

  412 440 488 510 532 550 650 676 715 

Montmorillonite 1.17 1.272 

x 10−4 

0.900 

x 10−4 

0.571 

x 10−4 

0.368 

x 10−4 

0.323 

x 10−4 

0.286 

x 10−4 

0.521 

x 10−4 

0.677 

x 10−4 

0.756 

x 10−4 

           

Illite 1.18 8.433 

x 10−4 

7.957 

x 10−4 

7.742 

x 10−4 

7.190 

x 10−4 

6.201 

x 10−4 

5.728 

x 10−4 

6.928 

x 10−4 

8.703 

x 10−4 

9.016 

x 10−4 

cross section of a floc (B component) of a particular diameter. Fortran code for the Mie 

calculation of both a solid and a coated sphere came from Bohren and Huffman [51]. The 

particles of Montmorillonite and Illite, somewhat larger than 1 µm radius, representing the A 

component, were assumed to be essentially spheres of tightly packed primary particles. 

Ordinary Mie calculations of a solid homogeneous sphere were performed on the primary clay 

mineral particles (A component) to determine their scattering efficiencies and particle 

scattering cross sections. Risović and Martinis [33] demonstrated that the fractal dimension of 

A component particles in the coastal ocean varied from about 2.7 – 3.0, essentially tightly 

packed spherical particles or aggregates. The primary particles that contributed the most to the 

calculation of the mass-specific scattering cross section varied from 0.5 - 3.0 µm radius (1.0 - 

6.0 µm diameter) while the most important equivalent spherical radii of the montmorillonite 

and illite aggregates varied from 2.0 - 8 µm (4.0 - 16 µm diameter). Any primary particles or 

aggregates larger than those mentioned above did not contribute significantly to the mass-

specific scattering cross section. The wavelengths used in the calculations were: 410 nm, 440 

nm, 488 nm, 510 nm, 532 nm, 550 nm, 650 nm, 676 nm, and 715 nm. 

With all of the information supplied above, we are now ready to calculate theoretically the 

average mineral mass-specific scattering cross section [52] of a hydrosol σ[PIM](λ) and 

determine its limits. Stavn and Richter [6] derived the theoretical value of the mineral mass-

specific scattering cross section determined in the field 

 ( ) ( )
[ ] ,

m

PIM i j
m m ij
v

σ λ
σ λ

ρ

 
=  

 
∑ ∑  (8) 

where σm(λ) is the particle (primary or aggregate/floc) scattering cross section, here 

determined from the Mie calculations, λ denotes light wavelength in a vacuum, ρm is the 
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mineral density, either as primary particle or as a floc, vm is the volume of either a primary 

mineral particle or of a mineral aggregate, i subscript indicates summation over particle 

species, j subscript indicates summation over the weighted size classes of a particular mineral 

species. I utilized mineral mass-specific scattering cross sections from Mobile Bay, Alabama, 

USA, Southwest Pass, mouth of the Mississippi, USA [6], and the Irish Sea, UK [37,38] to 

compare with the theory. 

3. Results 

The two-component mineral model particle size distribution dominated by primary particles is 

 

Fig. 1. Particle size distribution for primary mineral particle dominated PSD. The ratio of small 

particles to large in this model is NA/NB = 1.55. The parameters of the Two-component Mineral 

Model applied here are: CA = 6.0 x 1023, CB = 1.55 x 1012, µA = 3.2, µB = 5.0, γA = 0.12, γB = 

2.35 

plotted in Fig. 1. The dominance by primary particles is indicated by the ratio NA/NB = 1.55. 

The distribution of the mineral aggregates of component B occurs at least one order of 

magnitude lower than the peaked portion of the distribution of primary particles, component 

A. The particle size distribution in which the primary particles and the aggregate particles are 

of about the same order of magnitude concentration is plotted in Fig. 2. The near equivalence 
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Fig. 2. Particle size distribution for equivalent primary and aggregated mineral PSD. The ratio 

of small particles to large in this model is NA/NB = 0.42. The parameters of the Two-component 

Model applied here are: CA = 6.0 x 1022, CB = 1.75 x 1012, µA = 3.2, µB = 5.0, γA = 0.15, γB = 

2.35 

 

Fig. 3. Particle size distribution for mineral aggregate dominated PSD. The ratio of small 

particles to large in this model is NA/NB = 0.135. The parameters of the distribution applied 

here are: CA = 6.0 x 1023, CB = 1.75 x 1013, µA = 3.2, µB = 5.0, γA = 0.12, γB = 2.35 

of primary particles and aggregated particles is indicated by the ratio NA/NB = 0.42. The 

particle size distribution that is dominated by mineral aggregates is plotted in Fig. 3. The 
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mineral aggregates occur at significantly greater concentration than the primary mineral 

particles, indicated by the ratio NA/NB = 0.135, nearly an order of magnitude higher. The 

essential difference between these distributions is the CA/CB ratio (Table 2) which serves to 

simply move the distribution of the mineral aggregates, component B, up or down relative to 

the distribution of primary particles, component A, and redistribute the particle 

concentrations. It is possible to see that the log plot of total particles with radius, in some 

cases, could be interpreted as a constant slope in some sections of the distribution, especially 

the larger radii (Figs. 1-3). 

Mineral mass-specific scattering cross sections σ[PIM](λ) calculated from the aggregate 

models utilized here (PSD's delineated in Figs. 1-3) and field data [6] with new correction 

factors are plotted in Figs. 4 and 5 and the comparisons with Irish Sea data [37,38] are in Fig. 

6. In Fig. 4 we compare the calculated plots of σ[PIM](λ) for the primary particle dominated 

PSD with the σ[PIM](λ) plot for Mobile Bay, Alabama, USA. The values of σ[PIM](λ) in Mobile 

Bay varied from 0.84 – 0.64 m
2
 g
−1

, from the blue to the red end of the spectrum, and 

 

Fig. 4. Mass-specific scattering cross sections for primary particle dominated PSD compared to 

Mobile Bay, Alabama, USA results (Stavn and Richter, 2008). Results from Montmorillonite 

and Illite aggregate models determined at low, median, and high fractal dimensions. 

these values were the highest of any field data recorded. The plots from all the models 

demonstrate values of σ[PIM](λ) of 1.03–0.59 m
2
 g

−1
 from the blue to the red end of the 

spectrum. Most of the model values tend to fall above the values of the field data. All the 

model plots fall within the standard errors for the field data at the wavelengths 650 nm – 715 

nm. The Montmorillonite Low Model falls above the standard error of the field data at all 

shorter wavelengths. All models fall above the standard error of the field value at 412 nm. All 

models except the Montmorilllonite Low Model just equal or fall inside the upper standard 

error value at the wavelengths of 488 nm – 550 nm. The spectral slopes for models and field 

data appear to be comparable, are negative from the blue to the red end of the spectrum, and 
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appear to be the largest slopes recorded from the field. The extreme model values are 

represented by the Montmorillonite Low Model and the Illite High Model. The closest fits 

appear to be Illite in either the Standard or High Models. 

In Fig. 5, we compare the plots of σ[PIM](λ) from the intermediate particle PSD to the plot 

from Southwest Pass, Mississippi River, USA. The values of σ[PIM](λ) at the Southwest Pass 

varied from 0.63 – 0.51 m
2
 g
−1

, from the blue to the red end of the spectrum, and these values 

 

Fig. 5. Mass-specific scattering cross sections for primary and aggregate co-dominant PSD and 

compared to Southwest Pass, mouth of the Mississippi, USA data (Stavn and Richter, 2008). 

Results from Montmorillonite and Illite aggregate models determined at low, median, and high 

fractal dimensions. 

were in the mid-range of any recorded from the field. The plots from all the models 

demonstrate values of σ[PIM](λ) of 0.69 – 0.37 m
2
 g

−1
 from the blue to the red end of the 

spectrum. All of the model plots fall within the standard errors determined for the field data 

with the exception of the Illite High and Montmorillonite High Models at 676 nm and 715 

nm. Most of the model values tend to fall below the values of the field data. The spectral 

slopes for models and the field data appear to be comparable with the Illite Low Model and 

the Montmorillonite Low Model having slopes closest to the field data. The spectral slopes 

are negative from the blue to the red end of the spectrum and they appear to be less than the 

spectral slopes for the primary particle dominant PSD in Fig. 4. The extreme model values are 

represented by the Montmorillonite Low model and the Illite High model. The closest fit 

appears to be the Illite Low model. 

In Fig. 6, we compare the plots of calculated σ[PIM](λ) values from the aggregate dominated 

PSD models with two plots of field data from the Irish Sea, UK [37,38]. The values of 

σ[PIM](λ) from the Irish Sea vary from approximately 0.23 to 0.34 m
2
 g
−1

 at the blue 
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Fig. 6. Mass-specific scattering cross sections for aggregate dominated PSD compared with 

results from the Irish Sea (Bowers and Binding, 2006, McKee and Cunningham, 2006). Results 

from Montmorillonite and Illite aggregate models determined at low, median, and high fractal 

dimensions. 

end of the spectrum to 0.29 to 0.36 m
2
 g

−1
 at the yellow/red end of the spectrum and these are 

the lowest recorded field values. The values from aggregate dominated PSD models for 

σ[PIM](λ) cluster reasonably closely around the Irish Sea data but no model settles completely 

within the standard deviation limits of the field data. The field data indicate either no 

significant spectral slope to the Irish Sea data or perhaps a positive spectral slope from the 

blue to the red end of the spectrum. In addition, there is a possible spectral peak in the region 

around 550 nm in the field data. The model calculations tend to fall equally above and below 

the field data. The extreme values from the model calculations occur with the 

Montmorillonite Low Model to the Illite High Model. The Illite Low Model appears have a 

spectral slope comparable to the data from Mckee and Cunningham [38] and for the most part 

hovers just above the standard deviation limits of the data. The Illite Low Model calculations 

fit within the standard deviation limits of the middle portion of the Bowers and Binding [37] 

data. The calculations from the Montmorillonite Low Model demonstrate a comparable 

spectral slope. There is an interesting “hinge point” with the model calculations in which the 

spectral slopes are either small to 0 or varying between being negative or positive The field 

data reported from Bowers and Binding [37] are comparable to much of the data of McKee 

and Cunningham [38] but diverge somewhat at at the blue and yellow/red ends. There is a 

positive spectral slope to the Bowers and Binding [37] data if we discount the data point at 

650 nm 

4. Discussion 

We have demonstrated theoretical characteristics of the mass-specific scattering cross section 

of suspended mineral matter that are verified in part by experimental observations from field 
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studies and this will have practical applications. I have proposed a two-component mineral 

PSD model based on Risović’s two-component model for the total particle PSD. The smaller 

(A) component of the two-component mineral model is assumed to be primary mineral 

particles. The larger (B) component of the PSD model is assumed to be aggregates composed 

of the primary particles. The results presented here will potentially apply to all studies of 

suspended mineral matter in the coastal ocean and inland waters. 

The rationale of the models is as follows. In an effort toward sensitivity analysis, I have 

applied the refractive indices of Montrmorillonite and illite, as possible mid values of mineral 

real refractive indices [11,53]. The imaginary components of their refractive indices [11] may 

serve as typical limiting values of the mineral refractive index. Thus I have montmorillonite 

and illite models which serve as models for the refractive index of suspended mineral matter. 

The aggregation of primary clay mineral particles to secondary mineral aggregates is modeled 

from the Khelifa-Hill [32] clay mineral fractal aggregation model. The Khelifa-Hill model for 

clay mineral aggregations was expressed in three forms, based primarily on variations in the 

fractal dimension of the largest aggregate particle in the model, assumed to be 2000 µm in this 

study. The fractal dimensions for the maximum diameter clay mineral aggregate in their 

model were 2.4, 2.0, 1.6. I proposed three models based on the three fractal dimensions of 

Khelifa and Hill [32]. The High Model (maximum fractal dimension 2.4) aggregates are a 

series that tends to be relatively more tightly packed with primary clay mineral particles. The 

Standard Model (maximal fractal dimension 2.0) aggregates are a series that is more diffuse 

and open. Finally, the Low Model (maximal fractal dimension 1.6) aggregates are a series 

with the most open and loosely packed aggregate structures. Latimer [31] provides accurate 

estimates of the physical and optical properties of the clay mineral aggregates (B component) 

based on the variations in the models delineated above and the optical coated sphere model. 

Changes applied to the parameters of the two-component mineral model were, in part, 

designed to mimic the changes occurring in suspended mineral particles associated with the 

process of mineral particle aggregation. The extended gamma distribution provided the basis 

for the distribution of component A, the primary clay mineral particles. Another extended 

gamma distribution provided the basis for component B, the model for the distribution of 

aggregated primary clay mineral particles. The gamma distribution parameters reported by 

Risović [24] were used as a starting point. The CA and CB coefficients are directly related to 

the concentrations of primary and secondary (aggregated) particles, Eqs. (3) and (4). In 

addition to the magnitudes of CA and CB, Eqs. (3) and (4) demonstrate that the relative 

concentrations of the A and B components are also a function of their respective gamma or 

distribution shape coefficients. The CA coefficient and the CB coefficient were varied to 

simulate the process of aggregation of primary particles into secondary particles or aggregates 

by decreasing the A component and increasing the B component. The particle distributions 

varied from one with primary particles dominant, relatively smaller CB coefficient, to one of 

aggregated particles being dominant, with a relatively large CB coefficient (Table 1). The 

shapes of the two components were nearly constant and only their positions in the total 

distribution relative to each other varied. Thus the number of aggregated primary particles 

increased in the three PSD’s utilized (Figs. 1-3). The change in absolute number 

concentrations of the A and B components without change in shape of the component 

distributions would mimic one process or series of constant processes creating aggregates 

from primary particles (concentration decreasing) and the size classes of the B component 

increasing proportionately. This change in the relative concentrations of A and B components 

creates an increase in the size of the modal class of the total particle distribution (Figs. 1-3). 

The two-component extended gamma distribution of suspended mineral components, 

emulating the Risović two-component total particle distribution, proved capable of 

reproducing the values of σ[PIM](λ) recorded in the field. 

The mass-specific scattering cross sections of Mobile Bay, Alabama, USA, were the 

highest values reported in this study (Fig. 4). Intercomparisons of scattering data are often 
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formulated in the region of 550 nm, roughly the middle of the visible spectrum, and this 

works well for mineral scattering as there aren’t usually multimodal peaks in the spectral 

slope for mineral scattering. For Mobile Bay, the value of σ[PIM](550) is about 0.74 m
2
 g

−1
. 

The σ[PIM](550) model values ranged from about 0.83-0.74 m
2
 g

−1
, tending to be higher than 

the field values. Only the highest model value fell outside the standard error limits of the field 

value. The association of high values of σ[PIM](λ) with a fairly steep spectral slope comes from 

a suspended mineral particle distribution dominated by the small primary particles of 

Component A (Figs. 1, 4). In Fig. 1 the modal class for suspended mineral particles appears to 

be about 0.5 µm radius (1.0 µm diameter). Thus we can infer that the suspended minerals of 

Mobile Bay are not significantly aggregated and exist for the most part as primary clay 

mineral particles. It is possible that a mineral model with greater width of the component 

distributions would have a smaller and/or flatter spectral slope, like the field data, a subject 

for future theoretical and experimental investigations. At Southwest Pass, mouth of the 

Mississippi, USA, the mass-specific scattering cross section was lower in value and the 

spectral slope was a little flatter than that at Mobile Bay (Fig. 5). The value of σ[PIM](550) is 

about 0.58 m
2
 g

−1
. The σ[PIM](550) model values range from about 0.59 m

2
 g

−1
 to 0.47 m

2
 g

−1
, 

tending to be lower than the field values. All model values fell within the standard error 

limits. The lower value of σ[PIM](λ) and the flatter spectral slope are associated with a 

suspended mineral particle distribution in which smaller primary clay mineral particles 

(Component A) are approximately co-dominant with aggregated clay mineral particles 

(Component B), Fig. 2. The approximate modal size class of the total PSD appears to cover a 

plateau from about 0.8 µm to about 1.0 µm radius (1.6 µm to about 2.0 µm diameter), Fig. 2. 

Overall, considering the pattern of the results, the models for primary particle dominant 

systems may have had a modal particle class somewhat smaller than those of Mobile Bay. 

The model for a co-dominant system may have had a larger modal particle class than was the 

case for Southwest Pass. Illite in a fairly well-packed aggregate appears to mimic well the 

data for Mobile Bay. Both Illite and Montmorillonite in a loosely packed aggregate appear to 

mimic well the Southwest Pass field data. 

The final sets of field data presented here come from the Irish Sea, UK, as reported by 

Bowers and Binding [37] and McKee and Cunningham [38], Fig. 6. These were the lowest 

recorded field values of the mass-specific scattering cross section. The value of σ[PIM](550) is 

about 0.38 m
2
 g
−1

.to 0.39 m
2
 g
−1

, both values easily falling within the standard deviation of the 

other (Fig. 6). Furthermore, the field data demonstrate the possibility of a “bulge” at 550 nm 

in the green spectral region. The σ[PIM](550) model values vary from about 0.44 m
2
 g
−1

 to 0.29 

m
2
 g
−1

, about equally above and below the field values. The lowest values for σ[PIM](λ) and the 

spectral slope varying from zero to positive are associated with a suspended mineral particle 

distribution in which the aggregated clay mineral particles (Component B) are dominant (Fig. 

3). The approximate modal size class of the total PSD appears to be at the radius of 2.0 µm 

(4.0 µm diameter), Fig. 3. At this stage we have qualitative and partial quantitative agreement 

of the field studies and the theoretical results reported here when we consider the magnitude 

of σ[PIM](λ). In the theoretical studies, however, the spectral slope of the mass-specific 

scattering coefficient is changing depending on the fractal dimension of the models generated. 

The montmorillonite and illite models with the lowest fractal dimension, and therefore the 

loosest, most open, aggregates, demonstrate a positive spectral slope. The comparable clay 

mineral models with a more tightly packed clay mineral aggregate (higher fractal dimension) 

exhibit a negative spectral slope. The Irish Sea is a relatively shallow shelf sea experiencing 

significant tidal and turbulent resuspension of bottom sediments [37,54]. Thus we see a 

coastal system exhibiting relatively large amounts of aggregated clay minerals that depress 

the value of σ[PIM](λ) and tend to form a broad “green peak” or simply a generally positive 

spectral slope. There are many possible factors to explain the phenomenon of increased 

scattering in the middle of the visible spectrum by clay minerals and one is the absorptive 

component of the clay mineral refractive index. Table 2 demonstrates that the imaginary 
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component of the clay mineral refractive index is lower in the green portion of the spectrum 

than in either the red or blue ends. Overall, relatively greater amounts of larger secondary clay 

mineral aggregates will decrease the value of σ[PIM](λ) and tend to either flatten the spectral 

slope or yield a positive spectral slope from the shorter to the longer wavelengths. An illite 

model that is relatively loosely packed tends to mimic the positive spectral slope of σ[PIM](λ) 

reported by McKee and Cunningham [38] (Fig. 6) while more tightly packed montmorillonite 

exhibits more values within the standard deviation of the McKee and Cunningham [38] data 

and exhibiting a flatter slope. 

There is a series of experimental studies that have a bearing on what we have reported 

here [19–21]. These studies report primarily on the mass-specific scattering coefficient, an 

empirical ratio of the total particle scattering coefficient and the total concentration of 

suspended matter, both mineral and organic. Thus the empirical ratio is not exactly defined 

optically, as is done in Eq. (8) and Stavn and Richter [6], but this empirical ratio can approach 

the exactly defined values of Eq. (8). Stramski et al. [21] performed experiments on clay 

minerals suspended in sea water and these values are a close approximation to an exactly 

defined and investigated mass-specific scattering cross section. These suspensions were not 

corrected for the presence of organic matter in suspension with the clay minerals. The 

majority of the experiments are performed on air dust samples that have not been analyzed as 

to the type of minerals in the dust and the amount of organic materials in the dust such as 

black carbon. Another factor that renders the experimental ratios less than comparable with 

what is reported here is that suspended minerals, being dense, are notoriously difficult to work 

with and maintain in a stable, repeatable state in suspension [44]. Therefore, many of the 

reported experimental results may simply be a function of how a particular suspension of 

minerals or dust was prepared and handled. The particle size distributions for the suspensions 

were determined with a Coulter counter which has unknown effects on the aggregation state 

of suspended particles, a major topic of investigation here. 

Mass-specific scattering coefficients were reported in Stramski et al. [21] for 

montmorillonite, illite, and calcite that closely approached σ[PIM](λ) values as reported in this 

study, defined in Eq. (8). The values approximating σ[PIM](λ) for calcite in the range 400 nm to 

700 nm were 1.6 – 1.2 m
2
 g
−1

 for a small particle dominated PSD and 1.18 – 0.92 m
2
 g
−1

 for a 

large particle dominated PSD, both of which had a negative spectral slope. These values tend 

to bracket the σ[PIM](λ) for calcite liths of approximately 1.0 µm equivalent spherical diameter 

reported in Stavn and Richter [6]. A negative spectral slope was recorded for both 

montmorillonite and illite suspensions [21] with a mass-specific scattering coefficient of 0.84 

– 0.63 m
2
 g

−1
 for 412 nm – 715 nm which accords well with the σ[PIM](λ) values reported for 

Mobile Bay [6] and the theoretical calculations in Fig. 4. These results of Stramski et al. [21] 

were recorded for a large particle PSD. There were no flat spectral slopes for the mass-

specific scattering coefficients of mineral suspensions but there were flat spectral slopes 

reported for the mass-specific scattering coefficients of air dust suspensions. The approximate 

value for Sahara Dust across the visible spectrum was 0.75 m
2
 g

−1
 which is higher than the 

nearly flat spectral values for σ[PIM](λ) reported from the Irish Sea and our theoretical 

calculations in Fig. 6. From the results of this report it appears that a large value of a flat 

spectrum could be attributed to very loosely packed aggregate particles of the air dust. 

Stramski et al. [21] also state the possibility that scattering by relatively small mineral 

particles might have been coupled with strong absorption in the blue region of the spectrum 

by organic matter to yield a relatively flat spectrum for the mass-specific scattering 

coefficient. Also, lower values of the mass-specific scattering coefficient that accord with the 

results of Fig. 6 were reported by Stramska et al. [19] for air dust samples that were not 

allowed to settle as had been the case for the earlier reports [20,21]. This sample treatment 

retained larger particles but the difficulties of maintaining stable mineral suspensions were 

indicated in the erratic, highly variable values of the optical coefficients for these suspensions. 

Reversal of the spectral slope of the mass-specific scattering coefficients to a positive spectral 
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slope was not reported. However, the spectral slope of the mass-specific scattering coefficient 

for Oahu Air Dust reported in Stramski et al. [21] indicates a possible positive spectral slope 

from 400 nm – 650 nm with a tendency to flatten at longer wavelengths. In this study we have 

reported a reversal of spectral slope in the field data of the Irish Sea and in our theoretical 

calculations of σ[PIM](λ). 

The results of this study may have a bearing on a discussion in the literature concerning 

the spectral slope of the marine hydrosol scattering coefficient, which is primarily affected by 

the suspended particulates of the hydrosol. Gould et al. [39] report that the hydrosol scattering 

coefficient of the coastal ocean has a negative spectral slope, from the blue to the red end of 

the spectrum. This spectral slope decreases as one goes from the coastal ocean to the clear 

water of the open ocean. Others have reported difficulty in reproducing this result [55] even 

though Gould et al. [39] quote similar studies from sediment-laden river mouths, etc. The 

results of Gould et al. [39] were from readings taken in the upper 1.5 meters while others, 

Barnard et al. [55], took optical readings from the surface to the bottom. It is entirely possible, 

in the case of the coastal ocean, that near surface samples such as from Gould et al. [39] 

would be dominated by smaller primary mineral particles that would sink slowly compared to 

larger aggregates. We have demonstrated that in a mineral dominated system of mostly 

smaller primary mineral particles (Fig. 4) one would expect a negative spectral slope for the 

scattering coefficient. Furthermore, sinking aggregates can grow in size in the process of 

aggregation by differential sedimentation which would increase the relative contribution of 

the B component (larger particles) of the PSD.to the scattering coefficient [22]. These mineral 

aggregates, if dominant, would generate a smaller spectral slope to none to possibly a positive 

spectral slope (Figs. 5,6). This might explain the discrepancies reported in the above studies. 

5. Conclusions 

The mineral spectral mass-specific scattering cross section, σ[PIM](λ), has been shown to be 

remarkably sensitive to particle size. The presence of small mineral particles in the range of 

0.5 µm - 3.0 µm radius (1 µm - 6.0 µm diameter) is most strongly indicated in the numerical 

values of σ[PIM](λ). Stavn and Richter [6] using Eq. (8) for lith plates from Coccoliths (0.5 µm 

equivalent spherical radius) and the data of Gordon and Du [56] determined that a 

monodispersion of lith plates would have a σ[PIM](550) value of 0.98 m
2
 g

−1
. As the relative 

number of small particles decreases the value of σ[PIM](λ) decreases as shown in the values for 

σ[PIM](550) quoted in the discussion, 0.74, 0.58, 0.38 m
2
 g

−1
 for the field data reported. 

Comparable values were demonstrated in the theoretical calculations of σ[PIM](λ) for PSD’s 

with increasing size of modal particle class (Figs. 4-6). This is true because as particles get 

larger, their equivalent spherical cross sections increase approximately as the square of an 

equivalent spherical radius but their masses increase as the cube of their equivalent spherical 

radiuses. The particle mass is, of course, in the denominator of the expression for σ[PIM](λ) in 

Eq. (8). However, a mineral aggregate actually contributes more to σ[PIM](λ) than a solid 

equivalently spherical particle of the same radius because the aggregate, composed of a 

certain percentage of primary particles in an open structure that includes water, is less dense 

than the equivalent solid particle. Along with the decrease in magnitude of σ[PIM](λ), its 

spectral slope also decreases (Figs. 4-6). The field evidence indicates that the spectral slope of 

σ[PIM](λ) for suspended mineral particulates becomes zero or positive (Fig. 6) as the value of 

σ[PIM](λ) decreases. The theoretical calculations involving clay mineral aggregates (Fig. 6) 

indicate a reversal of spectral slope as the clay mineral aggregate becomes less tightly packed 

by primary particles (the fractal dimension decreases). The spectral slope for the relatively 

tightly packed aggregate models remained negative or approached zero (Fig. 6). The best 

fitting models for the field data were relatively tightly packed when the particles were 

dominated by the primary (A) component. As the aggregates increased in importance, the best 

fitting models were the loosely aggregated ones. Thus σ[PIM](λ) is also sensitive not only to the 

increase in size of mineral aggregates but also to their fractal dimension or degree of packing. 
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The presence of significant mineral aggregates will slowly lower the value of σ[PIM](λ), flatten 

or reverse the sign of the spectral slope, and may create a peak value in the green region, 

about 550 nm, of the spectrum if the slope tends to level off at longer wavelengths as may be 

indicated by the Irish Sea data (Fig. 6). 

Both montmorillonite and illite appear to provide usable models of the refractive index of 

suspended mineral particles and mineral aggregates. More field data may allow the 

determination of a reasonable “average” value for the refractive index of suspended mineral 

matter for the purposes of biogeo-optical modeling of the coastal ocean and providing new, 

accurate remote sensing algorithms for the coastal ocean. The clay mineral aggregate model 

of Khelifa and Hill [32] has provided valuable insights into when the degree of “packing” of 

an aggregate, expressed as the fractal dimension, may have a bearing on the magnitude and 

the slope of the mass-specific scattering cross section. In addition, the two-component mineral 

model, inspired by Risović’s two-component total particle formulation, utilizing the extended 

gamma distribution for the PSD of the suspended particles, gives us great flexibility in 

investigating the dynamics of particle aggregation and their effects on hydrosol optical 

properties [22]. 
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