Father Contributions to Cortisol Responses in Infancy and Toddlerhood

By: W. Roger Mills-Koonce, Patricia Garrett-Peters, Melissa Barnett, Douglass A. Granger, Blair Clancy, Martha J. Cox, the Family Life Project Key Investigators

Made available courtesy of American Psychological Association: http://www.dx.doi.org/10.1037/a0021066

This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.

Note: Figures and/or pictures may be missing from this format of the document.

Abstract:

The current study is one of the first prospective examinations of longitudinal associations between observed father caregiving behaviors and child cortisol reactivity and regulation in response to emotional arousal. Observations of father and mother caregiving behaviors and child cortisol levels in response to challenges at 7 months and 24 months of child age were collected. Analyses were based on a subsample of children from the Family Life Project who lived with both their biological mothers and fathers and for whom there was at least partial cortisol data (7 months: n = 717; 24 months: n = 579). At the challenge conducted at 7 months of child age, 49.0% of the sample were girls; racial composition of the sample was 25.8% African American and 74.2% European American. At the challenge conducted at 24 months of child age 49.9% of the sample were girls; racial composition was 24.7% African American and 75.3% European American. We conducted analyses across assessment points simultaneously using mixed linear modeling for repeated measures data to test for differential effects of fathering across infancy and toddlerhood. Concurrent measures of father negativity were positively associated with greater increases in child cortisol levels in response to emotion challenge at 7 months (p = .01) and with higher overall levels of cortisol at 24 months (p < .001). However, there was no evidence that father caregiving during infancy independently predicted later cortisol activity during toddlerhood.

Keywords: Cortisol | Fathers | Infancy | Parenting | Toddlerhood | Caregiving | Hydrocortisone | Infant Development

Article:

Sensitive and supportive parenting is one of the most consistent and robust predictors of multiple developmental outcomes. Although a majority of developmental studies have focused on the
contributions of mothers’ caregiving, fathers also exert direct and indirect influences on children's development above and beyond the effects of mothers (Cabrera, Tamis-LeMonda, Bradley, Hofferth, & Lamb, 2000; Grossman et al., 2002; Lamb & Tamis-LeMonda, 2004). The unique effects of fathers are likely due to the independent (although often correlated) qualities of parenting between mothers and fathers (Barnett, Deng, Mills-Koonce, Willoughby, & Cox, 2008), as well as the unique activities and styles of engagement for mothers and fathers (Marsiglio, Day, & Lamb, 2000; Roggman, Fitzgerald, Bradley, & Raikes, 2002). For example, a father may be warm and supportive even in the absence of such characteristics in the mother (Cabrera et al., 2000), whereas other differences between parents may emerge as more broadly defined stylistic differences between mother and father caregiving (Popenoe, 1996), such as greater encouragement of child risk taking and independence among fathers.

To date, father caregiving has been shown to be associated with social functioning (Amato & Rivera, 1999), cognitive development (Yogman, Kindlon, & Earls, 1995), and emotional regulation and control (Gottman, Katz, & Hooven, 1997); however, there remains very limited research on father contributions to children's psychobiological development, and no direct investigation into the effects of father parenting on child cortisol functioning. The limited inquiry into father effects on psychobiological development is particularly noteworthy, given the ever-increasing roles of fathers as active caregivers in modern families, our awareness of the centrality of early caregiving on psychobiological development, and the subsequent effects of psychobiology on multiple domains of development. Prior studies have shown associations between low maternal sensitivity and child cortisol as seen in elevated baseline levels (Bugental, Martorell, & Barraza, 2003; Haley & Stansbury, 2003) as well as diminished cortisol responsivity to challenge (Blair et al., 2008). An insensitive mother may adversely affect the developing stress response by contributing to infant distress while simultaneously failing to provide the support that enables the infant to gain experience with regulated arousal. Sensitive caregiving may also facilitate levels of arousal that are within the limits of the child's regulatory capabilities and buffer the child from excessive levels of negative arousal and stress reactivity.

Given the increased role of fathers as caregivers coupled with the comparable variation in parenting behaviors across mothers and fathers (Cabrera et al., 2000; Sroufe, 1995), it is possible that father caregiving may likewise influence the development of core psychobiological functioning in young children via sensitive and nonnegative caregiving.

Again, the associations between father caregiving and the development of cortisol responsivity in young children have not been examined in any studies of which we are aware. However, Goslin, Booth, and Granger (2009) noted that self-reports of greater father–child relationship intimacy and lower father–child hostility were associated with greater father–child baseline cortisol attunement, a finding that thus supported a biosocial model of family functioning (Booth, Carver, & Granger, 2000) that includes paternal influence on cortisol activity. Furthermore, fathers' sensitive parenting, along with secure father–child attachments, predicts better emotional and behavioral correlates of cortisol functioning, including emotion regulatory abilities (Diener,
Mangelsdorf, McHale, & Frosch, 2002; McDowell, Kim, O'Neil, & Parke, 2002), effortful control (Eiden, Edwards, & Leonard, 2004), and social inhibition (Belsky, Hsieh, & Crnic, 1998). On the basis of these findings, it is reasonable to hypothesize similar mother–child and father–child processes that may influence early psychobiological development. Therefore, our goal in this study was to examine the unique associations between father caregiving behaviors and children's cortisol responses to challenge at 7 and 24 months of age. In Hypothesis 1, we proposed that fathers' parenting will be associated with concurrent measures of child cortisol levels above and beyond any associations with mothers' parenting. In Hypothesis 2, we proposed that there will be longitudinal effects of early father caregiving on later child cortisol levels. We also tested each hypothesis for moderating effects of child gender, race, and income.

Method

Participants

The Family Life Project employed complex sampling procedures to recruit a representative sample of 1,292 families at the time that mothers gave birth in three target counties in eastern North Carolina and three target counties in central Pennsylvania. These regions are nonurban and often rural communities. Mothers were recruited in the hospital the day after giving birth. Mothers who lived in the target counties but gave birth outside these counties (e.g., due to pregnancy complications) were identified by county birth records and contacted and recruited approximately 1 month after giving birth. To participate in this study, mothers had to report that English was the primary language spoken in the home. Further details on the Family Life Project sampling plan and recruitment procedures are available in Burchinal, Vernon-Feagans, Cox, and the Family Life Project Investigators (2008). There were 717 families with participating and co-residential biological fathers at 7 months of age; there were 579 families with participating and co-residential biological fathers at 24 months of age. For these families, descriptions of father, child, and family information are presented in Table 1.

[Table 1 Omitted]

Procedures

During home visits made when their child was 7 and 24 months old, mothers and fathers completed questionnaires concerning family demographics and engaged the child in a free-play interaction (if the child was an infant) or puzzle-task interaction (if the child was a toddler) that was recorded for 10 min (Cox, Paley, Burchinal, & Payne, 1999). At each child age, mother and father interactions with the child occurred on separate visits approximately 2 weeks apart. The free-play interaction involved the experimenter asking mothers and fathers to use a standardized set of toys (different sets for each parent) to play with their infant as they normally would if they had free time during the day. The puzzle task involved the experimenter presenting the child with
three jigsaw puzzles of increasing difficulty (different sets for each parent) and asking the
parents to assist the child in any way they chose.

At the 7-month home visit, children were presented with three procedures designed to elicit
emotional reactivity; at the 24-month visit, children were presented with two comparable tasks.
The previously validated procedures (e.g., Buss & Goldsmith, 1998; Kochanska, Tjebkes, &
Forman, 1998; Stifter & Braungart, 1995) at the 7-month assessment included a mask-
presentation challenge, followed by a barrier challenge, followed by an arm-restraint challenge
task. At the 24-month assessment, the barrier challenge was replaced with a toy-removal
challenge, which was followed by the mask-presentation challenge. Challenge tasks were
administered in these standard orders to all children. For the mask-presentation task at each age,
children were sequentially presented with four unusual masks. The experimenter wore each mask
for 10 s while calling the child's name and moving slowly from side to side. For the barrier task
at the 7-month assessment, children were presented with an attractive toy and encouraged to play
with it for 30 s. The experimenter then placed the toy behind a clear plastic barrier just beyond
the child's reach for 30 s. The toy was then returned to the child, and the procedure was twice
repeated. For the toy-removal task at the 24-month assessment, the child was encouraged to play
with an attractive toy for 60 s. The child's mother then removed the toy, engaged in conversation
with the experimenter for 2 min, and then returned the toy to the child while continuing to be
engaged in conversation with the experimenter for 1 min. For the arm-restraint task at the 7-
month assessment, the experimenter crouched behind the child and gently restrained his or her
arms for 2 min or until 20 s of hard crying ensued. During the task, the mother watched the
infant from a vantage point out of the infant's line of sight.

To assess changes in cortisol indicative of the child's hypothalamic–pituitary–adrenal (HPA)
response to the emotion-challenge tasks, experimenters collected three saliva samples: a pretask
baseline collected before administration of the challenge tasks, a sample collected 20 min after
the infant's peak emotional arousal to the tasks, and a sample collected 40 min after peak arousal.
The order of administration of the tasks was structured so that the most arousing task was
presented last. Unstimulated whole saliva was collected with either cotton or hydrocellulose
absorbent material and was expressed either through a needleless syringe (cotton) or by
centrifugation (hydrocellulose) into 2-ml cryogenic storage vials. Two prior studies have
indicated no differences in cortisol concentrations associated with the two collection techniques
(Granger et al., 2007; Harmon, Granger, Hibel, & Rumyantseva, 2007). After collection,
samples were immediately placed on ice, transported to interviewers' homes, and then stored
frozen (−20 °C) until batched and shipped on dry ice overnight to the Behavioral Endocrinology
Laboratory at the Pennsylvania State University. Samples were then stored frozen at −80 °C until
assay. On the day of testing, samples were brought to room temperature and centrifuged for 15
min at 3,000 rpm; the clear top phase of the sample was pipetted into appropriate test wells by
robot.
The special characteristics of the sample (rurality, single-parent household, or economic disadvantage), repeated interview schedule, length of each interview protocol (2–4 hr), and age of the infants required that in-home assessments be scheduled when families were available. Therefore, the time of day for saliva collection for cortisol assaying occurred for approximately 80% of the sample between 10:00 a.m. and 6:00 p.m. (range: from 8:30 a.m. to 8:00 p.m.) for infants and between 10:00 a.m. and 7:00 p.m. (range: from 9:00 a.m. to 8:40 p.m.) for toddlers. Therefore, time of the day varied and was used as a covariate in all analyses involving cortisol (as well as, given the nonlinearity of the diurnal rhythm of cortisol, the time of day measured in hours to the second power, which we refer to as time of day\(^2\); Dokoumetzidis, Iliadis, & Macheras, 2002). Given the positive correlation among sickness, elevated body temperature, and cortisol levels (Economou, Andronikou, Challa, Cholevas, & Lapatsanis, 1993), data on children's body temperatures were also collected and included as a control for cortisol levels at each time point.

Measures

Salivary cortisol

All samples were assayed for salivary cortisol with a highly sensitive enzyme immunoassay (Salimetrics, State College, PA) that has been U.S. Food and Drug Administration 510(k) cleared for use as an in vitro diagnostic measure of adrenal function. The test used 25 μl of saliva (for singlet determinations), had a range of sensitivity from 0.007 to 1.8 μg/dl, and had average intra- and interassay coefficients of variation of less than 10% and 15%, respectively. All samples were assayed in duplicate. The criterion for repeat testing was variation between duplicates greater than 20%, and the average of the duplicates was used in all analyses. The cortisol distributions were subject to log transformation to correct positive skew.

Observed parenting

The 10-min videotaped mother–child and father–child interactions at 7 and 24 months (the free play and puzzle tasks, respectively) were observed by four trained and reliable coders and rated globally on the following dimensions of parenting behavior: sensitivity, detachment, intrusiveness, stimulation, positive regard, negative regard, and animation (Cox & Crnic, 2002; see also National Institute of Child Health and Human Development Early Child Care Research Network, 1999). Coders gave a single rating for each code based on the overall quality of the entire interaction using Likert-type scales. Ratings ranged from 1 (not at all characteristic) to 5 (highly characteristic) at the 7-month assessment and from 1 to 7 at the 24-month assessment (these scores were rescaled to a 1–5 range for the current analyses). On the basis of the results of factor analyses conducted with an oblique rotation (promax), two broad-based parenting factors emerged for both mothers and fathers: sensitivity (the average of sensitivity, detachment [reversed], stimulation, positive regard, and animation) and negativity (the average of intrusiveness and negative regard). At least 30% of all interactions were double coded for
reliability. See Table 2 for details regarding the reliability and factor structure of the individual parenting dimensions and composites.

[Table 2 Omitted]

Results

Missing Data

Because father co-residency and father participation varied systematically by family income, ethnicity/race, and marital status, missing parenting data were not random. In contrast, missing cortisol data did vary at random across demographic and caregiving variables. As such, the sample used in subsequent analyses includes imputed values for child cortisol levels at the 7- and 24-month assessments that are dependent on having concurrent father parenting data and at least one cortisol sample from either time point. For the 7-month assessment, this required the imputation of 2.0% of baseline, 11.0% of the post-20-min, and 16.6% of the post-40-min values. For the 24-month assessment, this required the imputation of 7.4% of baseline, 6.2% of the post-20-min, and 9.0% of the post-40-min values. Under the ignorable missing assumption, missing data were imputed five times by multiple imputations (Rubin, 1987; Schafer, 1997). We conducted analyses five times and combined results using the recommended procedures from Schafer (1997). All analyses were performed with SAS Version 9.1.

Data Analyses

Means and standard deviation for predictor and outcome variables are presented in Table 3. Data analyses involved multilevel modeling of predictors of children's cortisol levels. To address Hypothesis 1, we modeled child's age of assessment (infancy versus toddlerhood) and time of saliva sampling for cortisol (baseline, 20-min post, 40-min post). The variable age defined whether the observations and cortisol levels were collected at 7 or 24 months of age. The variable trial served as a linear contrast by which we examined the change in cortisol from baseline to 20-min post peak arousal; the variable Trial × Trial served as a quadratic contrast by which we examined the decline in cortisol levels from 20-min to 40-min post peak arousal (trial was centered at baseline with the assumption of constant increments over trials such that 20 min = 1 and 40 min = 2). The nesting structure of this model was trial within age within family, which allowed us to investigate the cross-sectional associations between parenting and cortisol levels at the two child ages. To address Hypothesis 2, we examined the effects of parenting at 7 months on cortisol levels at 24 months to test for unique longitudinal effects of early fathering on later child cortisol levels. Each model included controls for child demographics (including age, gender, and race/ethnicity), family demographics (income-to-needs ratios, father education level, marital status, and state of residence), time of day for the first saliva collection, and child body temperature. All linear, quadratic, and moderation effects by model variables were examined. We present the basic equation (minus control variables) used for the final analyses addressing
Hypothesis 1. Note that i represents the ith subject, j represents the jth age of the child, and k represents the kth trial.

$$\log(\text{cortisol}_{ijk}) = \text{intercept} + \text{sex}_i + \text{education}_i$$

$$+ \text{cohabiting}_{ij} + \text{state}_{ij} + \text{income}_{ij}$$

$$+ \text{temperature}_{ij} + \text{age}_{ij} + \text{time}_{ij} + \text{time}^2_{ij}$$

$$+ \text{trial}_{ijk} + \text{trial}^2_{ijk} + (\text{Age}_{ij} \times \text{Trial}_{ijk})$$

$$+ (\text{Age}_{ij} \times \text{Trial}^2_{ijk}) + \text{mother sensitivity}_{ij}$$

$$+ \text{mother negativity}_{ij} + \text{father sensitivity}_{ij}$$

$$+ \text{father negativity}_{ij}$$

$$+ (\text{Father Negativity}_{ij} \times \text{Age}_{ij})$$

$$+ (\text{Father Negativity}_{ij} \times \text{Trial}_{ijk})$$

$$+ (\text{Father Negativity}_{ij} \times \text{Trial}_{ijk} \times \text{Age}_{ij})$$

$$+ (\text{Father Negativity}_{ij} \times \text{Trial}^2_{ijk} \times \text{Age}_{ij})$$

$$+ \text{error}_{ijk}. $$

[Table 3 Omitted]

Hypothesis 1: Testing Within-Age Effects of Father Parenting on Child Cortisol Levels

The statistics from the final model are presented in Table 4. There were significant associations between father negativity and child cortisol levels that were moderated by age and by trial. Probing these effects revealed that father negativity was not associated with baseline levels of cortisol at 7 months of age but was positively associated with greater increases in cortisol following the challenge procedure, $\beta = 0.159$, $t = 2.52$, $p = .01$ (Figure 1). There was a marginal association ($p = .09$) between father negativity and the quadratic change in cortisol that suggested a greater return to baseline for children of low-negativity fathers at 7 months of age. At 24 months of age, father negativity was positively associated with baseline levels of cortisol, $\beta = 0.314$, $t = 3.73$, $p < .001$, but there were no associations with any linear or quadratic changes in cortisol levels at this age (Figure 2). No moderating effects of child gender, race, or income were found.

[Table 4 Omitted]
Hypothesis 2: Testing Longitudinal Effects of Father Parenting on Child Cortisol Levels

There was no evidence indicating that early father caregiving at 7 months of child age was uniquely associated with later child cortisol levels at 24 months of age.

Discussion

In this study, we prospectively examined associations between father caregiving and young children's cortisol reactivity during infancy and toddlerhood. Consistent with a previous report from this sample regarding cortisol responses at this age (Blair et al., 2008), infants exhibited increases in response to the emotion challenge, as well as a return to baseline following the increase. There were no linear or quadratic changes in cortisol levels in response to the emotion challenge in toddlerhood, a finding consistent with those of previous studies that suggests the potential of a hypo-responsive period for cortisol activation (at least in response to mild laboratory stressors) for children at this age (Gunnar & Quevedo, 2007). As proposed in Hypothesis 1, concurrent father parenting was associated with child cortisol levels, but this association was limited to negative caregiving. Perhaps due to the correlation between fathering variables across time points, there was no unique longitudinal association between early fathering and later child cortisol levels, as was proposed in Hypothesis 2.

Fathers' Parenting and Children's Cortisol Responses at Infancy

At 7 months of child age, high father negativity was associated with greater increases in child cortisol following peak arousal to an emotional challenge. There was not an association between father negativity and baseline cortisol levels, and the association between father negativity and the quadratic change in cortisol following challenge was marginal. There were no correlations between father sensitivity and any dimension of cortisol activity, which is particularly interesting given previous analyses with this sample demonstrating significant associations between mothers' sensitivity (but not negativity) and children's cortisol reactivity and regulation at the same time point (Blair et al., 2008). It is possible that harsh and controlling caregiving by fathers leads to exacerbated cortisol reactivity in their infant, which would suggest that fathers' negativity may be uniquely capable of priming the child's response to stressful situations and undermining the child's ability to regulate such physiological arousal.

Fathers' Parenting and Children's Cortisol Responses at Toddlerhood

At 24 months of child age, father negativity was positively associated with overall levels of cortisol. In contrast to findings when the children were 7 months old, there was no significant association between father caregiving and any linear or quadratic changes in cortisol levels. This
may be due to the overall insignificant increase in cortisol in response to the challenge when the children were 24 months old. Although this finding may be a methodological artifact due to mother involvement during the 24-month challenge (mothers were not directly involved at 7 months) blunting the children's reactivity to the task, the finding is also consistent with those reported by previous investigators of increased difficulty in provoking a cortisol response in toddlers by means of mild stress tasks (Gunnar & Donzella, 2002). Gunnar (2003) also suggested that by toddlerhood, children in “supportive caregiving relationships appear to have entered the human functional equivalent of the rodent stress–hyporesponsive period” (p. 155). By contrast, children from unsupportive relationships with insensitive or negative caregivers may not exhibit this pattern. The positive association between father negativity and child baseline cortisol levels in toddlerhood suggests that there are relevant father effects on cortisol functioning at this age. At least two interpretations of this finding are possible. First, as with the 7-month assessment, the initial assessment of cortisol at 24 months of age occurred in the child's home. Children of highly negative fathers may be more sensitive to the introduction of unfamiliar adults in their home due in part to an inadequate caregiver support system. Given the lack of an adequate caregiver support system to assist in regulating their distress, children may automatically mount a cortisol response with the arrival of the data collectors. On the basis of this scenario, the initial measure of cortisol should more accurately be interpreted as an initial stress response measure, which suggests that father negativity is associated with increased HPA reactivity (or decreased hyporesponsiveness following Gunnar's (2003) proposal). An alternative interpretation would be that the initial value is indeed representative of baseline levels, and although there is no significant change in level across the visit, negative fathering is associated with elevated overall levels of cortisol.

Assessing the Unique Effects of Fathers: Limitations and Conclusions

There are limitations to this study that must also be considered when interpreting and generalizing these findings. First, in interpretations of the cortisol analyses, one should consider methodological limitations such as potential confounds that were not measured at one (or both) time points in the current study. These omitted variables include the child's time of waking (from night sleep and most recent nap), elapsed time since last meal or snack, and current medication use. Second, we did not include a measure of father involvement to determine whether the associations with father caregiving quality were dependent on the quantity of time or type of time spent with the child. Also, father negativity may be a marker for other potentially disruptive family events that may cause elevations in cortisol independent of fathers' caregiving behaviors. Naturalistic observations of families suggest that traumatic family events (such as conflict, punishment, shaming, and fighting) are associated with elevated cortisol levels in children during the proximal timing of the trauma (Flinn & England, 1995). Similarly, using data from the Family Life Project, Hibbel, Granger, Blair, Cox, and the Family Life Project Investigators (2009) reported that interparental conflict was positively associated with concordant elevations in child and mother cortisol levels. Because adult trauma and conflict have been associated with...
insensitive and harsh parenting behavior, it is possible that observed violence and conflict may also be responsible for correlations between father negativity and children's cortisol levels. Furthermore, our inability to detect associations between child cortisol levels and sensitive fathering (as compared with previous findings on sensitive mothering) may stem from restricting the measurement of father caregiving to the same dimensions of parenting traditionally used for mothers. In doing so, we may have failed to capture some of the unique aspects of fathers' sensitive caregiving. Such a possibility is important to note given the relatively small factor loading of our sensitivity ratings onto the father sensitivity composite at 24 months. Finally, the fathers in this study did not participate in the challenge tasks or postchallenge soothing sessions. In the future, researchers should consider the relevance of the father's presence at these tasks for reactivity levels, as well as any effects of the father's involvement in the soothing of the child on regulation levels of cortisol postchallenge.

Despite these limitations, the current findings are consistent with both psychobiological and family systems perspectives on child development. Paternal negativity was associated with greater child cortisol reactivity at 7 months and greater overall levels of cortisol at 24 months of child age. It is possible that fathers' harsh and controlling caregiving may push children's cortisol responses beyond optimal ranges of reactivity to distress, and continued exposure to such a caregiving environment may contribute to a potential allostatic load for these children as they maintain elevated cortisol levels during toddlerhood. It is also important to note that these associations were present above and beyond any associations with mothers' caregiving. There was no association between father caregiving at infancy and later cortisol levels above and beyond the associations with concurrent fathering at toddlerhood, which is possibly due to the strong correlation in paternal caregiving from 7 to 24 months of child age.

The current research is generalizable only to residential fathers living in nonurban settings. Furthermore, it should be noted that families with participating residential fathers typically have higher socioeconomic status than families with nonparticipating residential fathers and families with nonresidential fathers. Therefore, although these findings are consistent with conceptual models of family and father functioning, further research is needed to replicate and extend this line of research, including investigation into families characterized by significant change in father caregiving across the first 2 years of a child's life, as well as the effects of nonresidential fathering and other nonmaternal caregiving scenarios. Future research on these topics should continue to shed light on the intersection of psychobiological development and family systems.

References

