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A revision of the Power Approximation for computing (s, S) inventory policies is presented. 
The revision incorporates modifications which (1) ensure homgeneity in the units chosen to 
measure demand and (2) ensure the proper limiting behavior of S - s when the variance of 
demand is extremely small. Computational experience shows that the revision has operating 
characteristics that are typically within a few percent of optimal, which is nearly as accurate as 
the original Power Approximation. 
(INVENTORY/PRODUCTION-APPROXIMATIONS; INVENTORY/PRODUCTION 
-PERIODIC REVIEW MODELS) 

1. Introduction 

The Power Approximation of Ehrhardt (1979) is an approximately optimal (s,S) 
inventory policy that has been shown to be very accurate over a wide range of 
parameter settings. The policy has two flaws, however, concerning its behavior when 
the units chosen to measure demand are varied and/or when the demand variance is 
extremely small. We report a revision of the policy that corrects the flaws using 
methods similar to those used to derive the original Power Approximation. 

As in Ehrhardt (1979), we consider a single-item inventory system where unfilled 
demand is backlogged, there is a fixed lead time L between placement and delivery of 
an order, and demands during review periods are independently and identically 
distributed, having a mean It and variance a 2. Replenishment costs are composed of a 
setup cost K and a unit cost c. At the end of each review period, a cost h or p is 
incurred for each unit on hand or backlogged, respectively. The criterion of optimality 
is minimization of the undiscounted expected cost per period over an infinite horizon. 

2. The Power Approximation 

Under the assumptions, an (s, S) policy is optimal (Iglehart 1963); whenever the 
inventory position y (on hand plus on order minus backlog) is less than or equal to s, 
an order of size S - y is placed. The Power Approximation is a computationally 
simple algorithm for computing approximately optimal values of s and S. It requires 
for demand information only the mean and variance and typically performs within a 
few percent of optimal total cost for a wide variety of demand distributions and 
parameter settings. At the core of the algorithm are equations (14) through (16) of 
Ehrhardt (1979): 

Dp= 1.463 u364(K/h)L498ao'38 and (1) 

sp =1L + {0.832(a2/ )0187 (0.220/z + 1.142 - 2.866z), where (2) 

z ={DP/[(I +p/h)UL]}05, 
' 

= (L + 1) and aL = (L + 1)a2. (3) 
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In most situations the Power Approximation sets s = s and S = s + Dp. 
Expressions (1), (2), and (3) were derived by adjusting the approximations of 

Roberts (1962). He showed that the optimal policy parameters s* and D* = S*- s* 
are given by 

D* = j2KIt/h + o(D*) and (4) 

(x - s*) dD (x; L + 1) = D*/(1 + p/h) + o(D*) (5) 

where F(D; n) is the n-fold convolution of the demand cumulative distribution function 
and o(D*)/D* converges to zero as D* becomes infinite. Expressions (4) and (5) were 
used to design regression models which were fitted to a grid of 288 inventory items 
with known optimal policies. Therefore, (1), (2), and (3) are the result of a numerical 
fine-tuning of (4) and (5). 

The grid of 288 parameter settings is given in Table 1 of Ehrhardt (1979). The same 
grid is used in deriving the revised Power Approximation. Three types of demand 
distributions are used: Poisson, and negative binomial with variance-to-mean ratios of 
3 and 9. Each demand distribution is given four mean values, 2, 4, 8, and 16. Three 
values, 0, 2, and 4, are assigned to lead time. Since the cost function is linear in the 
parameters K, p, and h, the value of the unit holding cost is a redundant parameter 
which is set at unity. The unit penalty costs are 4, 9, 24, and 99, and the setup cost 
values are 32 and 64. The unit replenishment cost c is unspecified because it does not 
affect the computation of an optimal policy for an undiscounted, infinite horizon. All 
combinations of these parameter settings are included in the grid, yielding 288 items. 

An optimal policy is computed for each of the items utilizing the algorithm of 
Veinott and Wagner (1965). The optimal policies are used as data for the dependent 
variables of our regressions. 

3. Reasons and Methods for Revision 

As noted in Ehrhardt (1979, p. 786), it is likely that the accuracy of the Power 
Approximation will suffer when the variance of demand is very small, especially if K is 
large. The problem is that expression (1) for Dp vanishes as a2 approaches zero. The 
accuracy of (1) should not be seriously affected unless the demand variance is 
extremely small, since its exponent in (1) is only 0.069. In fact, (1) should be quite 
accurate for most, if not all, realistic values of demand variance. It is possible, 
however, that extremely small variances will occasionally arise when (1) is applied in a 
statistical environment where the demand moments are periodically estimated from a 
limited history of realized demands. In such a setting, an unusually low variance 
estimate in (1) could lead to a poor value of Dp. The proper low-variance limiting 
behavior is assured by designing a regression model of the form 

DP= a1a(K/h)f(1 + L/p2), (6) 

where a, a, /3, and y are constants to be fitted to the optimal policy data. 
A second deficiency of the Power Approximation arises when the units of demand 

are changed. If demand units are rescaled by a factor, say f, then sp and Dp should be 
transformed similarly. That is, if It' = f,i and a' = fa, then we should have D' = fD and 
s= fs. Notice that the Power Approximation (1), (2), and (3) does not have this 
property. 

We remedy the situation by constraining the regressions for D and s. In (6) we 
simply set a = 1- /3. Then, if p =f,u and a =fa, we have K= K and h = h/f, 
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ensuring that D = fD. The regression for s is easily modified as well. We use the model 

sp = aOL + UL(aI/z + a2 + a3z), (7) 

where z is given by 

z = [Dp/(aLp/h)] 
2 

(8) 

and Dp is determined by first fitting (6) to the optimal policy data. Since z is 
dimensionless, A is homogeneous in demand units. Notice that (8) differs from (3). 
This is because (8) was found to yield the best fit among several candidate forms for z. 
See Mosier (1981) for a detailed account of the fitting procedure. 

4. The Revised Power Approximation 

We fit the regression models (6) and (7) to the grid of 288 parameter settings. The 
following expressions, which replace (1), (2), and (3), yield an excellent fit to the data: 

Dp = 1.30/ 0.494(K/h)0506(l + /2 2)0.116 

z =[Dp/(aLp/h) 1/2, and (10) 

sp = 0.9731'L + OL(0.183/Z + 1.063 -2.192z). (11) 

When Dply is sufficiently small, say less than 1.5, the empirical modification of 
Wagner, O'Hagan, and Lundh (1965) is applied in the same manner as for the original 
Power Approximation (Ehrhardt 1979). 

5. Policy Performance 

We proceed with an analysis of the performance of the revised Power Approxima- 
tion. We show that the policy given by (9)-( 11) performs nearly as well as the original 
policy [(1)-(3)]. 

Consider the grid of 288 parameter settings used to derive the policies (see ?2 of this 
note or Table 1 of Ehrhardt 1979). Let C and C* denote the expected total cost per 
period for an item when using a Power Approximation and an optimal policy, 
respectively. Our measure of performance for a single item is A = 100% (C -C*)/C* 

namely, the percentage by which the Power Approximation exceeds the optimal total 
cost. Our results for the 288 parameter settings of ?2 are summarized in Table 1, which 

TABLE I 

Error Frequencies and Cumulative Frequency (%) of Err&rs for 
Original 288 Parameter Settings 

Original Policy Revised Policy 

Number Cumulative Number Cumulative 
of Percentage of Percentage 

A Items of Items Items of Items 

[0.0, 0. 1) 151 52% 118 41% 
[0.1,0.5) 102 87.8% 108 78.5% 
[0.5, 1.0) 21 95% 25 87.2% 
[1.0,2.0) 11 99% 18 93.4% 
[2.0,3.0) 3 100% 1 1 97.2% 
[3.0,4.0) 0 100% 4 98.6% 
[4.0,5.0) 0 100% 3 99.7% 
[5.0,6.0) 0 100% 1 100% 
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TABLE 2 

Single Parameter Extrapolations 
Base Case: Negative Binomial Demand (a2/ = 5), 

,u = 9, L = 2,p/h = 49, K/h = 48 

Cost Accuracy, A 

Extrapolated Original Revised 
Value Policy Policy 

2/ = 20 0.0% 1.06% 

,u=20 0.10% 0.01% 
30 0.21% 0.14% 
40 0.18% 0.16% 

K =20 0.11% 0.00% 
15 0.28% 0.16% 
9 0.63% 0.43% 

p = 132 0.15% 0.02% 
199 0.50% 0.18% 

L = 10 0.02% 0.03% 

lists the number of items having Av in various ranges. Notice that the revised Power 
Approximation performs nearly as well as the original policy. The average value of ?A is 
0.35% for the original Power Approximation and 0.47% for the revised policy. 

We have also compared the policies using parameter settings that are interpolated 
and/or extrapolated from the 288-item grid. Table 2 lists the parameter settings and 
cost performance of each policy when parameter settings are chosen in the same 
manner as in Table 3 of Ehrhardt (1979). A base case is chosen for comparison. The 
parameter settings of the base case are near the midpoints of the ranges used in the 
288-item grid (negative binomial demand, a2/1, = 5, It = 9, L = 2, p/h = 49, and 
K/h = 48). Notice that all the parameter settings except for the lead time L are 
different from those used in the 288-item grid. We see that in all cases the revised 
policy yields low costs that are typical of the original policy. In fact, the revised policy 
outperforms the original policy for all extrapolations with the exception of the 
variance-to-mean value of 20. The results are particularly impressive when one 
considers that the extreme values of Table 2 differ from those in the 288-item grid by 
more than a factor of two. 

Recall that the Power Approximation was originally designed as a refinement of a 
Normal Approximation (Ehrhardt 1979), which basically amounted to using a Normal 
demand distribution in (4) and (5). It is only natural to ask how the revised Power 
Approximation compares with the Normal Approximation. Since the revised policy 
performs nearly as well as the original Power Approximation, it compares with the 
Normal Approximation in much the same manner as the original Power Approxima- 
tion. That is, it is slightly better than the Normal Approximation in most cases, and 
much better from a worst-case point of view. Notice in Table 1 that the revised Power 
Approximation has 4 items with expected cost between 3% and 4% above optimal, 3 
items in the 4% to 5% range, and 1 item in the 5% to 6% range. In contrast, the Normal 
Approximation has 8 items in the 3% to 4% range, 3 in the 4% to 5% range, and 14 
items with expected cost greater than 5% above optimal. The largest cost error for the 
Normal Approximation is 15% above optimal. If the policies were compared in a 
setting where demand parameters are statistically estimated, we expect that the results 
would be very similar to those in Table 4 of Ehrhardt (1979). That is, the revised 
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Power Approximation would be significantly superior to the Normal Approximation 
when penalty costs are large, lead times are large, and/or mean demands are small. 

Ehrhardt and Wagner (1982) describe how the original Power Approximation can 
be generalized to systems with nonstationary demand, correlated demand, or stochas- 
tic lead times. We expect that the revised policy can be applied to these systems as well 
with only a modest degradation in total cost performance. 
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