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 Cytochrome P450’s are vital enzymes for the metabolism of chemicals that are 

foreign to the human body. By altering the activity of these enzymes through enzyme 

inhibition, it is possible to alter rates of metabolism of these so-called xenobiotics many 

of which belong to the pharmaceutical class, resulting in what is termed a “Drug 

Interaction”. There are many well-known drug interactions known, though most involve 

inhibition of the human cytochrome P4503A4 enzyme. A classic example is the case of 

statins drugs and furanocoumarins found in grapefruit juice. Research aimed at 

determining the effects of foreign chemicals on human cytochrome P450’s is an 

important area of pharmacology and toxicology, as it has the potential to identify toxic or 

dangerous drug interactions before a drug reaches clinical trials. Toward this end, prior 

studies with aldehydes and terminal olefins have shown that both general classes of 

molecules can potentially destroy certain mammalian cytochrome P450 enzymes. The 

compound, undecylenic aldehyde, which is an additive in a variety of consumer products, 

contains both functional groups, and was therefore a target for evaluation in the current 

study. The effects of adding various concentrations of undecylenic aldehyde to different 

human P450 isoforms were monitored using HPLC-based enzyme assays, and the results 

showed a significant decrease in the activity of isoforms 2E1 and 3A4 in the presence of 

this compound. Modes of inhibition were analyzed through Michaelis-Menten kinetics 

and appeared to be reversible and non-competitive (mixed) in nature.
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CHAPTER I 
 

INTRODUCTION 
 
 

1.0.0. Xenobiotics 

Foreign substances can enter the body through a variety of pathways. One of the 

main ways chemicals can enter is through inhalation, such as for pollen. We can also 

come into contact with exogenous compounds through skin absorption, which can lead to 

direct entry into the blood. Another common way for foreign substances to enter the body 

is through ingestion. Whether it is food or pharmaceuticals, what people consume has the 

potential to affect other systems in the body. Compounds that are not naturally found in 

the body or a compound that may be naturally found but at the present has an abnormally 

high concentration may be referred to as xenobiotics1.  To rid the body of these 

compounds, they are usually metabolized, thus changing their physical properties, in 

order to then be excreted. Certain enzymes play a role in metabolizing these foreign 

compounds, and a major class of xenobiotic metabolizing enzymes are the Cytochrome 

P450’s.   

1.1.0. Background on Cytochrome P450’s 

Cytochrome P450’s are monooxgyenase enzymes whose primary function in 

humans and other mammals is to make xenobiotics more soluble to facilitate their 

excretion. P450 enzymes are found in most forms of life ranging from plants to animals 
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to prokaryotes, with equally diverse functions. Their role in plants contributes to pigment 

formation in flowering species as well as to toxic compounds produced as a defense 

mechanism2.  

At the heart of cytochrome P450 catalysis is a heme cofactor that is essential for 

the oxidative function of these enzymes. Figure 1 below shows the central heme molecule 

tethered by a cysteine residue in the active site. The center is responsible for catalysis and 

typically has a 3+ charge in the resting form of the enzyme. The iron center is surrounded 

by four pyrrole rings where the respective nitrogen is attached to the iron center.  

 
Figure 1. Structure of Heme Component in Cytochrome P450’s 
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In human cells, the enzymes that are involved in xenobiotic metabolism are bound 

to the endoplasmic reticulum (ER) by the N-terminus. A redox partner, P450 reductase 

(CPR), is needed to transfer the electrons from an electron donating compound, NADPH, 

to the heme cofactor of P450 in order to initiate catalysis3.  

1.1.1. Catalytic Cycle 

 Upon the binding of the substrate into the active site of a cytochrome P450, a 

monooxygenase reaction occurs in which an oxygen atom is incorporated into the 

substrate where the source of the oxygen atom is molecular oxygen. As shown in 

Scheme 14, the stable resting form of the enzyme is in the Fe3+ state, where Ln is the 

abbreviation for ligand. This ferric center is oxidized by NADPH P450 reductase. Along 

with the incorporation of molecular oxygen, a ferrous oxygen species emerges5. Another 

electron then enters the cycle but can enter through another oxidation of NADPH 

reductase or through the oxidation of cytochrome b54. An important step in this cycle is 

the heterolytic bond cleavage and releasing water as a byproduct5. The remaining iron-

oxo compound sets the stage for the substrate to get oxidized. A water molecule replaces 

the newly oxidized product in the active state, thus taking the ferric center to the high-

spin state.  



 

4 

Scheme 1. General P450 Catalytic Cycle. 

 
 

1.2.0. Properties of Cytochrome P450’s 

There are thousands of different cytochrome P450 isoforms. The one thing they 

have in common is that they carry out a monooxygenase reaction and contain a heme 

group connected to the enzyme via a cysteine thiol. These isoforms are named based on 

genetic similarities. The first number denotes the family the isoform belongs to. A letter 

used to categorize between subfamilies may be present if there are two or more 

subfamilies known to exist for that family. An additional number at the end is used to 

represent the individual gene6. Just by analyzing the abbreviated name of a P450, it can 

help illuminate similar characteristics and functionalities amongst different isoforms.  

Cytochrome P450 enzymes are essential, metabolic tools for the human body. 

Nearly 80% of all pharmaceuticals are metabolized by P450’s7.  According to “The 

Seattle Times,” 4.3 billion prescriptions were filled in the United States in 2014, costing 

United States citizens 347 billion dollars. That would mean approximately 3 billion of 

these drugs consumed are processed by P450’s. The percent of pharmaceuticals 

metabolized by P450’s is overwhelming which is why the understanding of their 

individual compositions, possible substrates, and mechanisms of action is crucial not only 

to researchers but the general population.  
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P450’s are present in many tissues throughout the body. Different types of P450’s 

are present in the liver, small intestinal mucosa, lungs, kidneys, brain, olfactory mucosa, 

and skin8. The specific group of human P450’s of interest for monitoring drug 

metabolism are human liver and intestinal enzymes since they are the primary organs of 

metabolism in the human body or site of first exposure to oral pharmaceuticals. Of the 

total 80% of pharmaceuticals metabolized by P450’s, 90% are metabolized by five 

different isoforms: 1A2, 2C9, 2C19, 2D6, and 3A4.  

1.2.1. Types of Reactions by Cytochrome P450’s 

The science behind cytochrome P450’s is crucial to understanding drug 

interactions, and learning how they function is essential. This single type of enzyme can 

catalyze many different types of reactions: alkane oxidation, aromatic oxidation, olefin 

epoxidation, N- or O-dealkylations, dehalogenations, and aromatization, to name a few9. 

These types of reactions play a vital role in the processing of endogenous chemicals 

consistent with the function of their class of enzymes, or can also be hazardous in 

metabolizing foreign compounds. A unique and interesting reaction catalyzed by a 

specific mammalian P450 involves an aromatization reaction which is responsible for 

converting testosterone to estrogen in the human body10. Alkane hydroxylation is a 

necessary reaction for increasing the polarity of xenobiotics to facilitate their excretion. 

This type of metabolism is an important aspect of Phase I metabolism, or the first step 

that is taken before a compound is able to be excreted. Aromatic compounds may also 

pose a threat to mammals, however it is often the oxidation of such compounds that lead 

to their toxicity. An example of the type of harmful reaction is when benzopyrene is 
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metabolized by P450’s to benzopyrene oxides. This reaction is harmful because the 

carbocation which is formed cannot be stabilized through delocalization of the charge 

without destroying the aromaticity of the adjacent benzene. This high degree of 

instability causes the epoxide to not open until it is attacked by a nucleophile which is 

often water thus forming the diol. This diol can then form a diol epoxide which can be 

excreted through two different reactions. If the diol epoxide could undergo 

rearrangement, it could be excreted without injury. The other pathway forces the epoxide 

to open and a carbocation to form which is delocalized by the two hydroxyl groups. Other 

nucleophiles can then attack and cause the formation of carcinogenic products. Not only 

do benzopyrene metabolites have genotoxic (tumor-initiating) effects but also 

nongenotoxic (tumor-promoting) effects11.  

1.2.2. Structure, Mechanism, and Metabolic Processes 

There are two main stages of metabolism in the human body, Phase I and Phase 

II, which differ in the mode of action but aid in the ultimate goal of excretion as seen in 

Scheme 2. Phase I primes the xenobiotic, typically through oxidation. Conjugation of the 

xenobiotic is a primary function of Phase II. This phase adds particular groups to the 

compound to make it more water soluble to ease the excretion12. Phase I usually precedes 

Phase II due to the addition of the hydroxyl which can aid in renal excretion.  

 
Scheme 2. Phase I and Phase II Metabolism. 
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1.2.3. Drug Interactions with Cytochrome P450’s 

With P450’s able to metabolize a vast majority of pharmaceuticals, it is 

imperative for researchers to know whether these substances interact with common, 

everyday chemicals. That is to say other chemicals have the ability to influence the 

metabolism of drugs by the P450 enzymes. Such is the case with cytochrome P450 3A4. 

This particular isoform has been studied in interactions with grapefruit juice to monitor 

for changes in overall activity. A compound in the juice inactivates this enzyme, 

preventing it from metabolizing a wide variety of pharmaceuticals known to be substrates 

for this isoform. A class of chemicals found in grapefruit juice are the furanocoumarins, 

which contain a three-ring system with an aliphatic tail. Furanocoumarins, which are 

present in grapefruit juice, were studied in the presence of drugs such as calcium channel 

blockers, benzodiazepines, and statins which are commonly prescribed in an effort to 

lower cholesterol levels. Upon ingestion of grapefruit juice while taking one of the 

previously mentioned drugs, the furanocoumarin binds to all of those in the CYP 3A 

family including CYP 3A4. Once the furanocoumarin is metabolized, it creates a 

furanoepoxide that irreversibly binds to CYP apoproteins to halt all enzymatic activity13. 

With this isoform (3A4) having known effects on pharmaceuticals upon metabolizing 

certain xenobiotics, it was a launching point for further investigation of other xenobiotics. 

A significant need in this area is to examine xenobiotics that we may come in contact 

with on a regular basis that may not have been previously tested for the effect on P450’s.  
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1.2.4. Cytochrome P450 Genes and Selectivity 

There are 57 genes that encode for P450’s and 58 distinct monooxygenase 

enzymes regulating metabolism of either xenobiotics or endogenous compounds in the 

human body. Those that metabolize xenobiotics have a much lower selectivity for their 

substrates as compared to those that selectively metabolize compounds such as sterols, 

vitamins, or fatty acids7. For this reason, xenobiotic metabolizers have a wider array of 

possible substrates than those that purely metabolize endogenous compounds. While this 

class of P450’s has more possible substrates, they have a great specificity for what they 

do metabolize such as pharmaceuticals which ultimately affects the amount of activity 

generated in the reaction.  

1.2.5. Description of Specific Isoforms 

1.2.5.1. 1A1 

 Each isoform has its own unique physical and chemical properties. Isoforms of 

the same family may have overlapping characteristics. Such is the case for 1A1 and 1A2. 

The isoform 1A1 is found in several tissues throughout the body including the lungs, 

gastrointestinal tract, skin, and in low quantities in the liver. This isoform is used as an 

aryl hydrocarbon hydroxylase. It is used in the metabolic pathways of procarcinogens 

such as polycyclic aromatic hydrocarbons (PAHs) and polyhalogenated aromatics 

hydrocarbons (PHAHs). These types of molecules are often found in environmental 

pollutants14. This isoform is of high interest in oncology studies due to its role in the 
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activation of polycyclic hydrocarbons. Modulation of the 1A1 isoform activity is being 

evaluated for cancer chemoprevention15.  

1.2.5.2. 1A2 

 Unlike 1A1, isoform 1A2 is one of the predominant P450’s in the human liver at 

approximately 13%16. This isoform’s primary role is the metabolism of select arylamines 

and heterocyclic arylamines. Among the compounds metabolized are mainstream 

pharmaceuticals such as phenacetin, lidocaine, tacrine, and theophylline14. Isoform 1A2 

is similar to 1A1 in that bioactivated compounds upon metabolism are procarcinogens. 

Inhibition of this isoform can potentially be studied for cancer prevention12.  

1.2.5.3. 2A6 

 Isoform 2A6 is present at approximately 6% of the total P450 volume in the 

liver13. Unlike most of the other isoforms mentioned, 2A6 metabolizes very few 

pharmaceuticals. The primary role of 2A6 in the liver is to detoxify the body of nicotine. 

Much like the other “A” family counterparts, this isoform impacts the generation of 

procarcinogens16. 

1.2.5.4. 3A4 

 Of all the hepatic cytochrome P450’s, the 3A family is by far the most prominent 

at nearly 40% of the total P450’s present17. This isoform is even more prevalent in the 

intestines where it is present in 82% of the total P450’s present17. As mentioned 

previously, this isoform is responsible for the metabolism of statins and 
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benzodiazepines5. Since this isoform metabolizes nearly two-thirds of all drugs, it is 

considered one of the most important hepatic isoforms5. Among these substrates are 

prominent drugs are the numerous drug classes and specific drugs below in Table 1. 

Besides grapefruit juice, other inhibitors are indinavir, clarithromycin, and diltiazem. 

Known inducers of isoform 3A4 are carbamazepine and St. John’s Wort18.  

 
Table 1. List of Common Substrates for 3A4. 

List of Common Substrates for Isoform 3A418 

Macrolide Antibiotics 
-clarythromycin 
-erythromycin 

Benzodiazepines 
-diazepem 
-triazolam 

HIV Antivirals 
-ritonavir 
-nevirapine 

Antihistamines 
-astemizole 
-chlorpheniramine 
 

HMG CoA Reductase 
Inhibitor 
-atorvastatin 
-lovastatin 

PDE-5 Inhibitors 
-vardenafil 
-sildenafil 
 

Immune Modulators 
-cyclosporine 
-tacrolimus 

Calcium Channel Blockers 
-amlodipine 
-nifedipine 

Other 
-quinine 
-trazodone 

 

1.2.5.5. 2C8 

 Common substrates for this isoform include but are not exclusive to amodiaquine, 

paclitaxel, torsemide, cerivastatin, and repaglinide18. Along with 2C9 and 2J2, the 

isoform 2C8 has been found to be present in prostate carcinoma cells19. A recent study 

shows that genetic polymorphisms in 2C8 decrease the disease-free survival in breast 

cancer patients20. This may be attributed to the fact 2C8 metabolizes cancer therapeutic 

drugs such as paclitaxel, and that a shift in the metabolism of such drugs may cause an 

increase in the recidivism of certain cancers like breast cancer18.  



 

11 

1.2.5.6. 2D6 

 The isoform 2D6 is an important liver enzyme that comprises only a small 

fraction at 2% of the total liver cytochrome P450’s16. Although it comprises a small total 

percentage, this isoform metabolizes various types of drugs such as beta blockers, 

antidepressants, antipsychotics, and pain relievers. Examples of the drugs include: 

carvedilol, S-metroprolol, amitriptyline, haloperidol, codeine, dextromethorphan, 

oxycodone, tramadol, and risperidone18.  

1.2.5.7. 2E1 

 Another prominent isoform in the liver found at 9% of the total P450 volume is 

isoform 2E116. Possible substrates include methoxyfurane, acetaminophen, aniline, 

benzene, ethanol, N,N-dimethylformamide, and theophylline18. A known inhibitor is 

disulfiram and possible inducers are ethanol and isoniazid14. Research analyzing rats who 

have been exposed to alcohol and smoke were seen having elevated levels of 2E1, which 

may be a contributor to alcoholic liver failure21.  

1.3.0. Inhibition of Cytochrome P450’s 

 An inhibitor is generally found to be a small molecule that upon binding with the 

enzyme will cause a decrease in activity. There are two main types of inhibition. 

Reversible inhibition occurs when a molecule binds reversibly that can either slow down 

product formation or either prevent enzyme turnover22. This effect of the inhibitor only 

lasts as long as the molecule is in contact with the active or allosteric sites. Reversible 

inhibitors of cytochrome P450’s belong to one of three different classes. Competitive 
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inhibition is when the substrate and the inhibitor compete for the active site. A 

competitive inhibitor will bind only to the enzyme itself. An uncompetitive inhibitor is an 

inhibitor that will bind only to the enzyme/substrate complex. Noncompetitive inhibition 

occurs when the substrate aims to bind to the active site but it unable to function due to 

the binding of the inhibitor at an allosteric site or binding to the active site causing the 

enzyme to be inactive. This type of inhibitor will bind to either the enzyme or to the 

enzyme/substrate complex22. 

 The other possible type of inhibition is irreversible inhibition. This type of 

inhibition is reflective of the inhibitor binding to the enzyme that permanently inactivates 

the enzyme, thus muting all functionality of the enzyme23. There are two main types of 

irreversible inhibitors: reactive substrate analogs (affinity labels) and mechanism based 

inhibitors (suicide inactivators). Affinity labels are small molecules that are similar in 

structure to the substrate but are able to bind to active site residues to inhibit activity24. 

Tosyl-L-phenylalanine dimethyl ketone (TPCK) is a substrate analog to the substrate for 

chymotrypsin25. The other main type of irreversible inhibitor is a suicide inhibitor. The 

type of inhibitor is similar to that of affinity labels but has a greater degree of similarity 

to the natural substrate. This substrate goes through the traditional catalytic pathway and 

is initially metabolized. After this initial metabolism, the substrate is converted into an 

unstable product that halts the enzyme permanently. Since the enzyme is able to halt its 

functions through “suicide,” this suggests that the mechanism based inhibitor is important 

to a feedback mechanism26. This feedback is able to prevent the amount of the natural 

substrate turning over to desired product from becoming excessive.  
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1.4.0. Measuring Activity of Cytochrome P450’s (Kinetics) 

 The Michaelis-Menten equation has served as the quintessential measurement of 

the kinetics of an enzymatic reaction. Fundamentally this equation relates reaction rates 

to substrate concentration. The Vmax of the reaction is the maximum velocity of the 

reaction and is only possible to measure with an infinite substrate concentration. 

However, it can be determined via regression analysis. The Km of the reaction is the 

concentration of the substrate needed to yield a rate of one half of the Vmax. It is used to 

measure the strength of the interaction between the enzyme and the substrate. The smaller 

the Km the stronger the interaction between the substrate and the enzyme. The kcat of the 

equation is the rate constant for the turnover of substrate to product from the binding of 

the substrate and enzyme. It can also be thought of as the enzymatic rate of catalysis of 

the reaction. Using the Michaelis-Menten equation, it can be determined what type of 

inhibition is being exhibited. As seen in Figure 2 the changes in Vmax and Km between 

different types of inhibition are visible. The data from the Michaelis-Menten plot can be 

used to create a Lineweaver-Burke plot which can help to differentiate between the 

varying classes of inhibition. The type of inhibition can also be found through correlating 

activity over time as seen in Figure 2.  
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Figure 2. Product Formation over Time in Comparing Reversible and Irreversible 
Inhibitors. 
 

 
 

If there is reversible inhibition, the ratio of activity over time will be constant. In 

the presence of an irreversible inhibitor, the ratio of activity of time will have a positive 

trend as seen in Figure 3. 

 
Figure 3. Ratio of Activity over Time in Comparing Reversible and Irreversible 
Inhibitors. 
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 As foreign substances enter the body, they are able to alter the efficiency of 

certain enzymes. An example of one such foreign chemical that could possibly alter the 

activity of P450’s is undecylenic aldehyde. This specific aldehyde is interesting since it 

not only contains an aldehyde end, but also a terminal olefin that contributes to its unique 

qualities as seen in Figure 4. In previous studies conducted by Dr. Kandagatla et al., the 

addition of an aldehyde containing an olefin was shown to decrease the overall activity as 

a competitive inhibitor of 2E1 and 2A627. 

 
Figure 4. Structure of Undecylenic Aldehyde. 

H

O

CH2
 

1.5.0. Interactions with Xenobiotics 

In previous studies by Ortiz de Montellano, upon the addition of an olefin to a 

cytochrome P450 there was a destruction of the central heme. The addition of the 

undecylenic aldehyde which contains an olefin end is predicted to affect the selected 

isoforms’ central heme component in a similar way28. Alternatively, aldehydes have been 

shown to inactivate microsomal P450 enzymes via a mechanism based reaction, thus the 

aldehyde portion of this molecule may lead to destruction.  

Both aldehydes and olefins are known to irreversibly destroy cytochrome P450 

enzymes via suicide inactivation. We can come in contact with undecylenic aldehyde 

through of means. It can be inhaled since it is highly used for scent longevity in 
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perfumes, candles, and deodorants (US Patent US US5380707 A). In the 1970’s, it was 

used as an herbicide (US Patent US2626862 A), while today, undecylenic aldehyde could 

also be ingested through its use in anti-cavity chewing gum (US Patent US4048299 A). 

Little was known then and now about the effects of undecylenic aldehyde once it enters 

the body, and specifically how it could have the ability to alter the metabolic efficiency of 

P450’s. 

1.6.0. Objectives 

The primary objectives of this project are to determine the effects of undecylenic 

aldehyde on human drug metabolizing P450’s, and to identify precise chemical 

mechanisms involved. If the assays prove that low concentrations of inhibitor cause a 

significant amount of inhibition, this could possibly have adverse effects on the 

metabolism by cytochrome P450’s and require a great deal of universal testing. A patient 

prescribed a drug could witness possible effects of the interaction between a drug and a 

xenobiotic, much like the case of statins and grapefruit juice. The number of possible 

compounds encountered daily that could alter the metabolism of these enzymes has just 

been grazed. For the benefit of patients alike, the safety behind pharmaceutical testing is 

an important safety measure of pharmaceuticals everywhere. 

1.6.1. Screening with Varying Isoforms of Liver Xenobiotic-Metabolizing CYP’s 

The whole familial umbrella of cytochrome P450’s can be subdivided according 

to what substrates they are able to metabolize such as: sterols, fatty acids, eiconasoids, 

vitamins, and xenobiotics. While there are always exceptions and ones that a substrate is 
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not known for yet, these five main groupings show similarities between what they 

metabolize29. The current study focuses on the microsomal/ drug metabolizing P450’s 

with the goal of identifying possible inhibition of certain members. The approach used 

will be to add undecylenic aldehyde and monitor changes in overall activity of P450’s. 

Inhibition of specific human enzymes may suggest potential drug interactions with this 

compound. 

The following group of xenobiotic metabolizing Cytochrome P450’s are in the 

highest quantities in the liver: 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. Of 

this grouping, 3A4 would be most significant since it is in the most prominent human 

isoform, being responsible for the oxidation of approximately two-thirds of all known 

drugs, including the drugs as previously mentioned, statins and benzodiazepines5. Since 

3A4 metabolizes a large percentage of all drugs, that makes it a natural candidate to 

consider for the monitoring of interactions with other xenobiotics. Although 3A4 would 

be affected the most, the following also have a high likelihood of being affected since in 

conjunction with 3A4 they collectively metabolize 80% of clinically used drugs: 2D6, 

2C, 1A2, and 2E11. 

1.6.2. Mechanistic Studies 

In previous studies by Ortiz de Montellano, upon the addition of an olefin to a 

cytochrome P450 there has been a destruction of the central heme. The addition of the 

undecylenic aldehyde which contains an olefin end is predicted to affect the selected 

isoforms’ central heme component in a similar way28. Alternatively, aldehydes have been 
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shown to inactivate microsomal P450 enzymes via a mechanism based reaction, thus the 

aldehyde portion of this molecule may lead to destruction. By monitoring heme structure 

following inhibition, it should be possible to assess the mode of inactivation.  
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CHAPTER II 
 

MATERIALS AND METHODS 
 
 

2.1.0. Preparation of Reagents and Stock Solutions 

2.1.1. Substrate Preparations 

2.1.1.1. Naphthalene 

 This substrate was used as the substrate in the 3A4, 1A1, 1A2, and 2D6. 

Naphthalene was purchased from Arcos Organics. A stock solution of 200 µM was 

prepared by adding 2.6 mg to 100 mL of nanopure water.  

2.1.1.2. Coumarin 

 The coumarin used in the 2A6 assay was purchased from Arcos Organics. A stock 

concentration of 100 µM was achieved by adding 1.5 mg of coumrain to 100 mL of 

nanopure water. 

2.1.1.3. Amodiaquine 

 Amodiaquine was purchased from Arcos Organics. A stock concentration of 

amodiaquine was prepared by adding 35.6 mg to a solution of 90 mL of nanopure water 

and 10 mL of methanol, for a total of 100 mL. Before adding to the 2C8 experiments, the 

stock solution was diluted by adding 1 mL of the stock solution to 99 mL of nanopure 

water to ensure that the methanol was less than one percent.  
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2.1.1.4. P-nitrophenol 

 This substrate was used in the 2E1 experiments. P-nitrophenol was purchased 

from Crescent Chemical Company Incorporated. A stock solution was prepared by 

adding 13.9 mg to 100 mL of nanopure water, creating a 1mM stock. 

2.1.1.5. Fluorophenol 

 This substrate was purchased from Arcos Organics.  A stock solution of 60 mM 

4-fluorophenol was made by adding 336.3 mg to 50 mL of nanopure water. 

2.1.2. Preparation of Phosphate Buffer Solution 

 A 1 M solution of phosphate buffer was made using monobasic and dibasic 

potassium phosphate. These compounds were purchased from Carolina Biological Supply 

Inc. The pH of the solution was adjusted to 7.4 through combining both phosphate 

solutions. This buffer solution was used for all of the following assays below unless 

otherwise stated. 

2.1.3. Preparation of NADPH  

Nicotinamide adenine dinucleotide phosphate (NADPH) was purchased from 

Research Products International (RPI). The NADPH was diluted with nano-pure water 

and partitioned into 10 mM aliquots. The aliquots were then stored in a -80°C freezer 

until they were used in an assay.   
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2.1.4. Preparation of Glutathione 

 The glutathione used in the assays was purchased from Sigma-Aldrich. A stock 

solution of glutathione was prepared by adding 1.5366 g to 50 mL of nanopure water. 

The concentration of the stock solution was 100 mM.  

2.1.5. Preparation of Rabbit Liver Microsomes 

 The rabbit liver microsomes that were used were prepared in the lab. The rabbit 

liver was initially washed in 0.05 M potassium phosphate buffer with 0.1 mM EDTA. 

The liver and buffer solution was then blended using a hand-held homogenizer. Once this 

mixture was thoroughly blended, the mixture was centrifuged at 5,000 rpm for 10 

minutes and the pellet was discarded. The supernatant was further centrifuged at 37,000 x 

g for one hour. The microsomes were then homogenized in potassium phosphate buffer 

and stored in a -80°C freezer in 75 µL aliquots until they were further used.  

2.1.6. Human S9 Liver Microsomes 

 The human S9 liver microsomes used to determine the mode of inhibition of 

undecylenic aldehyde were purchased from Molecular Toxicology Inc. in Asheville, 

North Carolina. The solution was partitioned into 75 µL aliquots and stored in a -80°C 

freezer until they were used in an assay.   
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2.2.0. Cytochrome P450 Assays  

2.2.1. Time Trial of 2E1 Using Rabbit Microsomes 

 Rabbit microsomes were used to conduct a time trial experiment to monitor 

inhibition over time. To begin, incubation tubes were prepared by mixing phosphate 

buffer (0.1M, pH 7.4), water, 5 x10-5 M of the substrate p-nitrophenol, and 5 x10-4 M 

NADPH. Phosphate buffer, microsomes, and water were added to all the preincubation 

tubes. Half of the preincubation tubes had undecylenic aldehyde (1.25 x10-5 M) added 

and the other half received that same amount of water. Then via a “rolling method” in 15 

second intervals, 5 x10-4 M NADPH was added, vortexed, and placed in the heat block at 

37 oC. One twenty-fifth of the total contents (20 µL) of the preincubation tube was 

removed in intervals of 0, 2, 5, 10, and 15 minutes of preincubation and placed into an 

incubation tube to make the total volume 200 µL. Once the contents were delivered to the 

incubation tube, it was vortexed and all samples incubated for 30 minutes. After each 

tube’s incubation time, the sample was quenched with 20 µL of 60% perchloric acid, 

vortexed, and placed on ice for at least 10 minutes. The samples were then centrifuged at 

14,000 rpm for 10 minutes after which the supernatant was removed and analyzed by 

HPLC. The HPLC conditions included a C-18 column and a mobile phase with 40 % 

acetonitrile, 59% nanopure water, and 1% trifluoroacetic acid.  

2.2.2. Human Liver S9 Microsomes  

 Human liver S9 fractions were used to determine the mode of inhibition of 

undecylenic aldehyde on CYP 2E1 isoform. A time trial using samples with and without 
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added aldehyde were monitored for activity over time. All of the reactions received 0.1 M 

pH 7.4 phosphate buffter, nanopure water, 50 µM paranitrophenol, 10 µL of microsomes, 

and 0.5 mM glutathione. Half of the samples had 250 µM undecylenic aldehyde added 

while the other half received water added to make the total volume 800 µL. Then via a 

“rolling method” in 15 second intervals, 1 mM NADPH was added, vortexed, and left to 

incubate for 15 minutes. At 15 minutes one fourth of the contents or 200 µL was 

removed, quenched, and placed on ice. The remaining 600 µL continued to incubate for 

an additional 15. After the total 30 minutes elapsed, 200 µL was removed, quenched, and 

placed on ice. The remaining 400 µL continued to incubate for an additional 15. After the 

total 45 minutes elapsed, 200 µL was removed, quenched, and placed on ice. The 

remaining 200 µL continued to incubate for an additional 15 in which after the total 60 

minutes elapsed, the remaining contents were removed, quenched, and placed on ice. 

After all sample had been placed on ice for at least 10 minutes, the samples were then 

centrifuged at 14,000 rpm for 10 minutes. The supernatant was then analyzed by HPLC. 

A C18 column was used with a mobile phase of 45% acetonitrile, 54% nanopure water, 

and 1% trifluoroacetic acid. 

All expressed P450 enzymes were purchased from Xentotech.  

2.2.3. Individually Expressed Isoforms, Supersomes 

2.2.3.1. 1A1 and 1A2 

For each sample, 0.1 M pH 7.4 phosphate buffer, 60 µM naphthalene, 5 mM 

catalase, 5 mM ascorbate, 5 µL of the individually expressed 1A1 or 1A2 isoform, and 
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water were added. Undecylenic aldehyde was then added in 0 mM, 1.25 mM, 3.75 mM, 

and 12.5 mM concentrations to the individual samples respectively. Via a “rolling 

method” in 15 second intervals, a final concentration of 1 mM NADPH was added to the 

reaction, vortexed, and incubated at 37 oC for 10 minutes. The final volume was 200 µL. 

The samples were then quenched via the “rolling method” with 300 µL of 6% perchloric 

acid, vortexed, and placed on ice for 10 minutes. The samples were then centrifuged at 

14,000 rpm for 10 minutes. A HPLC analysis was then performed on the supernatant and 

the pellet was discarded. The mobile phase conditions consisted of 60% acetonitrile, 39% 

nanopure water, and 1% trifluoroacetic acid. 

2.2.3.2. 2A6 

 Phosphate buffer (0.1M) with a pH of 7.4, nanpure water, 125 µM glutathione, 5 

µM coumarin, and 5 µL of the individually expressed 2A6 isoform were added to each 

vial. In separate samples, varying amounts of undecylenic aldehyde were added: 0 mM, 

1.25 mM, 3.75 mM, and 12.5 mM. Then via a “rolling method” in 15 second intervals, 1 

mM NADPH was added, vortexed, and incubated at 37 oC for 30 minutes. The final 

reaction volume was 200 µL. After the incubation period, via the “rolling method,” in 15 

second intervals ice-cold 2M HCl was added to each reaction, vortexed, and placed on ice 

for 10 minutes. The samples were then centrifuged at 14,000 rpm and the supernatant was 

analyzed by HPLC with a C18 column at 328 nm. The mobile phase conditions were 

59% nanopure water, 40% methanol, and 1% trifluoroacetic acid. 
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2.2.3.3. 3A4 

 In separate vials, 0.1 M pH 7.4 phosphate buffer, 60 µM naphthalene, 5 mM 

catalase, 5 mM ascorbate, 3 µL of the individually expressed 3A4 isoform, and water 

were added. Then 0 mM, 1.25 mM, 3.75 mM, and 12.5 mM concentrations of 

undecylenic aldehyde were added to the individual samples respectively. Via a “rolling 

method” in 15 second intervals, a final concentration of 1 mM NADPH was added to the 

reaction, vortexed, and incubated at 37o
 
C for 30 minutes. The final volume was 200 µL. 

After this incubation period, the samples were quenched via the “rolling method” with 

70% perchloric acid and placed on ice for 10 minutes. The samples were then centrifuged 

at 14,000 rpm for 10 minutes. HPLC analysis was then performed on the supernatant and 

the pellet was discarded. Mobile phase conditions consisted of 50% acetonitrile, 49% 

nanopure water, 1% isopropanol, and 0.1% trifluoroacetic acid, and a C18 column was 

used. 

2.2.3.4. 2C8 

 The supersomes were diluted eight-fold with 0.1 M phosphate buffere pH 7.4. The 

substrate amodiaquine was diluted 100-fold by adding 0.01 mM amodiquine in 10% 

methanol to nanopure water. Phosphate buffere pH 7.4, nanopure water, 10 µL of the 

individually expressed isoform 2C8, and 20 µL of the substrate were added. Then 0 mM, 

1.25 mM, 3.75 mM, and 12.5 mM concentrations of undecylenic aldehyde were added to 

the individual samples respectively. Via a “rolling method” in 15 second intervals, a final 

concentration of 1 mM NADPH was added to the reaction, vortexed, and incubated at 37o
 

C for 4 minutes.  The reactions were quenched in the same “rolling method” with 7.5% 
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perchloric acid and placed on ice for 10 mintues. The samples were then centrifuged at 

14,000 rpm for 10 minutes. The supernatant was then analyzed by HPLC with a C18 

column at 347 nm. A time program of the mobile phase conditions is listed below in 

Table 2. Two different mobile phases were used, and both included 0.1% trifluoroacetic 

acid. Pump A is nanopure water. When pump A is less than 100%, the other mobile phase 

incorporated is acetonitrile. 

 
Table 2. 2C8 HPLC Conditions. 

2C8 HPLC Conditions 

Time (minutes) % A 

0 100 

2 80 

8 70 

8.1 0 

10.1 0 

10.2 100 

13.2 100 
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2.2.3.5. 2D6 

Each trial contained 0.1 M pH 7.4 phosphate buffer, 100 µM naphthalene, 5 mM 

catalase, 5 mM ascorbate, 5 µL of the individually expressed 2D6 isoform, and water 

were added. Undecylenic aldehyde was then added in 0 mM, 1.25 mM, 3.75 mM, and 

12.5 mM concentrations to the individual samples respectively. Via a “rolling method” in 

15 second intervals, a final concentration of 1 mM NADPH was added to the reaction, 

vortexed, and incubated at 37 oC for 10 minutes. The samples were then quenched via the 

“rolling method” with 300 µL of 6% perchloric acid, vortexed, and placed on ice for 10 

minutes. The samples were then centrifuged at 14,000 rpm for 10 minutes. HPLC 

analysis with a C18 column was then performed on the supernatant and the pellet was 

discarded. The mobile phase conditions consisted of 60% acetonitrile, 39% nanopure 

water, and 1% trifluoroacetic acid. The final volume of the reactions was 200 µL. 

2.2.3.6. 2E1 

 With a final volume of 200 µL, 2 µL of individually expressed isoform 2E1, 0.1 

M pH 7.4 phosphate buffer, 50 µM paranitrophenol, 5 mM catalase, 5 mM ascorbate, and 

water were added collectively. Then 0mM, 1.25 mM, 3.75 mM, and 12.5 mM 

concentrations of undecylenic aldehyde were added to individual samples respectively. 

Then via a “rolling method” in 15 second intervals, 1 mM NADPH was added to the 

reaction, vortexed, and incubated at 37o
 
C for 30 minutes. After this incubation period, 

the samples were quenched via the “rolling method” with 70% perchloric acid and placed 

on ice for 10 minutes. The samples were then centrifuged at 14,000 rpm for 10 minutes. 
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The supernatant was removed and analyzed by HPLC at 340 nm. Mobile phase 

conditions consisted of 60% acetonitrile, 39% nanopure water, and 1% trifluoroacetic 

acid. 

2.2.4. Michaelis-Menten Analyses  

2.2.4.1. Study with 2E1 and p-Nitrophenol  

 A Michaelis-Menten study was performed to monitor the mode of inhibition. All 

of samples received 0.1 M potassium phosphate buffer with a pH of 7.4 and 15 µL of 

rabbit liver microsomes. A series of five concentrations of substrate were utilized: 50 

µM, 100 µM, 200 µM, 300 µM, and 400 µM. For each of these varying substrate 

concentrations, varying concentrations of the inhibitor, undecylenic aldehyde, were added 

to the samples: 0 µM, 12.5 µM, and 62.5 µM. The remaining volume was filled with 

nanopure water and a final volume of 200 µL was achieved after taking into the future 

account of volume of NADPH. Then via a “rolling method,” 1 mM NADPH was added, 

vortexed, and incubated for incubated for 30 minutes. After the incubation period in a 

“rolling method” format, the samples were then quenched with 60% perchloric acid, 

vortexed, and placed on ice for at least 10 minutes. The samples were then centrifuged at 

14,000 rpm for 10 minutes. The pellet was discarded and the supernatant was analyzed by 

HPLC. The mobile phase conditions included 60% acetonitrile, 39% nanopure water, and 

1% trifluoroacetic acid. 
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2.2.5. BM3  

 BM3 trials were used as a mechanistic probe and serve no biological relevance. 

These trials contained 0.1 M pH 7.4 phosphate buffer, 15 mM fluorophenol, nanopure 

water, and enzyme. Undecylenic aldehyde was then added in 0 mM, 1.25 mM, 3.75 mM, 

and 12.5 mM concentrations to the individual samples respectively. The samples were 

then pre-incubated for two minutes each. The samples individually had NADPH, with a 

final concentration of 1mM, added to the reaction, vortexed, and incubated at 37 oC for 

20 seconds. After this 20 second incubation, the reaction was then rapidly quenched with 

10 µL of 60% perchloric acid and placed on ice for 10 minutes. After being placed on ice, 

the samples were then centrifuged at 14,000 rpm for 10 minutes. The pellet was discarded 

and the supernatant was analyzed by HPLC through use of a C18 column. The mobile 

phase used contained 55% nanopure water, 44% acetonitrile, and 1% trifluoroacetic acid. 
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CHAPTER III 
 

RESULTS AND DISCUSSION 
 
 

3.1.0. Isoform Screening Assays  

 A wide spectrum of liver Cytochrome P450’s were individually monitored for 

changes in overall activity upon the addition of undecylenic aldehyde. The following 

P450 isoforms were tested to see if there was a change in relative activity in response to 

varying concentrations of undecylenic aldehyde: 1A1, 1A2, 2A6, 3A4, 2B6, 2C8, 2C19, 

2D6, and 2E1. A good substrate had to be used for each specific isoform, meaning it was 

able to be metabolized by that specific isoform and also generate a high yield of its 

respective product after being oxidized. The substrates shown in Table 3 were used to 

probe the activity of their respective isoforms and products, which are also shown in the 

table. 
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Table 3. List of Isoforms and Respective Substrates and Products. 

 
Isoform 

Respective Substrate Oxidized Product 

1A1 Naphthalene 1-naphthol 

1A2 Naphthalene 1-naphthol 

2A6 Coumarin 7-hydroxy coumarin 

3A4 Naphthalene 1-naphthol 

2C8 Amodiaquine Oxidized Amodiaquine 

2D6 Naphthalene 1-naphthol 

2E1 4-nitrophenol 4-nitrocatechol 

 

 Once the samples were analyzed via their respective HPLC conditions, a measure 

of total activity for each sample was obtained as a control for subsequent inhibition 

studies. All activities with inhibitor are reported as a percent of these controls. Some of 

the isoforms presented good overall activity in their respective assays, while others did 

not. Isoforms 2E1, 2A6, and 2C8 had high overall activity. Isoform 3A4 and 2D6 had 

moderate overall activity. Isoforms 1A1 and 1A2 had a low overall activity. The activity 

of the reactions was then judged after the addition of undecylenic aldehyde (12.5 µM, 

31.25 µM, and 62.5 µM) and placed into one of three categories: low, moderate, and high 

inhibition. Low inhibition was defined as less than 30% of overall activity. Moderate 

inhibition was defined as less than 50% of overall activity. High inhibition was 

characterized by inhibition of 60% or greater.  
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 A comparative graph at the highest concentration of undecylenic aldehyde, or 

62.5 µM, were used to determine which isoforms showed the highest percent inhibition. 

Those with the highest degree were further analyzed by different methods. In Figure 5, 

the graph shows the comparisons of all the isoforms tested. Isoforms 3A4 and 2E1 had a 

percent inhibition of greater than 60% and had high overall activity. The other isoforms 

were either eliminated from further consideration due to low overall activity or low 

inhibition. Isoform 1A1 and 1A2 had a low overall activity. The remaining isoforms 

(2A6, 2C8, and 2D6) all had moderate to high activity but exhibited low inhibition upon 

the addition of undecylenic aldehyde. Since all the different isoforms displayed some 

inhibition under these conditions, a dose response for each isoform was carried out. 

 
Figure 5. Comparative Graph between Isoforms with Highest Concentration of 
Undecylenic Aldehyde, 62.5 μM. 
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3.1.1. 1A1 

 In Figure 6a, results from the dose response study involving inhibition of 1A1 by 

undecylenic aldehyde are displayed. Isoform 1A1 exhibited low overall activity with 

naphthol as a substrate however, was sufficient for evaluating effects of undecylenic 

aldehyde. The error bars were created using the standard deviation. Here, a low percent 

decrease in activity with the addition of aldehyde was observed indicating very little 

inhibition of 1A1. To resolve this issue, a new stock of enzyme could be used or a better 

substrate could be used, resulting in higher percent activities.  

 
Figure 6a. Isoform 1A1 Activity with Addition of Varying Amounts of Aldehyde. 
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3.1.2. 1A2 

 Results from the reactions with 1A2 are shown in Figure 6b. Again low activity 

was observed with naphthalene, but unlike with 1A1, moderate decrease in activity after 

the addition of undecylenic aldehyde was seen. The error bars were created using the 

standard deviation.  Though the data from the 1A2 screening is more reliable, the activity 

was moderate at best. Like the 1A1 suggested modification, a better substrate could be 

utilized in hopes of increasing the overall activity.  

 
Figure 6b. Isoform 1A2 Activity with Addition of Varying Amounts of Aldehyde. 
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3.1.3. 2A6 

 The data for isoform 2A6 is displayed in Figure 6c; this enzyme was assayed with 

coumarin as a substrate, however a low degree of inhibition was observed. The error bars 

were created using the standard deviation. The addition of 12.5 µM of undecylenic 

aldehyde resulted in approximately a 10% decrease in activity. Addition of 31.25 µM 

showed a decrease in the percent inhibition, but addition of 62.5 µM undecylenic 

aldehyde showed a slight decrease in percent activity.  

 
Figure 6c. Isoform 2A6 Activity with Addition of Varying Amounts of Aldehyde. 
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close to 50%. The addition of the highest concentration of undecylenic aldehyde, 62.5 

µM, approximately 34% of the initial activity was seen. Of the isoforms examined, this 

was the second most prominent level of inhibition observed.  

 
Figure 6d. Isoform 3A4 Activity with Addition of Varying Amounts of Aldehyde. 
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Figure 6e. Isoform 2C8 Activity with Addition of Varying Amounts of Aldehyde. For the 
31.25 µM Concentration There Was Only One Data Point Due to Error, Thus the 
Standard Deviation is 0. 
 

 
 

3.1.6. 2D6 

 For 2D6 which is shown in Figure 6f, the overall activity was low and there was 

modest inhibition. Naphthalene as a substrate did not produce a high turnover to product. 

This low activity could be a contributing factor to the increase in activity seen in the 

reactions with 12.5 µM undecylenic aldehyde. The error bars were created using the 

standard deviation. 

 
  

100
96 93 91

0

20

40

60

80

100

120

0 µM AVG 12.5 µM AVG 31.25 µM 62.5 µM AVG

P
er
ce
n
t 
A
ct
iv
it
y

Final Concentrations of Undecylenic Aldehyde

2C8 with Amodiaquine and Undecylenic Aldehyde



 

38 

Figure 6f. Isoform 2D6 Activity with Addition of Varying Amounts of Aldehyde.  
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Figure 6g. Isoform 2E1 Activity with Addition of Varying Amounts of Aldehyde. 
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largest decrease in activity upon the addition of the highest concentration of undecylenic 

aldehyde. This data is important for the study of drug reactions. If it takes a minute 

amount of undecylenic aldehyde to greatly affect the activity of specific isoforms, this 
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could possibly cause a threat to the efficacy of drugs being prescribed. From the 

screening of isoforms, 3A4 and 2E1 were good candidates to continue kinetic analysis 

due to their significant decrease in activity even at the lower concentrations.  

3.2.0. Determining the Mode of Inhibition for 2E1 

Initially, rabbit liver microsomes were used to monitor the mode of inhibition for 

the 2E1 isoform. P-nitrophenol was used since it is a selective substrate of 2E1. Over the 

course of one hour, four reactions were carried out, two with undecylenic aldehyde and 

two without. The four reactions were then compared to monitor differences due to the 

addition of undecylenic aldehyde. In Figure 7, the results of this time course experiment 

is shown. The activity is representative of irreversible binding. For example, when 

irreversible binding occurs, it blocks enzymatic activities most likely due to covalent 

binding to the enzyme. As shown in the graph, this should then give a time dependent 

decrease in activity that correlates with the kinetics of the covalent attachment. As more 

and more enzyme gets inactivated over time, the ratio (slope) of the time course plot 

drops to zero eventually. To assess this, one can compare the ratio of activities in the 

absence and presence of inhibitor as seen in Figure 8. If the ratio remains constant, it 

suggests a simple reversible mode of inhibition. However, irreversible inhibition should 

result in an increasing ratio of without inhibitor to with inhibitor. Irreversible binding is 

marked by a time-dependent reduction in activity as seen in Figure 7. In other words, the 

activity is lost over time when undecylenic aldehyde is present. Irreversible binding is 

indicative of complete binding of the aldehyde to the active site of the enzyme without 

the possibility of the two separating. 
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Figure 7. Comparison of Activity between Samples without Inhibitor to Those with 
Inhibitor Using the Substrate for 2E1, p-Nitrophenol. 
 

 

Figure 8. Ratios from Figure 7 between Samples without Inhibitor Compared to Those 
with Added Undecylenic Aldehyde. 
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3.2.1. Michaelis-Menten Studies of 2E1 with Lineweaver-Burk Plot 

 To monitor the mode of inhibition, a Michaelis-Menten study was performed. 

This study was conducted to monitor if a reversible type of inhibition was present. The 

concentrations of the substrate, or p-nitrophenol, were tested in 50 µM, 100 µM, 200 µM, 

300 µM, and 400 µM. These concentrations were tested with 0 µM, 12.5 µM, and 62.5 

µM concentrations of undecylenic aldehyde. In Figure 10, the concentrations were 

plotted and show a decrease in the Km
 and the Vmax. A competitive mode of inhibition 

would show a change in the Km. A change in the Vmax would be reflective of a 

noncompetitive inhibitor. Since there is a change in both the Km
 and the Vmax, this is 

suggestive of mixed inhibition. Mixed inhibition has certain characteristics from both 

competitive and non-competitive inhibition. In order to better determine which type of 

inhibition it is most associated, a Lineweaver-Burk plot or a double reciprocal plot was 

made to better analyze the data from Figure 9. 

 The results from the Michaelis-Menten study were then used to create a 

Lineweaver-Burk plot. This double reciprocal plot is also used to distinguish between 

different modes of inhibition. A competitive inhibitor would share the same y-intercept as 

the sample without the inhibitor present. A non-competitive inhibitor would share the 

same x-intercept as the sample without inhibitor. In Figure 10, the data points along the 

y-axis are close to the same value, whereas the data points crossing the x-axis differ in 

value. This type of inhibition suggests primarily mixed inhibition but most closely 

suggests competitive inhibition.  
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Figure 9. Michael-Menten of 2E1 with p-Nitrophenol in the Presence of Undecylenic 
Aldehyde. 
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Figure 10. A Lineweaver-Burk Plot of Isoform 2E1 at Three Varying Concentrations of 
Undecylenic Aldehyde. The Blue is Used for Reactions with 0 µM of Undecylenic 
Aldehyde, the Orange Lines is Used for Reactions with 12.5 µM of Undecylenic 
Aldehyde, and the Gray Line is Used for Reactions with 62.5 µM of Undecylenic 
Aldehyde. 
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turned over by BM33. The efficiency of BM3 was seen in the preceding reaction’s 

coupling efficiency which ranged from 55% to 100%.  

The studying of BM3 treated with undecylenic aldehyde can reveal what happens 

to the central heme component of cytochrome P450’s during the reaction. For example, 

Raner et al. demonstrated with certain aldehydes that during turnover, the heme is 

alkylated by reactive intermediates produced by the reaction29. Fluorophenol was used as 

the substrate for BM3 to test for effects on catalytic activity. Initial studies using NADPH 

as the source of electrons in the presence of aldehyde resulted in increased activity 

consistent with prior studies involving aldehyde stimulation of BM3. No evidence of 

inactivation was observed, however, suggesting that although the aldehyde function of 

undecylenic aldehyde was probably oriented toward the active site, its proximity to 

activated oxygen is not optimal for heme alkylation.  
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CHAPTER IV 
 

CONCLUSIONS 
 
 

 Cytochrome P450’s play a vital role in the metabolism of xenobiotics. Performing 

a screening of the different liver Cytochrome P450’ showed that only two of the proposed 

seven human enzymes examined had a decrease in activity. In the case of isoforms 3A4 

and 2E1, these two isoforms had a significant decrease in overall activity upon the 

addition of undecylenic aldehyde. 

A kinetic study was performed to analyze the type of binding present. Initially, 

isoform 2E1 data displayed signs of irreversible binding. This was concluded through the 

continual increase in activity over time. The ratio over time also increased suggesting 

irreversible inhibition. 

Using a spectrophotometer, there was no significant change in the absorption 

upon the addition of undecylenic aldehyde. There was no evidence of inactivation 

observed, suggesting the aldehyde function of undecylenic aldehyde was bound at the 

active site. 

The Michaelis-Menten study suggests that the type of inhibition experienced in 

the 2E1 isoform is the result of mixed inhibition, as seen in the changes in the Km and 

Vmax. A Lineweaver Burk plot was created and the results showed mixed inhibition. 
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However, the data more closely resembled that of competitive inhibition. This 

research is valuable for analyzing how xenobiotics affect the activity of specific enzymes. 

In the case of cytochrome P450’s, isoforms 2E1 and 3A4 saw an overall reduction of 

activity. As seen in the case of furanocoumarins and P450’s, these compounds alter the 

metabolism of a class of drugs referred to as statins. Studying other compounds and 

monitoring for activity change is crucial to how drugs are dosed and prescribed. Other 

similar experiments should be performed on drugs before they are available to 

consumers. This area of research is essential for drug safety, and will help reduce the 

amount of potentially harmful drug/xenobiotic interactions.  
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