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This study uses latent-variable analysis to investigate the roles of control and 

attentional scope aspects of working memory (WM) on three visual search tasks that the 

literature indicates involve controlled processing—preview search (Watson & 

Humphreys, 1997), cued location search (Poole & Kane, 2009) and attention capture 

search (Lavie & De Fockert, 2005). Latent variable analyses indicate that control and 

attentional scope aspects of WM are best conceptualized as part of the same unitary WM 

construct rather than as separate entities. Capture search resulted in an unexpected 

reverse capture effect with the presence of irrelevant stimuli leading to faster search. 

Modeling indicated that controlled processes involved in preview search and cued search 

should be conceptualized as reflecting the same processes rather than separate types of 

control, in spite of differences in task requirements. After partialling out variability 

common to traditional search which does not recruit control processes (Kane, Poole, 

Tuholski & Engle, 2006), the unitary WM factor was related to a latent control factor 

based on preview search and cued search performance.



 

 

EXECUTIVE CONTROL AND ATTENTIONAL  

SCOPE IN VISUAL SEARCH: A LATENT  

VARIABLE INVESTIGATION 

 

 

by 

Bradley John Poole 

 

A Dissertation Submitted to 
the Faculty of The Graduate School at 

The University of North Carolina at Greensboro 
in Partial Fulfillment 

of the Requirements for the Degree 
Doctor of Philosophy 

 

 

Greensboro 
2012 

 

 

          Approved by    

 

            __________________________ 
     Committee Chair 

  



ii 
 

   
 

 

 

 

 

 

 

 

A special thanks to all the friends and family who helped me along the way.  

This work is as much a product of my labor as is it your love. 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

APPROVAL PAGE 

  
This dissertation has been approved by the following committee of the Faculty of 

The Graduate School at the University of North Carolina at Greensboro. 

 

 

 

 

Committee Chair ______________________________________ 

Committee Members ______________________________________ 

______________________________________ 

______________________________________ 

______________________________________ 

 

 

 

 

____________________________  

Date of Acceptance by Committee 

 

____________________________ 

Date of Final Oral Examination 

 

 



 

iv 
 

ACKNOWLEDGMENTS 
 
 

Many thanks are owed to my advisor, Dr. Michael Kane, for his teaching, 

guidance, and seemingly boundless patience.  

 

 

 

 

 

 

 

 

 

  



 

v 
 

TABLE OF CONTENTS 
 

Page 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

CHAPTER 

 I. INTRODUCTION .................................................................................................1 

 II. METHOD ............................................................................................................27 

 III. RESULTS ............................................................................................................37 

 IV. DISCUSSION ......................................................................................................65 

REFERENCES ..................................................................................................................97 

APPENDIX A. TABLES .................................................................................................114 

APPENDIX B. FIGURES ...............................................................................................126 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

LIST OF TABLES 

Page 

Table 1. Counterbalancing order for visual search tasks .................................................114    

Table 2. Means and standard deviations of error rates for preview search by trial  
                   type and distractor set size  ...........................................................................115 
 
Table 3. Means and standard deviations of error rates for cued search by WMC,  
                   trial type and locations cued  ........................................................................116 
 
Table 4. Means and standard deviations of error rates for cued search by WMC,  
                   trial type, locations cued and fixation duration  ............................................117 
 
Table 5. Means and standard deviations of error rates for capture search  
  by WMC,  trial type, duration and distractor set size  ..................................118 
 
Table 6. Correlation matrix of WM and visual search variables .....................................120 

Table 7. Factor loadings for WM tasks by model ............................................................124 

Table 8. Factor loadings for baseline latent variable by model  ......................................125 

 
 

 

 

 

 

 

 

 

 



 

vii 
 

LIST OF FIGURES 

Page 

Figure 1a. Sample display for first half of distractors presented in a preview  
                    search trial ....................................................................................................126 
 
Figure 1b. Sample display for a full trial of preview search ............................................127 
 
Figure 2a. Sample display of offset preview search trial with locations populated  
                     with figure 8 shapes ....................................................................................128 
 
Figure 2b. Sample preview display with first half of distractors revealed from  
                     figure 8 shapes ............................................................................................129 
 
Figure 2c. Sample full preview display with all stimuli revealed from figure 8  
                     shapes ..........................................................................................................130 
 
Figure 3. Cues indicating target locations in cued search ................................................131 

Figure 4. Sample of a cued search display .......................................................................132 

Figure 5. Sample of an offset cued search fixation display  ............................................133 

Figure 6. Sample of a color capture trial ..........................................................................134 

Figure 7a. Sample of an onset capture trial before presentation of the singleton ............135 

Figure 7b. Sample of an onset trial with singleton present (E in the bottom left 
                     of the display ...............................................................................................136 
 
Figure 8a. RTs for preview search for onset and baseline trials by distractor  
                      set size for High and Low WMC groups ...................................................137 
 
Figure 8b. RTs for preview search for offset and baseline trials by distractor  
                      set size for High and Low WMC groups ...................................................138 
 
Figure 9a. RTs for preview search for onset trials by duration and distractor 
                      set size for High and Low WMC groups ...................................................139 
 
Figure 9b. RTs for preview search for offset trials by duration and distractor  
                      set size for High and Low WMC groups ...................................................140 
 



 

viii 
 

Figure 10. RTs for cued search for onset and offset trials by locations cued  
                      For High and Low WMC groups ...............................................................141 
 
Figure 11a. RTs for cued search for onset trials by duration and locations  
                        cued for High and Low WMC groups .....................................................142 
 
Figure 11b. RTs for cued search for offset trials by duration and locations  
                        cued for High and Low WMC groups .....................................................143 
 
Figure 12a. RTs for capture search for onset and baseline trials by distractor  
                        set size for High and Low WMC groups .................................................144 
 
Figure 12b. RTs for capture search for color and baseline trials by distractor  
                        set size for High and Low WMC groups .................................................145 
 
Figure 13. RTs for capture search for onset trials by onset duration and  
                      distractor set size for High and Low WMC groups ...................................146 
 
Figure 14. Path diagram for Model 1a depicting a two-factor view of WM ...................147 
 
Figure 15. Path diagram for Model 1b depicting a unitary WM  ....................................148 

Figure 16. Path diagram for Model 2 investigating the relationship between  
                     WM and preview search .............................................................................149 
 
Figure 17. Path diagram for Model 3 investigating the relationship between  
                      WM and cued search. .................................................................................150 
 
Figure 18. Path diagram for Model 4 investigating the relationship among  
                      controlled search tasks ...............................................................................151 
 
Figure 19. Path diagram for Model 5a investigating the relationship  
                     between WM and Control  ..........................................................................152 
 
Figure 20. Path diagram for Model 5b investigating the relationship  
                     between WM and Control with Base loading onto WM  ............................153 
 
Figure 21. Path diagram for Model 5c investigating the relationship  
                      between WM and Control without baseline search trials  .........................154



 

1 
 

CHAPTER I 
 

INTRODUCTION 
 
 

Cronbach (1957) eloquently called for combined use of the experimental and 

correlational approaches in scientific psychology. Important in his proposal was that by 

looking at variability among individuals, the non-treatment variance attributed to error by 

experimentalists could be informative; understanding general, common processes as well 

as those specific to individuals can be valuable. Underwood (1975) promoted this cause 

further, and proposed that most theories of mental processes should be tested using 

individual differences. The reasoning is that if individuals vary on an ability or process, 

correlations should differ with performance measures manipulated to increase or decrease 

the involvement of such processes. Therefore the combined use of experimental and 

individual differences approaches results in a strong tool for theory falsification.  

Recent work using an individual-differences approach has been valuable in better 

characterizing the notion of cognitive or executive control, which is proposed to be 

necessary in monitoring and troubleshooting tasks which are complex, novel, or require 

multiple steps (Monsell, 1996). For example, Miyake and colleagues (e.g., Miyake, 

Friedman, Emerson, Witzki, Howerter, & Wager, 2000) have investigated whether 

control, or “executive function”, is better characterized as a single, unitary construct or 

ability, or rather as several separate abilities. They tested how individual differences in 

performance on tasks purported to tap three theorized control functions  task-set
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shifting, memory updating, and inhibition of prepotent responses, would relate to 

performance on several common executive-function tasks (e.g., Wisconsin card sort, 

random number generation). Factor analysis and structural equation modeling (SEM) 

indicated the three control function variables were separable, but also moderately 

correlated (rs = .42 to .63), suggesting that while these aspects of control are distinct from 

one another, they also share some commonality. Further, the three function variables 

contributed differently to performance on the executive function tasks tested, suggesting 

that executive control may not be unitary (e.g., the central executive of Baddeley, 1986; 

the supervisory attention system of Norman & Shallice, 1986; see also Friedman & 

Miyake, 2004 for an extension of this work to inhibitory functions). Such findings are not 

restricted to young adults; related research using older adults lead to a similar conclusion 

– with a fractioning of control into at least two separate functions reflecting the shifting 

and updating of goal relevant representations as well as the inhibition of proactive 

interference (Hedden & Yoon, 2006). 

The current study uses an individual differences approach to clarify the nature of 

control. This large-scale study presents a latent-variable analysis of several visual search 

tasks thought to depend on controlled processes, and their relationship to measurements 

of different aspects of working memory (WM). Individual differences analyses are 

underrepresented in the visual search literature and, in addition, this work investigates 

whether a unitary top-down control system best characterizes performance in these tasks 

and advances our knowledge regarding how attention control relates to WM. 
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Individual Differences in Control – Working Memory and Attention 

The literature investigating the relationship between the executive control aspect 

of working memory capacity (WMC) and performance on low-level attention tasks has 

relied heavily on the individual-differences approach. Complex, dual-task WMC 

measures require subjects to interleave processing and memory storage, as in the reading 

span task (RSPAN) where subjects comprehend sentences while remembering unrelated 

words for later recall (e.g., Conway et al., 2005). The surge of research regarding the 

WMC-attention relationship is due, in part, to the finding that WMC measures predict 

performance on higher-order cognitive tasks including intelligence tests, language 

learning, and others (see, e.g., Ackerman, Beier & Boyle, 2005; Kane, Hambrick, & 

Conway, 2005; Oberauer, Schulze, Wilhelm, & Sü, 2005). Theorists have proposed that 

the reason WMC is so important to performance in these tasks is that they tap into a 

general attentional component of WM, and that this component is common, and 

important, to many intellectual activities (e.g. Engle & Kane, 2004; but see also Cowan, 

2001; Hasher, Lustig & Zacks, 2007; McNamara & Scott, 2001; Oberauer, 2005, for 

different views). 

 
WM and Restraining Responses 

 A number of studies have demonstrated the relationship between WM measures 

and aspects of attention control. These extreme-groups experiments have shown 

variability in WMC to predict performance on a variety of tasks that require subjects to 

withhold a habitual or automatic response. For example, WMC is important in 

performing the antisaccade task, which presents a salient visual flash on either side of a 
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central fixation point and requires attending to the opposite direction. Subjects with high 

WMC are better able to withhold the response of looking toward the flash than subjects 

with low WMC (Kane, Bleckley, Conway & Engle, 2001; Unsworth, Schrock & Engle, 

2004). Other research has shown WMC to be important in an individual’s susceptibility 

to the Stroop (1935) effect. On incongruent trials, where the word and the color it is 

written in conflict, subjects scoring highly on WMC measures were able to report the 

words much faster or more accurately that were those who scored poorly on WMC 

measures (Kane & Engle, 2003; Long & Prat, 2002). 

 
WMC And Constraining Conscious Focus 

 Other research also indicates a relationship between WMC and performance of 

tasks requiring attentional constraint, here described as the limiting of processing amidst 

distraction. Research with the dichotic listening task has shown that low WMC subjects 

commit more errors than do high WMC subjects in repeating an auditory message in one 

ear when another competing distractor message is also presented in the other ear 

(Conway, Cowan & Bunting, 2001). Further, when the subject’s own name is presented 

to the ignored ear, low WMC subjects were three times more likely to hear their own 

name than were high WMC subjects (see also Colflesh & Conway, 2007 for an extension 

of this work). WMC is also related to visual focus. In a version of Egly and Homa’s 

(1984) visual orienting task, Bleckley, Durso, Crutchfield, Engle and Khanna (2003) had 

subjects identify a masked letter at fixation and localize another presented on one of 

several concentric rings surrounding fixation. Some trials verbally cued which ring would 

contain the second letter (e.g., “middle"). Localization performance did not vary by 
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WMC on validly cued trials. But on invalid trials, when the letter appeared at a location 

closer to fixation than the cue indicated, high spans’ performance suffered while low 

spans’ performance was unaffected. High spans thus seemed able to constrain their 

attention to only the cued ring, while not processing the area between that ring and 

fixation. Low spans, in contrast, distributed their attention more diffusely, perhaps as a 

spotlight encompassing the entire region contained within the cued areas (e.g., Posner, 

1980). Follow-up research supported the notion that distributing attention discontiguously  

is a controlled process. Bleckley (2001) put subjects under a dual-task load and 

eliminated this ability in high span subjectsthey allocated attention in a spotlight 

similar to low spans. Further, cueing the target ring exogenously with a flash allowed low 

WMC subjects to limit attention to the cued ring. WMC was thus important to 

constraining visual focus only when relying on endogenously generated, controlled 

processes. 

 Research using the flanker task (Eriksen & Eriksen, 1974) further supports this 

relationship between WMC and constraining the focus of visual attention. Heitz and 

Engle (2007) had subjects identify the central letter of a string while manipulating 

whether the surrounding letters matched it, as well as the time allowed for response. 

WMC was unrelated to letter identification when the surrounding letters matched. At 

short deadlines, high WMC subjects outperformed low WMC subjects on mismatch 

trials, showing they were able to constrain their visual focus more quickly than their low 

span counterparts (Heitz & Engle, 2007; Redick & Engle, 2006). 
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Visual Search: Another Instance of Control? 

Since theorists have proposed that the executive attention component of WM is 

what drives the predictive relationship between WMC measures and higher order 

cognitive tasks (e.g., Engle & Kane, 2004) a critical question is whether WMC is related 

broadly to all attention-related tasks or to only tasks that require withholding habitual 

responses or constraining attention. An attention-demanding task of much interest in the 

literature is the visual search task. Visual search tasks are ubiquitous in everyday life; we 

perform such tasks when trying to find a set of car keys on a cluttered desk or when we 

search through shelves of journals to find the desired volume. In the laboratory, subjects 

search for a target, for example the letter C, among a display containing distractors, 

which may be Xs or Os; similarly, the target might be a blue circle among blue squares 

and red circles, or any other possible combination of attributes. Lead theorists have 

posited an important role for top-down control in some visual search tasks. The most 

influential views today, guided search theory (e.g., Wolfe, 1994) and feature integration 

theory (e.g., Treisman & Sato, 1990), propose that knowledge plays an important role in 

visual search. Common across these views is that the visual scene is analyzed 

automatically and in parallel across the visual field based on simple features such as 

shape or color (though what constitutes a basic feature is not altogether clear; Wolfe, 

1998). This early automatic, bottom-up analysis results in a master map with varying 

levels of activation based on local differences in basic features from the visual display. 

Top-down knowledge is also critical to search such that it augments activation in areas 

containing target-characteristics (e.g., a particular color) or decreases activation in other 
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areas (depending on the particular theory). Searches then proceed with attention 

probabilistically visiting the areas with greatest activation to those with progressively 

lesser activation until the target item is found. 

Some visual search tasks, for example when searching for a blue item among red 

items, are thought to rely primarily on bottom-up, salience-based factors because such 

searches are fast and independent of number of distractors present. In these cases the 

target seems to ‘pop-out’ effortlessly from the visual scene because it is the only unique 

item present; the target can be located based on the basis of a single feature. However, 

when the target item shares features with distractors, for example when the target is a 

blue circle and distractors are blue squares and red circles, searches seem effortful, and 

reaction times (RTs) increase drastically with more distractors presented (Treisman & 

Gelade, 1980). These conjunction searches are thought to rely on top-down factors by 

requiring the focus of attention to serially visit each item in turn, in order to bind its 

component features together to form a coherent object for identification.  

 Attentional engagement theory further specifies how top-down control might 

operate in visual search (see e.g., Duncan & Humphreys, 1989; 1992). According to this 

view, displays are analyzed early on by a parallel stage of feature-based processing with 

stimuli chosen for further analysis by two processes. One is via perceptual grouping – 

similar items are grouped together and enter or are rejected from visual memory. The 

other is by matching the stimuli to an actively held target template; both of these 

processes bias a competition for access to visual short-term memory. Attention 

engagement theory views this template as an active top-down control signal which 
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determines search requirementssimple templates (determined by simple targets) are 

quick to find while more complex templates and targets take longer to match, due to 

greater number of elements involved in the comparison. Analogous to feature integration 

and guided search, the top-down component of attentional engagement theory is crucial 

since it guides attention when stimulus-driven display characteristics may not single out 

the target automatically. 

Kane, Poole, Tuholski & Engle (2006) investigated whether individual 

differences in WMC influence performance in a variety of visual search tasks in testing 

the boundary conditions of the WM–attention relationship. Across several experiments 

they presented searches of varying difficulty. Some searches defined the target based on 

the absence of a feature and presented the stimuli in a strict grid-like or less structured 

arrangement (Experiment 1). Other searches presented relatively unstructured displays 

and defined targets based on a specific spatial configuration of oriented lines or a 

conjunction of color and orientation (Experiment 2). Kane et al. found large mean search 

slopes, indicating inefficient search, but WMC was unrelated to performance. Why were 

individual differences in WMC unrelated to search, given that WMC is related to 

performance in so many other attention demanding tasks? Kane et al. proposed that the 

WMC and visual search tasks studied may have tapped different varieties of controlled 

processes. 

Some recent work supports this notion that visual search tasks are not ‘controlled’ 

as it is commonly thought of in the executive function or cognitive control literature (e.g., 

Norman & Shallice, 1986). Smilek, Enns, Eastwood and Merikle (2006) instructed 
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participants to either ‘give up’ active control during search, letting the target passively 

come to them, or to actively direct attention in order to locate it. Searches were 

performed more efficiently under the passive than active search condition. Further, a 

secondary memory load did not affect ‘easy’ searches (presenting easily distinguishable 

targets); a load did affect ‘hard’ searches making them more efficient under dual than 

single task conditions. Smilek and colleagues propose that relying on controlled 

processing may hinder search efficiency, as rapid automatic processes usually guide 

attention in visual search. Other research supports this conclusion. Wolfe, Alvarez and 

Horowitz (2000) compared visual search performance in a typical task to a ‘command’ 

task in which subjects had to follow a pre-specified search path around the display in 

order to identify the target. Search rates were much longer in the command task than the 

traditional search task, which they interpreted as evidence that searches are typically 

performed in a largely automatic (“anarchic”) fashion. Do any visual search tasks rely 

primarily on top-down factors related to controlled processes like those related to 

resisting the influence of habit or constraining focus, as measured in WMC?  

This question has been investigated using visual search tasks that manipulate the 

potential influence of top-down and bottom-up influences. Sobel and Cave (2002) had 

subjects perform a color-orientation conjunction search (for a red vertical bar) and varied 

the relative proportions of the distractor types used. When the distractor types were 

highly discriminable (green vertical and red horizontal bars) searches were limited to the 

dimension (color or orientation) with fewer distractors. This is attributed mainly to 

bottom-up salience, as the features of the smaller group are more distinct among the 
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members of the larger group. When the distractors were similar to each other (green 

vertical bars and red bars tilted 20 from vertical) however, subjects only searched based 

on color, regardless of whether it was the smaller or larger of distractor groups. Sobel and 

Cave (2002) interpreted this effect as due to controlled top-down grouping strategies, 

perhaps based on the perceived difficulty of searching by orientation in the similar 

condition, as the colors were more easily distinguished from each other than the 

orientations were. 

Sobel, Gerrie, Poole & Kane (2007) used a similar methodology in which they 

induced a habit (à la the congruency manipulation in Stroop work of Kane & Engle, 

2003) to search (for a target red horizontal arrow) by color by presenting many trials in 

which orientation distractors predominated. Similar to Sobel and Cave (2002) they 

presented distractors in either distinct (green horizontal and red vertical arrows) or similar 

orientations (green vertical and red tilted 20 from horizontal). WMC was unrelated to 

performance in the distinct orientation condition, as search in this context relies primarily 

on bottom-up factors (Bacon & Egeth, 1997). In the similar orientation condition, 

however, low WMC subjects performed as well as high WMC subjects except when the 

number of color-distractors presented in the displays was greater than the number of 

orientation distractors. High WMC subjects limited searches to the orientation items but 

low WMC subjects searched through color items even though they had to search through 

a greater number of items, on average, to find the target. In this situation, when color-

based information was most salient (though orientation information most useful to limit 

search), low WMC subjects were either unwilling or unable to limit search based on the 
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less salient, orientation-based information. Top-down strategic factors related to WMC 

were important to constraining the search set amidst a context predisposing subjects to 

search via the salient color dimension; again a search condition relaying on primarily 

bottom-up influence was unrelated to WMC. 

 Control processes related to WMC are also important in visual search tasks which 

pre-cue likely target locations. Poole and Kane (2009) gave subjects central symbolic 

cues to limit visual attention to a subset of locations in the search display. Subjects 

searched for a target letter under conditions that either manipulated the amount of 

distractor noise while keeping the same four potential target locations constant across 

trials or, in other experiments, presented constant distractor noise while manipulating the 

number of potential target locations per trial. WMC was unrelated to performance when 

distractor noise was low, but in the high noise condition, and when having to reconfigure 

attention to different locations across trials, high WMC subjects searched faster than low 

WMC subjects. To determine whether this WMC effect was based on the speed with 

which attention could be configured, their last experiment manipulated how long a 

fixation screen was presented before the search display. WMC differences only arose at 

the long duration; low WMC subjects seemed to be unable to keep their visual attention 

limited to the target locations as long as high WMC subjects were able. This work 

suggests that WMC is important to keeping visual attention limited to locations in high 

noise contexts, especially when the task requires the frequent reconfiguring of spatial 

attention. 
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 The review above suggests that controlled processes involved in WMC measures 

are not related to those involved in typical visual search tasks, as demonstrated by Kane 

et al. (2006). Further, WMC was also unrelated to ‘command’ search, requiring attention 

to move through a pre-specified path in the search display, even though this is proposed 

to be an endogenously controlled task (Kane et al., 2006; Wolfe et al., 2000). WMC is 

related to restricting conscious focus of attention to cued locations amidst distraction 

(Bleckley et al., 2003; Heitz & Engle, 2007; Poole & Kane, 2009), especially when the 

task requires a frequent reconfiguration of such locations. Further, the work of Sobel et 

al. (2007) demonstrates WMC’s importance in a conjunction search task where task 

characteristics allow for performance improvements from top-down, strategic factors.   

What then can be said regarding the nature of top-down control in visual search? 

Almost certainly the influence of top-down knowledge of the target’s features is apparent 

in virtually all the visual search tasks described above. However, empirical results 

indicate a distinction between different visual search tasks in that only some seem to be 

related to controlled processes (as involved in WMC). Top-down influence in visual 

search seems ubiquitous if thought of as dependent on the searcher’s knowledge. 

However, such knowledge-based influence is seemingly different from executive control. 

Consider, for example, the experiment involving the “command” search task that requires 

moving attention around a pre-specified path in the display (Kane et al., 2006). While 

knowledge of task requirements is crucial to finding the target in this task, due to the 

specificity of search path, control as measured in WMC tasks plays no role. Tasks 
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requiring controlled processes, like constraining visual attention, demand involvement of 

processes in addition to the searcher’s knowledge-based ones.  

 
Controlled Visual Search Tasks 

The current study involves several visual search tasks thought to be related to 

WM in order to investigate the commonality of control processes among visual search 

tasks and their relationship to WM measures. Notions of cognitive control and top-down 

processing are used commonly in this literature, though efforts to determine whether the 

same processes are involved across tasks are lacking. Studies mentioned above, including 

Wolfe et al. (2000) and Kane et al. (2006) provide evidence that investigating the 

involvement of control processes in visual search tasks is not a trivial pursuit; even some 

long, effortful searches do not involve controlled processes like those related to WM. 

Although the three types of search tasks in this proposal, preview search, cued search, 

and attention capture search have different surface characteristics, they all depend on the 

observer’s own goals settings and controlled process available to implement them. The 

following section describes these tasks in greater detail.  

 
Preview Search 

 One task of interest here is the preview search task, which presents a target as 

well as two types of distractors. In contrast to typical search conditions, where the target 

and all distractors are presented together at the same time, half of the distractors are 

presented and then, following a delay, the remaining half of the distractors and the target 

are also presented. RTs are faster in the preview than full (or baseline) search condition. 
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Further, the time to find the target in preview search is virtually independent of the 

number of distractors in the old display as evidenced by flat search slopes across 

distractor-set sizes (Watson & Humphreys, 1997). This has been taken to suggest that 

‘old’ distractor items are deprioritized or suppressed as a group as if the observer limited 

the search to only the new items in the search display (Watson & Humphreys, 1997). The 

dominant theory attributes the preview benefit to visual marking, an active, top-down 

controlled process (e.g., Olivers & Humphreys, 2002; Watson & Humphreys, 2000). 

While this view has been challenged most notably by a proposal claiming that such an 

effect is based on attentional capture (e.g., Belopolsky, Theeuwes & Kramer, 2005) with 

the newly presented items capturing attention, other evidence has demonstrated this view 

to be at least not the complete explanation (Braithwaite, Hulleman, Watson, & 

Humphreys, 2006; Jiang, Chun & Marks, 2002). For example, Braithwaite et al. (2006) 

still found a preview benefit even when limiting the possibility of using attention capture 

to limit searches to the post-preview display by presenting only isoluminant displays to 

reduce bottom-up effects. Thus the visual marking view, which attributes the preview 

benefit to top-down controlled suppression of old items is currently the dominant view, 

though theorists admit some bottom-up factors may also play a limited role in the 

preview benefit (e.g., Donk & Verburg, 2004; Olivers, Humphreys & Braithwaite, 2006). 

 Evidence that the preview benefit depends on controlled processing comes from 

several studies. A secondary task performed while the ‘old’ previewed items are 

displayed significantly disrupts the preview benefit (Watson & Humphreys, 1997), 

suggesting that attention processes are required for visual marking. Further, Watson and 
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Humphreys (2002) presented a preview search task at the end of an RSVP stream and 

induced an attentional blink to manipulate the availability of attention during preview 

search and intermittently probed distractor locations. They found that probe identification 

was greater at distractor locations when the preview display was presented during the 

blink. The authors proposed that without attention available during the presentation of the 

distractors that they were unable to be deprioritized, indicating a critical role for attention 

in producing the preview effect.  

 
Cued Search 

Another visual search task involving control processes is the spatial cued search 

task. A common finding in the literature is that if subjects are cued in advance to where a 

target will appear, that target identification will be faster than targets appearing at neutral 

or non-cued locations (e.g., Posner, 1980). The discussion here focuses on the 

experiments in which the cues are endogenous (or voluntary) as opposed to exogenous 

(or reflexive) in nature, as endogenous cues are associated with control (see e.g., Lu & 

Dosher, 2000; Muller & Rabbitt, 1989, for a comparison of these cue types). Typically, 

subjects are presented with a symbolic cue (e.g. an arrow) at fixation for some duration. 

The cue indicates where the target will appear with some predetermined validity. The cue 

benefit is reflected in faster RTs when the target appears in the cued location compared to 

when it appears elsewhere. Two primary types of theories have been put forth to account 

for these effects. In resource-allocation models, like signal enhancement (Henderson, 

1996), processing resources are limited so that when locations are cued, resources must 

be allocated away from non-cued and toward cued locations in order to speed 



 

16 
 

identification. The other type, distractor exclusion models, such as biased competition 

(e.g. Awh, Matsukura & Serences, 2003) propose that attention limits interference from 

surrounding, non-target areas when likely target locations are cued. Such an effect is 

accomplished either via direct inhibition of processing (with lowered quality of 

processing) at non-cued locations, or by attentional gating indirectly blocking 

information processed (such that the information does not enter awareness) from those 

locations (see e.g., Verghese, 2001, for a related view based on decision processes). 

Regardless which type of model is correct, both posit a central role for top-down 

attention in cued search.  

Compelling support for the involvement of top-down attentional control in 

spatially cued visual search comes from a number of studies by Awh et al (2003). 

Subjects reported targets which appeared in two spatially separated locations while the 

frequency with which distractors (“noise”) were presented was manipulated across 

blocks. They cued likely target locations and compared performance on identical trials 

differing only by how common distractor-laden displays were. Performance differed by 

cue validity only in the high noise block. In low noise blocks, cueing showed little effect, 

while high noise blocks showed a large cue benefit. Awh and colleagues interpreted this 

spatial cue benefit appearing selectively in the high noise block as due to increased 

distractor exclusion. They offered support for the top-down controlled nature of these 

processes by demonstrating that the quality of distractor exclusion did not change 

passively, but rather was modulated strategically following trial by trial cues (Awh et al., 

2003, Experiment 5). Further support for the controlled nature of cued search comes from 
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the work of Poole & Kane (2009), described above, who reported WMC effects in several 

experiments which used endogenous cues to indicate potential target locations in 

distractor laden displays. 

 
Attention Capture Search 

 Another visual search task that is thought to rely on top-down control factors is 

the attention capture task. Subjects search displays for the target item but on some trials a 

singleton stimulus, which differs in some characteristic from all the other stimuli, is also 

presented. Early work typically presented the search display and then, after some amount 

of time had passed, also presented the new singleton item as an onset or new item 

appearing in a previously unoccupied area (e.g., Yantis & Jonides, 1984). Also common 

in this research is the use of color singletons, where an item of a different color than the 

other search items is presented without a delay (e.g., Theeuwes, 1992). Importantly, 

subjects are instructed to ignore the singleton during search as they are irrelevant to the 

task and (in most preparations) are never the target item. The capture effect is a 

disruption or slowing of search on trials when an irrelevant singleton is presented in 

comparison with baseline trials without singletons (Theeuwes, 1992). To explain this 

effect some theorists have proposed that the bottom-up activation brought on by the high 

salience of the singleton forces attention to focus at its spatial location and that top-down 

control has virtually no effect on attention in this context (Sagi & Julesz, 1985; 

Theeuwes, 1992, 1994). Support for this view comes from research demonstrating that 

capture effects occur when using the same singleton over trials and even with extended 

practice on the task (Theeuwes, 1992). 
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 Other theorists, however, have shown support for a causal role for top-down 

attention in producing capture. Folk, Remington and Johnston (1992) manipulated the 

relationship between the characteristic which defined the singleton distractor and that the 

target – whether each was defined by color or onset status. Onset singletons disrupted 

search when the target was defined by an onset, but not when it was defined by color. 

Likewise, capture was greater for a color singleton when the target was defined by color 

rather than onset, and other work has shown invalid motion cues disrupt search for targets 

defined by motion, but not color features (Folk, Remington & Wright, 1994). The 

contingent capture account holds that a combination of both top-down and bottom-up 

influences produce capture effects. According to this view the occurrence of capture 

critically depends upon the attentional control settings of the observer, which are largely 

determined by knowledge of the task requirements. The notion that this effect is based 

largely on controlled processes is supported by research by Lavie and colleagues. Lavie 

and De Fockert (2005) reported 3 experiments that presented color singletons and 

manipulated whether subjects were under a memory load. Visual search was more 

disrupted by the singleton when under a secondary load, which the authors interpreted as 

evidence for the involvement of WM in providing goal-directed control of visual 

attention in the service of minimizing goal-irrelevant distraction (see also Lavie & 

DeFockert, 2006, regarding overlapping brain regions involved in capture and executive 

control). 

The visual search tasks used here are of interest to the current exploration of the 

notion of control among visual search tasks as well as their relation to WMC for several 
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reasons. First, while preview search and attention capture search are thought of as 

dependent on top-down control and are both disrupted by a secondary task (see e.g. 

Watson & Humphreys, 1997, and Lavie & Defockert, 2005, respectively), their surface 

task requirements are rather different. In preview search, control limits search to only 

stimuli appearing in the second (i.e., full) display. Conversely, in attention capture, 

control keeps attention from the newly appearing item in order to keep search processes 

focused on the potential target-containing old items. Further, since prior work has shown 

spatial cueing tasks to be related to WMC (see Bleckley et al., 2003; Poole & Kane, 

2009), inclusion of this task serves two purposes. First, control in this task limits attention 

to a particular, predetermined spatial location or locations on each display, unlike the 

other two tasks of interest here, in which the relevance of spatial locations is unknown to 

the subjects. Secondly, finding a relation between WMC and cued search will replicate 

the previous findings from Poole and Kane (2009) in a new context and be useful as a 

comparison for WM’s relationship to the other controlled visual search tasks.  

 
Individual Differences in Visual Search 

In comparison to some other research areas in cognitive psychology, like 

cognitive control and WM cited above, individual differences research in visual search 

has been underrepresented. This may be due to assumptions among researchers that such 

elementary processes vary little, if at all, between people. Of those few studies that have 

investigated individual differences, several are of interest to the work proposed here.  

Wallace and Newman (1998) used an individual-differences approach to test 

whether the personality trait of neuroticism predicted susceptibility to attention capture in 
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visual search, based on their view proposing that attentional processes affect cognition, 

which in turn influence affect. Each trial cued subjects as to which letter (of a small pool 

of letters) would be the target for that set of frames per display. Each of several frames in 

the search display presented three letters; on some trials an irrelevant stimulus (e.g., an 

arrow, smiley face, etc.) was also presented. Among the 70 females in their sample, those 

high on neuroticism on a personality inventory demonstrated a greater capture effect than 

non-neurotic females. They propose that a disposition to negative affect is associated 

with disruptions of controlled, self-regulatory processes. Related work with personality 

variables has shown individual differences in self-rated impulsivity to be related to visual 

marking, such that a poorer preview benefit was associated with greater impulsivity in a 

sample of 40 subjects (Mason, Booth & Olivers, 2004). 

Though these are not the only visual search studies using an individual-

differences approach, such use is uncommon in the literature. Other areas, like the 

intelligence literature have looked at individual differences in visual search. For example, 

Ackerman (1988) has shown that fluid intelligence measures are related to an individual’s 

performance on variably-mapped trials (e.g., Schneider & Shiffrin, 1977) where the 

target changes from trial to trial (r  = .64) but are not related to consistently mapped trials 

where the target remains constant throughout the task. 

 This work illuminates the fact that visual search performance varies across 

individuals, with potentially interesting relations with other variables; the current study 

aims to help remedy the lack of individual differences studies in the visual search 

literature. 
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Control and Scope – Aspects of Working Memory 

The investigations previously reviewed involving individual differences in WMC 

and attention control have all used measures of WM which tap the central executive or 

control aspect of WM. Other measures, described below, purport instead to measure the 

scope of attentional focus in WM. This section will describe research regarding these 

scope measures as several of them are used here. It may be that measures primarily 

tapping the attention scope and control aspects of WM have a different relationship with 

top-down factors involved in the proposed visual search tasks. 

 In the view put forth by Cowan (1999, 2001, Cowan et al., 2005) the WM system 

consists of an active portion of long-term memory, a focus of attention and a central 

executive controller. According to this view, the focus or scope of attention contains that 

which is in conscious awareness and the executive component of WM controls this focus. 

The control component is typically measured by complex dual-tasks (i.e., processing and 

storage WMC tasks) like operation span (OSPAN), shown to be related to performance of 

a variety of low-level attention tasks (e.g., Kane et al., 2001). Scope of attention tasks 

aim to measure how much information can be held in an active state; they attempt to 

exceed the structural storage limitations by overloading the system with information. An 

example of a scope task is running memory span, which presents a list of words of 

unpredictable length and requires recall of as many words as possible from the end of the 

list. Recent work reviewing a wide variety of data indicates the scope of attention is 

limited to between 3 and 5 chunks of information (Cowan, 2001). Further, Cowan has 

described the focus of attention as able to be zoomed out in order to apprehend several 
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items or be zoomed in to focus on just one, making its function similar to visual attention 

models (e.g., Eriksen & St. James, 1986). 

 According to Cowan’s view, scope measures evaluate the structural limitations of 

the focus of attention. The ability to change the scope of attention – in the sense of 

focusing tightly on a single goal, or widening it to apprehend multiple objects, may be a 

function of the control aspect of WM (Cowan et al., 2005). Measures of these two aspects 

differ in that scope tasks present a lot of information in a small amount of time in an 

attempt to exceed the scope’s limit, while complex span tasks require switching back and 

forth between processing and storage components. Theorists have also proposed that 

WMC measures reflect at least in part, cue-based long-term memory retrieval in addition 

to, or instead of maintenance in active memory (Unsworth & Engle, 2007). An 

investigation using latent variable analysis and SEM has examined the control and scope 

aspects of WM. Latent variable analysis takes variability in performance common to 

several tasks and statistically extracts a more pure measure of the construct of interest so 

that its relation with other variables can be tested. Cowan, Elliott, Saults, Morey, et al. 

(2005) derived latent variables based on the control and scope aspects of WM by using 

several each of the dual-task control and single-task scope tasks, respectively. They found 

the control and scope constructs were strongly related and that a structural equation 

model predicting a variety of aptitude tasks with a single latent WM factor fit better than 

a model with separate scope and control factors. This is not to say, however, that the 

control and scope measures were the same in all aspects. For example, in accounting for 

variance in aptitude measures the control tasks tapped task-specific variance beyond that 
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of the scope measures and vice versa, which indicates such measures also pick up on 

additional specific skills or processes. It is also possible that while control and scope 

measures of WM account for similar variability in broad aptitude measures, that the same 

may not be true with other tasks, such as visual search. 

 Other work using event related potentials (ERP) also suggests a relationship 

between scope and the ability to control attention. Vogel, McCollough & Machizawa  

(2005) reported that those subjects who were able to maintain more visual information in 

memory were also better able to filter out irrelevant visual items from processing. Vogel 

and colleagues cued subjects to remember items in a visual array and manipulated 

whether they were presented alone or interspersed with irrelevant distractors. ERP waves 

reflecting encoding and storage of items produced by subjects able to store a large 

amount of information were similar when presented with 2 memory and 2 irrelevant 

items compared to when they were presented with 2 memory items without any 

distractors. This result indicates that those who were able to store many items were also 

able to control what information was encoded. ERPs for low capacity subjects were 

similar when they were presented with 4 visual items, regardless of whether they were all 

to be remembered or whether only half were relevant, suggesting they were storing 

irrelevant items along with relevant ones – a lack of control. These results suggest how 

much visual information can be held in memory is not simply dependent on storage, but 

rather on how efficiently irrelevant visual information can be filtered out of processing. 
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Current Study 

The current study aims to help clarify the nature of the control construct using an 

individual-differences approach. Though the phrase ‘top-down control’ is frequently used 

in the visual search literature, little work has been done to test whether such control is 

common across different search tasks. This study tests the commonality of top-down 

control as it is involved in three visual search taskspreview search, cued search and 

attention capture search. While each task is purported to depend on top-down control, 

each varies in its particular implementation, which makes a latent variable analysis an 

ideal tool for investigation since the bulk of the commonality among them should be the 

involvement of control. For example control in preview search is in the service of 

limiting attention to only new items in the display. Conversely, in attention capture 

search it keeps search limited to the old items in the display and not the irrelevant 

singleton. Finally, in cued search control limits attention to particular spatial locations. In 

spite of the disparate characteristics across tasks they are all purported to involve 

attentional control.  

Baseline visual search conditions are included with each of the search tasks, with 

typical search tasks for preview (i.e., target and distractors presented together at once) 

and capture search, as well as un-cued search trials in cued search. These serve as 

baselines, against which the control conditions of interest are measured, and also serve to 

assure that variance shared with between WM measures and controlled visual search 

tasks cannot be attributed to traditional visual search performance. Such trials do not 

involve WMC (Kane et al., 2006) and are performed without involving control (e.g., 
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Wolfe et al, 2000). Additionally, salience of the visual display stimuli will also be 

manipulated based on research suggesting salience may interact with the visual search 

effects of interest here. For the preview search some trials present new items as onsets 

while others remove camouflaged letters to reveal them; a similar manipulation is used to 

present or reveal the stimuli in cued search. Capture search trials use either a salient onset 

singleton or less salient color singleton. These manipulations are based on evidence that 

targets which appear abruptly are identified more efficiently than targets revealed by 

removing camouflage parts of the display (e.g., Gibson, 1996; Hawkins, Shafto & 

Richardson, 1988). This effect has been attributed to a higher visual quality of the onset 

items leading to a more efficient encoding of the items compared to non-onsets (Gibson, 

1996). The importance of the interrelation between top-down and bottom up factors has 

also been demonstrated, such that when targets are less salient that added top-down 

activation can help to speed search to a greater extent then when targets are more salient, 

as less room for improvement exists in this latter case (Soto, Humphreys & Heinke, 

2006). Thus salience is also manipulated here in order to present contexts with varied 

opportunities for top-down effects to influence performance. 

Further, based on the work of Cowan and colleagues, this study investigates the 

involvement of attentional scope as well as control aspects of WM in the performance of 

top-down controlled visual search tasks. Including such measures builds on the previous 

work demonstrating measures of control to be unrelated to traditional search (e.g. Kane et 

al., 2006) as well as explores whether the attention scope aspect of WM may be 

important in performing these tasks. 
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In summary, this exploratory work expects to unveil a relationship among the 

controlled visuals search tasks of interest: preview, cued and attention capture search, 

based on their dependence on attentional control for task performance. Individual 

differences in WMC are expected to relate to performance on these tasks based on prior 

work linking WMC with attentional control (e.g., Poole & Kane, 2009) but WMC should 

show no relationship to baseline visual search trials (Kane et al., 2006). The salience 

manipulations implemented here should result in a performance advantage for high 

WMC individuals for the offset trials on both preview and cued search based on prior 

findings that these manipulations result in greater attentional demands (e.g., Braithwaite 

et al., 2006). The converse should be true regarding capture search, such that a static 

color singleton should be an easier distraction to ignore than the abrupt onset of a new 

visual stimulus (Folk et el., 1992). Finally, in regards to the relationship between control 

and scope measures of WM, prior work suggests latent analysis here will likely indicate 

either a close relationship between the measures or a preference for a single WM factor to 

account for the data (Cowan et al., 2005).
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CHAPTER II 
 

METHOD 
 
 

Subjects 

 Subjects were 199 undergraduate students from the University of North Carolina 

at Greensboro who participated in return for partial fulfillment of an introductory 

psychology course requirement. Subjects were native English speakers between 18 and 

35 years old, with normal or corrected-to-normal vision. 

 
Apparatus 

 All tasks were presented via E-Prime 1.1 (Schneider, Eschman, & Zuccolotto, 

2002) on Dell desktop computers equipped with Pentium D or faster processors, and 

color CRT monitors. Subjects responded by key press on the computer mouse or 

keyboard for all the tasks. 

 
General Procedure 

 Subjects were run in groups of up to 6, with the experiment consisting of two 

sessions. The first session presented subjects with three each of WMC span and scope of 

attention (WMK1) tasks presented in an alternating order; the second session consisted of 

the visual search tasks; each session lasted approximately 60-90 minutes. Instructions  

                                                 
1 This acronym is used to avoid confusion with the common use of WMC as working memory capacity, 
which here is used to refer to control aspects measured by complex span tasks like OSPAN. The use of 
WMK refers to Cowan’s K (e.g., Cowan et al., 2005) a metric of attentional scope in WM. 
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were presented on the computer screen while accompanied by verbal instructions from 

the experimenter. Subjects completed the second session a week after the first session.  

 
Working Memory Capacity Screening 

 Automated versions of the OSPAN, Spatial span (SSPAN) and RSPAN tasks 

(Unsworth, Heitz, Schrock & Engle, 2005) were used for WMC screening. The OSPAN 

task first presented a practice block in which subjects saw a series of letters and then 

recalled them in serial order. Subjects then saw a screen displaying all 12 of the potential 

to-be-remembered letters and responded by clicking on boxes next to the letters to 

indicate the order in which they were presented. Feedback was given regarding the 

number of letters correctly remembered on each trial. Subjects practiced verifying simple 

math equations (e.g. IS (6 x 2) – 5 =  ?; [next screen: 7; click true button]), receiving 

accuracy feedback on each trial. The program computed the mean time to complete the 

processing items for each subject. These means plus 2.5 standard deviations were then 

used as a response deadline for the processing components of the practice and 

experimental trials for each subject. These trials presented subjects with a processing 

item that remained onscreen until they responded; then they were presented with a to-be-

remembered item for 800 ms. If the subject failed to respond to the processing 

component before the deadline occurred, the task continued and counted that trial as a 

processing error. After a series of processing‒memory string pairs equal to the set size 

were presented, the recall screen appeared until response (for further details see 

Unsworth et al., 2005). Subjects completed three trials each of set sizes 3 through 7. The 
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total number of items correctly recalled (out of a maximum 75 possible) was the span 

score (Conway et al., 2005; Kane, Hambrick, et al., 2004).  

 SSPAN had subjects first perform recall practice, in which they viewed red 

squares, presented one at a time for 650 ms each in one of 16 locations on a visible 4 x 4 

grid and then indicated on an empty grid the locations of the presented squares with the 

mouse. Subjects then practiced the processing component, verifying whether black and 

white patterns within 8  8 grids were symmetrical along their vertical axis; accuracy 

feedback was given in both of these blocks. Practice and experimental trials gave subjects 

their mean time to judge the pictures plus 2.5 standard deviations as a response deadline.  

When the appropriate set size was reached, the recall screen appeared until response. 

Subjects completed four trials each of set sizes 2 through 5 for a maximum absolute span 

score of 48.  

 The RSPAN task was very similar to the OSPAN and SSPAN tasks described 

above, except subjects judged the meaningfulness of unrelated sentences while 

remembering individual letters, presented for 800 ms, following each sentence (e.g. Andy 

was stopped by the policeman because he crossed the yellow heaven ? X; Kane, 

Hambrick, et al., 2004). RSPAN presented three trials each of set sizes 3 through 7 for a 

maximum absolute score of 75. 

 All WMC span scores were converted to Z-scores based on means and standard 

deviations from the pool of subjects. 
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Scope of Attention Tasks 

 Visual Array Comparison. The first WMK task was a visual array comparison 

task based on the work of Luck & Vogel (1997) and Cowan et al. (2005). Subjects briefly 

saw a visual array composed of colored squares and, after a short blank delay, saw 

another array and decided, via key press, whether the square at the encircled location 

changed color from the first array. This cued square (and no others) changed to a 

different color on half of the trials and subjects received accuracy feedback. Trials began 

with a screen containing a cross at fixation for 1,000 ms followed by the first array of 

colored squares for 300 ms. Then a blank gray screen was presented for 900 ms. Then a 

second display was presented with the test square surrounded by a black box outline, 

until a response was made. Square color was randomly selected on each trial from seven 

easily discriminable colors (black, white, red, green, yellow, blue and violet; chosen with 

replacement). After completing a practice block of 6 trials, subjects completed the 

experimental block consisting of 72 trials total, with 12 trials at each set size of 3, 4, 5, 6, 

8, and 10 squares (Cowan et al., 2005), presented in random order. Cowan’s k, or 

estimate of capacity, was calculated for each subject using the formula k= N*(H+CR-

1)/CR, where N is the number of items presented, H is the hit rate and CR is the correct 

rejection rate (see Appendix A of Cowan et al., 2005).  

 Running Span. Running span presented subjects with a sequence of 12-20 single 

digits appearing at fixation on a gray background (Broadway & Engle, 2010). At the end 

of each trial, 3, 4, 5, 6, or 7 blank spaces cued how many items to report from memory, in 

forward order, from the last point in the sequence; subjects selected the digits in order 
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from a list using the mouse, guessing if necessary. Trials presented a cross signaling the 

start of the trial for 500 ms, followed by each to-be-remembered digit for 300 ms. A 200 

ms blank screen appeared between the digits and the end of the sequence and was 

followed by a 300 ms blank screen before the recall screen was presented until a 

response; another 1,000 ms blank screen preceded the start of the next trial. Presented 

items were randomized with the constraint that no digit appeared twice in a row. After a 

brief practice block, subjects completed 25 trials of the running span task, with five 

repetitions at each of the five set sizes, randomized with overall presented list length. Ten 

more “catch” trials (2 repetitions x 5 set sizes) presented only the number of digits to be 

tested, to encourage subjects to remember all items and not just the last few. The absolute 

number of digits recalled in the correct sequence position (of 175 possible) determined 

the running span score. 

 Brief Visual Report. The third scope of attention task was a version of Sperling’s 

(1960) visual report task. Subjects briefly saw a display containing 4, 5, 6, 8 or 10 

consonants, appearing randomly in locations in an invisible 4 x 4 grid against a gray 

background. Trials began with a warning screen containing a cross at fixation for 600 ms 

followed by the letter array for 50 or 100 ms, determined at random. Then a gray 

background was presented for 1,000 ms until a recall screen in which subjects typed in as 

many letters as they could remember from the display, in any order (with a maximum 

equal to the array size). Consonants were chosen at random, without replacement, for 

each display. After a practice block of 3 trials, subjects completed an experimental block 
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of 50 (10 at each set size) trials total, with half presenting the display for 50 ms and half 

for 100 ms. 

 
Visual Search Tasks 

 Letter stimuli used in all the search tasks were created in Microsoft Paint, using a 

black Zurich Ex Bt font letter ‘E’ (measuring 11x 15 pixels, or 5 x 7 mm) with the center 

horizontal bar extended to equal the length of those at the top and bottom (as in Poole & 

Kane, 2009). All other search stimuli were created from this template: the letter F was 

made by removing the lowest bar of the E, a horizontally tilted T was made by also 

removing the top bar. Backward versions of these letter stimuli were made by flipping 

each stimulus horizontally. In all search tasks subjects responded via key press to whether 

the target on the trial was an F or backward F. The remaining Es, tilted Ts, and their 

backward versions served as distractors for all the search tasks. 

 Preview Search. The search displays in the onset preview task presented stimuli 

in locations corresponding to an invisible 8  8 irregular grid (e.g., Humphreys, Watson 

& Jolicoeur, 2002). All trials presented stimuli against a white background. In the full 

search, baseline condition, subjects focused on a centrally presented fixation cross for 

750 ms, followed by a blank screen for 50 ms, and then the full display of search stimuli 

until response. Following response, a 400 ms blank white screen preceded the next trial. 

In the preview search condition, subjects were presented with a central fixation cross at 

the beginning of each trial followed by a blank screen for 50ms. Each trial then presented 

half of the distractors (either Es and backward Es, or tilted Ts and backward Ts, 
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counterbalanced within the block; Figure 1A) for a variable amount of time before 

presenting the remaining distractors and target (Figure 1B) until response. The duration 

for which the first set of distractors remained onscreen varied between 200, 400, 600, 

1000 ms and 1200 ms. Again, on these trials a 400 ms blank white screen followed a 

response. The total number of distractors presented on each trial was 8, 16, or 32; 

preview displays presented half the distractors before the blank gap and half after. Full 

and preview search conditions were each performed in a separate block, with 60 full 

condition trials (3 distractor set sizes x 20 iterations) and 180 preview condition trials (3 

distractor set sizes x 5 preview durations x 12 iterations) in the experimental conditions 

following short practice blocks in each. For the preview search block, subjects were 

instructed to limit their search to items appearing after the gap (because the target could 

only appear in this second set of stimuli).  

 A second, similar preview search task was also used. This task used the same 

stimuli as described above, but the stimuli were presented as offsets, limiting the amount 

of bottom-up information that could be used to prioritize search to new items. Each trial 

began with stimulus locations occupied with block-shaped “8”s (of the same dimension 

as the search stimuli; see Figure 2A) for 750 ms. After that time, the first half of the 

stimuli appeared to the subjects, created by removing pieces of this 8 shape (Figure 2B). 

After the preview duration (again, of 200, 400, 600, 1000 ms and 1200 ms), the other half 

of the stimuli appeared (Figure 2C). After distractor items were presented in the preview 

condition they remained onscreen until the end of the trial. In full search the entire array 

was presented after the 750ms offset display. Like the onset preview task, the offset 
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version also presented 60 full search and 160 preview trials. Each block consisted of the 

experimental trials followed by full search baseline trials; block order was 

counterbalanced across participants. 

 Cued Search. The cued search task presented letter stimuli in 25 locations 

making up an invisible 5 x 5 grid. Each trial presented a central endogenous (symbolic) 

cue to indicate which locations could potentially contain the target on that trial (see 

Figure 3). Subjects were informed that the target would only appear in one of the eight 

locations surrounding the central location within the central 3  3 (of the larger 5 x 5) 

matrix, and never in the central location or those exterior to the interior matrix. Trials 

began with a 500 ms blank screen, followed by a cue indicating the potential target 

location(s) for 500 ms, then a blank screen for 50 ms. Then a fixation display containing 

dots in all 25 locations was presented onscreen for 500, 1,000, 1,500 or 2,000 ms, 

followed by a 50 ms blank screen; subjects were instructed to use these dots to focus 

attention on the target locations. The search display was then presented until response.  

The pre-cue indicating potential target locations cued 2 or 4 locations with 

vertical, horizontal or diagonal lines and “X” shape symbols (Figure 3). Four cues 

indicating 2 target locations were presented for a total of 128 (4 fixation durations x 4 cue 

types  8 locations) 2-location-cue trials. These cues indicated the target locations were 

directly above and below or to the left and right, or across either of the diagonals, in 

relation to the central point of the matrix (see Figure 4 for an example of a trial cued 

indicating a potential target location above and to the left and below and to the right of 

center; here the target is a backward F). Each trial also presented a target lure (an F or 
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backward F presented in a non-target location) in some non-target location in the central 

3 x 3 matrix as well as another lure presented outside the central matrix; all remaining 

locations were populated with distractor E’s, T’s, and their tilted versions. The 2 cue 

types indicating 4 target locations were created similarly, presenting 128 (4 fixation 

durations  2 cue types  8 locations  2 repetitions) 4-location-cue trials total. For these 

trials the target never appeared outside the central 3 x 3 matrix. Subjects also performed 

baseline trials presenting no location cue information. These trials began with a 500 ms 

blank screen, followed by a dot presented in the center of the screen for 600 ms, then a 

blank screen for 50 ms before the search display was presented. No lure stimuli were 

presented on baseline trials because all stimuli locations were possible target locations. 

There were 64 (8 locations  8 repetitions) baseline trials randomly presented among the 

experimental trials.  

 Subjects also performed a separate cued search block identical to the one 

described above except the letter stimuli were presented as offsets. After subjects were 

presented with the cue indicating the potential target locations, the following fixation 

screen contained block figure “8”s (as in the preview search above), in lieu of fixation 

dots (Figure 5). Further, after the appropriate fixation duration the search stimuli 

appeared as portions of the figure 8’s being removed. The offset cued search presented 

128 (4 fixation durations x 4 cue types  8 locations) 2-location-cue, 128 (4 fixation 

durations  2 cue types  8 locations  2 repetitions) 4-location-cue and 64 (8 locations  

8 repetitions) baseline trials. 
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 Attention Capture Search. All details matched those in preview search, with the 

following exceptions: Baseline trials first presented a cross at fixation, signaling start of 

the trial, for 750 ms; then after a 50 ms blank screen, 8, 16, or 32 randomly distributed 

distractors were presented along with the target stimulus and remained onscreen until 

response. A 400 ms blank screen then preceded the next trial. The static color singleton 

trials and dynamic onset singleton trials were identical except for the appearance of the 

singleton stimuli. In the former condition, a red color singleton was presented as one of 

the distractors in the display (Figure 6), and in the latter condition, an abrupt onset item 

(of the same color as the rest of the stimuli) was presented (Figure 7A and Figure 7B); 

distractor E’s T’s and their tilted versions appeared as the singleton equally often across 

displays. The onset singletons appeared pseudo-randomly 150, 300, or 500 ms after the 

initial display presentation. Each different trial type was presented in a separate block. 

The experiment presented 60 baseline trials (3 distractor sizes x 20 repetitions) and 180 

of each singleton search trial (3 display sizes x 3 time delays [onsets only] x 20 

repetitions). 

 The order of the visual search tasks was counterbalanced across participants in a 

Latin-square design, with order of salience versions kept constant for each group of 

subjects (see Table 1).  
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CHAPTER III 
 

RESULTS 
 
 

Analyses 

Initial data management and analyses were performed using Statistical Analysis 

Software (SAS) version 8 and Systat 11. The factor analytic and SEM analyses were 

performed using EQS 6.1 (Multivariate Software, Inc.) and AMOS 5.0 (SPSS, Inc.). 

 
Statistical Procedure 

Several fit statistics were used here in determining model fit as is common 

practice (see, e.g., Raykov and Marcoulides, 2000). Absolute fit statistics include Chi-

Square values, Chi-square divided by degrees of freedom (df), and the Root Mean Square 

Error of Approximation (RMSEA); relative fit values reported are the Standardized Root 

Mean Residual (SRMR), Comparative Fit Index (CFI) and the Bentler-Bonett Normed Fit 

Index (NFI). Ideal values for these tests are as follows: Chi-Square – non-significant, 

Chi-square/degrees of freedom–less than 2, SRMR lower than ~.08, RMSEA lower than 

~.05. For the relative fit tests, CFI and NFI, values greater than .90 indicate good fit. 

Specific instances where the models reported deviate from these guidelines are addressed 

as they appear. 

 

 
 



 

38 
 

Results 

The results section first presents ANOVA-based analyses which focus on investigating 

the visual search tasks in detail regarding salience, set size, and fixation duration 

manipulations. Further, this section also presents analyses aimed at investigating the role 

of WMC in visual search and how it varies based on these manipulations. The second 

part of the results section focuses on confirmatory factor analysis and structural equation 

models. This part looks at the relationship between the control and attentional scope 

aspects of WM. Then, the shared variance among controlled visual search tasks is 

examined and finally, the associations between common control processes in visual 

search tasks and WM is assessed.  

 
Participants 

 One hundred ninety-nine participants completed the WM sessions of the study. Of 

these remaining participants, computer errors lead to lost data; further participants were 

dropped for error rates exceeding 45%2 on one or more parts of the search tasks. One 

hundred forty six participants completed the preview search and 12 more were dropped 

due to errors, leaving one hundred thirty-six participants in the analysis. One hundred 

eighty four participants had both session 1 and cued search data; 15 were dropped due to 

errors, leaving one hundred sixty-nine participants in the cued search analyses. On 

hundred forty-two participants had data for the capture search task; 16 participants were 

dropped due to errors, leaving one hundred twenty-six participants.   

 

                                                 
2 This error rate was chosen due to a natural break in the data. 
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WMC Screening 

 The OSPAN, RSPAN and SSPAN scores were determined by the mean 

proportion of items recalled correctly across all sets for each span task. The mean 

performance on these tasks were 0.667 (SD = 0.211), 0.566 (SD = 0.231) and 0.637 (SD 

= 0.111), respectively. These proportion span scores were converted (separately for each 

subject and measure) into Z-scores. The Z-scores for each WMC task were then averaged 

for each participant to create a composite WMC score, which had a normal distribution 

(skewness = -0.54; kurtosis = -0.23). Membership in WMC group for analyses of 

variance was based on the highest (High) and lowest (Low) tercile performers from the 

composite Z-WMC scores. 

 
Visual Search 

 The alpha level was set at .05 for all analyses. Results of analyses for 

experimental effects will be reported separately for RTs and errors. All RTs reported are 

means of individual participants’ medians.  

 
Preview Search 

Reaction Time. Figure 8A presents mean RTs for preview search by WMC group 

for onset and baseline trials by distractor set size. Figure 8B presents offset and baseline 

trial data.  WMC was generally unrelated to performance on the baseline and onset 

preview trials but RTs differed by WMC group for offset preview trials.  

 A 2 (WMC: High vs. Low)  3 (Trial Type: Onset vs. Offset vs. Baseline [RTS 

were nearly identical from baseline trials from both onset and offset blocks and are 
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combined here])  3 (Distractor set size: 8 vs. 16 vs. 32) mixed ANOVA was performed 

with WMC as a between subjects factor. RTs differed by trial type, F(2,176) = 38.07, 

MSE = 53504.70, p <.001, ηp
2= .302. There was also a significant effect of distractor set 

size, F(2,176) = 857.24, MSE = 73070.47, p <.001, ηp
2= .907, with RTs increasing with 

greater number of distractors but this was qualified by an interaction of distractor set size 

and trial type, F(4,352) = 44.15, MSE = 23970.95, p <.001, ηp
2= .334. RTs appear to be 

shortest at small distractor set sizes for onset trials followed by offset trials.  

High WMC subjects responded faster overall than did Low WMC subjects, 

F(1,88) = 6.46, MSE = 343105.57, p =.013, ηp
2= .068 and WMC interacted significantly 

with trial type, F(2,176) = 8.82, MSE = 53504.70, p <.001, ηp
2= .091, but not distractor 

set size, F(2,176) = 1.17, MSE = 73070.47, p =.331, ηp
2= .013. This was qualified by a 

three-way interaction among WMC, trial type, and distractor set size, F(4,352) = 3.85, 

MSE = 23970.95, p =.004, ηp
2= .042. The largest WMC group differences appear in 

offset trials presenting many distractors.  

Separate analyses for onset and offset trials were performed to clarify their 

effects; remember that while onset trials in the preview search may involve WMC, that 

offset trials were expected to do so, based on increased attentional demands on offset 

trials. In order to investigate the effects of onset previews, a 2 (WMC: High vs. Low)  2 

(Trial Type: Onset vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) mixed ANOVA 

was performed with WMC as a between subjects factor. RTs for onset trials were faster 

than baseline trials, reflecting a significant preview effect, F(1,88) = 81.46, MSE = 

44714.10, p <.001, ηp
2= .481. RTs also increased with distractor set size, F(2,176) = 
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800.25, MSE = 56481.37, p <.001, ηp
2 = .901, and there was a significant interaction of 

distractor set size and trial type, F(2,176) = 65.83, MSE = 24691.23, p <.001, ηp
2 = .428; 

this appears to be driven by longer RTs for distractor set size 32 on baseline compared to 

onset trials. 

High and Low WMC subjects did not differ in overall RTs on onset trials, F(1,88) 

= 1.79, MSE = 241997.70, p = 0.185, ηp
2= .020, nor did WMC interact significantly with 

any of the other variables of interest (all Fs < 1). 

The following analyses examined RTs on offset trials. Based on increased 

attentional demands compared to onset trials, we expected WMC to be related to RTs. A 

2 (WMC: High vs. Low)  2 (Trial Type: Offset vs. Baseline)  3 (Distractor set size: 8 

vs. 16 vs. 32) mixed ANOVA was performed with WMC as a between subjects factor. 

RTs increased with greater set size, F(2,176) = 705.15, MSE = 68139.65, p <.001, ηp
2 = 

.889, but they did not differ by trial type, F(1,88) =2.30, MSE = 64674.19, p =0.133, ηp
2 

= .025. This was qualified by the interaction of trial type and distractor size, F(2,176) = 

52.91, MSE = 27257.00, p <.001, ηp
2 = .376. The greatest preview benefit appears to 

occur at distractor size 32. 

High WMC subjects had shorter RTs than did Low subjects overall, F(1,88) = 

8.00, MSE = 263043.62, p = 0.006, ηp
2 = .083, but WMC did interact with trial type, 

F(1,88) = 12.08, MSE = 64674.19, p = 0.001, ηp
2 = .121, indicating this was true for 

offset but not baseline trials (see Figure 8B). This was qualified by a three-way 

interaction including trial type, distractor set size and WMC, F(2,176) = 6.46, MSE = 

27257.00, p =0.006, ηp
2 = .068. It appears that High but not Low WMC subjects were 
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able to use the offset previews to speed their responses in comparison to performance on 

baseline trials, due to the greater attentional demands on those trials. To test this, analyses 

were conducted separately for each WMC group. High WMC subjects were tested in a 2 

(Trial Type: Offset vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) repeated 

measures ANOVA. There was a main effect of trial type, indicating a preview benefit 

overall, F(1,44) = 23.01, MSE = 34997.02, p <.001, ηp
2 = .343. The main effect of 

distractor set size was significant, F(2,88) = 447.43, MSE = 50042.89, p <.001, ηp
2 = .910 

and it was qualified by an interaction with trial type, F(2,88) = 99.80, MSE = 12592.96, p 

<.001, ηp
2 = .694; the greatest preview benefit of 375 ms occurred at the largest distractor 

set size, 32. Similarly, Low WMC subjects were tested in a 2 (Trial Type: Offset vs. 

Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) repeated measures ANOVA. The main 

effect of trial type was not significant, indicating no preview benefit for Low WMC 

subjects overall, F(1,44) = 1.32, MSE = 94351.35, p =.257, ηp
2 = .029. The main effect of 

distractor set size was significant, F(2,88) = 298.50, MSE = 86236.43, p <.001, ηp
2 = .872 

and it was qualified by an interaction with trial type, F(2,88) = 8.63, MSE = 41921.03, p 

<.001, ηp
2 = .164. For Low WMC subjects, RTs increased with distractor set size but, in 

contrast to the finding with High WMC subjects, RTs were greater on offset than baseline 

trials. Overall, High WMC showed a preview benefit of 327 ms while Low WMC 

subjects were actually 129 ms slower on preview trials than baseline trials. 

The following analyses investigated the effects of the duration manipulation on 

search. Remember the prediction that longer preview durations might allow more time 

for attention to limit searches to new items in the display. Figure 9A and Figure 9B 
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present onset and offset trial RTs, respectively, for High and Low WMC groups by 

distractor set size and duration. Note that baseline trials are not included in this analysis 

because they did not vary in duration.  

A 2 (WMC: High vs. Low) x 2 (Trial Type: Onset vs. Offset) x 3 (Distractor set 

size: 8 vs. 16 vs. 32) x 5 (Duration: 200ms vs 400ms vs 600ms vs 1,000ms vs 1,200ms) 

mixed ANOVA was performed with WMC as a between subjects factor. Onset trials had 

shorter RTs overall than did Offset trials, F(1,88) = 38.15, MSE = 272491.06, p <.001, 

ηp
2 = .302, and RTs decreased with increasing fixation duration, F(4,352) = 23.65, MSE 

= 102609.40, p <.001, ηp
2 = .212, as well as increased with distractor set size, F(2,176) = 

808.27, MSE = 221388.93, p <.001, ηp
2 = .902. There were significant two-way 

interactions of trial type and distractor size, F(2,176) = 4.90, MSE = 97118.64, p = 0.009, 

ηp
2 = .053, and distractor set size and duration, F(8,704) = 7.93, MSE = 90860.18, p 

<.001, ηp
2 = .083, but not trial type and duration, F(4,352) = 1.58, MSE = 75291.54, p = 

0.178, ηp
2 = .018. These were qualified by the three-way interaction of trial type with 

distractor set size and duration, F(8,704) = 2.50, MSE = 75513.09, p = 0.011, ηp
2 = .028. 

The difference between onset and offset trials seems to be greatest at the largest distractor 

set size and this difference appears to be more pronounced at longer durations.  

High WMC subjects had shorter RTs overall than did Low WMC subjects, F(1,88) = 

8.72, MSE = 1268194.66, p = 0.004, ηp
2 = .090, and WMC interacted with trial type, 

F(1,88) = 2.46, MSE = 102609.40, p = 0.048, ηp
2 = .110, distractor set size, F(2,176) = 

3.00, MSE = 221388.93, p = 0.054, ηp
2 = .033, and duration, F(4,352) = 2.46, MSE = 

102609.40, p = 0.045, ηp
2 = .027. These effects seem to be driven by the large WMC 
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differences appearing on trials presenting 32 distractors with increasing WMC 

differences with larger durations on offset trials. The three-way interactions of WMC 

with trial type and duration was not significant, F(4,352) = 1.86, MSE = 75291.54, p = 

0.117, ηp
2 = .021, nor was the interaction of WMC with distractor set size and duration,  

F(8,704) = 1.24, MSE = 90860.18, p = 0.271, ηp
2 = .014. WMC did interact with trial 

type and distractor set size, F(2,176) = 3.76, MSE = 97118.64, p = 0.025, ηp
2 = .041, 

reflecting large WMC differences at the largest distractor set size for offset but not onset 

trials. The interaction of WMC with trial type, distractor set size, and duration was not 

significant, F(8,704) = 1.88, MSE = 75513.09, p = 0.06, ηp
2 = .021. Finally, note that RTs 

were reliably measured; Cronbach’s alpha calculated on subjects’ mean RTs across the 3 

distractor set sizes (and so, 3 variables) was .88 for onset trials, .92 for offset trials and 

.84 for the combined baseline trials.   

RT analyses indicated that performance on onset and offset preview trials were 

faster than their baseline comparison trials. Significant WMC related effects appeared on 

offset but not onset trials, in agreement with the proposal that using offsets would pose 

greater attentional demands than onsets in order to limit search to new items.  

Error Rates. Table 2 presents mean proportion error data by WMC group for 

onset, offset, and baseline trials by distractor set size. WMC was generally unrelated to 

errors.  

 A 2 (WMC: High vs. Low)  3 (Trial Type: Onset vs. Offset vs. Baseline)  3 

(Distractor set size: 8 vs. 16 vs. 32) mixed ANOVA was performed with WMC as a 

between subjects factor. Error rates did not differ by trial type (F < 1), but the largest 
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errors appeared on trials for distractor set size 32, F (2,176) =16.36, MSE = 0.003, p 

<.001, ηp
2 = .157. Further, the interaction of distractor set size with trial type was 

significant, F (4,352) = 5.53, MSE = 0.001, p <.001, ηp
2 = .059, which appears to be 

driven by lower mean errors for distractor set size 32 for onset trials. 

Errors did not differ by WMC (F < 1), nor was the interaction of WMC with trial 

type, F (2,176) =1.43, MSE = 0.002, p =.241, ηp
2 = .016, nor with distractor set size, 

significant, F (2,176) =2.14, MSE = 0.003, p = 0.120, ηp
2 = .023. The three-way 

interaction of WMC with trial type and distractor size was also not significant (F < 1). 

Error analyses do not indicate any speed accuracy trade-offs. A lack of WMC 

related effects in errors does not complicate interpretation of the significant WMC effects 

in RTs. 

 
Cued Search 

 Reaction Time. Figure 10 presents mean RTs for cued search by WMC group 

and locations cue for onset and offset trials. Similar RT values suggest 8-cue trials were 

performed like 4-cue trials rather than as a baseline measure. High WMC subjects had 

shorter RTs than did Low WMC subjects for all cuing conditions.  

A 2 (WMC: High vs. Low) x 2 (Trial Type: Onset vs. Offset) x 3 (Locations cued: 

2 vs. 4 vs. 8) mixed ANOVA was performed with WMC as a between subjects factor. 

Offset trials had shorter RTs than onset trials, F (1,110) = 11.01, MSE = 134146.29, p 

=.001, ηp
2 = .091. There was a main effect of locations cued, F (2,220) = 226.99, MSE 

=50214.47, p <.001, ηp
2 = .674, with an advantage for trials cueing the lowest number of 

locations, but this was qualified by a two-way interaction of locations cued with trial 
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type, F (2,220) = 3.53, MSE = 15014.92, p =.031, ηp
2 = .031. An inspection of Figure 10 

suggests this may be due to having shorter RTs for 2 and 4 location cued trials for offset 

but not onset trials. High WMC subjects were faster overall than Low WMC subjects, F 

(1,110) = 15.92, MSE =347738.25, p <.001, ηp
2 = .126, but WMC did not interact 

significantly with either trial type (F <1) or locations cued, F (2,220) =1.29, MSE = 

50214.47, p =.279, ηp
2 = .012. The three-way interaction of WMC with trial type and 

locations cued was not significant, F (2,220) = 1.89, MSE = 15014.92, p =.154, ηp
2 = 

.017. 

Though the main effect of locations cued was significant overall, an inspection of 

the means indicate the “baseline” 8-location trials were performed at RTs comparable to 

the 4-location cue trials (for 4 and 8 cue trials, respectively: onset RTs were 1420 ms and 

1372 ms; offset RTs were 1291 ms and 1290 ms). In order to test whether the baseline 8-

location trials (presenting no cue information, and no lures) were performed differently 

from trials cueing 4 locations, a 2 (WMC: High vs. Low) x 2 (Locations cued: 4 vs. 8) 

repeated measures ANOVA was performed with WMC as a between subjects factor; 

here, separately for onset and offset trials. For onset trials, High WMC subjects had 

shorter RTs than did Low WMC subjects, F (1,110) = 7.45, MSE = 222803.21, p =.007, 

ηp
2 = .064, but RTs did not differ between trials that cued 4 locations or baseline trials 

which presented no cue information, F (1,110) = 2.56, MSE = 51126.23, p =.113, ηp
2 = 

.023. WMC did not interact with locations cued (F < 1). For offset trials, a 2 (WMC: 

High vs. Low) x 2 (locations cued: 4 vs. 8) mixed ANOVA showed again, that High 

WMC subjects outperformed Low WMC subjects, F (1,110) = 7.06, MSE = 204891.92, p 
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<.001, ηp
2 = .106, and trials cueing 4 locations did not differ from baseline trials (F <1). 

The interaction of locations and WMC did not reach significance, F (1,110) = 2.59, MSE 

= 37985.04, p =.098, ηp
2 = .026. Given that the no cue, 8-location trials were not 

performed differently from cued trials, and therefore would not be suitable to use as a 

baseline measure, the remaining analyses will only include trials which cued 2 or 4 

locations. 

 Figure 11A presents onset trial RTs by WMC, locations cued, and fixation 

duration. To investigate fixation duration effects on cued search a 2 (WMC: High vs. 

Low) x 2 (Locations cued: 2 vs 4)  4 (Fixation duration: 500ms vs. 1,000ms vs. 1,500ms 

vs. 2,000ms) repeated measures ANOVA was performed on the onset RT data with 

WMC as a between subjects factor. RTs were longer at 4 than 2 location cued trials, F 

(1,110) = 508.19, MSE = 82142.48, p <.001, ηp
2 = .822, and there was a significant effect 

of duration, F (3,330) = 3.45, MSE = 13692.12, p =.017, ηp
2 = .030, but locations cued 

did not interact significantly with duration (F < 1). An inspection of the graph suggests 

this fixation duration effect is driven by slightly shorter RTs at the longer durations. High 

WMC subjects were faster than Low WMC subjects, F (1,110) = 7.56, MSE = 

614737.65, p =.007, ηp
2 = .064, but WMC did not interact significantly with locations 

cued, F (1,110) = 2.53, MSE = 82142.48, p =.114, ηp
2 = .023, or fixation duration, F 

(3,330) = 2.30, MSE = 13692.11, p =.077, ηp
2 = .020. The three-way interaction of WMC 

with locations cued and duration was also not significant, F(3,330) = 2.34, MSE = 

13432.94, p =.073, ηp
2 = .021. 
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 Offset RTs are presented in Figure 11B by WMC group, locations cued, and 

fixation duration. Offset RT data were subject to a 2 (WMC: High vs. Low) x 2 

(Locations cued: 2 vs 4)  4 (Fixation duration: 500ms vs. 1,000ms vs. 1,500ms vs. 

2000ms) repeated measures ANOVA with WMC as a between subjects factor. RTs were 

longer at 4 than 2 location cued trials, F (1,110) = 422.63, MSE = 74262.73, p <.001, ηp
2 

= .793, and there was a significant effect of duration, F (3,330) = 11.17, MSE = 

17915.37, p <.001, ηp
2 = .092, but the interaction between locations cued and fixation 

duration was not significant (F < 1).  

RTs were shorter for High WMC than Low WMC subjects, F (1,110) = 18.00, 

MSE = 662850.23, p <.001, ηp
2 = .140 and unlike the findings with onset trials, for offset 

trials, WMC interacted significantly with both locations, F (1,110) = 5.33, MSE = 

74262.73, p =.046, ηp
2 = .046, and fixation duration, F (3,330) = 7.77, MSE = 17915.37, 

p <.001, ηp
2 = .066, which were qualified by a three-way interaction, F (3,330) = 3.42, 

MSE = 18724.27, p =.018, ηp
2 = .030. High WMC subjects had shorter RTs than Low 

WMC subjects and this span difference appears to be greatest on trials that cue 4 

locations. The WMC span difference is greatest for short fixation durations and smallest 

at largest durations.  

RTs for cued trials presented as offsets were performed faster overall than onsets. 

High WMC subjects were faster on cued search trials overall, but only on offset trials did 

the advantage for high over low WMC subjects diminish with increasing fixation 

duration.  
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 Error Rates. Table 3 presents mean proportion errors for cued search by WMC 

group, trial type, and locations cued. Error rate analyses demonstrated the 8-cue trials to 

have lower error rates than 2 or 4 cue trials for both onset and offset trials (remember that 

8-cue trials presented no lures). Further, errors were greatest with trials cueing 4 locations 

and with shorter fixation durations.  

The error rate data were analyzed with a 2 (WMC: High vs. Low) x 2 (Trial Type: 

Onset vs. Offset) x 3 (Locations cued: 2 vs. 4 vs. 8) mixed ANOVA with WMC as a 

between subjects factor. Errors were slightly higher for the offset compared to onset 

trials, though the difference was not significant, F (1,110) = 0.004, MSE = 0.004, p 

=.061, ηp
2 = .031. Errors appeared to be greatest on trials cueing 4 locations, F (2,220) = 

93.21, MSE = 0.003, p <.001, ηp
2 = .459, but the interaction of trial type with locations 

cued was not significant (F < 1). 

Error rates were higher for Low than High WMC subjects overall, F (1,110) = 

20.46, MSE = 0.026, p <.001, ηp
2 = .157. WMC interacted with locations cued, F (2,220) 

= 9.02, MSE = 0.003, p <.001, ηp
2 = .075, driven by a greater difference between span 

groups on trials cueing 4 compared to 2 locations. None of the other interactions 

involving WMC approached significance (all Fs < 1). 

 Table 4 presents mean proportion error data for onset trials by WMC, locations 

cued and fixation duration. Fixation duration effects were investigated for the onset error 

data with a 2 (WMC: High vs. Low) x 2 (Locations cued: 2 vs 4)  4 (Fixation duration: 

500ms vs. 1,000ms vs. 1,500ms vs. 2000ms) repeated measures ANOVA with WMC as a 

between subjects factor. There was a main effect of locations cued, F (1,110) = 39.53, 
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MSE = 0.004, p <.001, ηp
2 = .264, with fewer errors for trials cueing 2 locations, as well 

as a significant effect of fixation duration, F (3,330) = 7.31, MSE = 0.003, p <.001, ηp
2 = 

.063, driven by lower error rates for 1,500ms and 2,000ms fixation duration trials, but 

their interaction did not approach significance (F <1).  

High WMC subjects had lower error rates than did Low WMC subjects, F (1,110) 

= 19.28, MSE = 0.046, p <.001, ηp
2 = .149 and WMC interacted with locations cued, F 

(1,110) = 8.67, MSE = 0.004, p =.004, ηp
2 = .074, reflecting a greater WMC span 

difference on 4-location cued trials. WMC did not interact with fixation duration and the 

three-way interaction of WMC with locations cued and duration was also not significant 

(Fs < 1).  

Table 4 also presents error rates for offset trials by WMC group, locations cued 

and fixation duration. Offset error data were subjected to a 2 (WMC: High vs. Low) x 2 

(Locations cued: 2 vs 4)  4 (Fixation duration: 500ms vs. 1,000ms vs. 1,500ms vs. 

2000ms) repeated measures ANOVA with WMC as a between subjects factor. Error rates 

were greater for 4-location cued trials, F (1,110) = 28.91, MSE = 0.004, p <.001, ηp
2 = 

.208, and also seemed to be greatest at the shortest fixation durations, F (3,330) = 3.00, 

MSE = 0.003, p =.031, ηp
2 = .026. The two-way interaction of locations cued and fixation 

duration was not significant, F (3,330) = 1.43, MSE = 0.003, p =.234, ηp
2 = .013.  

Again, Low WMC subjects had greater errors than High WMC subjects, F 

(1,110) = 18.51, MSE = 0.061, p <.001, ηp
2 = .144. WMC only interacted with locations 

cued, F (1,110) = 5.31, MSE = 0.004, p =.023, ηp
2 = .047, driven by a greater WMC span 

effect at 4-location cued trials. All other interactions with WMC did not reach 
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conventional significance (F < 1). Again, note that RTs were reliably measured; 

Cronbach’s alpha calculated on subjects’ mean RTs across the 3 locations cued (2, 4, and 

8-baseline trials) were .89 for onset trials and .90 for offset trials. 

Error analyses indicated fewer errors for trials cueing 8 as opposed to 2 or 4 locations. No 

WMC effects in the error analysis compromise interpretation of the WMC effects 

reported above in RTs. 

 
Capture Search 

 Reaction Time. Figure 12A presents onset capture and baseline trial RTs by 

distractor set size and WMC group. Figure 12B presents color and baseline RTs by 

distractor set size and WMC group. The results indicated a surprising reverse capture 

effect, with shorter RTs to capture than baseline trials. WMC was generally unrelated to 

RTs in this task.  

In order to determine whether onset and color capture search trials differed, a 2 

(WMC: High vs. Low)  3 (Trial Type: Onset vs. Color vs. Baseline)  3 (Distractor set 

size: 8 vs. 16 vs. 32) repeated measures ANOVA was performed on the RT data with 

WMC as a between subjects factor. RTs did differ by trial type, F (1,88) = 105.19, MSE 

= 71160.89, p <.001, ηp
2 = .562, and distractor set size, F (2,164) = 653.53, MSE 

=108312.07, p <.001, ηp
2 = .889, and these were qualified by an interaction between trial 

type and distractor set size F (2,164) = 12.63, MSE = 41118.87, p <.001, ηp
2 = .133. An 

inspection of the data indicates that, whereas onset trials were faster than their baseline 

counterparts, they were also faster than the color capture trials. Further, RTs on color 

capture trials seemed to differ little from the baseline RTs except at distractor set size 32, 
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where color capture RTs were shorter. The following analyses are performed separately 

for onset and color trials to further clarify these relationships. 

High and Low WMC subjects had similar RTs overall, and WMC did not interact 

with the other variables of interest (all F s<1). 

 Onset trials were analyzed with a 2 (WMC: High vs. Low)  2 (Trial Type: Onset 

vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) repeated measures ANOVA with 

WMC as a between subjects factor. Onset capture trials had shorter RTs than baseline 

trials, F (1,82) = 170.12, MSE = 73455.20, p <.001, ηp
2 = .675. RTs were longer at 

greater distractor set sizes, F (2,164) = 540.62, MSE =95766.80, p <.001, ηp
2 = .868, and 

these were qualified by an interaction between trial type and distractor set size, F (2,164) 

= 14.15, MSE = 50789.00, p <.001, ηp
2 = .147. The difference between onset and 

baseline trials appears to get larger with increasing distractor set size. 

 RTs did not differ based on WMC, nor did WMC interact significantly with any 

of the other variables of interest (all Fs < 1).  

Color trials were similarly investigated with a 2 (WMC: High vs. Low)  2 (Trial 

type: Color vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) repeated measures 

ANOVA with WMC as a between subjects factor. The main effect of trial type did not 

reach significance, F (1,82) = 2.38, MSE = 68881.32, p =0.127, ηp
2 = .028, but RTs did 

increase with distractor set size, F (2,164) = 552.44, MSE = 90752.31, p <.001, ηp
2 = 

.871 and these were qualified by an interaction between trial type and distractor set size, 

F (2,164) = 15.53, MSE = 49429.06, p <.001, ηp
2 = .159. This appears to be driven by 

comparable RTs for the two trial types across all distractor set sizes except the largest, 
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presenting 32 distractors. On trials presenting 32 distractors, color capture trials were 

performed approximately 190 ms faster than the baseline trials, keeping in line with prior 

findings of a reverse capture effect. A 2 (WMC: High vs. Low)  2 (Trial type: Color vs. 

Baseline) repeated measures ANOVA with WMC as a between subjects factor on the 32 

distractor set size trials confirmed this, F (1,82) = 11.56, MSE =134048.81, p =.001, ηp
2 

= .124. RTs again did not differ based on WMC group (all F s<1). 

 Figure 13 presents RTs for the onset capture trials by distractor set size and onset 

duration. To investigate potential effects of duration manipulation on onset trials the 

onset trials were analyzed with a 2 (WMC: High vs. Low) x 3 (Distractor set size: 8 vs. 

16 vs. 32) x 3 (Duration: 150ms vs 300ms vs 500ms) repeated measures ANOVA with 

WMC as a between subjects factor. RTs differed by Distractor set size, F (2,164) = 

479.19, MSE = 136294.32, p <.001, ηp
2 = .854, and onset durations, F (2,164) = 239.96, 

MSE =46682.69, p <.001, ηp
2 = .745, but these effects were qualified by a significant 

distractor set size by duration interaction, F (4,328) = 31.16, MSE = 56791.43, p <.001, 

ηp
2 = .275. An inspection of the figure indicates a benefit for longer durations for trials 

presenting 8 or 16 distractors but a relative lack of a benefit at greater durations for trials 

with 32 distractors.  

 RTs again did not differ based on WMC group (all F s < 1).  

 The RT data indicated a surprising reverse capture effect such that the 

experimental trials were performed faster than the baseline trials. RTs for these trials 

were unrelated to WMC. 
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 Error Rates. Table 5 presents mean error rates for onset, color, and baseline 

trials, combined for High and Low WMC subjects, and distractor set size. Errors 

appeared to be highest on color capture trials. Error rates were similar across onset and 

baseline trials. WMC was unrelated to error rates overall. 

Error rate data were investigated with a 2 (WMC: High vs. Low)  3 (Trial type: 

Onset vs. Color vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) mixed ANOVA 

with WMC as a between subjects factor. However, there were main effects of both trial 

type, F (1,88) = 69.89, MSE = 0.004, p <.001, ηp
2 = .460, and distractor set size, F 

(2,164) = 26.11, MSE = 0.003, p <.001, ηp
2 = .242, and these were qualified by an 

interaction of these two factors, F (2,164) = 35.78, MSE = 0.001, p <.001, ηp
2 = .304. 

Baseline trials had the highest error rates at trials presenting 32 distractors. Baseline error 

rates were similar overall to those for onset trials. Error rates for color trials were greatest 

at set size 16 and 32, and were greater than both the onset and baseline trials.  

Similar to findings involving RTs, no main effect or interaction involving WMC 

was significant (all F s < 1). 

 Error rates for onset trials were analyzed with a 2 (WMC: High vs. Low)   2 

(Trial type: Onset vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) repeated 

measures ANOVA with WMC as a between subjects factor. And though the effect of trial 

type was not significant, (F < 1), there was a significant effect of distractor set size, F 

(2,164) = 13.80, MSE =0.003, p <.001, ηp
2 = .144, which was qualified by a two-way 

interaction, F (2,164) = 13.80, MSE = 0.001, p <.001, ηp
2 = .145. While errors appear to 
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be greatest for baseline trials presenting 32 distractors, errors for onset trials were high 

and approximately equal for distractor set size 16 and 32.  

Again, errors did not differ by WMC (all F s<1). 

Error rates on color trials were also investigated using a 2 (WMC: High vs. Low)  

 2 (Trial type: Color vs. Baseline)  3 (Distractor set size: 8 vs. 16 vs. 32) mixed 

ANOVA with WMC as a between subjects factor. There was a main effect of trial type, F 

(1,82) = 113.29, MSE = 0.003, p =.0.127, ηp
2 = .580, as well as distractor set size, F 

(2,164) = 18.37, MSE = 0.003, p <.001, ηp
2 = .183. These main effects were qualified by 

a significant two-way interaction trial type and distractor set size F (2,164) = 63.64, MSE 

= 0.001, p <.001, ηp
2 = .438. An inspection of Table 5 suggests baseline trials have the 

greatest error rate for distractor set size 32 but color trials have the greatest errors at 16 

distractor trials.  

The main effect of WMC was not significant (Fs < 1). WMC did not interact with 

either trial type, F (1,82) = 1.64, MSE = 0.003, p =.204, ηp
2 = .021, or distractor set size 

(F < 1).  

 Table 5 also presents error rates for onset trials by distractor set size and duration. 

Duration manipulation effects in error rates were investigated with a 2 (WMC: High vs. 

Low) x 3 (Distractor set size: 8 vs. 16 vs. 32) x 3 (Duration: 150ms vs 300ms vs 500ms) 

mixed ANOVA with WMC as a between subjects factor (note: color capture and baseline 

trials were static displays and are therefore not included in this analysis). Errors increased 

with distractor set size, F (2,164) = 20.71, MSE = 0.004, p <.001, ηp
2 = .202, and were 

greatest at the lowest onset duration, F (2,164) = 4.91, MSE =0.003, p =.008, ηp
2 = .057, 
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but these were qualified by a significant distractor set size by duration interaction, F 

(4,328) = 29.93, MSE = 0.002, p <.001, ηp
2 = .267. This interaction may be driven by the 

highest error rates for trials presenting 16 distractors at the shortest duration, 150 ms.   

The main effect of WMC did not approach significance (F < 1). WMC did not 

interact significantly with either distractor set size, F (2,164) = 2.18, MSE =0.004, p 

=.116, ηp
2 = .026, or duration (F < 1). Finally, RTs were reliably measured; Cronbach’s 

alpha calculated on subjects’ mean RTs across the 3 distractor set sizes (and so, 3 

variables) was .91 for onset trials, .89 for color trials, and .82 for the baseline trials. 

Analysis of errors indicated higher error rates for color than onset or baseline 

trials. WMC was unrelated to errors on any capture trials.   

 
Discussion 

 In line with expectations, based on the executive attention view and findings 

relating WMC and constraining visual attention (Poole & Kane, 2009), individual 

differences in WMC was found to be related to preview search. This relationship was 

especially evident on offset compared to onset trials, based on the greater attentional 

demands required in order to use the less salient visual information available on offset 

trials (e.g., Braithwaite et al., 2006; Pratt, Theuwees & Donk, 2007). Further, baseline 

search performance was unrelated to WMC in agreement with previous research (Kane et 

al., 2006). Error rates did not vary with WMC. 

In agreement with prior findings from Poole and Kane (2009), WMC was related 

to cued search RTs. This WMC effect was greater on offset compared to onset trials even 

though overall offset trials were performed faster than onset trials. The effect of WMC 
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was important at all fixation durations tested though it was stronger at short compared to 

long durations. No error effects were related to WMC.  

 Performance on capture search trials was unexpectedly faster than on baseline 

trials. While an analysis of error rates revealed greater errors for color than onset or 

baseline trials, no other variables were related to WMC. Based on these findings capture 

search will not be used in the latent variable analyses below. 

 
Structural Model Analyses 

 Models. In the figures presented here, observed variables are represented with 

rectangular boxes and the latent variables derived from the variance shared between or 

among those variables are represented by circles or ovals. Values on paths leading from 

latent variables to observed variables indicate the factor loadings for each task. Double 

headed arrow lines connecting latent variables indicate the correlation between those 

variables; single headed arrow lines between latent constructs (i.e., path coefficients) can 

be interpreted as semi-partial correlations–squaring them indicates the proportion of 

variance in the criterion variable accounted for by the predictor. The correlation matrix 

for all manifest variables which appear in the models is presented in Table 6. 

 WMC-WMK Analyses. Of particular interest in the literature is how WM should 

be conceptualized; some evidence supports viewing WM as having two separate and 

distinct components, based on its control and attentional-scope characteristics (e.g. 

Cowan et al., 2005). The two-factor view of WMC is depicted in Model 1a (see Figure 

14). The latent WMC variable is derived from those observed variables designed to tap 

primarily the control aspect of WM, namely OSPAN, SSPAN, and RSPAN. Similarly, 
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the latent WMK variable is derived from the variance shared by the attentional scope 

tasks-Visual Arrays (Vis. Arrays), Running Span (Run. Span), and Brief Report. The 

separate WM factors had respectable loadings from their observed variables with larger 

overall loadings onto the WMC than WMK factor from their respective tasks. Further, 

the correlation between the latent WMC and WMK factors is large, at 0.90, indicating a 

very strong relationship between the control and scope of attention aspects of WM. The 

fit indices for this model depicting a two-factor WM model indicated good fit: Chi-square 

(8, N = 131) = 5.17, p = 0.74; Chi-square/df  = 0.56, RMSEA= 0.01, SRMR= 0.04, CFI= 

1.0, NFI= 0.97.  

 Given the strong correlation between WMC and WMK factors, an alternative 

view, conceptualizing a unitary WM factor, is presented in Model 1b (Figure 15); here all 

the tasks load directly on a single WM factor. The factor loadings in Model 1B are 

similar to those obtained in Model 1A. Further, the fit statistics showed good fit, 

comparable to those in the two-factor model: Chi-square (9, N = 131) = 6.10, p = 0.73; 

Chi-square/df  = 0.68, RMSEA = 0.01, SRMR= 0.03, CFI= 1.0, NFI= 0.97. A chi-square 

difference test did not indicate a significant difference between the two models, Chi-

square (1, N = 131) = 1.09, p = 0.30, providing evidence in support of the one-factor 

conceptualization as more parsimonious than the two-factor conceptualization. Thus, a 

single WM factor is used in the remaining models, which test the relations between WM 

and control processes in visual search. 

 This following section will examine the relationship of a unitary WM construct to 

individual differences in preview and cued searches separately (capture search was 
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excluded from these analyses due to the null WMC effects and reverse capture effects 

discussed above). After presenting those models the subsequent section will present a full 

visual search model testing the relationship between controlled and traditional search 

tasks and, finally, WM’s relation to the full visual search model will be presented. 

 WMC and Controlled Search. The relationship between WM and the control 

processes involved in Preview search was tested in Model 2 (Figure 16; factor loadings 

for WM for all subsequent models appear in Table 7, factor loadings for the Base latent 

variable appear in Table 8); recall that one purpose of this study was to determine if the 

control processes tapped by Preview search overlap with those measured in WM tasks. 

Separate latent Preview factors were proposed based on whether the trials presented the 

search displays as onsets or offsets, due to their different attentional demands. Further, a 

path was proposed between the latent WM factor and the control search factors while a 

Baseline factor was proposed to be unrelated to the other latent factors (i.e. a null path 

between the Baseline factor and the other latent variables). This variable, labeled “Base” 

in the figures, reflects shared variance between the experimental and baseline tasks (the 

baseline observed variables used in all subsequent modeling here come from preview 

search visual search, each set reflecting the baseline block for its respective salience 

type). Separating the variance shared by all the baseline and controlled visual search tasks 

from that variance unique to the controlled tasks alone allows the separation of speed, 

response selection, or other processes related to visual search but not involving control, to 

be removed from modeling of the latent control factor. Again the model fit the data: Chi-

square (127, N = 131) = 247.10, p <0.001, Chi-square/df  = 1.95, RMSEA = 0.09, 



 

60 
 

SRMR= 0.10, CFI= 0.92, NFI= 0.85. Also of interest is that the notion that that offset 

searches should be more attentionally demanding than onset searches; indeed the data 

showed a larger path loading for the latent offset variable on WM than the less attention 

demanding onset searches, at –0.55 and –0.21 respectively. 

 Cued searches were tested in a similar way and are represented in Model 3 

(Figure 17). In agreement with the proposal that the attentional requirement in search 

should vary based on the salience manipulation, separate factors for onset and offset cue 

search were also proposed. Similar to the previous model, cued search factors were 

predicted by the WM variable while a separate, independent baseline factor, was not. The 

model fit the data: Chi-square (98, N = 131) = 205.24, p <0.0001, Chi-square/df  = 2.09, 

RMSEA = 0.10, SRMR= 0.10, CFI= 0.90, NFI= 0.88. Further, in line with predictions 

based on differences in attentional requirement based on the salience manipulation, factor 

loadings with WM were nominally higher for the Offset than Onset factors, at -0.41 and –

0.32, respectively.  

 Structure of Visual Control. Another aim of the current study was to determine 

whether the same type of control processes were involved across different visual search 

tasks purported to involve control in the literature. Model 4 (Figure 18) proposed separate 

latent factors for Preview search and Cued search task variables separated by their 

salience manipulations. This model also included a second-order latent factor, labeled 

Control, reflecting the shared variance among the first order latent controlled search 

factors. A baseline latent variable, unrelated to Control was also included in this model. T 

The model provided marginally adequate fit to the data: Chi-square (89, N = 131) = 
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254.52, p < 0.00013, Chi-square/df  = 2.86, RMSEA = 0.12, SRMR= 0.10, CFI= 0.91, 

NFI= 0.954. The data support the model put forth here, with a latent Control factor 

derived from experimental trials independent of baseline searches processes which do not 

involve control related to WM. 

Model 5a (Figure 19) investigates the relationship between WM and controlled 

search tasks. This model posits a path from WM to a second-order Control factor derived 

from the first order search factors separated by salience manipulation. Importantly, this 

model posits a null path from WM to the Base factor, which removes the non-control 

speed and search variance common to baseline and controlled searches. The model fit the 

data adequately: Chi-square (193, N = 131) = 388.60, p <0.001, Chi-square/df  = 2.01, 

RMSEA = 0.09, SRMR= 0.09, CFI= 0.90, NFI= 0.87. Important to the theoretical 

motives here, the factor loadings from the first order visual search factors on the higher 

order control factor are all significant (range from 0.21 to 0.75). Further, the factor 

loading from Control to WM is also significant, at -0.56.  

 Among alternative models tested, one which proposed a baseline search factor 

loading onto WM is presented in Model 5b (Figure 20). This path between WM and Base 

indicates a relationship between these two constructs analogous to that between 

controlled search and WM. This model resulted in fit statistics comparable to those for 

Model 5a: Chi-square (192, N = 131) = 387.90, p <0.0001, Chi-square/df  = 2.02, 

                                                 
3 For moderate to large sample sizes even small differences between the observed and expected covariance 
matrices result in significant Chi-square tests and therefore these should not be taken as evidence of model 
misfit by themselves (Raykov and Marcoulides, 2000). 
4 Note that a number of additional versions of the following models were tested which included correlated 
disturbances for a small number of observed variables. Adding correlated errors did lead to increases in fit 
but such gains were minor and in favor of model simplicity and importance of theoretical fit, the current 
models are presented as the best overall fit to the data. 



 

62 
 

RMSEA = 0.09, SRMR= 0.10, CFI= 0.90, NFI= 0.88. Importantly, however, the path 

loading between WM and the Base factors was very low, at –0.09, so even if one were to 

argue against parsimony and for this alternative model, the relationship between WM and 

baseline search processes is, at best, extremely weak. 

 Model 5c (Figure 21), unlike the previous models, does not specify a separate 

baseline search variable. So, in this model the variance shared between all of the 

controlled search tasks loads onto the Control factor. Importantly, this variance also 

included the variance involved in non-controlled visual search tasks such as speed or 

response selection. Fit statistics for this model approach the general guidelines used here: 

Chi-square (98, N = 131) = 239.07, p <0.0001, Chi-square/df  =2.43, RMSEA = 0.11, 

SRMR= 0.11, CFI= 0.90, NFI= 0.87. Including both control and baseline search variance 

results in a moderate path loading between WM and Control here, at -0.39. Unlike Model 

5a, then, the path between WM and Control does include variability involved in baseline 

visual search tasks. This change from Model 5a to Model 5c results in a reduction in the 

WM-Control path coefficient from -0.56 to -0.39. Thus, neglecting to account for non-

control related variance (e.g., speed, response selection, etc.) obscures the relationship 

between WM and controlled search performance. 

 
Discussion 

Structural models indicated the expected relationship between a unitary WM 

variable and latent preview search variables with path coefficients ranging from -0.21 to -

0.55. This relationship held true even in alternative models which specified a path 

between WM and a latent baseline variable. This point is critical in that one might 
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otherwise argue other, non-control factors, such as overall speed or response selection, 

were responsible for the relationship between WMC and preview search. Further, the 

path loadings from WM were higher for the offset preview variable compared to the 

onset variable, indicating a greater relationship with WM for the more attention 

demanding trials (e.g., Pratt et al., 2007). Finally, here is another instance, along with that 

demonstrated by Sobel et al. (2007) and Poole and Kane (2009), in which individual 

differences in WMC play a role in a visual search task.  

Regarding cued search, structural models indicated relationships between cued 

search task performance and the latent WM variable with path coefficients ranging from -

0.32 to -0.41. This relationship between WM and cued search was significant even in 

models where a latent baseline factor loaded on the WM variable, again indicating that it 

was the controlled aspects of the search task and not other aspects, common to traditional 

visual searches, driving this relationship. These findings replicate those from Poole and 

Kane (2009) demonstrating the involvement of WM in cued search performance. 

Modeling involving control in visual search tasks showed that all the tasks 

purported to require control processing loaded on a single control factor (Figure 18). 

Such a finding of commonality between these tasks is not trivial. Consider the differences 

in surface characteristics, such that preview search requires attention to deprioritize 

varying numbers of stimuli in the preview display to speed search through the new 

display stimuli. Cued search, on the other hand, requires attention to be constrained to a 

small subset of closely arranged spatial locations. Further, when modeling WM’s 

relationship to controlled visual search (Figures 19, 20, 21) the path loadings are 
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nominally higher for those variables representing less salient and purportedly more 

attention demanding (Soto et al., 2006) variants of these control tasks. Finally, when 

aspects of visuals search common to baseline visual search tasks are not partialled out of 

the WM-Control relationship (Figure 21) their relationship is somewhat diminished in 

comparison to the models where the baseline variance is excluded (Figure 20). 
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CHAPTER IV 
 

DISCUSSION 
 
 

Overall the results relating measures of WM and controlled visual search tasks 

generally followed the predictions proposed in the introduction. WM measures were 

related to preview search and this relationship was stronger for offset than onset trials, 

which present a greater attentional demand in preview search (Braithwaite et al., 2006). 

Cued search was influenced by WM under conditions presenting the fixation displays as 

offsets as well as onsets like those from Poole and Kane (2009). However, in capture 

search both color and onset trial types were performed faster than baseline trials resulting 

in an unexpected capture effect. No aspect of capture search task performance was related 

to WMC. 

 
Latent Variable Modeling and WM 

 The first two models presented here tested the structure of WM. Theorists have 

mainly focused on two aspects of WM control and attentional scope. Measurement of 

the former has relied on complex WM span tasks like OSPAN (Turner & Engle, 1989; 

see also Conway et al., 2005, regarding complex WM span tasks) which require 

participants to memorize items interleaved with a processing component. Measurement 

of the latter aspect, attentional scope, has relied on tasks which present the subject with a 

large number of items very briefly and then tests how many items could be perceived in
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that limited time period, as in the visual array comparison task (Luck & Vogel, 1997). 

Such a disparity in task characteristics reflects the notion that complex span tasks tap

primarily the central executive aspect of WM (Kane et al., 2004) while attentional scope 

tasks are meant to primarily reflect how much information can be held in active memory 

(Cowan, 2001). The current study tested whether these two aspects of WM should be 

conceptualized as separate entities or related parts of a single WM construct. Though 

Model 1a and 1b here had comparable fit statistics, the second model, presenting a 

unitary WM variable, was chosen in favor of parsimony such that there is no compelling 

statistical reason to choose the model positing two separate factors over the model with 

one factor. Model 1a had a correlation of .90 between the separate latent control and 

attentional scope factors indicating that, even if one were to argue in favor of this model 

as representing the valid underlying structure of WM, that the control and attention scope 

aspects are very closely related. 

This finding agrees with proposals put forth in the introduction based on the work 

of Cowan, et al. (2005). Remember that their latent variable analysis indicated a strong 

relationship between control and scope constructs like those used here. Similar to the 

models here, they selected a model with a single WM factor over one positing separate 

control and attention scope factors. This interpretation agrees with that put forth by 

Cowan, et al. (2005). Remember that they tested WM control and scope tasks and their 

relationship to aptitude measures. While their model selection favored a unitary WM 

factor they also demonstrated that control and scope measures related to different specific 

variance in reasoning tasks beyond that which they shared in common. While the current 
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modeling favors a unitary view of WM, their finding suggests caution regarding the use 

of WMC and WMK measures interchangeably at least at the manifest level.  

In addition to the interest based on WM measurement and its relationship to other 

intellectual tasks, this investigation also contributes to our knowledge of the nature of 

WM. Specifically, in regards to the unitary nature of WM. Initially, WM was proposed as 

a non-unitary system by Baddeley and Hitch (1974). Their model was composed of 2 

separate slave systems responsible for auditory and visual information, respectively, and 

a central executive which served as a coordinator (but additional components have also 

been proposed, e.g., Baddeley, 2000). Other views are unitary in nature, notably the 

executive attention view (Kane et al., 2007) which has been the impetus for the study 

presented here. Under this theoretical view, references to WMC, its measurement and 

variation between individuals, focuses on those characteristics of the central executive 

itself. The model selection indicating a single latent WM factor best characterizes both 

the control and attention scope aspects of WM supports a unitary view of WM. 

 
Evidence for Control in Controlled Search Tasks 

Remember from the introduction that previous research testing the boundary 

conditions of the attention control‒WMC relationship found traditional visual search and 

WMC were unrelated (Kane et al., 2006). Visual search researchers have proposed a role 

for attention in visual search such that it serves to identify and locate targets after being 

deployed to a location in order to bind features together to form a coherent object (Wolfe, 

1998) or by matching stimuli in the search display to an actively held target template 

(Duncan & Humphreys, 1989). Individual differences in WMC have been shown to be 
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unrelated to several traditional visual search tasks in spite of long, difficult searches 

(Kane et al., 2006). This has led to the conclusion that while ample evidence supports 

WMC’s relationship with attentional tasks when they require the restraint of habitual 

responses or constraint of attentional focus amidst distraction that WMC may not be 

related to all tasks which involve attention. One potential danger in testing the 

relationship between WMC and tasks thought to require attentional control involves a 

circularity of logic, namely calling the current visual search tasks controlled because they 

vary with individual differences in WMC and determining tasks are not controlled 

because they lack a relationship with WMC. In order to avoid such a criticism, the 

following subsections cite further evidence supporting the theoretical position that the 

visual search tasks used here rely on attentional control processes or mechanisms. Due to 

the unexpected finding of a reverse capture effect, the subsection about capture search 

will instead address potential explanations for this finding. 

Preview Search. The benefit of presenting half of the search display as a preview 

before the remainder of the stimuli are also presented has been attributed to visual 

marking, an active, top-down controlled process (Olivers & Humphreys, 2002; Watson & 

Humphreys, 2000). Research supports the contention that such an effect is driven by top-

down processing because a secondary task performed during the time when items are 

previewed extinguishes the preview benefit (Watson & Humphreys, 1997). Further, 

theorists have proposed that this effect is based on a central attentional mechanism. 

Humphreys, Watson, and Jolicoeur (2002) put subjects under dual task demands using 

either auditory or visual secondary tasks presented at the onset of the preview or soon 
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after. Both modality types disrupted the preview effect but, if the secondary task was 

performed soon after the preview onset, only the visual task disrupted performance. They 

interpreted their findings as supportive of a view where controlled attention serves to 

initially encode the preview items then, in a secondary stage, attention must be 

maintained over the preview period and this is more susceptible to modality specific 

interference. Another attention-based view explains the preview effect via inhibition of a 

particular feature which distinguishes the preview items from the new items (Braithwaite 

& Humphreys, 2003; Braithwaite, Humphreys, Watson, & Hulleman, 2005). The current 

preview task did not present the two sets of distractors in different colors and therefore 

the possibility of using feature-based inhibition to aid in the deprioritization of previewed 

stimuli was likely very limited. Finally, recent work has demonstrated a role for 

individual differences in visual WM storage measures in inhibitory effects in preview 

search (Experiment 4 of Al-Aidross, Emrich, Ferber & Pratt, 2011). Importantly, the 

methodology of this work encouraged the involvement of visual WM by limiting the 

number of items presented in the preview and full display. The current study was not 

intended to encourage such behavior, and instead follows more typical methodology, 

presenting both a wide range and large number of previewed items and full displays. 

While the potential relationship of visual WM to inhibiting previewed locations is 

interesting, the methodology employed by Al-Aidross et al. (2011) makes a comparison 

with the current work speculative at best. 

At this point it is appropriate to address some competing views of preview search 

which do not explain the preview benefit with controlled mechanisms or processes. One 
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such view, put forth by Donk, Theeuwes, and colleagues (Donk & Theeuwes, 2001; 

Donk & Verburg, 2004), attributes the benefit to automatic processes such that newly 

presented items (i.e., after the preview) capture attention without the involvement of 

control. New items appear as onsets and the sudden change in luminance captures 

attention. Because the target is always a member of this new group searches are 

quickened as if they proceeded only through the newly appearing items. According to this 

view, the preview benefit is brought about by automatic capture of attention to the newly 

presented items which contain the target. Researchers have tested this view of the 

preview effect by controlling aspects of the new, target-containing stimuli after the 

preview, such that the presentation of new items occurs without a change in luminance. 

The preview benefit still occurs even without luminance changes which may serve to 

capture attention, though the specific time course required to set up the initial encoding of 

preview items may be longer without the aid of such luminance changes (Braithwaite et 

al., 2005; Braithwaite et al., 2006). Such a finding indicates that while automatic 

prioritization of newly presented items is not the sole cause of the preview effect, it may 

still contribute to it. The current work did not explicitly attempt to eliminate such 

influences, so some small portion of the overall advantage of using previews to speed 

search may be due to automatic factors. What should be noted, however is that there is no 

compelling reason to suspect the findings relating individual differences in WMC to 

preview search here as being based on automatic influences. In addition to the work 

showing individual differences in WMC to be unrelated to traditional visual search (Kane 

et al., 2006) WMC has also been shown to be unrelated to aspects of other tasks which 
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rely primarily on automatic processes (e.g., Kane et al., 2001, Kane & Engle, 2003). 

Further, we found longer RTs for offset compared to onset trials and importantly, 

individual differences in WMC was related to preview search on offset trials 

corroborating the proposal that limiting bottom-up changed in luminance imposes greater 

attentional demands to use the previews to limit search. Such results suggests if automatic 

processing plays any meaningful role in preview search here, that it serves to limit the 

reliance on WM for task performance.  

Another alternative view of the preview benefit has been put forth by Jiang, Chun 

and Marks (2002). They explain the effect as due to temporal segmentation of the old and 

new displays; since they are presented in two halves they are separated into groups 

automatically. Subjects then simply attend to the new group of items. According to this 

view new items are prioritized but not via active processing at old, previewed locations. 

Evidence against the temporal segmentation account has been presented by Olivers and 

Humphreys (2002) who had subjects perform a preview search task in the midst of a 

rapid serial visual presentation stream (e.g., Raymond, Shapiro & Arnell, 1992). They 

induced an attentional blink so they could vary the amount of attentional resources 

available during the preview period and intermittently probed identification at both 

previewed and new locations. When the preview stimuli were presented during the 

attentional blink they were included, with newly presented stimuli, in the set of items to 

be searched suggesting the typical preview effect depends on attentional processes or 

mechanisms unavailable during the attentional blink. Further, in general they found probe 

identification was worse at old than new locations, in line with an explanation that 
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activation at preview locations was inhibited. When the preview items were presented 

during the attentional blink, however, probe identification was equivalent for previewed 

locations and new locations, indicating that they had been searched as if presented all at 

once. Because the previewed items were presented when attention was unavailable during 

the blink, those items were not de-prioritized when the second half of the display was 

presented.  

Of particular interest for the current discussion is what processes or mechanisms 

involved in the preview effect depend on WMC? According to Humphreys, Watson, and 

Jolicoeur (2002), controlled attention serves to either set up the initial encoding of 

locations to be inhibited or in the maintenance of those locations or both. An inspection 

of the relevant data in Figure 9B regarding preview duration in offsets, where WMC 

played a significant role in performance offers evidence regarding which aspect of visual 

marking involves WMC. We see, generally, a lack of WMC span differences at the two 

fastest preview durations but robust span differences at preview durations of 600 ms or 

greater across all distractor set sizes. Further, the WMC span differences do not appear to 

systematically change across these long preview durations. If high spans were faster at 

greater durations or low spans were slower it might suggest a difference in maintaining 

the inhibition of distractor locations over time. So, while these findings are congruent 

with the involvement of WMC for the initial encoding or setting up of inhibitory 

influence during the time the preview items are presented, it does not rule out potential 

WMC differences in maintenance of visual marking. Further research including a wider 
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variety of distractor set sizes as well as longer preview durations will be required to 

determine what specific role WMC play in the preview effect.  

Cued Search. Endogenous spatial cueing effects like those shown here are often 

attributed to top-down attentional control limiting the effects of distractor interference 

(e.g., Awh et al., 2003; Shiu & Pashler, 1994). Such noise reduction is explained by 

direct suppression of interference at distractor locations or by blocking of inputs from 

those spatial locations (Awh et al., 2003). Support for the biased competition view 

(Desimone & Duncan, 1995) comes from a variety of studies from Awh and colleagues 

(e.g., Awh and Pashler, 2000; Awh et al., 2003; Awh, Sgarlata and Kliestek, 2005) which 

used endogenous cues and distractor-laden displays similar to those used here. For 

example, Awh and Pashler (2000) found benefits of cueing target locations on distractor 

laden trials but not on trials which presented no distractors. Further, cueing effects on the 

identical distractor-laden trials were larger when they were presented within a block 

containing many compared to a block presenting few distractor-laden trials (Awh et al., 

2003). These findings indicate that the benefit of cueing results from avoiding the effects 

of distractor noise and that the cueing benefit relies on the searcher’s top-down 

knowledge of likelihood of distractor interference. These are also in agreement with the 

biased competition view such that it proposes top-down attentional control settings serve 

to limit distractor interference based on the searcher’s expectation of distractor noise.  

The evidence cited above indicates that cueing leads to better performance due to 

attentional control settings which serve to limit interference from non-target locations. 

This interpretation agrees with the current findings of a relationship of individual 
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differences in WMC being related to this effect as well as prior research showing 

individual differences in WMC to be related to performance on several other 

interference-rich tasks (e.g., Conway et al., 2001; Heitz & Engle, 2007; Kane et al., 

2001). Some theorists propose a different relationship between spatial WM and spatial 

attention that would likewise predict a relationship between individual differences in 

WMC and cued search. The reason for WMC’s involvement in tasks like those described 

above may be due instead to a close functional relationship between mechanisms of 

spatial WM and spatial attention. One part of this proposal is that spatial attention serves 

as a rehearsal mechanism by which spatial aspects of WM operate. In support of this 

notion Awh, Jonides and Reuter-Lorenz (1998; see also, Awh & Jonides, 2001) showed a 

decrement in spatial WM performance when subjects were prevented from attending to 

memorized locations during the delay part of a memory task (Experiment 3). Their 

findings suggest a functional relationship between WMC and cued search performance 

here such that spatial contents of WM are maintained or rehearsed by spatial attention. 

Recent work has offered evidence further supporting this relationship. Theeuwes, Kramer 

and Irwin (2011) briefly presented subjects with colored stimuli at 4 corner locations of 

an imaginary box and on each trial questioned if a particular color had been presented. 

They also intermittently probed one of the formerly occupied locations for a speeded 

response, reasoning that if retrieval of the colored item from memory coincided with 

shifts of attention toward the location of that item, that RTs to subsequent probes in the 

target’s location would be faster. RTs were faster to the previously occupied locations, 

leading to the conclusion that spatial attention is how information is retrieved from visual 



 

75 
 

working memory. Importantly, this spatial effect occurred even though, unlike Awh et al. 

(1998), their task had no requirement to memorize spatial information—subjects were 

only asked whether the item was presented and therefore subjects had no incentive to 

remember spatial information. 

Certainly, these two views ─ that WM is related to the ability to limit spatial 

attention to target areas and that the maintenance or rehearsal mechanism of spatial WM 

is spatial attention itself, may not be an either-or proposition. Recent work has suggested 

a close relationship between visual storage capacity limits and the ability to limit 

distractor interference such that individuals with higher capacity are better able to avoid 

influence from distractors than are those with lower capacity (Vogel et al., 2005; see also 

Machizawa & Driver, 2010). Remember from the introduction that the ERP work of 

Vogel et al. (2005) found a relationship between visual storage capacity and the ability to 

deal with irrelevant visual information such that those with smaller capacity were less 

able to filter out irrelevant information. Not only were they able to store less than their 

high capacity counterparts but they also stored more irrelevant visual items than did the 

high capacity subjects. Evidence presented here and by Poole and Kane (2009) indicate 

the involvement of WMC in endogenously cued search when displays present a high 

amount of distractor interference. Whether WMC is related to such performance based on 

an ability to limit distractor interference or from a close relationship between visuo-

spatial WM abilities and spatial attention is not clear. The available data does not offer an 

answer regarding which of these aspects of the task may rely on WMC and it is not clear 

if the intimate relationship of these two views precludes empirical testing to choose view 
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one over the other. It is worthwhile to note, however, that the WM tasks used here 

included verbal tasks as well, suggesting that the visuo-spatial aspects of the WM tasks 

cannot be the sole reason why their performance is related to the ability to limit distractor 

interference. 

Another point of interest regarding the cued search findings here relates to 

fixation timing effects found by Poole and Kane (2009). Experiment 3 from that article 

found WMC differences at long (1,550 ms) but not short (300 ms) fixation durations 

which they interpreted as supporting a view where WMC was related to proactively 

maintaining the constraint of visual attention over time. Results from the cued search task 

here reveal a different relationship. High WMC subjects were faster than Low WMC 

subjects overall but, interestingly, the trend was for WMC differences to be greatest at the 

shortest fixation durations tested and smallest at the longest durations (which ranged from 

500 to 2,000 ms). Though the WMC by duration interaction did not reach our 

significance threshold (p =.077) for onset trials which are the most similar to those 

employed by Poole and Kane (2009), it did reach significance on offset trials. An 

inspection of Figure 11b suggests that High WMC subjects’ performance is constant 

across increasing fixation durations while Low WMC subjects appear to be improving 

performance with longer time to limit attention to target locations. Such an interpretation 

agrees with the findings of Braithwaite et al. (2006) indicating attentional effects occur in 

situations of limited bottom-up information but take longer to execute. Taken together, it 

appears that at some very short fixation duration (on the order of 300 ms) limiting visual 

attention in endogenously cued search is unrelated to WMC. The current results show 
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that High but not Low WMC subjects are able to use the cues to constrain attention with 

more time (500 ms or more). With increasing time available to constrain attention low 

spans are able to improve performance but never reach the level of High WMC subjects 

(at least over a time course of 2,000 ms) which stays relatively stable across fixation 

durations. It should be noted however that one important difference between the current 

work and that reported by Poole and Kane (2009) is that the prior work separated the 

fixation durations by block but here they were mixed within the same block. Though 

speculative, the apparent ability of Low WMC span subjects to improve performance 

with increasing fixation durations may be due to the uncertainty imposed by the mixed 

durations. This may have encouraged Low WMC span subjects to limit attention as 

quickly as possible and they found increasing benefits of this on trials where the fixations 

were presented for greater durations. 

Capture Search. In addition to the established literature demonstrating the basic 

attention capture effect (e.g., Theeuwes, 1991; Yantis and Jonides, 1984), a recent 

experimental investigation has shown individual differences in WMC to be involved in 

capture. Specifically, Lavie and DeFockert (2005) manipulated memory load and found 

that capture effects increased with greater memory loads. While these findings agree with 

our expectations here based on the executive attention view of WMC, namely that low 

WMC subjects should show greater capture than high WMC span subjects based on their 

differences in the ability to control attention, results do not always a match between 

studies manipulating available WMC with a memory load and those using individual 
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differences in WMC (see e.g., Kane et al., 2006, for more regarding this disconnect 

relevant to WM and visual search).  

The reverse capture effect observed here may be due to several task 

characteristics. First is the blocked nature of the task─baseline searches were always 

performed in a separate block between performance of the onset and color capture blocks. 

Though not a documented manipulation to reduce capture effects in the visual search 

literature, having all the capture trials performed in the same block may serve to reinforce 

the goal to protect against capture (as in the pure incongruent Stroop block used by Kane 

& Engle, 2003). Further, the complexity of the stimuli used here may have also limited 

any effect of capture. Han and Kim (2009) showed that attention was not captured when 

an item held in visual WM was the same as a distractor when searches present large 

perceptual difficulty (Experiment 1); conversely, when searches were relatively easy, 

WM’s contents did lead to capture (also see the section below regarding Lavie’s load 

theory). They proposed that at a certain temporal threshold control is able to exert an 

effect during the trial. Before this time window (i.e., with fast searches) it plays little or 

no role in search performance; with more time control can aid in avoiding capture. Such 

proposals agree with other findings where irrelevant distractors exert little influence in 

cases of inefficient visual search and long RTs (Gibson & Peterson, 2001; Lamy & Tsal, 

1999). Though not common, several investigations regarding capture and how the 

contents of WM affect capture have resulted in reverse capture effects like that observed 

here. In brief, these studies had subjects remember an item for a later memory test and 

during the delay the subjects performed a visual search task. The main manipulation of 
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interest was whether the to-be-memorized item matched a distractor in the display. Three 

experiments reported by Woodman and Luck (2007) and one by Downing and Dodds 

(2004) showed faster searches when the memory item matched a distractor in the visual 

search task suggesting that the subjects were able to direct searches away from those 

distractor locations. Taken with the results of Han and Kim (2009) it appears that the 

contents of WM can direct attention away from known distractors and that this is more 

likely when searches are long, as is often the case when complex stimuli are used. 

Other basic experimental investigations have demonstrated that capture effects do 

not occur in all circumstances. Some research have shown that when a target is not 

defined by its color, as in our capture task here, that color singletons fail to capture 

attention (e.g., Folk, Remington & Johnson, 1992). However, other research has shown 

that when subjects search for a specific shape among other shapes, RTs are slowed by the 

presence of an irrelevant color singleton (Theeuwes, 1992; but also see Bacon and Egeth, 

1994, for contradictory findings). Such contradictory findings make unclear the necessary 

conditions under which capture is reliably produced. Future work determining how 

individual differences in WMC relate to the capture effect in visual search will be 

informative and the findings related to timing and other task specifics required to produce 

the effect will aid in illuminating the nature of attentional control generally and as it 

relates to WMC.  
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When is Control Involved in Visual Search? 

 In spite of the research cited above, predicting what visual search tasks will or 

will not involve control as measured in WMC is not a trivial task. Research indicates 

individual differences in WMC to be unrelated to traditional visual search with consistent 

target-distractor mapping, and a variety of distractor set sizes when the searches were 

based on feature absence, conjunctions of color and orientation, and spatial configuration, 

under situations of pop-out and inefficient visual search (Kane et al., 2006). Individual 

differences in WMC is also not involved in a version of command search (Wolfe et al., 

2000) where, unlike traditional searches, attention must proceed through search displays 

in a predetermined pattern (Kane et al., 2006). Conversely, individual differences in 

WMC are important in visual search when subjects are forewarned of target and 

distractor locations on each trial and the displays present large amounts of distractor 

noise (Poole & Kane, 2009). Further, as shown here, WMC plays a role in visual search 

performance when the search display is presented in two halves such that the subject 

receives a preview of which locations will not contain the target stimuli (Watson & 

Humphreys, 1997). Finally, the SEM analyses reported here indicate a relationship 

between preview search and cued search task performance; additionally, a latent control 

factor based on these tasks has a strong relationship with WM. What characteristics are 

common to these controlled tasks, but not involved in traditional visual search, which 

makes them dependent on WMC? These tasks both forewarn subjects on each trial of the 

spatial location of the upcoming target. It may be more precise however, to say that 

subjects are informed of the distractor locations because the preview display in preview 
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search informs the subject of the locations where the target will not appear while in cued 

search the target pre-cues also indicate distractor locations. In addition to this 

foreknowledge of spatial locations of target and distractors, characteristics of other search 

tasks shown by Sobel et al. (2007) to be related to WMC should also be considered. They 

found individual differences in WMC to be important when the search context 

predisposed subjects to search through a more salient dimension (color) even though task 

characteristics would result in faster searches through a less salient dimension (similar 

orientations). What appears to be common among these three WMC-related tasks is that 

subjects are able to constrain focus to some aspect of the display (based on either spatial 

or feature qualities) in order to quicken search. Constraining visual search to a limited 

subset of the display is one of the ways in which control can be involved in visual search. 

A useful framework to determine when individual differences in WMC will be 

related to visual search performance is the load theory put forth by Lavie and colleagues 

(e.g., Lavie, 1995, 2010; Lavie, Hirst, DeFockert & Viding, 2004). This theory deals with 

selective attention and cognitive control in interference rich situations and proposes that 

the amount of interference experienced is determined by whether a load is perceptual or 

cognitive in nature. Perceptual load is increased either by presenting more items in a 

display or by increasing their complexity; cognitive load is determined by the amount of 

information held in WM (Lavie, 2005). In situations of low perceptual load processing of 

the target occurs and, if there are resources left over, processing proceeds automatically 

to other items (including distractors) resulting in performance decrements. In cases of 

high perceptual load, attentional resources are consumed in processing the target such 
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that little or no processing is left to spill over to distractors resulting in no interference. 

Cognitive loads have an opposite effect such that increasing loads result in increased 

interference. Here, the resources or mechanisms of control which typically serve to limit 

interference are occupied and unable to limit the interference. Such a distinction suggests 

a framework to determine what visual search tasks will and will not involve control as 

measured in WMC. This framework is concordant with the areas in which we see WMC 

important in controlled visual search here such that the advantage for presenting the 

display in two halves in preview search is eliminated by putting subjects under a 

demanding memory load (Watson & Humphreys, 1997). Also, the differences in the 

distribution if visual attention which varies with individual differences in WMC 

(Bleckley et al., 2003) can be extinguished with the addition of a memory load such that 

high WMC spans perform like low spans, demonstrating a more diffuse focus of attention 

(Bleckley, 2001). The involvement of cognitive load in performance of these tasks may 

be related to setting up or maintaining the encoding of the locations for deprioritization in 

preview search (Braithwaite et al., 2005; Braithwaite et al., 2006) or in constraining 

visual attention in cued search (Bleckley, 2001; Poole & Kane, 2009). Further, as detailed 

in the paragraph below, this framework explains why WMC effects do not appear in 

traditional visual search (Kane et al., 2006), in spite of sharing some characteristics with 

controlled search tasks. 

Remember how traditional visual searches occur according to guided search 

theory (e.g. Wolfe, 1998).  Simple features are analyzed automatically in parallel and 

then summed to a master map consisting of varying levels of activation based on those 
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local, feature-based differences. Knowledge of target characteristics serves to augment 

activation and attention moves from location to location in order of decreasing activation. 

Remember from above that according to load theory increasing the number of stimuli in 

the display increases perceptual load (Lavie, 2005). Manipulating search stimuli based on 

feature complexity or by increasing the number of distractors presented in the displays 

are two common ways search difficulty has been manipulated in traditional visual search 

experiments (Wolfe, 1998). Accordingly, while these manipulations often lead to longer 

search RTs, they do not, however, recruit control processes according to load theory 

(Lavie, 2005); in line with this proposal are findings from multiple experiments reported 

by Kane et al. (2006). Again, this work presented a variety of visual search tasks where 

the search criteria was based on feature absence, color and orientation conjunction, and 

spatial configuration, and they also manipulated the number of distractors presented in 

the search displays. Across these experiments there was no relationship between 

individual differences in WMC and visual search, in spite of long search times that 

increased with greater distractor set sizes (Kane et al., 2006). Considering these findings 

under the framework of load theory, such manipulations only affected perceptual and not 

cognitive load and agrees with the findings that control processes or WMC were not 

related to search performance in that study. 

Other views of traditional visual search explicitly posit a role for WM such that it 

stores target templates which are matched to items in the search display (Bundesen, 1990; 

Duncan & Humphreys, 1989). According to load theory, increasing loads on WM 

decreases the ability to deal with interference. Though some research suggests that 
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subjects can maintain a load of at least up to four simple visual items without disrupting 

search processes (Woodman, Vogel & Luck, 2001), increasing cognitive demand with a 

complex spatial load disrupts search with fewer items (Oh & Kim, 2004; Woodman & 

Luck, 2004). Recently, Woodman, Luck and Schall (2007) had subjects perform a change 

discrimination task along with visual search under articulatory suppression. Search was 

unaffected except when the target changed across trials; additional cognitive demands 

from this requirement to update the target template lead to performance decrements. 

Other support for this view comes from Han and Kim (2009). As mentioned above in this 

section, they found attention capture effects in situations of low but not high perceptual 

load. As discussed in the previous paragraph, a cognitive load leads to decreased control 

and increased capture effects, in agreement with load theory (Lavie & De Fockert, 2005). 

With these findings in mind, it appears that the manipulations employed by Kane et al. 

(2006) affected perceptual load while leaving cognitive load constant across their 

experiments. All experiments reported by Kane et al. (2006) had subjects respond to 

targets which were relatively simple shapes or shape-color combinations and likely 

imposed minimal demand on WM storage. Further, subjects made either a target 

present/target absent response or indicated which of two possible targets was present on 

the trial and the targets remained the same within experiments. These tasks likely 

presented minimal cognitive load to the participants. 

Recently visual search researchers have begun explicitly including load level 

manipulations in experimental investigations. This work is described briefly below as 

additional evidence of load theory’s (Lavie, 2010) value as a framework for 
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understanding when control is involved in visual search. For example, He and McCarley 

(2010) manipulated both WM load and the visual quality of search items (varying 

cognitive and perceptual loads, respectively) in a visual search task. Both the demanding 

counting task and degraded discriminability of items interfered with search. Importantly, 

these effects were additive, suggesting independent influences from the cognitive load 

and perceptual quality manipulation, in support of load theory’s (Lavie, 2010) claim that 

cognitive and perceptual loads effect performance separately. Caparos and Linnell (2010) 

had subjects perform a flanker-like visual task (Eriksen & Eriksen, 1974) in which they 

varied the distance between the target location and an incongruent distractor in order to 

measure the distribution and quantity of visual attention. Across studies they manipulated 

perceptual and memory loads which, according to load theory (Lavie, 1995), would affect 

performance independently. As expected, they found that the “Mexican hat” shape of 

visual attention (i.e., short RTs at the center of fixation and an outer ring area with longer 

RTs in the area in between) was compressed towards the center by a perceptual load 

(Caparos & Linnell, 2009; Caparos & Linnell, 2010, Experiment 3). Additionally, the 

amount of interference experienced was related to individual differences in WMC with 

low spans more impaired than high spans. Also, in Experiment 3 a greater amount of 

interference was observed with a demanding cognitive load (a difficult calculation). The 

authors interpreted these findings as in agreement with load theory (Lavie, 1995) such 

that a perceptual load influenced the perceptual level, tightly focusing the shape of visual 

attention; the cognitive load acted on post-perceptual processes limiting the ability to 

combat interference, as evidenced by longer RTs irrespective of spatial location. Note, 
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however, that the clear demarcation of load effects between cognitive and perceptual 

domains proposed by load theory (Lavie, 2010) was not universally supported such that 

Caparos and Linell (2010) reported some instances where WM loads resulted in changes 

to the shape of visual attention (Experiments 4 and 5). Remember from the discussion 

above that the work of Bleckley (2001) showed changes in the shape of visual attention 

due to a WM load; the precise nature of these effects may be more complex than 

proposed by this view. While the value of load theory to predict when control is involved 

in visual search tasks is promising, further work is needed to test the framework and 

clarify whether different load types have independent effects on interference.  

 
Control in Traditional Visual Search? 

What then can be said regarding the role of control in traditional visual search? 

Though top-down influences on search behavior are important in visual search theories, 

for example in the role of augmenting activation based on knowledge of task demands 

(e.g., Wolfe, 1998), little reference to cognitive control is made by theories of traditional 

visual search. For example, consider a traditional search task where the target is a blue 

circle among blue squares and red circles. Increasing the number of stimuli in 

conjunction search tasks like these results in longer RTs. While this non-zero search 

slope may be taken as evidence that such searches do not occur in parallel, unlike pop-out 

searches (e.g., blue circle among red circles) that have RTs independent of distractor set 

size, such increases in RT do not necessarily indicate the involvement of control. Again, 

according to Lavie’s (2010) load theory, this increase in RT is due to perceptual changes 

and not recruitment of control processes. Such an interpretation agrees with other 
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research indicating a limited role for top-down strategy in the most common conjunction 

searches in which an equal distribution of distractor types does not offer an opportunity 

for performance improvements from top-down factors (Bacon & Egeth, 1997; Sobel & 

Cave, 2002). Similarly, increasing the number of distractors presented while keeping 

their relative distribution equal leads to longer RTs but likewise, this increase in RT is not 

due to involvement of control. Again, in agreement with load theory, such manipulations 

do not involve control or involve more control; increased RTs in visual search cannot be 

interpreted as unambiguous evidence of control. 

Current evidence has demonstrated two ways in which control processes can be 

involved in visual search. The first, taken from views like that put forth by Duncan & 

Humphreys (1989), is to frequently change the target across trials during the task. The 

evidence cited above indicates that such a requirement involves active updating of the 

target template in WM and the controlled nature of this is supported by findings that 

performance is disrupted by a simple WM load when the target in visual search changes 

across trials (Woodman, Luck & Schall, 2007). The second way to involve control in 

visual search is to constrain search to a subset of the display. Although the majority of the 

empirical evidence to date has the constraint of search to a particular spatial location or 

locations (as in preview search here and cued search, also in Poole & Kane, 2009), 

control seems to be involved with constraining searches more generally. Sobel et al. 

(2007) reported WMC related to search with a difficult to distinguish subset of stimuli 

when a habit to search through a more salient but less advantageous subset was induced. 

In this study the typical, equal distribution of bottom-up salience signals was changed in 
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order to offer an opportunity for top-down influences to affect search. Due to the novelty 

of using load theory as a framework for determining whether control will be involved in 

visual search performance and the notion that increases in RTs do not necessarily indicate 

the involvement of control processes, at this time determining control’s involvement in 

search should be based on multiple types of evidence.  

 
Incongruent Findings 

Recent research challenges the relationship between WMC and traditional visual 

search task performance that has been espoused here and elsewhere (Kane et al, 2006; 

Poole & Kane, 2009) such that individual differences in WMC play little or no role in 

traditional visual search performance. Research calling this view into question shows 

visual search performance determined in part by individual differences in visual WM 

storage measures. Luria and Vogel (2011) varied search difficulty and found both 

individual differences in WMK, as well as a physiological measure indicative of online 

storage of items in visual WM, contributed independently to search performance. 

Pertinent to the current discussion, individual differences in visual WM were related to 

visual search at all difficulty levels including easy, single feature-based search, 

considered by some theorists as performed virtually automatically (e.g., Wolfe, 1994). 

Luria and Vogel (2011) attributed the absence of a WMC-search relationship in the Kane 

et al. (2006) study as due to the use of verbal WM measures; specifically that the verbal 

measures used lacked the specificity and sensitivity of their visual WM storage measures.  

Though these findings seem problematic for the relationship between WMC and 

visual search espoused here (and by Kane et al., 2006; Poole & Kane, 2009), several 
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deviations from the methodology typically employed in traditional visual search are 

likely responsible for their contradictory findings. Luria and Vogel’s (2011) search 

display contained two circular groups of letters with one on each side of a central fixation 

point. These letter sets were presented in two different colors for the left and right 

hemifields, which varied randomly on each trial; subjects searched through one of two 

possible colors for the entire task. Further, potential target locations were surrounded by 

neutral distractors and a flanker distractor. Therefore, subjects had to selectively attend to 

one side of the display and ignore the other side on each trial, based on a color which 

randomly changed on each trial. This additional requirement to constrain search to a 

particular spatial location makes their “traditional” visual search task similar to the 

preview and cued search tasks used here and elsewhere which are related to individual 

differences in WMC (Poole & Kane, 2009). 

  As a final note in support of this notion is recent work demonstrating the 

importance of constraining attention to spatial locations in order to involve control. 

Bengson and Mangun (2011) manipulated expectancy in a variant of Posner’s (1980) 

cueing task and found that WM was related to search when the target and distractors 

differed by a simple feature, on trials which validly cued the target location. However, 

when spatial locations were not cued, search was unrelated to WM in agreement with 

other research (Kane et al., 2006). In what would otherwise be a simple, quick visual 

search task unrelated to control processes, requiring constraint to a spatial location 

recruited WMC involvement. WM’s ubiquitous involvement in search at all difficulty 

levels reported by Luria and Vogel (2011) may be due to their requirement to limit search 
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spatially to one half of the display. Even if this is not the case, due to these task 

characteristics, it still stands that the involvement of WMC in traditional visual search 

task performance is yet to be demonstrated.  

 
General WM Theory 

Executive Attention. Remember from the introduction that a main objective of 

this study was to investigate the interrelations of control as they operate in different types 

of visual search tasks and to determine how that control relates to WM. The driving force 

behind this was the executive attention theory of WMC and previous research 

demonstrating no relationship between individual differences in WMC and performance 

on a variety of traditional visual search tasks (Kane et al., 2006) as well as other work 

showing a large role for individual differences in WMC in other visual search tasks 

(Poole & Kane, 2009). According to the executive attention view, complex span 

measures of WMC tap some domain general attentional control ability which is important 

in situations that require the activation and/or maintenance of goals in the face of 

distraction or interference and it is also important for the resolution of conflict between 

competing action plans (e.g., Poole & Kane, 2009). Further, the predictive relationship of 

these complex span measures with higher order intelligence exists because such measures 

index some aspect of executive attention abilities and these abilities play an important 

role in a variety of intellectual tasks (Engle & Kane, 2004). A number of studies have 

offered compelling evidence supporting the executive attention view by demonstrating a 

relationship between WMC and performance of attention demanding tasks which also put 

a premium on goal maintenance such as antisaccade (Kane et al., 2001), dichotic listening 
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(Conway, Cowan & Bunting, 2001), and Stroop (Kane & Engle, 2003). The discussion 

above indicates that control and WMC, because of their close relationship, are not 

involved in all tasks which are demanding or difficult (e.g., Kane et al., 2006). There is a 

strong reliance on WMC when tasks require the restraint of habit, as is common to tasks 

like antisaccade and Stroop. Further, WMC is also important in tasks which require 

attention to be constrained as is the case in the dichotic listening task (Conway et al., 

2001; see also, Colflesh & Conway, 2007). The controlled visual search tasks shown here 

to rely on WMC, namely cued search and preview search, also appear to share in 

common this requirement to constrain attention amidst distraction. Remember from the 

earlier discussion about involving control in visual search tasks that one way to do so is 

to frequently change the target within the same task (e.g., Woodman et al., 2007). While 

the importance of individual differences in WMC has not yet been demonstrated in a 

search task like this, the executive attention view predicts a strong reliance on WMC for 

efficient performance. In particular, this aspect of having the targets items often change 

within the visual search task would place demands on the WM system in order to resolve 

conflict between goals or action plans (i.e., search for the current target and not for the 

target of a previous trial). Future research should investigate whether individual 

differences in WMC relate to visual search in this context and how that relates to other 

constraint-type search like cued search and preview search used here. 

Dual Component. Unsworth and colleagues (Unsworth & Engle, 2007; 

Unsworth & Spillers, 2010) proposed a theory of WM, of which one component 

encapsulates the executive attention view described above but in addition proposes that 
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controlled retrieval from secondary memory is an important additional aspect of WM. In 

short, while this view agrees that attentional control is an important aspect of WMC, cue-

based retrieval from long term memory is also considered critical as well and adds 

explanatory value to WMC’s relationship with higher order cognition. Evidence 

supporting the value of this second component comes from work investigating measures 

of WMC, recall from secondary memory, and attention control tasks and how they relate 

to intelligence measures (Unsworth & Engle, 2007; Unsworth & Spillers, 2010). Briefly, 

Unsworth and Spillers (2010) reported a study investigating the relationships among 

latent variables reflecting fluid intelligence, WMC, measures of retrieval from secondary 

memory, and attentional control tasks like antisaccade and stroop. In agreement with the 

executive attention view, they found a large amount of variance in fluid intelligence was 

accounted for by a WMC factor derived from several complex span measures. Critically, 

and in support of their second component, they also reported separate and unique 

variance in fluid intelligence was accounted for by measures of recall from secondary 

memory above and beyond that accounted for by the latent WMC variable. The value of 

this dual component view is also apparent in that it predicts WMC to be important in 

tasks tapping primarily long term memory, like cued recall (Unsworth, 2009) and free 

recall (Unsworth, 2007), which are not readily predicted from some other views of 

WMC. In regards to accounting for the current findings of interest, namely the 

relationship between individual differences in WM and controlled visual search tasks 

demonstrated here, the dual component view, because it encapsulates the executive 

attention view of Kane, Engle and colleagues (e.g., Engle & Kane, 2010; Kane et al., 
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2006) naturally makes the same predictions and explanations in regards to WMC’s 

relationship with controlled visual search tasks. Unfortunately, the results reported here 

neither support nor refute the additional component of the dual component model relating 

WM to retrieval from secondary memory. 

Inhibitory. The view of WM put forth by Hasher and colleagues (Hasher, Zacks 

& May, 1999; Hasher & Zacks, 1988) proposes that WM measures are important because 

they indicate the quality of an individual’s inhibitory abilities. Such inhibitory processes 

serve to streamline what is represented in consciousness to goal-relevant items by way of 

preventing irrelevant content from entering it and deleting or removing information 

which is no longer relevant. Finally, these inhibitory processes also serve to restrain 

habitual responses when novel ones are more closely aligned with goal-relevant behavior. 

The inhibitory view is admittedly (Hasher, Lustig & Zacks, 2007) a close relative to the 

executive attention theory described first in this section. The executive attention view 

proposes the broader umbrella of attentional control processes that are important to WM 

while the view of Hasher and colleagues focuses solely on inhibitory processes. Though 

prevalent explanations for some of the findings here are inhibitory in nature regarding 

both cued search (Awh et al., 2003; Desimone & Duncan, 1995) as well as preview 

search (Watson & Humprehys, 1997) they support these closely related views 

equivalently. However, findings implicating attentional abilities in the creation and 

maintenance of visual marking in preview search across time (Humphreys, Watson, and 

Jolicoeur, 2002) seems to favor the executive attention view over a solely inhibition 

based view. 
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Embedded Processes. Cowan’s (2001) theory views WM as an information 

processing system consisting of three processes, with each one as a smaller portion 

embedded within the other.  Conceptually this view consists of the overall long term 

memory system; within this system is a smaller portion of LTM which is at a heightened 

state of activation. Finally, the third embedded process is an even smaller area consisting 

of an item or items currently active in the focus of attention. Development of this view of 

WM has concentrated on the capacity aspect of the focus of attention, emphasizing how 

much can be kept active in the focus of attention rather than control of the focus. The 

focus of attention is seen as flexible such that it can be expanded in order to encompass 

more than one item (as in the visual array comparison task used here and by Cowan et al., 

2005) or, conversely, to zoom in tightly to focus on a single idea or goal (e.g., “look away 

from the flash of light” during the antisaccade task). Rather than being limited to these 

two options, the focus can be set at an intermediary level such that it is wide enough to 

encompass more than a single item but is also set to counteract the effects of interference, 

as is the case when performing the Stroop task (Cowan et al., 2006). Due to the flexible 

nature of the focus of attention, the embedded process view is similar to some models of 

selective visual attention (e.g., Eriksen & St. James, 1986), and therefore naturally 

accounts for findings relating individual differences in WM to visual search performance 

when the task requires the constraint of visual attention amidst distraction. Further, 

considering the other aspect of the focus of attention described above, such that the focus 

of attention can zoom in to focus on a single goal, this view seems to make parallel 

predictions to the executive attention theory regarding what other kinds of visual search 
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tasks should involve WMC, namely tasks similar to that used by Woodman et al. (2007) 

in which the valid target changes across trials. 

Binding. Not all theories attribute the value of WM measures to an attentional 

control construct. The view put forth by Oberauer and colleagues (Oberauer, 2005; 

Oberauer, Sub, Wilhelm & Sander, 2007) proposes that WM’s value is that it indexes an 

ability to create flexible temporary bindings between chunks of information. According 

to this view, an individual’s WM is limited by this ability to create relationships between 

or among cognitive representations and it is this limited ability that is responsible for the 

predictive relationship between WM measures and higher order cognition (Oberauer, 

2009). Further, in the same way that memoranda can be bound in temporal order for 

subsequent recall (e.g., words presented aurally for ordered recall in a running span task), 

likewise visual objects are also bound to locations in space in some under this view items 

can be temporarily bound to space in a coordinate system (akin to a representation of 

pieces on a chess board). This view of items bound to physical locations offers a different 

explanation for WM’s involvement in cued and preview search than that offered by the 

executive attention and embedded processes views described above. The relationship 

between individual differences in WM we report in cued search can be attributed to 

differences in efficiency of building and breaking down these temporary relationships 

between spatial locations and abstract grouping because the searcher knows what 

locations will contain targets and which will contain distractors. Explaining the benefit of 

preview search is less straightforward under the binding view because, unlike cued 

search, the searcher only knows the locations of distractors before the full displays are 
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presented. Further, while one might argue that searchers could bind attention to only the 

unpopulated locations which will contain the target and new distractors after the preview, 

such an interpretation would be in conflict with the leading explanation of the preview 

effect which focuses on inhibition of distractor locations (Olivers & Humphreys, 2002). 

 
Conclusion 

 Prior research has demonstrated the involvement of control processes in some 

(Poole & Kane, 2009) but not all (Kane et al., 2009) visual search tasks. The current 

study extends this work showing that, in addition to cued search, preview search also 

depends on controlled processing and, as such, relates to individual differences in 

complex span measures of WM. Further, the common involvement of control to these 

visual search tasks was supported by latent variable modeling showing they loaded onto 

the same latent factor after partialling out variance common to traditional visual search 

tasks, which has been shown not to rely on control processes (Kane et al., 2009). 

Additional modeling indicated a unitary WM factor to be related to this latent control 

factor and that this WM-control relationship was greater when processes common to 

traditional search were partialled out of the relationship with WM. Lastly, the ways in 

which these findings fit in with leading theories of WM are discussed. 
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APPENDIX A 

TABLES 
 
 

Table 1 
Counterbalancing order for visual search tasks  

Task order                    1                   2                     3                 

____________________________________________________________ 

A       Cued Onset-Offset        Preview Onset-Offset       Capture Onset-Color 

B       Preview Onset-Offset   Cued Onset-Offset            Capture Onset-Color 

C       Preview Onset-Offset   Capture Onset-Color         Cued Onset-Color 

D       Cued Onset-Offset        Capture Onset-Color         Preview Onset-Offset 

E       Capture Onset-Offset    Cued Onset-Offset           Preview Onset-Color 

F       Capture Onset-Offset    Preview Onset-Offset       Cued Onset-Color 

G       Cued Offset-Onset         Preview Offset-Onset      Capture Color-Onset 

H       Preview Offset-Onset    Cued Offset-Onset           Capture Color-Onset 

I       Preview Offset-Onset    Capture Color-Onset        Cued Color-Onset 

J       Cued Offset-Onset         Capture Color-Onset        Preview Offset-Onset 

K       Capture Offset-Onset     Cued Offset-Onset            Preview Color-Onset 

L       Capture offset-onset       Preview Offset-Onset       Cued Color-Onset 

 

 

Note.  Baseline Blocks for Preview and Cued Search Were Always Performed in 

Between the Experimental Blocks 
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Table 2 

Means and standard deviations of error rate for preview search by trial type and distractor 
set size 

   Distractor size 

Trial Type/                         8             16                   32                          

WMC Span 

______________________________________________________ 

                        Onset trials 

Hi             0.044 (0.044)       0.027 (0.051)          0.041 (0.077)               

Lo            0.050 (0.053)       0.041 (0.062)         0.066 (0.101)               

______________________________________________________ 

                        Offset trials 

Hi             0.046 (0.037)       0.034 (0.049)          0.053 (0.065)               

Lo            0.040 (0.043)       0.037 (0.056)          0.063 (0.091)               

______________________________________________________ 

                        Baseline trials  

Hi             0.034 (0.043)       0.027 (0.037)          0.057 (0.080)               

Lo            0.027 (0.044)       0.037 (0.064)          0.070 (0.099)               

 

Note.  Standard Deviations are Reported in Parentheses 
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Table 3 

Means and standard deviations of error rates for cued search by WMC, trial type and 
locations cued 

   Locations Cued 

________________________________________________________________________ 

Trial Type                        2             4                   8                          

                        

Onset Hi          0.060 (0.049)       0.074 (0.057)        0.029 (0.034) 

Onset Lo          0.110 (0.087)       0.149 (0.107)        0.066 (0.078) 

Offset Hi          0.067 (0.051             0.080 (0.060)       0.032 (0.031) 

Offset Lo          0.128 (0.106)       0.160 (0.122)        0.069 (0.078)          

 

 

Note.  Standard Deviations are Reported in Parentheses 
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Table 4 

Means and standard deviations of error rates for cued search by WMC, trial type, 
locations cued and fixation duration 

   Fixation Duration 

________________________________________________________________________

Trial Type/                      500             1,000                   1,500  2,000          

Locations Cued/ 

WMC 

                        

Onset 2 Hi 0.074 (0.074)       0.057 (0.056)        0.063 (0.061)         0.045 (0.050) 

Onset 2 Lo 0.121 (0.112)        0.115 (0.100)        0.108 (0.089)         0.097 (0.089) 

Onset 4 Hi       0.077 (0.065)        0.070 (0.066)         0.078 (0.067)        0.071 (0.077)  

Onset 4 Lo 0.163 (0.133)        0.150 (0.116)         0.151 (0.117)        0.133 (0.100) 

     _________________________________________________________________ 

Offset 2 Hi 0.083 (0.075)        0.068 (0.051)         0.057 (0.067)         0.059 (0.059) 

Offset 2 Lo 0.123 (0.114)        0.133 (0.121)         0.131 (0.101)         0.124 (0.123) 

Offset 4 Hi 0.081 (0.077)        0.080 (0.073)         0.084 (0.075)         0.074 (0.061) 

Offset 4 Lo 0.175 (0.131)        0.149 (0.124)         0.170 (0.141)         0.148 (0.135) 

        

 

Note.  Standard Deviations are Reported in Parentheses 
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Table 5 

Means and standard deviations of error rates for capture search by WMC, trial type, 
duration and distractor set size 

   Distractor size 

________________________________________________________________________ 

Trial Type/                    8             16                   32                          

Duration 

______________________________________________________ 

                        Onset trials 

Onset (Overall) Hi          0.031 (0.031)       0.054 (0.042)          0.053 (0.069)          

Onset (Overall) Lo          0.086  (0.150)       0.125 (0.145)          0.132 (0.163)          

Onset 150ms Hi          0.029 (0.050)       0.097 (0.065)          0.043 (0.067)               

Onset 150ms Lo          0.080 (0.176)       0.161 (0.144)          0.131 (0.175)               

Onset 300ms Hi          0.037 (0.043)       0.029 (0.041)          0.050 (0.073)               

Onset 300ms Lo          0.104 (0.163)       0.097 (0.148)          0.133 (0.171)               

Onset 500ms Hi          0.029 (0.039)       0.036 (0.054)          0.067 (0.096)               

Onset 500ms Lo          0.073 (0.127)       0.117 (0.169)          0.131 (0.165)               

______________________________________________________ 

                        Color trials 

Color  Hi           0.064 (0.036)       0.133 (0.058)          0.082 (0.073)               

 Color  Lo           0.135 (0.155)       0.211 (0.147)          0.175 (0.166)               

______________________________________________________ 
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   Baseline trials  

Baseline Hi           0.031 (0.052)       0.027 (0.044)          0.057 (0.096)               

Baseline Lo           0.096 (0.140)       0.110 (0.194)          0.131 (0.168)               

Note.  Standard Deviations are Reported in Parentheses 
  



 

 
 

Table 6 

Correlation matrix of WM and visual search variables 

___________________________________________________________________________________________________ 

  OSPAN RSPAN SSPAN VisArray RunSpan BriefR  PreOn8 PreOn16  

OSPAN   1 

RSPAN   0.732 1 

SSPAN   0.644 0.594  1 

VisArray 0.208 0.190  0.270  1 

Runspan  0.433 0.463  0.310  0.065  1 

BriefR     0.397 0.488  0.328  0.146  0.277  1  

PreOn8    -0.127 0.008  -0.217  -0.136  -0.091  -0.166  1 

PreOn16  -0.144 -0.053  -0.297  -0.077  -0.136  -0.145  0.846  1 

PreOn32  -0.002 0.021  -0.156  0.038  -0.101  -0.141  0.657  0.748 

PreOff8   -0.307 -0.208  -0.353  -0.046  -0.269  -0.291  0.651  0.658 

12
0 



 

 
 

     OSPAN RSPAN SSPAN VisArray RunSpan BriefR  PreOn8 PreOn16 

PreOff16 -0.313 -0.195  -0.325  -0.014  -0.269  -0.295  0.497  0.565 

PreOff32 -0.275 -0.172  -0.267  0.021  -0.300  -0.265  0.462  0.538 

CueOn2   -0.255 -0.081  -0.246  -0.173  -0.128  -0.077  0.452  0.351 

CueOn4   -0.209 -0.113  -0.208  -0.113  -0.172  -0.097  0.336  0.250 

CueOff2  -0.328 -0.187  -0.318  -0.074  -0.147  -0.038  0.229  0.187 

CueOff4  -0.218 -0.167  -0.232  -0.087  -0.185  -0.026  0.120  0.102 

Base8       -0.064 -0.008  -0.193  -0.098  -0.055  -0.124  0.701  0.631 

Base16     -0.137 -0.010  -0.155  -0.088  0.025  -0.092  0.481  0.431 

Base32     0.026 0.013  -0.073  0.032  -0.066  -0.244  0.447  0.465 

Base8       -0.190 -0.009  -0.188  0.047  -0.027  -0.135  0.649  0.573 

Base16     0.017 0.101  -0.137  -0.036  -0.076  -0.117  0.531  0.509 

Base32     0.137 0.152  -0.060  0.054  0.089  -0.015  0.381  0.469 

 

12
1 



 

 
 

     PreOn32 PreOff8 PreOff16 PreOff32 CueOn2 CueOn4         CueOff2 CueOff4 

PreOn32  1  

PreOff8   0.533 1 

PreOff16 0.546 0.755  1 

PreOff32 0.555 0.727  0.766  1 

CueOn2   0.251 0.342  0.289  0.202  1 

CueOn4   0.174 0.273  0.248  0.159  0.894  1 

CueOff2  0.113 0.333  0.273  0.223  0.566  0.448  1 

CueOff4  0.044 0.297  0.313  0.239  0.429  0.455  0.830  1 

Base8       0.530 0.531  0.518  0.438  0.349  0.244  0.284  0.214 

Base16     0.395 0.384  0.448  0.367  0.307  0.246  0.285  0.238 

Base32     0.514 0.384  0.501  0.457  0.125  0.096  0.037  0.040 

Base8       0.558 0.577  0.549  0.429  0.322  0.215  0.268  0.128 

Base16     0.636 0.427  0.447  0.440  0.302  0.207  0.189  0.120 

12
2 



 

 
 

 PreOn32 PreOff8 PreOff16 PreOff32 CueOn2 CueOn4         CueOff2 CueOff4 

Base32     0.538 0.313  0.425  0.487  0.109  0.080  0.086  0.104 

 

Table 6, continued 

     Base8 Base16  Base32  Base8  Base16  Base32           

Base8     1  

Base16   0.688  1 

Base32   0.567  0.564  1 

Base8    0.607 0.521  0.427  1 

Base16   0.576  0.511  0.483  0.592  1 

Base32   0.466  0.484  0.548  0.442  0.528  1 

 

 

 
 

12
3 
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Table 7 

Factor loadings for WM tasks by model 

________________________________________________________________________ 

           Model 2          Model 3         Model 5a          Model 5b        Model 5c  

OSPAN     0.78  0.77  0.79  0.78  0.78 

SSPAN  0.80  0.81    0.79  0.81  0.81 

RSPAN   0.72  0.74    0.72  0.74  0.74 

VisArray    0.50  0.47    0.51  0.48  0.48 

RunSpan 0.55  0.54    0.55  0.54  0.54 

BriefR   0.30  0.31    0.31  0.31  0.31 
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Table 8  

Factor loadings for baseline latent variable by model 

________________________________________________________________________ 

           Model 2             Model 3 Model 4        Model 5b        Model 5c  

PreOn8     0.69       -      0.71  0.69  0.68 

PreOn16   0.73       -      0.74  0.73  0.72 

PreOn32   0.73       -      0.74  0.73  0.72 

PreOff8    0.66       -      0.70  0.66  0.62 

PreOff16  0.73       -      0.73  0.72  0.68 

PreOff32  0.73       -      0.73  0.72  0.69 

CueOn2       -  0.32          0.32  0.29  0.18 

CueOn4      -  0.19               0.18  0.16  0.10 

CueOff2      -  0.32          0.32  0.26  0.22 

CueOff4      -  0.22           0.19  0.17  0.10 

Base8        0.82  0.84      0.81  0.83  0.83 

Base16      0.76  0.81  0.76  0.77  0.77 

Base32      0.76  0.73  0.74  0.76  0.76 

Base8        0.76  0.76  0.77  0.76  0.76 

Base16      0.78  0.78  0.79  0.78  0.78 

Base32      0.71  0.67  0.67  0.70  0.70 
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APPENDIX B 
 

FIGURES 
 
 

Figure 1a  
Sample display for first half of distractors presented in a preview search trial 
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Figure 1b 

Sample display for a full trial of preview search 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 



 

128 
 

Figure 2a 

Sample display of offset preview search trial with locations populated with figure 8 
shapes 
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Figure 2b 

Sample preview display with first half of distractors revealed from figure 8 shapes 
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Figure 2c 

Sample full preview display with all stimuli revealed from figure 8 shapes 
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Figure 3 

Cues indicating target locations in cued search 
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Figure 4 

Sample of a cued search display 
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Figure 5 

Sample of an offset cued search fixation display 
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Figure 6 

Sample of a color capture trial 
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Figure 7a 

Sample of an onset capture trial before presentation of the singleton 
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Figure 7b 

Sample of an onset trial with singleton present (E in the bottom left of the display) 
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Figure 8a 

RTs for preview search for onset and baseline trials by distractor set size for High and 
Low WMC groups 
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Figure 8b 

RTs for preview search for offset and baseline trials by distractor set size for High and 
Low WMC Groups 
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Figure 9a 

RTs for preview search for onset trials by duration and distractor set size for High and 
Low WMC groups 
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Figure 9b 

RTs for preview search for offset trials by duration and distractor set size for High and 
Low WMC groups 
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Figure 10 

RTs for cued search for onset and offset trials by locations cued for High and Low WMC 
groups 
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Figure 11a 

RTs for cued search for onset trials by duration and locations cued for High and Low 
WMC groups 
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Figure 11b 

RTs for cued search for offset trials by duration and locations cued for High and Low 
WMC groups 
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Figure 12a 

RTs for capture search for onset and baseline trials by distractor set size for High and 
Low WMC groups 
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Figure 12b 

RTs for capture search for color and baseline trials by distractor set size for High and 
Low WMC groups 
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Figure 13 

RTs for capture search for onset trials by onset duration and distractor set size for High 
and Low WMC groups 
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Figure 14 

Path diagram for Model 1a depicting a two-factor view of WM  
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Figure 15 

Path diagram for Model 1b depicting a unitary WM 
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Figure 16 

Path diagram for Model 2 investigating the relationship between WM and preview search 
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Figure 17 

Path diagram for Model 3 investigating the relationship between WM and cued search 
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Figure 18 

Path diagram for Model 4 investigating the relationship among controlled search tasks  
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Figure 19 

Path diagram for Model 5a investigating the relationship between WM and Control 
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Figure 20 

Path diagram for Model 5b investigating the relationship between WM and Control with 
Base loading onto WM 
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Figure 21 

Path diagram for Model 5c investigating the relationship between WM and Control 
without baseline search trials 
 
 
 

 

 


