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Abstract: 

Incorporation of a mixture of 
14

C-labeled amino acids by bacteria averaged 79% of assimilation (incorporation 

plus respiration) but varied with time and location in the salinity gradient of the Newport River estuary, North 

Carolina, over a 9-month period. The incorporation ranged from an average of 86% at a high (34.2%0) to 74% 

at a low (4.1%0) average salinity location. Incorporation at the high salinity location generally was greater than 

values previously reported in the literature because we accounted for amino acids lost from the particulate 

fraction as a result of the acidification required to liberate 
14

CO2 from the water. Loss of label due to 

acidification for estuarine water and for neritic water collected from Florida to Massachusetts was up to 79% of 

the incorporated amino acids and varied inversely with the amount of incorporated label. The data affirm that 

suspended marine bacteria efficiently utilize dissolved free amino acids and that acidification should not be 

used to stop the incubation of samples to be filtered for measurement of substrate incorporation. 

 

Article: 

INTRODUCTION 

Dissolved free amino acids (DFAA) are an important component of marine food chains. DFAA range from  20 

nmo1·1
-1

 in oceanic to ≥100 nmo1·1
-1

 in estuarine water (Bada & Lee, 1977; Jørgensen, 1982; Mopper & 

Lindroth, 1982). Although free amino acids make up only 0.2% of the total dissolved organic carbon (DOC) 

pools in estuaries (Crawford et al., 1974) and 0.3% of that in neritic or oceanic water, they have a rapid turnover 

and high nutritional value compared to the total DOC pool (Bada & Lee, 1977). The major pathway for the 

input of DFAA into the marine planktonic food chain is through bacteria (Hoppe, 1976; Hobbie & Rublee, 

1977). 

 

The availability to higher trophic levels of amino acids assimilated by bacteria depends on many factors, 

including the incorporation efficiency of amino acids by bacteria. For mixtures of radioactively labeled amino 

acids, average incorporation to assimilation (respiration plus incorporation) ratios range from 50% (Herbland, 

1978) to 78% (Williams, 1970). The incorporation efficiency of individual amino acids varies from 50-87% but 

does not appear to change with varying incubation times, temperatures, or substrate concentrations (Crawford et 

al., 1974), while variations in percent respiration of individual amino acids and mixed amino acids may occur in 

different biotypes (Gocke, 1976). 

 

Estimates of incorporation or incorporation efficiency can be affected by the method chosen to terminate the 

incubation. The methods generally used are to add chemical fixatives, such as inorganic acid, mercuric chloride, 

or formaldehyde to the sample before filtration, to flood the sample with excess substrate (Jordan et al., 1978) 

or to filter at the end of the incubation period (Carney & Colwell, 1976). Acids are used to reduce pH 

sufficiently to allow collection and measurement of respired 
14

CO2 (Hobbie & Crawford, 1969), but their use 

limits observed substrate incorporation to that incorporated into macromolecules (Griffiths et al., 1974a,b; 

Baross et al., 1975; Ramsay, 1976, Hobbie & Rublee, 1977). Labeled substrate within the cells can occur both 

as macro-molecules and as metabolic intermediates (Britten & McClure, 1962). Loss of substrate incorporated 
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into metabolic intermediates due to acidification has been avoided by some researchers (e.g. Williams, 1970; 

Gocke, 1976; Herbland, 1978). However, it is a potential problem when using the method of Hobbie & 

Crawford (1969) without modification. Thus loss of substrate due to acidification may have affected other 

studies (e.g. Crawford et al., 1974; Hansen & Snyder, 1979). Even if acid is not used in samples that are used to 

measure incorporation, other methods, such as formaldehyde fixation, may have the same effect (Griffiths et al., 

1974b). 

 

Our study was initiated to determine the incorporation efficiency, of DFAA within the salinity gradient of the 

Newport River estuary, North Carolina. Later experiments and articles published subsequent to initiation of this 

work demonstrated that our initial estimates of incorporation were underestimates due to loss of labeled amino 

acids from the cells due to acidification of the sample prior to filtration. We examine alternative methods to 

terminate the incubation and provide improved estimates of the growth yield of marine bacteria utilizing amino 

acids in estuarine and neritic waters. 

 
METHODS 

We ran two series of experiments. The first series measured incorporation and respiration of a 
14

C-labeled 

mixture of amino acids (New England Nuclear NEC-250) in water samples from three locations along the 

salinity gradient of the Newport River estuary (Fig. 1). The sampling sites were: a dock at the National Marine 

Fisheries Beaufort Laboratory near the mouth of the estuary (high salinity); a shallow mixing basin near the 

head of the estuary (sampled from an anchored boat, intermediate salinity); arid an abandoned boat ramp on the 

Newport River upstream of the broadened portion of the estuary (fresh or low salinity water). We attempted to 

minimize influence of short term changes in bacterial parameters associated with tidal and diurnal effects 

(Erkenbrecher & Stevenson, 1975) with our sampling design. Measurements were taken from four surface water 

samples collected at two high and two low tides during a 24-h period on three or four sampling dates for each 

station from December 1977, through September 1978, for a total of 44 samples. Incorporation and respiration 

of amino acids by bacteria was determined using the method of Hobbie & Crawford (1969). We added 0.025 

mCi, final concentration by adding  10 to 50 nmo1·1
-1

 of 
14

C-labeled amino acids to each of four replicate 

subsamples of water (three live and one acid-killed control). Samples were incubated in a closed system for 1 h 

and incubation was terminated by addition of H3PO4, final concentration 0.4% v/v. 
14

CO2 released by 

acidification was absorbed over an additional 1-h period by phenethylamine on chromatographic paper 

suspended in a sealed flask, which was gently swirled several times to facilitate CO2 recovery. The 



chromatography paper then was placed in 10 ml of a toluene-based scintillation fluid (toluene + Fisher, 

Omnifluor) and the radioactivity counted in a Beckman LS-200 liquid scintillation counter. The external 

standard method was used to correct for quench. Incorporated label was determined from the same set of flasks, 

and incorporation and respiration (corrected for efficiency of CO2 recovery) for acidified samples were 

calculated. 

 

On each sampling day we measured CO2 recovery efficiency on one low and one high tide sample. 

Measurements were made in sets of three replicate subsamples of the water used for the measurement of 

respiration. Labeled (
14

C) HCO3
- 
was added to the flasks just prior to the addition of the acid, thus there was no 

time for photosynthesis to remove any of the label. Efficiency of CO2 recovery under our experimental 

conditions in the field was variable over the course of the study, but it was very reproducible on a given water 

sample. The standard deviation of the CO2 recovery efficiency on a water sample averaged 3.3% of the added 

label. The average recovery over the study was 38.7%. The age of the phenethylamine and differences in the pH 

buffering capacity and inorganic carbon content of the sample water may have contributed to the variability in 

CO2 recovery (generally between 25 and 75%) over the course of the study. Other methods (e.g. Williams et al., 

1976), as well as allowing a longer time for CO2 recovery and putting the flasks on a rotary shaker, will give 

better CO2 recovery. 

 

The second series of experiments measured the effects of acidification on observed incorporation of a tritium-

labeled mixture of amino acids (New. England Nuclear NET-250) and was used to obtain a posteriori 

corrections for loss of label due to acidification in the first series of experiments. In these experiments we 

compared the incorporation of 
3
H-labeled amino acids in replicate subsamples after addition of 0.2 ml of a 50% 

v/v solution of H3PO4, or excess substrate, 0.2 ml of a 3 w/v solution of hydrolyzed protein (Difco, Bacto, 

Neopeptone). Use of 
3
H-labeled substrates with a higher specific activity than available for 

14
C-labeled 

substrates is necessary for tracer level additions to low productivity water. 

 

For one estuarine water sample, we also tested termination by filtration or by use of the following reagents (and 

final concentrations): formaldehyde (0.6% w /v) Lugol's acetic acid (0.7% v/v) HgCl2 (0.01% w; v) and H2SO4 

(0.1% w/v). A range of ≈0.25 to 0.5 μCi in 50 μl of a freshly diluted stock solution was added to each flask in 

the different experiments, amounting to a final concentration increase of  1.5 to 3 nmol·1
-1

. Incubations were 

terminated after 30 to 60 min. We used two, three, or four replicates and one acid or neopeptone terminated 

control, with 25-30 ml subsamples of water in 50-ml flasks, for each treatment. Controls were treated similarly, 

except that the incorporation of label was terminated at the time of addition of label. Incubations were 

conducted at in situ temperatures, 10-30 °C in the estuarine samples, 15-25 °C in the Georgia—Florida neritic 

water samples, and 4-6 °C for the Georges Bank sample. 

 

Water from both series of experiments was filtered through 0.2-μm pore size Nuclepore filters. Filters with 

incorporated label were placed in scintillation cocktail (New England Nuclear, Aquasol), counted for 

radioactivity, and corrected for quench and background. 

 

RESULTS AND DISCUSSION 

Acidification resulted in a reduction of label incorporation relative to excess substrate addition over a wide 

range of temperatures (4-30 °C), salinities (0-35%0), sampling locations, and uptake rates (Fig. 2). Seventeen of 

the 19 pairs had greater incorporation in the neopeptone addition. Using the sign test the probability of having 

17 of the 19 pairs with the same sign is <0.001 if the two treatments are equal (Connover, 1971). The reduction 

was up to 79% of that observed with neopeptone addition and was greatest at low levels of incorporation. There 

was a linear relation between the amount of label incorporated in acidified samples and the label incorporated in 

unacidified samples. Using these data, we computed a correction factor (CF) for the percent respiration: CF = 

DPM incorporated/(868.7 + 1.304 . DPM incorporated). This adjustment, i.e. dividing incorporation in acidified 

samples by CF, was made in the analysis of percent respiration and growth yield discussed below. The ratio of 

incorporated label in acidified to unacidified treatments changes with amount of incorporated label. For 

example, by calculation the ratio is 46% at 10
3
 DPM and 77% at 10

6
 DPM. Thus, error due to acidification is 



particularly large in lower activity samples. 

 
Loss of substrate due to acidification is best understood in terms of substrate pools and is described by Hobbie 

& Rublee (1977). Britten & McClure (1962) proposed a general model of amino acid utilization derived from 

experimental work with Escherichia colt, which defined a loosely bound pool of metabolic intermediates as that 

pool released by brief exposure to 5% TCA (trichloracetic acid) at room temperature. Biochemically, the 

tightly-bound substrate pool is defined as the material that is combined into macro-molecules and remains as a 

precipitate after treatment with cold 10% TCA (Kennell, 1967), Incorporated amino acids occur in the loosely 

bound pool prior to polymerization into macromolecules. The loosely-bound pool may cause errors in assessing 

incorporation because its maintenance is dependent upon the structural integrity of the cellular membrane. 

Baross et al. (1975) demonstrated that measured incorporation of glutamic acid, alanine, glucose, and uracil at 

room temperature, using the H2SO4 technique (Hobbie & Crawford, 1969), was equivalent to that with cold 

10% TCA treatment and, therefore, the internal pool of labeled substrate and other labeled low molecular 

weight metabolites were excluded. Thus, the artifact due to acidification also occurs with a carbohydrate and a 

pyrimidine and will affect respiration to assimilation ratios of radioactively labeled substrates in general. Our 

results are consistent with the substrate pool theory because, at the lower incorporation levels, the largest 

fraction of incorporated label was lost by acidification. 

 
Additions of other chemical fixatives, such as Lugol's acetic acid and mercuric chloride, also result in 

substantial loss of incorporated label (Table I). Thus, Crawford's (1967) observation that there was no 



difference between treatment with acid and Lugol's acetic acid probably resulted from loss of incorporated label 

due to both treatments rather than no effect of acidification. In fact, an iodine solution (Lugol's without the 

acetic acid) and formalin also cause 
14

C losses from phytoplankton (Silver & Davoll, 1978). In bacteria, at final 

concentrations ≥1% formaldehyde, loss of label can occur (Griffiths et al., 1974b). Also, treatment with another 

acid, H3PO4 also caused significant loss of label. In our experiments, however, 0.6% formaldehyde terminated 

uptake without detectable release of incorporated label (Table I). Thus, lower concentrations of formaldehyde 

could be used in procedures where higher levels have been used in the past (e.g. Dietz & Albright, 1978). 

 

The mean value 81% (range 59 to 99%) that we observed for incorporation efficiency (100%—% respired) in 

the estuary, after correction for loss of incorporation due to acidification, was close to values reported by a 

number of other investigators who avoided acidification of samples for incorporation. For example, Williams & 

Yentsch (1976) reported an average of 79% incorporation efficiency for an amino acid mixture and Dawson & 

Gocke (1978) reported an average of 75% incorporation efficiency. Williams et al. (1976) reported 60-90% for 

individual amino acids. In other studies where acidification may have affected the results, the incorporation 

efficiencies are somewhat lower (e.g. Crawford et al., 1974; Hanson & Snyder, 1979). 

 

There was significant variability (analysis of variance, F tests 99% level) in the percent respiration of the 

mixture of 
14

C-labeled amino acids by bacteria that could be associated with location in the estuary, sampling 

period, and interaction of location and sampling period. The seasonal pattern at the low salinity and mid-salinity 

sites is similar (Fig. 3), however, and significance of the interaction term results from the difference between 

these two sites and the high salinity site. 

 

One clue to the dynamics of amino acid respiration in the estuary may be the relationship between salinity and 

percent respiration. A regression was computed and it had a correlation coefficient of — 0.68 significant at the 

95% level, but this does not imply a cause-and-effect relationship because other factors, as discussed below, 

covary with salinity. Salinity at the low and mid-salinity stations varies seasonally to a greater degree than that 

at the high salinity site. The change in salinity either may directly affect the utilization of amino acids for 

growth or energy, or it may indicate changes in other factors including substrate levels or bacterial 

communities. 

 
Utilization of DFAA may be related to the availability of inorganic and organic nitrogen to the bacteria. The 

Newport River is a major source of inorganic nitrogen to the estuary (Thayer, 1971), and thus inorganic 

nitrogen is negatively correlated with salinity. DOC also is negatively correlated with salinity in the Newport 

River estuary (Palumbo & Ferguson, 1978); and the distribution of dissolved organic nitrogen and of dissolved 

amino acids (Gardner & Stephens, 1978) follows the same pattern as DOC in coastal waters. Sediments and 

phytoplankton are major sources of DFAA to the water (Jørgensen, 1982) and both of these sources would lead 

to higher amino acid concentrations in the shallow, high productivity, low salinity region of the estuary. Thus, 

bacterial populations in the nitrogen-rich (low salinity) region of the estuary may be using a larger portion of the 



amino acids as energy sources than populations in less nitrogen-rich (high salinity) regions of the estuary. 

 

Changes through time in percent respiration and growth yield at the high salinity (range 31.2%0 to 35.7%0 site 

(Fig. 3) may reflect changes in coastal bacterioplankton populations. Gocke (1976) found geographical 

variations in percent respiration of nine individual amino acids and an amino acid mixture. His results from the 

winter of 1974 parallel ours. He found the percent respiration was lower in sea water than in fresh water, but he 

observed a minimum in the percent of amino acids respired in brackish water, while we always saw a minimum 

in sea water (Fig. 3). Griffiths et al. (1978) reported that in water of the Beaufort Sea, the percentage respiration 

of glutamic acid was greater in winter, 85%, than in summer, 50 to 64%. 

 

Differences in relative flux of individual amino acids for the labeled amino acid mixture to bacteria in fresh 

water and sea water could also result in differences in the estimates of percent respiration we computed using 

radiotracer techniques. Individual amino acids are respired to different extents by bacterioplankton. Crawford et 

al. (1974) found that the percent respiration varied from 13% for leucine to 50% for glutamic acid and aspartic 

acid. Gocke (1976) also found percent respiration of individual amino acids in different biotypes varied from 1 

to 15% for leucine and from 28% to 68% for aspartic acid. 

 

The major role of bacteria in both high- and low-salinity water appears to be incorporation rather than 

remineralization of amino acids. The high percentage of incorporation to assimilation (86%) in samples from 

near the mouth of the Newport River estuary indicates that, at least in terms of amino acid dynamics, suspended 

bacteria in coastal waters are a source of particulate organic nitrogen. Even in low- and intermediate-salinity 

more nitrogen-rich waters, substantial portions (74 and 80%) of assimilated amino acids are converted into 

biomass. Suspended bacteria appear to be more important, therefore, as secondary producers of particulate 

organic nitrogen than as decomposers of DFAA in sea water. Terminating incubation with inorganic acids, 

mercuric chloride or with formaldehyde (≥ 1% final concentration) underestimates incorporation of amino acids 

relative to that observed with formaldehyde (0.6% final concentration), excess unlabeled substrate, or filtration. 

The relative error increases as incorporation decreases and is most severe in lower productivity sea water. 
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