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Abstract: 

Microplankton in an oligotrophic arctic lake were assessed by direct counts for one summer prior to nutrient 

additions and three summers during which inorganic nitrogen and phosphorus were added to the lake at 

approximately ten times ambient loading rates. Protozoa increased significantly in both number and biomass 

following fertilization, and community structure changed from dominance by oligotrichs prior to fertilization to 

dominance by the bacterivorous peritrich Epistylis rotans in the second and third years of fertilization. Rotifer 

abundance and biomass was not significantly different among summers, although one species, Conochilus 

natans that had not been seen previously, was present during the second and third year of fertilization. By the 

third year of fertilization both protozoan and rotifer biomass had declined from peak levels, while crustacean 

zooplankton nauplius abundance had increased suggesting the emergence of top-down regulatory controls as the 

lake became eutrophic. 
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Article: 

Introduction 

Two prevailing concepts of regulatory control in aquatic ecosystems are the bottom-up effects of nutrients (e.g. 

Schindler, 1978; Pace, 1986) and the top-down effects of predation leading to cascading trophic interactions 

(Carpenter et al., 1985). The bottom-up effect of nutrients may be envisioned as setting the upper limits of 

biomass that any trophic entity within the system can attain. It functions by increasing the biomass of primary 

producers which leads to subsequent increases in herbivore and carnivore biomass. Changes in community 

structure may also occur as a result of bottom-up regulation, for example when eutrophication of aquatic 

systems leads to blooms of various algal types. O'Brien et al. (1992) note, however, the evidence for regulation 

of trophic levels beyond primary producers is inconsistent, especially in arctic lakes. 

 

Cascading trophic interactions (top-down regulation) are hypothesized to work in a different fashion. An 

alteration of the top trophic level leads to a reciprocal response by its prey, which leads to similar reciprocal 

responses in the prey's food resource and so on. For example, in a simple system, an increase in predatory fish 

should result in reductions of zooplanktivorous fish, an increase in herbivorous zooplankton, and a reduction of 

phytoplankton. Carpenter & Kitchell (1992) have noted that the trophic cascade hypothesis is only one of a 

number of factors that regulates community structure, and that impacts are often damped out with increasing 

distance from the trophic level of primary manipulation. They also note that questions of scale (both physical 

and temporal) are critical to proper understanding of trophic cascade impacts. Sanders et al. (1992) have 

suggested that predator controls are likely to be more important in eutrophic systems than those with limited 

nutrients and production. A recent review of microbial food webs in temperate lakes (Riemann & 

Christoffersen, 1993) supports this view. 

 

Most studies of ecosystem response to either top-down or bottom-up manipulations have focused on aggregated 

taxonomic groupings which presumably comprise trophic levels and data are generally reported as biomass 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=141
http://www.springerlink.com/


increases or decreases. Many studies have also ignored the heterotrophic microbial components of aquatic 

systems, and even fewer studies have addressed changes in the structure of heterotrophic microplankton 

communities, despite evidence of the significant role they play in carbon and nutrient cycling (cf. Pace & 

Funke, 1991). Thus, Stockner & Porter (1988) suggested that understanding the responses of heterotrophic 

microplankton was essential to interpretation of ecosystem responses in manipulative studies. 

 

A few studies have provided insight and raised intriguing questions regarding regulatory controls on microbial 

food web components. Pace & Funke (1991) studied the response of microplankton communities to short term 

(4 day) nutrient and predator manipulations in microcosms in two oligotrophic northern temperate lakes. They 

found significant increases in microplankton biomass in response to fertilization, but noted that no significant 

top-down response of microplankton was induced by predator manipulation. Consistent with Carpenter & 

Kitchell (1992), they concluded that trophic cascades are truncated at the level of protozoans. Hoffmann & 

Höfle (1993) followed changes in microbial food webs in mesocosms in a eutrophic lake with added DOC. 

They suggested that increased DOC led directly to increases in bacteria and protozoans, followed by an increase 

in algae as a result of nutrient release due to protozoan grazing. This was followed in turn by increases in two 

rotifer species that grazed on the algae. Berninger, et al. (1993) used frequent sampling and time-series analyses 

to identify trophic relationships among microbial components of a hypereutrophic freshwater pond. They found 

evidence of strong predator-prey interactions within the microbial food which suggested an efficient link to 

higher trophic levels. 

 

A previous report notes the general agreement of microplankton response in arctic lakes to increased nutrient 

loading with the paradigm of bottom-up regulatory control (Rublee, 1992). This paper reports changes in 

community structure and abundance of heterotrophic microplankton over a three year period in response to 

nutrient additions to highly oligotrophic Lake N-1 at the Arctic Long Term Ecological Research site (LTER) at 

Toolik Lake, Alaska. We began this study with two simple hypotheses: (1) heterotrophic microplankton would 

increase in response to nutrient additions; and (2) top-down effects would follow fertilization as predicted from 

cascading trophic interactions, i.e., once production increased at the highest trophic level, we should begin to 

see a top-down impact of increased predation. 

 

Materials and methods  

Study site 

The Arctic LTER site (68 °N, 149 °W) is located in the northern foothills of the Brooks Mountain Range of 

Alaska. The site includes a number of ponds and lakes which have been under study for over a decade. These 

lakes are highly oligotrophic systems (Miller et al., 1986) with varying zooplankton and fish populations 

(O'Brien et al., 1979; Kling et al., 1992b). Most data presented here are from Lake N-1 which has been 

characterized by Kling et al., (19926). It is 4.4 hectares in area with a maximum depth of 14 m in one basin, 

although half the lake is only about 2 m in depth. Typically, algal communities in these oligotrophic arctic lakes 

are dominated by small chrysophytes, dinoflagellates, and cryptophytes (O'Brien et al., in press). Zoo-plankton 

commonly found in Lake N-1 include the herbivore Diaptomus pribilofensis, the carnivore Cyclops scutifer, and 

the larger but much less abundant predator Heterocope septentrionalis (O'Brien et al., 1979; Kling et al., 

1992b). Fish in N-1 include lake trout, burbot, arctic grayling, and slimy sculpin (Hanson et al., 1992). At least 

eight species of chironomids are found in the benthos (Kling et al., 1992b). Lake N-1 has been fertilized since 

1990 by weekly additions of inorganic nitrogen and phosphorus at rates (3 mM N m
-2

 d
-1

 as (NH4)2SO4 and 0.23 

mM P m
-2

 d
-1

 as H3PO4) which are about 5 to 10 times the normal nutrient loading during the summer (July 1—

August 15). 

 

Climate is a major constraint at the arctic LTER site. The region is underlain by permafrost and has mean 

annual temperatures of —9 °C (monthly means —32 °C to 12 °C). Annual precipitation is about 31 cm, with 

about half falling as rain from late May through September. Ice cover up to 2 m thick generally thaws in late 

June and reforms in late September or October. 

 

 



Methods 

Water samples were collected during summers (1989— 1992) by Van Dorn sampler at the surface and at depths 

of 1, 3, 5, 8, and occasionally 12 m in Lake N-1. Two liters of sample water were then gently concentrated to 60 

ml by reverse flow through a 20 μm net (Dodson & Thomas, 1964). Cold glutaraldehyde was added as a 

preservative to 1% final concentration and samples were stored under refrigeration (4 °C). Live samples were 

also examined to assure that glutaraldehyde was an appropriate preservative and to aid in identification. 

 

Samples were enumerated following the procedure of Baldock (1986). Briefly, an aliquot of the concentrated 

sample was stained with 0.25% Rose Bengal solution, and then drawn onto an 8.0 μm pore white cellulose 

acetate filter under gentle vacuum. Filters were examined under a compound microscope after mounting on 

slides in a 43% sucrose solution. The entire surface area of the filter was scanned at 100 × or 200 × and 

individual microplankton identified. Magnification up to 400 × was used to aid in identification as necessary. 

Taxonomic guides to protozoa (Lee et al., 1985) and rotifers (Ruttner-Kolisko, 1974) were used to identify 

organisms to genus and in some cases species. Crustacean zooplankton nauplii were enumerated but not 

taxonomically identified, although nearly 100% of zooplankton biomass is comprised of Diaptomus 

pribilofensis and Cyclops scutifer (J. O'Brien, Univ. of Kansas, personal communication). For comparing 

microplankton across years or lakes, counts from samples on each day were integrated over the entire water 

column to provide mean values. Carbon biomass of microplankters was estimated for individual taxa (Table 1) 

based on measured sizes and literature values (Ruttner-Kolisko, 1977; Pauli, 1989; Putt & Stoecker, 1989). 

 
Five other lakes at the LTER site which were sampled at least three times per year and at least two different 

years during the period 1989-1991 were used as reference lakes for comparative purposes (Carpenter, 1989). 

Data were analyzed by non-parametric statistical tests after rank transformation (SAS, 1988). 



Results 

Counts of microplankton in Lake N-1 during 1989 were similar to those found in other lakes at the arctic LTER 

site (Rublee, 1992), characterized by: low abundance of protozoans with peak biomass <1 μg C 1
-1

, during the 

first half of the summer; mean rotifer biomass <2-3 μg C 1
-1

, with peak abundance in mid to late summer; and 

estimated crustacean nauplius biomass about twice that of the rotifers with a similar mid to late summer season 

peak abundance. Mean protozoan abundance was 148 ind 1
-1

; (range, 72-238, coefficient of variation, 50.3%), 

which corresponded to a biomass of about 0.5 μg C 1
-1

. Oligotrich ciliates of the genera Halteria, Strombidium, 

and Strobilidium were the most common protozoans observed, comprising >96% of the protozoan community 

on each sampling date. Mean rotifer abundance was 97 individuals 1
-1

 (range 31-190, CV 54.7%) with 

Keratella cochlearis and Conochilus unicornis comprising >95% of the individuals observed. This 

corresponded to an estimated mean biomass for rotifers of 2.2 μg C 1
-1

. Mean nauplius abundance was 18 ind  

1
-1 

(range 6-34, CV 54.0%). 

 
The biomass of microplankton in Lake N-1 showed no significant change during the first year of fertilization of 

Lake N-1 (Duncan's Multiple Range Test), but after the first year, the patterns of response were different for the 

three major taxa (protozoans, rotifers and crustacean nauplii, Fig. 1). Protozoan biomass (Fig. 1A) showed a 

significant three order of magnitude increase up to 150 µg C 1
-1

 during the second and third years of 

fertilization (ANOVA on rank transformed data, F. 11.19, 3,27 d.f., p<0.01; Duncan's Multiple Range Test 

grouped 1991 and 1992 together, in a different group from 1991 and 1992). Rotifer biomass (Fig. 1B) showed 

no significant difference among any years (ANOVA on rank-transformed data, F = 0.42, 3,27 d.f., P<0.36), 

despite a pronounced increase on the last sampling date of 1990, the first year of fertilization. The abundance of 

crustacean nauplii (Fig. 1C) increased significantly by about 3 to 4 times pre-fertilization levels during the 

second and third year of fertilization (F= 9.07, 3,27 d.f., p<0.01; 1989 and 1990 were grouped together in a 

Duncan's Multiple Range Test as were 1991 and 1992). 

 



Mean values of microplankton abundance and biomass were compared to similar data from five other lakes at 

the LTER site, including both sides of Lake N-2, a lake which had been divided by a plastic curtain and 

fertilized on one side (O'Brien et al., in prep.). Duncan's multiple range tests on rank transformed data indicated 

that protozoan abundance and biomass in Lake N-1 during 1991 and 1992 was significantly higher than in other 

lakes (including N-1 in 1989 and 1990). The abundance and biomass values for rotifers and nauplii were not 

significantly different from those found in other arctic LTER lakes. 

 
Changes in both protozoans and rotifers over the four years included changes in community structure as well as 

abundance (Fig. 2). During the first summer of fertilization, the protozoan community was similar to that in 

1989, dominated by oligotrichs, and with low abundances of Mesodinium and Vorticella campanula. In 1991, 

the increase in protozoan biomass was attributable to a mid to late summer bloom of the colonial peritrich 

Epistylis rotans, which had not been seen in previous years. Epistylis was also present in 1992, but at about half 

the level of the previous year. Vorticella, usually attached to colonial bluegreen algae or crustacean 

exoskeletons, was also more common during the third year of fertilization. Additionally, there was a change in 

the mean size of protozoans during the second year of fertilization (Fig. 3). This change was characterized by a 

significant increase in the mean size of ciliates during 1992 (one-way ANOVA by ranks, F = 4.43, 3,27 d.f., 

p<0.01). This increase could not be attributed to the Epistylis rotans bloom, however, since the mean estimated 

biomass of Epistylis (4 ng C ind
-1

) was similar to the mean protozoan size of other years. The change was 

attributable to the appearance large (>60-70 μm in length) oligotrichs, Strombidium and Strobilidium. During 

the third year of fertilization the mean size of ciliates returned to pre-fertilization levels. 

 

Rotifer community structure also changed somewhat during this study (Fig. 4). In 1989, Conochilus unicornis 

and Keratella cochlearis, rotifers which feed on small particles (Dumont, 1977; Pourriot, 1977), comprised 

>90% of total rotifer biomass on all sampling dates. During the first year of fertilization, C. unicornis comprised 

80-90% of the rotifer biomass until mid summer, when a Synchaeta sp. and Polyarthra vulgaris, which feed on 

protozoans and flagellated algae (Dumont, 1977; Pourriot, 1977) increased in abundance. Synchaeta continued 

to increase in abundance until it comprised greater than 90% of rotifer biomass on the last sampling date of 

1990. During the second year of fertilization, Polyarthra vulgaris was most common on the first two sampling 

dates, and an additional rotifer species, Conochilus natans, which had not been seen in previous summers, 

appeared. By midsummer, C. unicornis again became the dominant rotifer, comprising >90% of rotifer biomass. 

In late summer, C. unicornis, Kellicottia longispina, Keratella cochlearis, and Polyarthra vulgaris were all 

commonly observed. In the third summer of fertilization Kellicottia longispina, Keratella quadrata, and 

Keratella cochlearis were dominant during the first half of the summer; Concochilus unicornis and Synchaeta 

were most common during late summer. 

 

Discussion 

Previous studies at the Arctic LTER site included fertilization and fish density manipulations of limnocorrals 

(O'Brien et al., 1992) and fertilization of one-half of a naturally oligotrophic lake (Lake N-2) which had been 



divided by a plastic curtain and from which most fish had been removed (O'Brien et al., in preparation). The 

'bottom-up' responses to fertilization included increases in nutrient pools and increased biomass of 

phytoplankton, nanoflagellates, benthic algae and submerged vegetation, benthic insects, and crustacean 

zooplankton (after a 1-2 year lag). There was also evidence of top-down regulation, manifested in apparent 

selection favoring small zooplankton when fish were present (O'Brien et al., 1992). Microplankton were not 

studied in either the limnocorrals or in lake N-2 prior to 1989 (the 3rd year of fertilization of N-2). However, 

microplankton abundance in lake N-2 during 1989 and 1990 was the highest of any lake at the LTER site during 

those years, with values on the experimental side significantly higher than on the control side, and short 

duration experiments in limnocorrals also suggested a strong positive response to fertilization (Rublee, 1992). 

 
As expected, nutrient additions to Lake N-1 resulted in increased microbial biomass, consistent with the first 

hypothesis we addressed. However, the increase was attributable primarily to one species of protozoan, and 

secondarily to crustacean nauplii, but not to rotifers. These responses are probably best explained by 

aggregating species into 'functional' taxonomic groupings. Phytoplankton responded to fertilization by increased 

abundance of the dominant, small, single-celled algae during the first year of fertilization and a shift toward 

colonial forms and filamentous blue-greens during the second and especially the third year of fertilization (M. 

Miller, Univ. of Cincinnati, personal communication). Additionally, based on limnocorral studies in Toolik 

Lake (Hobbie & Helfrich, 1988) both heterotrophic and autotrophic nanoflagellates increased. The 

microplankton community response during the first year of fertilization (1990) appeared to be an increase in the 

abundance of extant species (such as the oligotrichs, Fig. 2) and their predators (e.g. Synchaeta, Fig. 4). Thus, 

there was minimal change in food web structure during the first summer of fertilization. 

 

During the second summer of fertilization (1991), a shift in food web structure toward dominance by 

bacterivorous taxa became apparent. Early in the summer Polyarthra vulgaris, a predator on flagellated algae 

(Dumont 1977, Pourriot 1977), was the dominant rotifer (Fig. 4), but by midsummer Conochilus unicornis 

which feeds effectively on bacteria and particles less than 10 μm (Dumont, 1977; Pourriot, 1977) became the 

dominant rotifer at higher abundance than in previous years (Fig. 4). By late summer, Epistylis rotans, a 

bacterivorous colonial peritrich reached densities greater than 10
4
 1

-1
 (Fig. 2), equivalent to a biomass of over 

100 μg C 1
-1

 (Fig. 1). Finally, crustacean nauplii were found at higher abundance during 1991, than in 1989 or 

1990 (Fig. 1). 

 



 
During the third summer of fertilization (1992) there may be evidence of top-down regulatory effects on 

microbial populations, as expected by our second hypothesis, although the evidence is not strong. First, 

protozoan biomass was again dominated by E. rotans, but abundance was only one-half of that during the 

previous year (Fig. 2). Second, mean rotifer abundance was the lowest of any year, suggesting that zooplankton 

predators had an impact on rotifer population densities. Third, nauplius abundance attained the highest level 

seen during the four year study period (Fig. 1). 

 

From a trophic perspective, nutrient additions at the arctic LTER site appeared to have led to a shift in food web 

structure from high dependency on direct utilization of primary production to one with greater dependence on 

indirect utilization of photosynthetically fixed carbon via the heterotrophic microbial components during the 

first three years of fertilization (Fig. 5). This interpretation, though speculative, is consistent with observations 

of Rieman & Christoffersen (1993) who noted that importance of the microbial loop increases relative to 

grazing pathways with increasing levels of productivity in temperate lakes. They also noted that the role of 

predatory controls probably is more important in eutrophic lakes. During the first two years of this study, 

bottom-up controls clearly impact microplankton abundance. By the third year of fertilization, however, top-

down controls may begin to exhibit regulation as evidenced by declines in protozoan and rotifer abundance over 

previous years, and increased numbers of crustacean nauplii. 

 

Our results to date emphasize the importance of long-term studies in evaluating the responses of microbial 

communities to large-scale manipulations (cf. Carpenter & Kitchell, 1992), and support the recommendations of 

Stockner & Porter (1988) that microbial interactions must be assessed in detail in order to understand the role 

microbial food webs play in both stable and perturbed aquatic ecosystems. Aggregation of microbial taxa into 

groups that supersede functional levels may lead to erroneous conclusions regarding the regulatory controls. 

This becomes especially problematic with microbial components of food webs since they may occupy more 

than one trophic level and since the number of potential trophic interactions increases dramatically as the 



diversity of microbial communities is increased. The experimental manipulation of Lake N-1 is continuing, and 

should help in unraveling the long-term microbial response to fertilization. We expect to see continued change 

if increases in the higher trophic levels indeed begin to exert regulatory feedback on zooplankton and microbial 

populations. In particular, this should provide an interesting empirical test of the observation by Pace & Funke 

(1991) in short term experiments that top-down impacts are truncated at the level of protozoans. 
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