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Article: 

Bacteria of natural waters have an important role in recycling nutrients. As we accumulate information on the 

biomass of bacteria, however, we realize that these large quantities of bacteria may also be an important source 

of particulate matter for animals. While these statements have been made before, there have been few attempts 

to quantify the role of bacteria as producers of particulate matter in freshwater systems. The study reported here 

deals with biomass and production rates of bacteria in a tundra pond in arctic Alaska. 

 

In recent years, satisfactory techniques have been developed for direct counting of bacterial numbers in 

freshwaters, but there are still no easy and direct methods for measuring bacterial production. The main problem 

is that bacteria do not all use a single substrate, so that a method similar to the 
14

CO2 uptake method for algal 

primary productivity does not work. Bacteria do, however, take up a small amount of CO2 as they grow so a 
14

CO2 uptake method has been proposed but appears to have many problems such as interference by dark 

uptake of algae (KUSNETSOV & ROMANENKO 1966). Another recent method, using 
35

SO4 = uptake is 

promising but also needs work before it is a proven method (MONHEIMER 1974; JASSBY 1973). Thus, as the 

direct methods have not yet been successful, we have used an indirect method of measuring bacterial production 

that is similar to methods of estimating secondary production of zooplankton. In this method, the total bacterial 

production (as carbon) is the sum of changes in biomass over time, plus quantities of carbon given off (as CO2 

and CH4), plus losses due to feeding of animals (protozoa, zooplankton, chironomids, etc.). The study was 

carried out as a part of the U.S. Tundra Biome (IBP) Study of an arctic pond (supported by NSF Grant GV 

33853 to North Carolina State University). 

 

The study ponds are located on the northern coastal plain of Alaska, several kilo-meters from the Arctic Ocean 

and 2 km from Barrow, Alaska (71° 18' N, 156° 42' W). In this area, thousands of small ponds have formed on 

old lake beds as a result of permafrost processes (BRITTON 1967). The ponds are shallow, averaging 20 cm 

deep (maximum depth 40 cm), with a diameter of 20 to 45 m. The average air temperature is — 12.5 °C and 

daily minimums drop below 0 °C on 324 days of the year. As a result, the ponds are completely frozen from 

mid to late September until early June. Water temperatures average about 7 °C (range 0° to 15 °C) during the 

ice free period, while the temperatures of the highly organic sediments are always a few degrees cooler. 

 

Methods 

Direct counts of bacteria in the water and sediments of the pond were made with an epi-illuminated (auflicht) 

microscope and acridine orange stained bacteria (FRANCISCO et al. 1973; DALEY & HOME in prep.). In this 

method, the dye (0.01%) is added (1:1) to a sample of natural water, the sample is incubated for 1 minute, 

filtered (0.1m1) through a black membrane filter (0.45 μ pore size), and then the bacteria are counted 

immediately under UV light. Sediment samples were diluted 1:100 with filtered water and mixed in a high-

speed blendor before counting. 
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Respiration in the sediments (planktonic respiration was too low to measure) was measured by changes in both 

the O2 and CO2 in the water over cores inoculated for 4 to 24 hours (see MILLER & REED 1975). Calculated 

respiration of the sediment algae and micro- and macroanimals (4.3 g C/m
2
/yr) was subtracted from the total 

annual respiration (13.7 g C/m
2
/yr) to give bacterial respiration. Methane gas, from anaerobic bacterial 

metabolism, was also produced at an annual rate of 1.1 g C/m
2
/yr as determined by gas chromatography of gas 

bubbles collected in funnels in the water column. 

 

Bacterial losses to protozoan grazing in the sediments, assessed by FENCHEL (in press) from feeding rate 

measurements, were 2.0 g C/m
2
/yr. The feeding of micrometazoa, chironomids, and oligochaetes was assessed 

from our measurements of their growth rate, from the findings of KAJAK & WARDA (1968) that chironomids 

are selective feeders in the sediments, and from our assumption that chironornids obtain most of their food from 

the algae and bacteria in the sediments and not from the abundant Carex detritus. Thus, an annual production 

rate of 3.7 g C/m
2
 for the chironomids and oligochaetes accounts for a maximum consumption of 3.9 g C/m

2
 of 

sediment bacteria. Zooplankton are abundant in the water column (Daphnia, copepods, fairy shrimp) and can 

potentially filter the entire water column every two days or so (CHISHOLM & STROSS in press). We do not 

know, however, if these animals retain all of the small bacteria that they filter, so a range of values is given that 

reflects a 30% to 100% retention. 

 

Results and discussion 

The bacterial numbers over six seasonal cycles (measured in four ponds) ranged from 0.1 to 6.5 million/ml in 

the plankton (Fig. 1). The surface sediments contained from 0.1 to 55.0 × 10
9
 cells/g dry wt (Fig. 2). Based on a 

20 cm depth of water and a 5 cm depth of sediments, the sediments contained 3 to 4 orders of magnitude more 

bacteria per m
2
. 

 

Biomass was calculated from a conversion factor of 1.8 × 10
-8

 μg C/cell for the planktonic bacteria and 3.7 X 

10
-8

 μg C for the benthic bacteria. Peak biomass in the water column was 0.018 to 0.022 g C/m
2
 and in the 

sediments was 15 to 20 g C/m
2
.  

      
 

There was a peak in bacterial numbers and biomass in mid to late June in both the plankton and sediments (Fig. 

1 and 2). This peak occurs immediately after the ponds thaw. In the plankton, the high concentrations of 

bacteria are caused partly by the influx of soil bacteria in melt water and partly by dissolved organic matter 

brought in during the melt. The peak in the sediments is unexplained but there is a similar peak in tundra soils at 

the time of thaw (R. BENOIT pers. comm.). 

 

Following this early season peak, the numbers and biomass drop due to less favorable environmental conditions 



and predation from the zooplankton P in the water column. Then, beginning in June, both populations begin 

log-arithmic growth that leads to a second peak in early August. During this period the average net growth 

constant for both sediment and planktonic bacteria was only 4.8%/day (range 3.4% to 6.0%), a very low growth 

rate indeed. 

 

The seasonal pattern is very similar to that of arctic lakes (BODY & BOYD) 1963; MORGAN & KALFF 1972) 

and to that of alpine and temperate lakes (TILZER 1972; FRANCISCO 1970; ROMANENKO 1971) studied 

with similar techniques. 

 

The production of bacteria in a typical pond (Tab. 1) was about 25 g C/m
2
/yr. Better than 98 °/o of this 

production was of benthic bacteria as planktonic bacteria were insignificant both in biomass and productivity 

even with the most generous estimate of zooplankton feeding rates. The net annual primary production in this 

pond totaled 52.4 g C/m
2
 most of which (42.4 g C/m

2
) was produced by a bed of Carex aquatilis, which rings 

the pond in shallow water, and part (9.0 g C/m
2
) by benthic algae (STANLEY 1974) which photosynthesize in 

the top 2 or 3 mm of sediment. Phytoplankton production (V. ALEXANDER pers. comm.; KALFF 1967) was 

slightly less than 1 g C/e/yr. It is important to realize that the bacterial production (Tab. 1) is for the center of 

the pond and not the littoral macrophyte zone. Much of the initial decomposition of the macrophytes occurs in 

the littoral zone so bacterial production is likely higher there than in the pond center. 

 
The bacterial production is controlled in part by temperature. This acts most strongly during the winter when 

death of bacteria reduces the numbers of both planktonic and sediment bacteria to low levels. During the open 

water period, the temperature is also important as an increased temperature would increase the growth rate of 

the bacteria as well as the decomposition rate of macrophytes and other detritus. In vitro tests of bacterial 

growth and uptake of glucose gave a Q10 of 1.7 to 2.0 but it is doubtful that this rate of increase would hold in 

nature where the rate of supply of nutrients may be limiting. 

 

Based on our present information, we conclude that a combination of low rates of supply of nutrients and 

predation by zooplankton and benthic animals is limiting the bacterial production during the summer months. 

Un-fortunately we know little about most of the rates of supply of organic nutrients as these come from a 

variety of sources such as excretion from living organisms, leaching of recently dead macrophytes, and 

hydrolysis of older detritus. 

 

Finally, it is important to note that the pond bacterial production has been calculated from biomass changes and 

losses in a manner analogous to calculations of zooplankton production. In the case of bacteria, this type of 

calculation may result in production estimates that are actually higher than the carbon inputs (MACLEAN & 

HEAL in press). However, these are real production values that include rapidly recycled material. For example, 

when bacterial cells are eaten by a zooplankter, some of their carbon may be excreted as organic molecules, 

some goes to growth of zooplankton, some is excreted in feces, and some given off as carbon dioxide. All of 

these forms, except for CO2, may be used for new bacterial growth which would be added to the original 

estimate of loss due to grazing in the production calculations. 

 



Certainly our data show that there is a high bacterial production of particulate matter in arctic ponds. We have 

not shown, however, that this particulate matter is actually used by zooplankton and macrobenthic animals. This 

is an important area for further research, but it is important that experiments use the small bacteria actually 

present in nature rather than large bacteria that invariably grow in laboratory cultures. 
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Discussion 

Houoll: Is the annual growth of the Carex balanced by the microbial decomposition or is there a general 

increase in organic sediments through the years? 

HOBBIE: Any annual increase is less than 10% of the Carex production and would be impossible to measure. 

An added complication is that the production rates given here reflect events in the pond center and the Carex 

de-tritus may take a number of years to move to the center. 

REICHARDT: What is the advantage of counting such small forms of bacteria by a fluorescent technique since 

it is rather difficult to recognize bacterial structures even by usual microscopic techniques. 

HOBBIE: The advantage is that with this technique it is much easier to distinguish these small bacteria from 

small non-living particles. 


