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Millions of people suffer from peripheral nerve injury every year. Previous works have 

predominantly focused on surgical means of injury treatment without sufficient attention to 

studying distinct mechanisms of electrical conduction in small peripheral nerves. In this study, 

we examined the effects of nonlinear diffusion on wave propagation generated in normal and 

injured (with altered electrical conduction) peripheral nerves using one-dimensional Fitzhugh-

Nagumo model. We modified this model by adding an additional power function type nonlinear 

diffusion term to account for fundamental changes in charge balance in excitable cells of small 

peripheral nerves. It was found that nonlinear diffusion played a critical role in stabilization of 

action potential propagation in healthy and injured peripheral nerves. In addition, it was observed 

that conditions for stable propagation of action potential in injured nerves significantly depended 

not only on the magnitude of nonlinear diffusion but also on location of zones of injury. These 

results may be helpful in elucidating physiological mechanisms of various electrical conduction 

pathologies which occur in injured peripheral nerves. 
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CHAPTER I: INTRODUCTION 

 

About twenty million Americans suffer from peripheral nerve injury caused by trauma 

and medical disorders. The cost effect of nerve injury is vast. Statistics show that nerve injuries 

result in roughly $150 billion in annual healthcare dollars in the United States. Beyond the cost 

in dollars, severe nerve injury can have very devastating effects on the quality of life of patients. 

In most cases, surgical repair procedures with gene therapy are peripheral nerve injuries usually 

require surgical nerve reconstruction. Unfortunately, motor, and sensory functions recovery after 

a peripheral nerve injury are subpar, even after a surgical procedure to repair the damage. A 

meta-analysis of median and ulnar nerve repairs in 2005 demonstrated that only 52.6% achieved 

satisfactory motor recovery, with even less 42.6% experiencing satisfactory sensory recovery1. 

The poor repair is due to the slow rate of axonal elongation during regeneration and atrophic 

changes in denervated Schwann cells and target muscles with proximal lesions2. Thus, even a 

surgical procedure is barely adequate for proper healing after a severe peripheral nerve injury.  

In this body of work, we will study the effects of nonlinear diffusion on wave 

propagation generated in normal and injured tissues using a one-dimensional Fitzhugh-Nagumo 

model. Changes in Action Potential Durations (APDs) and Repolarization Intervals (RIs) will be 

observed based on this modification. Notably, adding a quadratic or quartic transmembrane 

potential-dependent diffusion component will affect the Fitzhugh-Nagumo model's diffusion 

term. It will no longer be a constant diffusion. While many models help study nonlinear 

dynamics in biological systems, we chose to use the Fitzhugh-Nagumo model with the nonlinear 

diffusion term for two primary reasons. One is its simplicity. It is well known that the Fitzhugh-

Nagumo model is a two-dimensional simplification of the 4-variable Hodgkin-Huxley model. 
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Secondly, modifying the Fitzhugh-Nagumo model to include a nonlinear diffusion term means 

we can account for relative charge depletion that usually occurs in small peripheral nerves, 

typically with a diameter less than 1.5mm. While the Hodgkin-Huxley model is the gold standard 

in qualitatively explaining the action potential dynamics in nerve cells, it is, unfortunately, 

unable to account for this charge depletion in peripheral nerves. 

Next, we will introduce an inhomogeneous injury profile into our 1D nerve fiber and 

study the action potential propagation within this region. Finally, we will stabilize the 

propagation by introducing an external stimulation as a periodic function and adding current at 

the left end of the cable. We will then observe the oscillations of APD and RI through this injury 

region, the nonlinear oscillations of the Basic Cycle Length’s end (𝐵𝐶𝐿𝑒𝑛𝑑) and its dependances 

on the linear component of the diffusion term for the nonlinear quadratic diffusion at different 

amplitudes of injury in PNs. 

While several works have studied the propagation of action potential in axonal neurons, 

none has focused on analysis of action potential propagation within peripheral nerves with or 

without injuries. This work aims to bridge this significant gap.  

 

Important Terms and Definitions 

Dynamical, Linear and Nonlinear systems 

The works discussed in this thesis are focused on nonlinear dynamical systems modeling. 

Modeling these kinds of systems is helpful because it enables us to predict how multiple 

components of a system will interact over time as viewed within a single system. To understand 

the term dynamical systems, it will be helpful to break it down into its component words.  
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The "dynamic" part indicates that this will evolve with time. That is, time is an essential 

component of the model/system being considered. Models that describe dynamic systems assume 

that the system's current state depends on the past3. The conventional static systems tend to 

ignore the time component of the system. As a result, the studied variables cannot be fully 

understood as their evolution through time cannot be well considered. However, we can fully 

explore this evolution in dynamical systems in time. A deeper look will quickly show that the 

time component is fundamental to a robust understanding of the system and the basic structure of 

the system's data. While time series models can represent how a system evolves in some other 

models, time-series data is not necessary for testing such models. Even at that, the importance of 

time in such models should not be ignored as it plays a critical role. This is because response 

time distributions are considered in model formulation and predictions (e.g., simultaneous 

modeling of choice probability and choice response time when predicting choice behavior)3. 

The "system" part of dynamic systems signifies that we have many moving parts. This 

only shows us that we are dealing with an environment where many components interact as a 

part of a larger ensemble. While tending to behave complexly, these systems have defined rules 

that tend to guide their interaction and behavior such that it is in an orderly manner. Due to the 

complex nature of these systems, describing them becomes very difficult. One factor that 

researchers always consider in studying dynamical systems is their stability, as its determination 

is a fundamental concern that arises in almost all real situations that can be modeled or described 

by a dynamical system4. In understanding this, researchers try to understand how the system 

maintains its stability over time and to what extent or degree the system is stable. 

Dynamical systems can either be linear or nonlinear. We need to demarcate between 

linearity and nonlinearity in dynamical systems. Perhaps it is helpful to understand 
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mathematically what it means for a function or system to be linear or nonlinear. The concept of 

both is found throughout the field of research. To understand this, let us simplify by defining a 

linear function in one dimension. Let us consider a function f that is said to be linear. The 

function f is such that: 

 𝑓: ℝ →  ℝ 

𝑓 = 𝑓(𝑥) ∀ 𝑥 ∈  ℝ 

(1a) 

(1b) 

If f is genuinely linear, then it will fulfill the following conditions: 

 

 𝑓(𝛼𝑥) =  𝛼𝑓(𝑥) ∀ 𝑥 ∈ ℝ, 𝛼 ∈ ℝ 

𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) ∀ 𝑎, 𝑏 ∈ ℝ 

(2a) 

(2b) 

If any of the conditions above is not fulfilled, then f is nonlinear. Thus, we can define a 

linear system as a system where the set of variables describing the past state can be combined 

linearly to describe the current state. On the other hand, a nonlinear system does not have the 

current state expressed fully as a linear combination of variables of the past or previous state. In 

nonlinear systems, it is quite possible to express some of the variables of the current state as a 

linear combination of the variables of the previous state. However, to capture all variables' 

dependencies, we would need extra descriptive steps and techniques to achieve this. Therefore, 

the focus of this thesis is a nonlinear dynamical system. We focus on this dynamical system as it 

applies to neuron excitation to narrow it down even further. 

 

Excitability 



  5 

Excitability is a term used to describe the ease with which a cell responds to a stimulus 

with a regenerative action potential5. Excitability is found almost everywhere in the body and is 

essential to maintaining life. In the general sense of the word, all specialized cells of a complex 

organism like the human body have some form of excitability as they all perform a specific 

action on receipt of external signals. Specifically, however, some cells in the human body are 

significantly responsive to an external signal and primarily use this feature of excitability to 

perform their primary functions in the body. Therefore, these cells are of high significance when 

studying the concept of excitability. Cells such as neurons, the brain cells, cardiac cells, and 

pancreatic b-cells use this excitability property to function correctly and maintain health. In these 

cells, electrical activity manifests in electroencephalograms and electrocardiograms, but the 

sources of this activity are at the cellular level6. Excitability results from the distribution 

(concentration) and motion of charged ions across the permeable membrane in the cell. During 

this process of excitation of cells, there is the resting state, the excited state, the refractory state, 

and the recovery state.  

Excitability is a phenomenon that can also be observed in nature. An example of 

excitability existing in nature is forest fires7. Consider a forest of trees. Each tree in the forest can 

possibly be in any of the states: resting, excited, refractory, and recovery states. A tree in its 

resting state is healthy and unburnt. A fire happens, and then the tree goes into an excited state. 

In this state, wave propagation is possible in two dimensions where the excited tree will transmit 

its excitation to its nearest neighbors. Thus, the fire propagates through the process of diffusion. 

This excited state is followed by a refractory state where the tree is no longer responsive to fire. 

Through regrowth, the forest returns to its original state after a while, which is the recovery state. 

Another simple example of excitability in nature is the household match. The chemical 
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components in the match head are stable to small fluctuations in temperature. However, a 

fluctuation large enough, for example, friction between the head and a rough surface, can ignite 

or excite the head, thus releasing heat and light8,9. The match goes through almost all the states 

except recovery. 

The anatomy of the Neuron 

Neurons or nerve cells are the foundation of communication in the body. They are the 

building blocks of the nervous system. The human brain alone contains approximately 100 

billion neurons10. Neurons are highly specialized cells responsible for receiving sensory input 

from outside the body, sending motor commands to our muscles, and transforming and relaying 

the electrical signals at every step in between11. All neurons have three major parts:  

1. The dendrites 

2. The cell body (also called soma) 

3. The axons 

Asides from these three major parts, there is also the axon terminal and the synapse at the 

end of the Neuron. Figure 1 shows the parts of a neuron. 

 

Figure 1 - Parts of a neuron. Reproduced from12 
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The dendrites connect to other neurons and receive signals from them. The cell body 

organizes and keeps the cell functional, while the axon, a fiber, is responsible for transferring 

signals to other cells and organs.  

Neurons are usually classified based on their functions. There are three types of nerves in 

the body: 

1. Autonomic nerves: These nerves control involuntary or partially involuntary activities in 

the body. These activities include heart rate, digestion, temperature control, heart rate. 

2. Motor nerves: These nerves carry messages between the brain and muscles to make the 

body move. 

3. Sensory nerves: Sensory nerves carry messages between the brain and different body 

parts to signal sensations like pain, temperature, and pressure.  

 

The Anatomy of the Peripheral Nerve 

Peripheral nerves transmit signals between the spinal cord and the other parts of the body. 

The peripheral nervous system comprises of three types of cells: the neuronal cells, the glial cells 

and the stromal cells13.  

In the adult state, the physical structure of a peripheral nerve can be best divided into five 

segments:  

1. The cell body and axon 

2. Schwann cell 

3. Connective tissue sheath 

4. Vascularity 

5. End organs, sensory and motor 
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In the maintenance and functions of peripheral nerves, there are key roles played by other 

cells other than neurons. For example, the Schwann cells that sheaths the nerves also provides 

trophic support through the release of important neurotrophs like Nerve Growth Factor (NGF)13. 

The axons and Schwann cells are grouped into fascicles, sheathed by the perineurium14. 

A sheath of tissue protects the nerve just like insulation around an electrical cable. This is called 

the myelin sheath. The role of the myelin sheath is to improve conduction velocity. It does this 

by limiting the sites of ionic transfer along the axon of the nodes of Ranvier, thereby resulting a 

faster action potential propagation. This is referred to as “saltatory conduction”13. Axons are 

separated into bundles inside the nerve. Tissue layers separate each bundle. The fiber breaks 

when an injury occurs due to pressure or stretching. When this cut in the nerve occurs (nerve 

injury), the nerve and the insulation are severed. 

 

Figure 2 - Anatomy of a peripheral nerve1 

In some cases, the fibers inside the nerve might break while the protective sheath remains 

intact. If the insulating sheath stays intact, then the end of the fiber distal from the brain dies 

while the one proximal to the brain survives. In this case, a regeneration might occur. After some 

time, the nerve may begin to heal with new fibers growing beneath the insulation until it reaches 
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a muscle or sensory receptor. The figure 3 below shows degeneration and regeneration after a 

peripheral nerve injury.   

 

Figure 3 - Damaged PN undergoing regenerative processes15 

 

Action Potential (AP) and Polarization 

Neurons, as excitable cells in the human body, can undergo transient polarization and 

depolarization. They behave so that a brief electrical pulse can make the transmembrane 

potential experience an elevation. This elevation, when prolonged, is called the action potential. 

An action potential is a sudden and transient depolarization of the membrane16. Only neurons 

and muscle cells like those of the heart are capable of generating an action potential. In neurons, 

the action potentials are generated to transmit nerve signals to targeted muscles, tissues, and 

other neurons. Action potentials just do not happen. There are steps involved in the generation 

and propagation of action potential. The first thing to note is that not all electrical excitations or 

stimuli can create an action potential. There can be a subthreshold, a threshold, and a 

suprathreshold stimulus. Action potential follows the all-or-nothing law meaning that when the 

membrane potential is not up to the threshold potential, no action potential is produced. The 
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threshold and suprathreshold stimuli have high enough energies to result in the production of an 

action potential. The threshold potential usually ranges from -50 to -55 mV. Membrane potential 

typically varies depending on cell type. For the Neuron, it usually sits between -50 to -75 mV. 

This value is usually determined by the relative ratio of ions (in the case of the Neuron Na+ and 

K+, extracellular to intracellular, permeability of the membrane to ions, and various negatively 

charged intracellular proteins and organic phosphates that cannot cross the cell membrane)17,18. 

Both sodium's and potassium's voltage-gated channels are closed in the resting state. Voltage-

gated channels will only open and close depending on the difference in voltage across the cell 

membrane. Hence the term "voltage-gated". While in the resting state, membrane potential 

increases due to its permeability to K+. Voltage-gated sodium ion channels open because of the 

electrical stimulus. This causes the Na+ ions to rush into the cell. As a result, the inside of the 

cell becomes more electropositive compared to the outside of the cell. An action potential is 

propagated if this continues such that the threshold potential is reached. 

An action potential has a few phases, hyperpolarization, depolarization, overshoot, 

repolarization, and hyperpolarization. Ab-initio, the cell at resting potential is in the resting 

phase, as seen in figure 2 below. In this phase, the initial increase in the membrane potential to 

the threshold potential occurs. As described previously, the voltage-gated sodium ion channels 

open up due to the increased membrane potential in the previous hyperpolarization phase, and 

Na+ ions rush into the cell. This causes a short-term positive feedback loop where the increasing 

voltage causes more voltage-gated Na+ ion channels to open. This phase is called the 

depolarization phase, and it is here that the cell gets more electropositive. This electropositive 

event continues till the potential gets closer to the electrochemical equilibrium of Na, which is 

approximately about +61mV. At this point, the cell is no longer responsive to potential, and this 
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phase of intensive positivity is called the overshoot phase. Sodium channels close very quickly. 

This quick closure results in the sudden decrease of permeability of the cell membrane to Na+ 

ions. Potassium's voltage-gated channels open, which in turn causes K+ ions to rush in. this 

significant potassium efflux causes a decrease in the cell's electropositivity. This phase is called 

the repolarization phase. During this phase, the cell attempts to attain its potential by resting 

again. However, potassium's voltage-gated channels close a lot slower than sodium's. As a result, 

the decrease in electropositivity of the cell continues till it enters the hyperpolarized phase 

again. Here, the membrane potential attained is more negative than the membrane potential 

before the action potential is generated. Slowly due to leak channels, the cell attains its resting 

potential. 

 

 

 

 

After an action potential is generated, there is a period during which the Neuron is 

unresponsive to potential and thus cannot generate another action potential. This period is called 

the refractory period. 

Overshoot 

Depolarization 

Threshold -55mV 

1 

1 

Figure 4 - Action potential curve and phases 
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Action Potential Duration (APD) and Repolarization Interval (RI) 

The Repolarization Interval (RI) is the interval between successive action potentials, 

while Action Potential Duration (APD), as the name suggests, is the time duration of a single 

action potential. The Basic Cycle Length (BCL) is simply a summation of RI and APD. The 

physical relationship between these three is shown in the figure 5 below. 

 

 

 

Figure 5 - Two successive action potentials in a nerve cable with injury at the center, 

showing the relationship between RI, APD and BCL is the sum of RI and APD. 

 

A 

B 

C 

RI 
APD

D 

B

CL 
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In excitable media, if a second excitation is initiated too soon after the previous one, the 

duration of the second pulse is considerably shorter than the first19. In biological excitable media, 

an APD restitution curve describes the relationship between the APD and the interval between 

two excitations that follow each other20. In restitution, Action Potentials (APs) initiated at 

relatively short RIs will lead to shorter APDs. 

 

Figure 6 - An example of a restitution curve showing the relationship between APD and RI 

 

Major Reaction-Diffusion Models to Describe Excitability of Cellular Membranes 

Different models can be used to understand the overwhelming structural complexity of 

the neuronal processes and gain a better understanding of their dynamics. The Nobel prize-

winning Hodgkin Huxley model (HH) is beneficial for this purpose. Since the groundbreaking 

discoveries of Hodgkin and Huxley in 1952, there has been an enormous amount of interest in 

and motivation for studying and understanding dynamical systems. This motivation has produced 

some exciting models. Some of the most successful of them in the area of biophysics are 
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Hindmarsh-Rose (HR), Fitzhugh-Nagumo (FN), and Morris-Lecar (ML). HR and FN are 

particularly very successful in capturing neural firing behavior.  

 

 

Reaction-Diffusion Systems 

Reaction-diffusion (RD) systems occur in many areas of sciences and engineering. We 

see reaction-diffusion systems in biological, chemical, physical, etc. There are different 

methodologies from several areas of mathematics and physics with valuable tools for studying 

these systems. To mention just a few, some of these methods are numerical analysis, singular 

perturbation, bifurcation, and stability theory. To derive a reaction-diffusion system, we can start 

with Fickian diffusion. This says that the flux of a material which can be the amount of 

chemicals, cells, number of animals, etc., denoted by J, is proportional to the gradient of the 

concentration of the material34. In one dimension: 

𝐽 ∝
𝜕𝑐

𝜕𝑥
    ⇒  𝐽 = −𝐷

𝜕𝑐

𝜕𝑥
 

(3a) 

 

In general, 

𝑱 = −𝐷∇𝑐 

 

(3b) 

 

where 𝑐 = 𝑐(𝑥, 𝑡) is the concentration of the species and 𝐷 is its diffusivity. The negative 

in the equation signifies that the diffusion transports material from a high to low concentration 

region. Now, if we consider diffusion in three dimensions, and we let S be an arbitrary space 

enclosing a volume V, then applying the general conservation law, which dictates that the rate of 
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change of material in the volume V is equal to flow of materials across S into V with the material 

created in V added. Mathematically, this can be stated thus: 

  

𝜕

𝜕𝑡
∫ 𝑐(𝑥, 𝑡)𝑑𝑣

𝑉

= − ∫ 𝐽. 𝑑𝑠
𝑠

+   ∫ 𝑓𝑑𝑣
𝑣

  
(4) 

Where f,  the source of material, can be a function of c, x and t34. If we apply the 

divergence theory to the surface integral term on the right-hand side of the equation 4 above, and 

assuming that 𝑐(𝑥, 𝑡) is continuous, then equation 4 becomes: 

∫ [
𝜕𝑐

𝜕𝑡
+ ∇ ∙ 𝑱 − 𝑓(𝑐, 𝒙, 𝑡)] 𝑑𝑣

𝑉

 
(5) 

Considering that the integrand must be 0 since the volume is arbitrary, and using the 

generalized version of equation 3a (i.e., equation 3b), equation 5 therefore becomes: 

𝜕𝑐

𝜕𝑡
= 𝑓(𝑐, 𝒙, 𝑡) + ∇ ∙ (𝐷∇𝑐) 

(6) 

where D could be a function of x and c. In a simple one-dimensional scalar case, the 

equation 5 above becomes: 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) + D

𝜕2𝑢

𝜕𝑥2
 

(7) 

Where u is the concentration of materials, D is the diffusion coefficient which is usually 

taken as a constant, and f(u) represents the local reaction kinetics. f(u) can have different shapes 

and below we introduce a few of them: 

• 𝑓(𝑢) = 𝑘𝑢(1 − 𝑢): Here k and D are positive parameters. This was suggested in 1937 by 

Ronald Fisher as a deterministic version of a stochastic model for the spatial spread of 

favored genes in a population34,35. Replacing f(u) in equation 7 with this yields the Fisher-

Kolmogorov equation. 
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• 𝑓(𝑢) = 𝑢(1 − 𝑢2): This is well known as the Newell-Whitehead-Segel equation36,37. This 

equation describes the evolution of vertical velocity during perturbation from a stationary 

state. The vertical velocity is a slowing varying function of position and time.   

The Hodgkin-Huxley Model 

In 1952, Hodgkin and Huxley published five seminal papers that have since been the 

background reference in the studies of nonlinear dynamics in biological systems. These papers 

went ahead to describe a wide range of behaviors in the nerve of a giant squid. The first paper 

dealt with the experimental method of measurement, understanding of the current-voltage 

relationship, and behavior of the membrane of the Neuron in a normal ionic environment21. The 

second paper in the series discussed the ionic currents and described their resolution into currents 

of sodium and potassium. It also described the effects of changes in sodium concentration in the 

membrane. In a nutshell, it characterized the currents carried by the potassium and sodium 

ions22.  The third paper describes the effect of sudden changes in potential on the time course of 

ionic conductance21,23, i.e., what happens with each component of the membrane current when 

the time and duration of polarization/repolarization are varied. The fourth paper describes the 

inactivation process. This process reduces sodium's permeability gradually after it has undergone 

an initial rise as a result of depolarization and the action potential is now in its "falling phase"24. 

The series culminated in a final paper which harmonized all that had been discussed in the 

previous papers by showing quantitatively that the form and velocity of the action potential can 

be calculated from results from the previous four papers21,25. It effectively describes how 

membrane current applies critically to excitation and conduction in the squid's nerve.  
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In general, in order to describe this excitation, it is not sufficient to consider f(u) as 

quadratic and cubic functions. Hodgkin and Huxley constructed a specific electrical circuit 

which included 3 independent ionic currents as shown in the figure 7 below: 

 

Figure 7 - An electrical circuit representation of the membrane with active sodium, 

potassium and leakage channels. Image was adapted from25 

 

The cell membrane in this configuration, acts like a capacitor with constant capacitance 

of 𝐶𝑚. While conducting their experiments, Hodgkin and Huxley came to the determination that 

sodium and potassium ions (𝑁𝑎+and 𝐾+) are the most critical components of the cell membrane 

as it concerns the generation of the action potential. As shown in the diagram above, both 

𝑁𝑎+and 𝐾+ channels were determined to act as resistors. According to Hodgkin and Huxley, 

these resistances were described by voltage-dependent conductances (𝑔𝑁𝑎 and 𝑔𝑘) thus: 
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 𝑅𝑁𝑎 = 1
𝑔𝑁𝑎

⁄ , 𝑅𝐾 = 1
𝑔𝐾

⁄  (8) 

Because of these resistances, the currents were also denoted as 𝑖𝑁𝑎 and 𝑖𝑘. A third ionic 

current called the leak current is designated as 𝑖𝐿. This current is a summation of other ionic 

currents present in the membrane, and a third conductance causes it called the leak conductance 

(𝑅𝐿 = 1
𝑔𝐿

⁄  ), which is independent of the membrane potential. E is the voltage across the 

capacitor, while separate electrical source batteries represent the Nernst potential for each ion 

with 𝑉𝑁𝑎, 𝑉𝑘, and 𝑉𝐿. Suppose we apply Kirchhoff's law to the circuit diagram in figure 7. In that 

case, the conservation of charges will dictate that the external applied current 𝐼𝑒𝑥𝑡 , can be split 

into a sum of the ionic currents and the capacitive current 𝑖𝑐. 

 𝐼𝑒𝑥𝑡 = 𝑖𝑁𝑎 + 𝑖𝐾 + 𝑖𝐿 + 𝑖𝑐  (9) 

Where we can rewrite the capacitive current mathematically in terms of membrane 

capacitance and membrane potential 𝑉 thus: 

 
𝑖𝑐 = 𝐶𝑚

𝑑𝑉

𝑑𝑡
 

(10) 

The HH model is thus summarized in a system of four coupled ordinary differential 

equations where one is the equation for the membrane potential and three others for the channel 

gating variables: 

 
𝐶𝑚

𝑑𝑉

𝑑𝑡
= −𝑔̅𝐿(𝑉 − 𝑉𝑙𝑒𝑎𝑘) − 𝑔̅𝑁𝑎𝑚3ℎ(𝑉 − 𝑉𝑁𝑎) − 𝑔̅𝑘𝑛4(𝑉 − 𝑉𝑘) 

𝑑𝑛

𝑑𝑡
= ∅[𝛼𝑛(𝑣)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛] 

𝑑𝑚

𝑑𝑡
= ∅[𝛼𝑚(𝑣)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚] 

(11a) 

(11b) 

 

(11c) 



  19 

𝑑ℎ

𝑑𝑡
= ∅[𝛼ℎ(𝑣)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ] 

(11d) 

 Where 𝑔̅𝑘  and 𝑔̅𝑁𝑎 are maximum conductances and n, m and h are gating variables with 

values between 0 and 1. In the equations 11 above, we added a parameter , the temperature 

factor. It is imperative to note here that the temperature at which the experiment is conducted is 

critical. Because channels are stochastic in nature, they are sensitive to changes in temperature. 

As a result, the rates of switching states depend exponentially on temperature. This is because 

higher temperatures cause faster switching, and conversely, lower temperatures cause slower 

switching26. In the equation 12 below, we mathematically define what   is: 

 
∅ = 𝑄10

𝑇−𝑇𝑏𝑎𝑠𝑒
10  

(12) 

Where Q10 is the ratio of the rates for an increase in temperature of 10C. in the giant 

squid’s axon, Q10 = 3 and Tbase = 6.3C26. 

After their experimentation, Hodgkin and Huxley fit their experimental data and arrived 

at the following expressions for the voltage-dependent rate constants: 

 
𝛼𝑛(𝑣) =

0.01(𝑣 + 55)

1 − 𝑒
−(𝑣+55)

10

, 𝛽𝑛(𝑉) = 1.125𝑒
−(𝑉+65)

80  
(13a) 

 
𝛼𝑚(𝑣) =

0.1(𝑣 + 40)

1 − 𝑒
−(𝑣+40)

10

, 𝛽𝑚(𝑉) = 4𝑒
−(𝑉+65)

18  

𝛼ℎ(𝑣) = 0.07𝑒
−(𝑣+65)

20 , 𝛽ℎ(𝑉) =
1

1 + 𝑒
−𝑉+35

10

 

(13b) 

(13c) 

 

The table below shows the values of the constants parameters as derived experimentally: 

 



  20 

 

Parameters Values Units 

Membrane Capacitance (C) 1 µF/𝑐𝑚2 

Maximum Sodium Conductance 

(𝒈̅𝑵𝒂) 

120 mS/𝑐𝑚2 

Maximum Potassium Conductance 

(𝒈̅𝑲) 

36 mS/𝑐𝑚2 

Leak Conductance (𝒈̅𝑳) 0.3 mS/𝑐𝑚2 

Sodium Equilibrium Potential 

(𝑽𝑵𝒂) 

-115 mV 

Potassium Equilibrium Potential 

(𝑽𝑵𝒂) 

12 mV 

Leak Equilibrium Potential (𝑽𝑳) -

10.613 

mV 

Table 1: HH model constant parameters 

The HH model has the advantage of being realistic and biophysically sound. It is 

excellent for describing and predicting many neuronal properties and behaviors. However, the 

HH in its original form is limited to the two voltage-dependent currents found in the squid giant 

axon, with only projections of its four-dimensional phase trajectories observable. Thus, it must 

be extended significantly to deal with neurons' excitable soma and dendrites. Also, the model 
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does not correctly capture the kinetics of the sodium ion channel, and it cannot account for the 

stochastic response to current injection resulting from the discrete nature of the ion channels27. 

As a result, more straightforward and better models are required to describe some neuronal 

properties and behaviors more adequately and holistically.  

The Fitzhugh Nagumo Model 

Since the publication of the seminal works and development of the Hodgkin-Huxley 

(HH) model in 1952, many other essential but simplified modifications to the HH model have 

emerged. Due to the complexity associated with the 4-variable system of the HH model, 

researchers worked to obtain simplifications that will still capture the critical dynamics of the 

action potential. The FitzHugh-Nagumo (FN) model is a two-dimension simplification of the 

Hodgkin-Huxley (HH) model proposed by R. FitzHugh and J. Nagumo in 1961. In 1961, the 

two-dimensional simplification presented by R. FitzHugh was obtained by his observation that 

the gating parameter m in the Hodgkin-Huxley model was significantly faster than the n and h 

variables. He also observed that the parameter n + h, as given by Hodgkin and Huxley, stays 

approximately constant during the propagation of action potential in the system. As a result of 

these observations, he was able to arrive at the following two-variable model, which he 

originally called the Bonhoeffer-van der Pol (BVP) model28,29: 

 𝑥̇ = 𝑐(𝑦 + 𝑥 − 𝑥3

3⁄ + 𝑧) 

𝑦̇ =
−(𝑥 − 𝑎 + 𝑏𝑦)

𝑐⁄  

where 

1 − 2𝑏
3⁄ < 𝑎 < 1, 0 < 𝑏 < 1,        𝑏 < 𝑐2 

(14a) 

(14b) 
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In a separate work by Nagumo et al30 a prototype of a single cell excitable system was 

described in a similar way as equations 14. As a result, these two equations have since been 

referred to as the Fitzhugh-Nagumo model: 

 

 𝑑𝑢

𝑑𝑡
= 𝑓(𝑢, 𝑣) 

𝑑𝑣

𝑑𝑡
= 𝜀𝑔(𝑢, 𝑣) 

(15a) 

(15b) 

 

There are many forms in which the FN model is represented. However, in our work, we 

choose to utilize it as: 

 𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) + 𝐼 + 𝐷

𝜕2𝑢

𝜕𝑥2
 

𝑑𝑣

𝑑𝑡
= 𝜀(𝑏𝑢 − 𝑣) 

(16a) 

(16b) 

Where f(u) is a third order polynomial that provides positive feedback, v is the slower 

recovery variables,  and b are constant scaling parameters, u is the membrane potential, and I is 

the external stimulus current. The figure 8 below shows the phase plane for the FN model in 

equation 11 where 𝑓(𝑢) = 𝑢(𝑎 − 𝑢)(𝑢 − 1): 
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Figure 8 - A typical FN model phase portrait with a single equilibrium showing the u and v 

nullclines. 

 

Figure 9 below illustrates 3 cases. The first (figure a) shows the phase plane when I is set 

to 0 in equation 12a. The second shows equation 3 without the diffusion present, i.e., D = 0 and 

with I again set to 0. This means that in the last figure of the 3 in figure 9,  

 𝑓(𝑢) = 𝑢(𝑎 − 𝑢)(𝑢 − 1) (17) 

Where the parameter a hold the values 0 < 𝑎 <
1

2
. The kinetic system may be classified 

as bistable, excitable, or oscillatory by the mechanism of nullclines intersections. The equation 

16a and 16b above also gives the general Zeldovich-Frank-Kamenetzky (ZFK) equation31 

resulting from the combustion theory.  

The FN model's simplicity allows the entire solution to be viewed at once. This is 

advantageous as it allows us to explain some fundamental biological phenomena related to 

neuronal excitability. 



  24 

 

Figure 9 - Showing the phase portrait for equation 1 with I set to 0. This image was 

produced from32 

 

Numerical Methods Review 

In many differential equation problems as FN model, getting an analytical result is not 

always possible. In some cases, there are limitations due to the complexity of geometries. 

Therefore, numerical methods are essential tools to obtain solutions explicitly to such problems. 

Numerical methods analysis allows us to closely model experimental and practical situations33. 

Even when analytical solutions are possible, they might be challenging to solve. Numerical 

methods also help us to verify and validate the accuracy of results obtained from analytical 

solutions to problems. In this section, we briefly explain the finite difference methods for the 

simulation of differential equation such as FN model.  

 

The Finite Difference Method 

The Finite Difference Method (FDM) is one of the most straightforward numerical 

techniques for solving differential equations. The main idea here is to approximate derivatives 

with their finite-difference. FDM is a valuable tool for solving differential equations that are 
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either difficult or impossible to solve analytically. It entails a set of schemes or systems of 

algebraic equations that can be easily implemented computationally to arrive at reasonably 

accurate solutions to initial problems. The fundamental idea behind any finite difference scheme 

is related to the definition of the derivative of a smooth function at a point 𝑥 ∈ ℝ thus: 

𝑢̇(𝑥) = lim
ℎ→0

𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
 

(18) 

Moreover, when ℎ tends to 0, the right-hand side of the equation 18 above provides a 

good enough approximation of the derivative. That is, h should be small enough to give a good 

approximation of the derivative. We can use the equation 18 to discretize a partial differential 

equation (PDE) on a regular space grid of finite intervals of 𝑥 ∈ [0, 𝐿]. This approximates 𝑥 ∈

[0, ∞).  Within a rectangular mesh grid with points (𝑡𝑛, 𝑥𝑗), we will have a fixed space step of 

∆𝑥 and a fixed time step of ∆𝑡 on a regular time grid. The grid is such that: 

0 = 𝑡0 < 𝑡1 < 𝑡2 … ,       0 = 𝑥1 < 𝑥2 < 𝑥3 … < 𝑥𝑁 = 𝐿   (19) 

where  

𝑥𝑗 = (𝑗 − 1)∆𝑥,   𝑡𝑛 = 𝑛∆𝑡,    𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑁,     𝑛 = 0,1,2,3 …. (20) 

Rewriting the equation 18 using the grid indices, we have the following: 

 

𝜕𝒖𝑗
𝑛

𝜕𝑡
=

𝒖𝑗
𝑛+1 − 𝒖𝑗

𝑛

∆𝑡
+ 𝜗(∆𝑡) 

(21) 

where 𝜗(∆𝑡)is the truncation error. This is called the forward difference. Applying this 

knowledge to equation 16a, we have the following discretization scheme for the next time step: 

𝒖𝑗+𝑖
𝑛 = 𝒖𝑗

𝑛 + 𝐷∆𝑡 [
𝒖𝑗

𝑛+1 − 𝟐𝒖𝑗
𝑛 + 𝒖𝑗

𝑛−1

∆𝑥2
] + 𝒇(𝒖𝑗

𝑛)∆𝑡 + 𝑰 
(22) 
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Below is a table of finite difference formulas for first and second order differential 

equations: 

Order Forward Backwards Center 

First 𝜕𝒖𝑗
𝑛

𝜕𝑡
=

𝒖𝑗
𝑛+1 − 𝒖𝑗

𝑛

∆𝑡

+ 𝜗(∆𝑡) 

𝜕𝒖𝑗
𝑛

𝜕𝑡
=

𝒖𝑗
𝑛 − 𝒖𝑗

𝑛+1

∆𝑡

+ 𝜗(∆𝑡) 

𝜕𝒖𝑗
𝑛

𝜕𝑡

=
𝒖𝑗

𝑛+1 − 𝒖𝑗
𝑛−1

∆𝑡

+ 𝜗(∆𝑡) 

Second 𝜕𝟐𝒖𝑗
𝑛

𝜕𝑡2

=
𝒖𝑗

𝑛+1 − 2𝒖𝑗
𝑛+1 + 𝒖𝑗

𝑛

∆𝑡2

+ 𝜗2(∆𝑡) 

𝜕𝟐𝒖𝑗
𝑛

𝜕𝑡2

=
𝒖𝑗

𝑛 − 𝟐𝒖𝑗
𝑛−1 + 𝒖𝑗

𝑛−2

∆𝑡2

+ 𝜗2(∆𝑡) 

𝜕𝟐𝒖𝑗
𝑛

𝜕𝑡2

=
𝒖𝑗

𝑛+1 − 2𝒖𝑗
𝑛 + 𝒖𝑗

𝑛−1

∆𝑡2

+ 𝜗2(∆𝑡) 

Table 2: The table above shows the finite difference scheme for first and second order 

differential equations. 

Goals 

The central hypothesis of this research is that a computational one-dimensional reaction 

diffusion model with nonlinear diffusion may be used to investigate AP propagation in a PN 

and determine regimes for propagation entrainment in injured PN. 

 The specific goals of this dissertation are: 

1. To model action potential (AP) propagation in 1D cable using reaction-diffusion 

equations with nonlinear diffusion and obtain conditions for stable propagation of 

AP propagation in a Peripheral Nerve (PN) with no excitability impairment. 

2. To modify reaction-diffusion equations from aim 1 to model impaired AP 

propagation in injured PN and determine excitation wavetrains with shortest 

APD. 
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CHAPTER II: DEVELOPMENT AND ANALYSIS OF RD EQUATIONS FOR 

DESCRIPTION OF NONLINEAR AP DIFFUSION IN A 1D PERIPHERAL NERVE (PN) 

CABLE WITH UNIMPAIRED EXCITABILITY 

 

Abstract 

In this section, we study the effects of nonlinear diffusion on wave propagation generated 

in normal tissues using a one-dimensional Fitzhugh-Nagumo (FN) model. Changes in action 

potential duration (APD) and Repolarization interval (RI) are observed based upon modification 

of the FN model diffusion term by adding quadratic or quartic transmembrane potential 

dependent diffusion component. We determined that at the same values of RIs, the waves 

propagating in such excitable media had longer APDs and consequently were more stable than in 

the media with constant diffusion. Furthermore, it has been found that changes in the amplitudes 

of both types of a nonlinear diffusion term resulted in periodic oscillations of both APD and RI. 

We also determined that the propagating waves were more stable for the quadratic compared to a 

quartic case when a constant component of the diffusion was higher. 

 

Introduction 

Peripheral nerves (PNs) are an integral part of messaging in the human body. These 

messages are in the form of electrical impulses. PNs exist outside the brain, and the spinal cord 

and are responsible for relaying messages from the brain to other parts of the body and back. PNs 

are bundled into axons which are found throughout the body. Messages are received by the 

dendrites of the PN and travel down the axon to the cell body. Several types of diseases can 
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affect the peripheral nerves. Peripheral neuropathy is commonly seen. Different conditions in the 

body cause it. These include but are not limited to diabetes, autoimmune disease, infections, and 

many more. Some deficiencies or disorders in the body could also manifest as neuropathy in the 

nerve. For example, in a teen with Riboflavin Transporter Deficiency, peripheral nerves are the 

primary site of pathology38. This deficiency will manifest as motor, sensory and cranial 

neuropathy. In this section, we are dealing with healthy PNs. We are interested in modeling 

action potential propagation in PNs using a modified version of the FitzHugh Nagumo model. 

This enables us to consider some significant factors, such as the significant charge depletions 

that usually occur in PNs. This section will present a more holistic representation of the 

propagation of action potential in PNs. 

 

Method 

Modelling of RD equations with nonlinear diffusion function to describe 1D geometry of the 

PN. 

There are many different RD equations to describe excitability, and each has its 

advantages. Entire articles and journals are dedicated to describing and showcasing some of 

these equations. Charged ions aggregate on the nerve cells' membrane due to their capacitance. 

In biological membranes, the resting potential depends mainly on the magnitude of these charges 

and the membrane capacitance39. It is, therefore, reasonable to know how much intracellular or 

extracellular concentrations of these ions are modified by this charge aggregation. To understand 

this, we will need a measure of the relative charge depletion. It is well known that using sodium 

and potassium 2-current model is well justified for AP propagation in large axons40. For axons 

with large diameters, the amount of charge Qm, moved through the axon during each action 



  29 

potential is very small compared to intracellular ionic charge, Qi. Thus, with a membrane 

capacitance C and an action potential amplitude U, we can estimate the relative charge depletion 

per 1cm of axonal length as: 

 
𝜌 =

𝑄𝑚

𝑄𝑖
=

2 ∙ 103 ∙ 𝐶𝑈

𝛼𝑀 ∙ 𝐹𝑘 ∙ 𝑟
 

(23) 

Where 𝛼𝑀 , 𝐹𝑘 and r are the extracellular sodium molar concentration, Faraday constant 

and axon radius, respectively. If we set the nominal values for these parameters as 20F/cm2, 

150mV, 5mM/l with Fk = 9.65 x 104C/mole, and axon radius of 1mm, then the value of  will be 

very small and thus negligible ( = 0.124 x 10-3). Under such conditions, there is no change 

between intracellular and extracellular Na concentration. However, in our case of small 

peripheral nerves (typically < 1.5mm in diameter), the significant charge depletion in the 

excitable cellular membrane must be considered. Therefore, we introduce a nonlinear diffusion 

coefficient, which depends on the amplitude of AP of the order:  

𝐷[𝑢] = 𝐷0 + 𝛼(𝑢𝑚) (24) 

To justify this introduction, we go back to Fick’s laws of diffusion. According to classical 

Fick's law, the flux of J of any material (cells, chemical concentration, animal density, etc.) is 

proportional to the gradient of the concentration of the material. In our case where the action 

potential is u, Fick's law in one dimension is represented by: 

𝐽 ∝ −
𝜕𝑢

𝜕𝑥
= −𝐷

𝜕𝑢

𝜕𝑥
 

(25) 

Where D is the diffusion constant. Note that the negative sign tells us that diffusion 

transports matter from a region of high concentration to a region of low concentration. If we 

write the general conservation equation, which says that the rate of change of amount in a region 

is the same as the rate of flow across the boundary added to any other that is created in the 
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boundary, then in such a region as 𝑥0 < 𝑥 < 𝑥1 where no material is created, we have the 

following equation: 

𝜕

𝜕𝑡
∫ 𝑢[𝑥, 𝑡]𝑑𝑥

𝑥1

𝑥0

= 𝐽[𝑥0, 𝑡] − 𝐽[𝑥1, 𝑡] 
(26) 

Let us take 𝑥1 = 𝑥0 + ∆𝑥 and take limits as ∆𝑥 → 0. This results in the classical diffusion 

equation or Fick’s second law in one dimension: 

𝜕𝑢

𝜕𝑡
= −

𝜕𝐽

𝜕𝑥
=

𝜕

𝜕𝑥
(𝐷[𝑢]

𝜕𝑢

𝜕𝑥
) 

(27) 

D is not a constant diffusion. 

In animal and insect dispersions studies, nonlinear diffusion models have also been used. 

One of such models is in a form with a diffusion coefficient dependent on population density n 

such that D increases with n. It is such that equation 27 above can be rewritten as: 

𝑱 = −𝐷[𝑛]∇𝑛,
𝑑𝐷

𝑑𝑛
> 0 

(28) 

A typical form that D takes is 𝐷0 (
𝑛

𝑛0
)

𝑚
 where m > 0, 𝐷0, 𝑛0 are both positive constants34. 

Thus the dispersal equation in one dimension according to [34] is: 

𝜕𝑛

𝜕𝑡
= 𝐷0

𝜕

𝜕𝑥
(

𝑛

𝑛0
)

𝑚 𝜕𝑛

𝜕𝑥
 

(29) 

Where n0 is a reference population. As 𝑚 → 0, 𝐷[𝑛] → 𝐷0 ⟶ 1. This shows that there is 

an increase in diffusion due to population pressure. 

Insects with a low population frequently tend to aggregate. The following model reflects 

the flux of this aggregation: 

𝐽 = 𝑈 𝑛 − 𝐷[𝑛]
𝜕𝑛

𝜕𝑥
 

(30) 



  31 

Where U is transport velocity, in our case, the diffusion of charges and action potential 

becomes significantly dependent on charge depletion from intracellular space. In this case, 

because of charge depletion, there is a similarity to the insect population density pressure 

scenario where a description of diffusion with a nonlinear term concerning population density is 

justified. Therefore, one can consider an analogous nonlinear term with respect to 

transmembrane potential. Indeed, an excessive (depleted) charge "pressure" is similar to the 

population density pressure. This is because Na+ and K+ charges that flow across the membrane 

potential are all positive, and their overconcentration in extracellular space creates an additional 

repulsive force, thus resulting in nonlinear diffusion. We, therefore, employ a similarity to this 

situation and introduce our nonlinear diffusion coefficient of the form in the FitzHugh-Nagumo 

model with a nonlinear diffusion coefficient shown in equations 31 below. 

Within this research, we will try to strike a balance between simplicity and accuracy, as 

this is necessary to obtain a near accurate description of the 1D nerve cable. Therefore, this 

model explicitly includes the source amplitude A. The governing RD equations are described 

below. 

 𝜕𝑢

𝜕𝑡
= 𝐷[𝑢]

𝜕2𝑢

𝜕𝑥2
− 𝐴(𝑢 − 𝑚1)(𝑢 − 𝑚2)(𝑢 − 𝑚3) − 𝑣 + 𝐼𝑠𝑡𝑖𝑚 

𝑑𝑣

𝑑𝑡
= 𝜀(𝛾𝑢 − 𝑣) 

𝐷[𝑢] = 𝐷0 + 𝑑(𝑢𝑘) 

𝐼𝑠𝑡𝑖𝑚 = 𝛿[𝜃(𝑡) − 𝜃(𝑡 − Δ)] 

(31) 

Function u characterizes transmembrane potential and v defines a slow recovery variable 

that provides a negative feedback 41. Coefficients , d and 𝐷0 are constant parameters, k is a 

positive integer. Constants 𝑚1, 𝑚2, and 𝑚3 which determines the equilibria of the nonlinear 
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oscillatory system described by equations 31, were set to 0, 0.63 and 2.25 respectively and k = 2 

or 4. Since diffusion everywhere should be positive, and action potential could be negative 

during the period, we keep only even powers in the expression of the nonlinear diffusion. 

Furthermore, we found it appropriate to choose the values of k to be either 2 or 4 as higher even 

powers show a further loss of stability. A source amplitude A (the cubic nullcline) was fixed at 

2.0 with recovery rate coefficient given as 𝛾 = 2.0 and 𝜀 fixed initially to 0.005.  An external 

electric current is denoted by 𝐼𝑠𝑡𝑖𝑚 where 𝜃 is the stepwise Heaviside function. The amplitude 𝛿 

and the duration Δ of the external electric current are set to 0.5 and 0.2 respectively and are kept 

constant. 

At end and the beginning of the 1D cable, Neumann boundary conditions were used. This 

means that the electric field or gradient across the boundary is set to zero, which allows the RD 

wave to pass through the boundary. This "no-flux" boundary is described below. 

 𝜕𝑢

𝜕𝑛
= 0 (32) 

Where n is the normal to the channel boundary.  

We have a 1D cable (simulating the Neuron) of finite length (200∆𝑥) using a second 

order explicit difference scheme with zero flux boundary conditions in this experiment. Spatial 

Δ𝑥 and temporal steps Δ𝑡 used in the numerical integration were equal to 0.1 and 

0.001 respectively. Special and temporal scales were set to 100𝜇𝑚 and 1𝑚𝑠 respectively to 

reflect the spatiotemporal dimensions of action potential propagation in a quite small trochlear 

nerve of ~25𝑚𝑚 in length 42,43. D0 and d were fixed at 0.08 and 0.001 respectively. ε was 0.005. 

The length of the cable was set to 200 ∆𝑥. To initiate an excitation wavetrain the excitation 

stimuli were periodically applied at the 𝑥 = 0 end of the PN. Here and further, we will denote a 

period between successive stimuli as a basic cycle length BCL 44. An example of such periodic 
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wavetrain computed using equation 31 based on the numerical method above is shown in Fig. 

10. 

 

Figure 10 - Shows a steady state snapshot of the wave train computed using equations 32. 

AB shows the APD, and BC shows the RI. 

The initial period of stimulations is equal to 600∆𝑡. After the wave resulted from the 

BCL stimulations reached a steady state at a certain distance from 𝑥 = 0, the BCLs get shorter 

by 40∆𝑡 and stimulations continue until the next wave reaches a new steady state. All 

accumulated in this way steady state waves are characterized by APD responses which make up 

an important characteristic of PN known as a restitution curve 20. 

Changes of APD values measured at the margin of wavetrain stability, near the end of the 

restitution curve (APDend, BCLend), play a vital role in the analysis of our numerical simulations. 

It is important to note here that the APDend is the time duration of the final action potential when 

the propagation becomes so unstable that the PN fiber does not respond to more stimuli anymore. 

This point is characterized by tightly packed wavetrains. The same goes for the BCLend. It is 

simply the sum of the final APD and final Repolarization Interval (RI), when the wavetrain 

becomes unstable and unresponsive to stimuli. When APD and BCL values get close to APDend 

and BCLend the propagation of the wavetrain becomes unstable, so the insufficiently recovered 
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PN fiber does not respond to the next stimulus and exhibits unstable M:N (M stimuli and N 

responses M≠N) wave patterns45. Figure 10 demonstrates a case for sufficiently short DIs 

causing the PN to stop responding to the next stimulus exhibiting M:N instability after reaching a 

steady state. 

 

Results 

Application of RD model for stabilization of excitation waves 

We consider results of simulation of AP propagation in the intact PNs without injured 

portions. While we aim to understand the stability of excitation waves and dependence of the 

restitution curves 𝐴𝑃𝐷 = 𝐹(𝐷𝐼) on the nonlinear part of the diffusion coefficient, we found that 

all components of nonlinear diffusion function play a significant role in the stabilization of 

propagation of excitation waves by effecting the restitution curves minimal values APDend and 

RIend measured at the ends of the curves.  

Setting 𝜀 = 0.005, 0.006 and plotting the restitution curves for two conditions; (a) with no 

nonlinear component and (b) with the quadratic nonlinear component 𝑢2 and coefficient 𝑑 =

0.02. we have the following (Fig. 11): 
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a      b 

Figure 11 - Panels (a) and (b) show the restitution dependences measured at x=0.25L for ε 

= 0.005 (a) and ε = 0.006 (b), respectively. Dependencies for constant, 𝑫(𝒖, 𝒙) = 𝟏, and 

nonlinear, 𝑫(𝒖, 𝒙) = 𝟏 + 𝟎. 𝟎𝟐𝒖𝟐, diffusion are depicted by red and green dots, 

respectively. Smooth green and red curves are 5th order splines. 

 

Fig. 11 demonstrates the differences between the ends of restitution curves (extent of 

stability of propagation) for different ε and different diffusion scenarios, including the cases with 

constant diffusion coefficient d = 0 and the quadratic nonlinear diffusion 𝑑𝑢2 (𝑑 = 0.02). Fig. 11 

also demonstrates that in both cases (linear and nonlinear) for the same RI the waves with 

nonlinear diffusion have slightly wider APDs. However, Fig. 11 also reveals that for the same RI 

the waves with non-linear diffusion have slightly shorter APDs. It should be noted that values of 

APDend and RI end strongly depends on ε and alternate such as at ε=0.005 (Fig.11a) the restitution 

curve with constant diffusion has a shorter APDend, while at ε=0.006 (Fig. 11b) the situation is 

reversed.  

To further quantify the effects of nonlinearity on the restitution characteristics, we fixed 

the linear diffusion coefficient 𝐷0 at 0.8 while varying the nonlinear diffusion coefficient d from 

0.02 to 0.05 in steps of .01. The same sequence was repeated for 𝐷0=1.  
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a      b 

Figure 12 - Restitution dependences computed for different nonlinear diffusion functions  

𝑫(𝒖, 𝒙) = 𝟎. 𝟖 + 𝒅(𝒖𝟐) (a) and 𝑫(𝒖, 𝒙) = 𝟏. 𝟎 + 𝒅(𝒖𝟐) (b). Both restitution dependences 

are measured at 𝒙 = 𝟎. 𝟐𝟓𝑳. Gray, blue, green, purple, and pink color dots relate to 𝒅 =
 𝟎;  𝟎. 𝟎𝟐;  𝟎. 𝟎𝟑;  𝟎. 𝟎𝟒;  𝒂𝒏𝒅 𝟎. 𝟎𝟓, respectively. Corresponding smooth color curves are 5th 

order splines. 

 

Fig. 12 demonstrates a non-monotonous character of dependence of the APDend on the 

magnitude of the nonlinear diffusion coefficient d. At 𝐷0= 0.8 when d rises from 0.02 to 0.04, 

the corresponding APDend increase to the value exceeding 95 (Fig. 12a).  However, when d gets 

higher, approaching 0.05, the corresponding APDend drops sharply to the level slightly above 85. 

At 𝐷0 = 1.0 (Fig. 12b), the non-monotonous behavior of the APDend increases in intensity in such 

a way that APDend values oscillate up and down at each incremental shift of d. 

In the next set of simulations, we continue to analyze restitution dependences and 

investigate specifics of BCLend and APDend changes with coefficients 𝑑 and D0 for 𝑚 = 2 

(quadratic) and 𝑚 = 4 (quartic) cases in the Eq. (33) below:  

𝐷[𝑢] = 𝐷0 + 𝑑(𝑢𝑘) 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 2 𝑎𝑛𝑑 4 

(33) 
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We plotted the end behavior for the BCLend vs d. The values for the nonlinear coefficient 

d ranged from 0.0 to 0.1 in increments of 0.01.  

  

 

Figure 13 - Dependences of 𝑩𝑪𝑳𝒆𝒏𝒅 on 𝒅 (𝒙 = 𝟏. 𝟐𝟓𝑳) for 𝑫𝟎 = 𝟎. 𝟒 (black), 𝑫𝟎 = 𝟎. 𝟓 (red) 

and 𝑫𝟎 = 𝟎. 𝟔 (green) in quadratic (𝒌 = 𝟐) (panel a) and quartic (𝒌 = 𝟒) (panel b) models 

of nonlinear diffusion (Eqs. 2). Corresponding smooth color curves are 5th order splines. 

 

Dependences of BCLend in Fig. 13 show oscillations of BCLend vs. d which occur in a wide range 

0 < 𝑑 < 0.1  with slightly higher frequencies for the quartic nonlinear diffusion. It is of notice 

that, unlike quadratic case where BCLend oscillations are stable within practically a whole range 

of 𝑑 for all values of 𝐷0, in the quartic case, stable propagation of excitation waves for greater 

values of 𝑑 > 0.06 is present only at 𝐷0 = 0.6 (Fig. 13b). Overall, observed BCLend oscillations 

evolve in the way that corresponding trends with respect to d are positive (Fig. 13).  
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Figure 14 - Dependences of APDend on d (x=1.25L) for 𝑫𝟎= 0.4 (black), 𝑫𝟎= 0.5 (red) and 

𝑫𝟎= 0.6 (green) in quadratic (panel a, k = 2) and quartic (panel b, k = 4) models of 

nonlinear diffusion (Equations 2). Corresponding smooth color curves are 5th order 

splines.  

 

We determined that dependences of APDend are also oscillatory and have an overall 

positive trend versus parameter d.  However, the amplitudes of these oscillations are smaller than 

those for the BCLend, especially in the quartic case. Similar to BCLend shown in Fig. 13, the 

values of APDend decrease for greater D0, particularly in the quartic case. 

 

 

Discussion 

We demonstrated that using a one-dimensional Fitzhugh-Nagumo model with nonlinear 

diffusion we can successfully simulate the propagation of electrical pulses through healthy 

nerves. We noticed that APDend values are shorter for nonlinear diffusion case at ε = 0.005, 
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although for linear diffusion at ε = 0.006 we observed the opposite. This indicates that ε 

significantly affects stability of AP wavetrains allowing them to propagate with shorter periods 

depending on value of this parameter. 

 

Conclusion 

We implemented a one-dimensional Fitzhugh-Nagumo model to simulate the 

propagation of electrical excitation in healthy nerves. The model was modified to account for 

effects of an action potential nonlinear diffusion evolving due to a significant intracellular 

charge depletion associated with a small size of peripheral nerves. We have found that the 

nonlinear diffusion plays a critical role in the stabilization of propagation in healthy nerves. 

Specifically, we established that reduction in amplitude of nonlinear diffusion term in healthy 

PNs stabilized excitation, so AP wavetrains were able to propagate through the cable at 

substantially shorter BCLs incrementally decreasing at smaller values of ε.  
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CHAPTER III: DEVELOPMENT AND ANALYSIS OF RD MODEL TO DESCRIBE 

APPROPAGATION IN PN WITH IMPAIRED EXCITABILITY   

 

Abstract 

In this section we continue to implement the one-dimensional Fitzhugh-Nagumo model. 

We further modified the FN model from the previous section (CHAPTER II) to include diffusive 

inhomogeneity in order to model conduction related injury in peripheral nerves. Our aim is to 

understand the mechanism of stabilization of action potential propagation in injured nerves. We 

investigated and compared AP propagation in normal and injured peripheral nerves of different 

lengths with varied extension of diffusive injury. We argue that results of our numerical 

simulations may help to gain some understanding of certain electrical conduction related neuro-

pathological phenomena like numbness and tingling and, therefore, assist in identifying potential 

therapeutic targets.  

 

Introduction 

Peripheral nerve injuries (PNIs) remain an important health problem often leading to loss 

of motor function, sensory function, or a combination of both in young and old people. It could 

lead to various challenges to patients ranging from mild discomfort to life-long impairments13. 

PNIs are quite common in the United States and around the world presenting a wide range of 

symptoms depending on how severe it is or what kinds of nerves are involved46–48. In Europe for 

example, PNIs occur at a rate of about 300,000 new cases per year49. While not life-threatening, 

PNIs can lead to a significant decline in a patient’s quality of life. PNIs can be because of 
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accidents or traumas. This types of accidents or traumas could lead to a minor injury or in severe 

cases a fully severed nerve. When this occurs, the body naturally tries a peripheral nerve 

regeneration. Unlike what is observed in other tissues in the body, peripheral nerve injury 

regeneration is often slow and incomplete when it occurs. In most cases, surgical repair 

procedures with gene therapy are combined to enhance recovery after nerve damage. This 

clinical procedure involves the apposition and suturing of the two nerve ends without creating 

tension. Even after this end-to-end surgical nerve repair by suture, functional recovery has been 

quite disappointing due to a lack of selectivity and other factors. While there are a lot of 

resources published on the mechanism of injury and regeneration, not much progress has been 

made on treatments that leads to full recovery13. Many peripheral nerve injuries usually require 

surgical nerve reconstruction. Recovery of motor and sensory functions after a peripheral nerve 

injury is subpar even after a surgical procedure to repair damage. A meta-analysis of median and 

ulnar nerve repairs in 2005 demonstrated that only 52.6% achieve satisfactory motor recovery 

with even less 42.6% experiencing satisfactory sensory recovery50. This is as a result of the slow 

rate of axonal elongation during regeneration and atrophic changes that occur in denervated 

Schwann cells and target muscles with proximal lesions2. 

Anatomy and physiology of Peripheral Nerve Injury 

Even with recent technological advances, the management of peripheral nerve injury 

(PNI) is still a major challenge in medicine. Managing PNI effectively is contingent upon a 

detailed understanding of peripheral nerve anatomy. After an injury to a peripheral nerve, there 

are some complex pathophysiological changes that occur at the site of injury. These changes 

include morphologic and metabolic changes. Changes are not limited to only the site of injury 

but can also be observed in the nerve cell body, in the segments proximal and distal to the site of 
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the injury and in the distal endings of both muscle endplates and sensory receptors. Changes can 

first be noticed in nerve’s cell body as early as several hours after the injury has occurred when 

the axons begin to develop into several regenerating axons. Some of these changes, which are 

morphologic in nature, are called chromatolysis. Chromatolysis involves cell body and nucleolar 

swelling, and nuclear eccentricity.  Metabolic changes can also be observed within the neuron. 

These changes involve the synthesis of RNA, protein components, and lipids, as well as an 

increase in glucose-6-phosphate dehydrogenase and hydrolytic enzyme production51. As we have 

earlier stated, the primary responsibility of peripheral nerves is to transmit signals between the 

spinal cord and other parts of the body. However due to these alterations of its metabolic 

machinery as a result of injury, the peripheral nerve shifts away from this primary responsibility 

and thus takes up the task of fabricating structural components for reconstructing of its injured 

portion52,53.  During the body’s natural attempt at reconstruction after a peripheral nerve injury, 

Schwann cells will begin processes that serve as physical guide to direct axons to their target. 

Recent investigation shows that the rate of axonal regeneration is limited by the extension of 

Schwann cells processes as against what was previously believed – axonal growth54. 

 

Classifications of Nerve Injuries 

There are two different categories of classification for nerve injury – the Seddon and 

Sunderland classifications of nerve injury. A classification scheme is important because it 

enables physicians and scientists communicate about nerve pathophysiology in a common 

language that is generally understandable. Seddon first classified nerve injuries into three 

categories based on the presence of demyelination and severity of damage to the axons and the 

connective tissues of the nerve13,55. Based on severity, Seddon classified nerve injuries into three 
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main categories:  neurapraxia, axonotmesis and neurotmesis. Neurapraxia, which is the mildest 

of them, does not involve nerve discontinuity. It only leads to a transient functional loss. The 

transience of functional loss in neurapraxia is thought to be due to a local ion-induced 

conduction block at the injury site, even though subtle alterations in myelin structure have also 

been observed56. When axonotmesis occurs, there is a complete discontinuity of the nerve axons 

and the surrounding myelin structure. However, the surrounding mesenchymal structures, 

including the perineurium and epineurium are left intact. Neurotmesis is the most severe case. 

This involves a complete severance of a nerve. In this case, functional loss is complete and there 

will be no recovery without surgery. This is because of scar formation and the loss of 

mesenchymal guide which normally directs axonal regrowth. Sunderland on the other hand, 

further classified these three Seddon nerve injury description into five categories/degrees based 

on their severity57. A first-degree injury in Sunderland’s description is equivalent to Seddon’s 

neurapraxia while Sunderland’s second degree is equivalent to Seddon’s axonotmesis. 

Sunderland’s third degree is placed between Seddon’s axonotmesis and neurotmesis. This is 

because in the third-degree nerve injury, there is a severance of the axon and a partial injury to 

the endoneurium. Thus, depending on how severe the endoneurial damage is, functional recovery 

might be possible. Seddon’s neurotmesis is further divided into two different degrees by 

Sunderland; fourth- and fifth-degree injuries. When there is a fourth-degree injury, all parts of 

the nerve are severed except the epineurium. Therefore, recovery is impossible without surgical 

help. The fifth-degree Sunderland’s classification also involves a complete severance of the 

nerve. Likewise, recovery is not possible without surgical intervention. The figure below 

illustrates the comparison of both grading systems. 
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Figure 15 - Gradation in both the Sunderland and Seddon systems of nerve injury 

classification. This figure was adopted from 56 

 

The image in figure 16 below shows a visual representation of a comparison of both 

styles of classification of nerve injury. There have been several attempts to simplify these 

schemes even further by classifying nerves as either degenerative or nondegenerative. Significant 

among them is the method proposed by Thomas and Holdroff58. However, this has not been 

widely accepted.  
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Figure 16 - Visual classification of nerve trauma13 

Current techniques in nerve injury treatment 

Peripheral nerve injuries are quite a common encounter in clinical practice. As we stated 

earlier, there are classifications of nerve injuries (Sutherland’s and Seddon’s) where natural 

rejuvenation and recovery is not possible. Surgical intervention is key to recovery. Here we 

discuss some of these surgical methods that have been developed to repair damaged peripheral 

nerves. 
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Direct Nerve Repair 

Direct nerve repair involves a direct apposition of the two close and damaged ends of a 

peripheral nerve with the aim of suturing both ends together. This is recommended only when 

the two nerve ends to be sewn together can be held by a single 8-0 suture (0.04mm) with little to 

no tension59. Under this method of direct nerve repair are three techniques namely epineural 

repair, perineural repair and group repair. Epineural repair, which is the conventional technique 

for suturing lacerated nerves, involves aligning the nerve ends and placing sutures through the 

epineurium only60–62. It has the advantage of short operating time and a relative ease of the 

surgical procedure. Perineural repair is a technique of nerve repair that is used only when the 

repair involves 5 fascicles or less. The technique involves repairing individual fascicles and 

placing sutures through the perineurium60. Group repair is a technique that is used at an injury 

site where the nerves branch out such that fascicles are grouped.  

Nerve Graft 

A nerve graft is a piece of nerve whose extraneural support tissues will align and guide 

the outgrowth of axons from the proximal stum of a discontinuous nerve towards its target63. 

Nerve graft surgery is appropriate when the gap between damaged nerve ends is greater than 

2cm and there is an extensive loss of nerve tissue. Nerve graft is the method of choice when 

direct end-to-end suturing is impossible64. Three common types of nerve graft are cable graft, 

trunk graft and vascularized nerve graft62. 

Nerve transfers 

In nerve transfers, also referred to as neurotization, a proximal and functioning nerve 

which serves as a donor is used to repair the distal denerved nerve. In other words, either a 

healthy but less valuable nerve or its proximal stump is transferred with the aim that it innervates 
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a more important sensory or motor territory that has lost its innervation as a result of irreparable 

damage to its nerve65 

Even with these surgical repairs and interventions, recovery rate is not encouraging. A 

recent study involving 51 patients over a 15-year period (2006-2020) showed that only 

approximately 42% of patients recovered to useful functional state after surgical treatment of 

nerve injuries66. 

To improve these outcomes, one needs to better comprehend pathophysiological features 

of the injured PN’s electrical conduction which are currently insufficiently understood. In the 

following section, we will focus on numerical simulations of such features and determine the 

most stable regimes of propagation of electrical excitation characterized by shortest AP 

wavetrains. 

Method 

RD equations with nonlinear diffusion which model propagation of excitation in 1D PN 

with injury described by zones of impaired electrical conduction. 

In this section, we are considering a grade III injury according to the Sutherland 

classification. This means that the axon is completely severed and there is an extensive damage 

to the endoneurium. In this case, there is a partial conduction block both proximally and distally 

and spontaneous recovery while possible, is difficult. To model and describe the propagation of 

excitations in small peripheral nerves with this level of injury, we modified the model from the 

previous chapter by considering an excitable cable with an area of inhomogeneous diffusion. The 

equation below describes this inhomogeneity mathematically: 

 𝜕𝑢

𝜕𝑡
= 𝐷[𝑢]

𝜕2𝑢

𝜕𝑥2
− 𝐴(𝑢 − 𝑚1)(𝑢 − 𝑚2)(𝑢 − 𝑚3) − 𝑣 + 𝐼𝑠𝑡𝑖𝑚 

(34) 
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𝑑𝑣

𝑑𝑡
= 𝜀(𝛾𝑢 − 𝑣) 

𝐷[𝑢] = 𝐷0 + 𝑑𝑠[𝑥](𝑢2) 

𝑑𝑠(𝑥) = −0.5𝛽[tanh(3(𝑥 − 𝐿 + 𝛼)) − tanh(3(𝑥 − 𝐿 − 𝛼))] 

𝐼𝑠𝑡𝑖𝑚
𝑖𝑛𝑗

= 𝐼𝑠𝑡𝑖𝑚 + 𝐼𝑎𝑑𝑑 

The width of the injury zone is controlled by parameter . The higher the value of , the wider 

the injury profile. Everything here will be considered in the case of quadratic diffusion term. 

Without restriction of generality, we placed the inhomogeneity at the center of the cable and 

extended the previous cable twice as much. We also displaced the inhomogeneity towards the 

end of the cable and compared results. The figure 17 below shows a cable with the injury zone 

positioned in the middle of the cable where diffusion is varied according to . 

 

Figure 17 - Excitable cable with inhomogeneous diffusion injury profile ds(𝑥) described by 

equations 35.  = 𝟐. 𝟎, 𝛽 = 0.18 𝐿 = 200∆𝑥. Inhomogeneous injury is located at the center 
of the cable. 

 

Results 
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Initiation of wavetrains of excitation in injured PN   

The system of Equations 34 produces a variety of solutions in response to periodic 

stimulations of injured PNs. Since injured PNs have reduced ionic conductance, the propagation 

of excitation wavetrains in the areas of injury can get destabilized. Under these conditions one 

needs to apply a stronger than without injury initial stimulus  (Equations 34) to 

initiate the propagation of excitation.   

The stimulation  has been applied periodically (BCL=200∆𝑡) at 𝑥 = 0 end of the 

injured PN. The main part of the stimulus had the same as in the system of equations 31; 

amplitude equal to 0.5. To secure stable propagation of the excitation wavetrain throughout the 

whole injured cable, the additional shifted in time (∆𝑇 = 60∆𝑡) stimuli 𝐼𝑎𝑑𝑑 of the 3% amplitude 

of primary currents were applied at the same BCL at the same end of the cable.   

Dependences of 𝐁𝐂𝐋𝐞𝐧𝐝 on D0 for nonlinear quadratic diffusion at different values of 

amplitudes in injured PNs and with injury at the center of the cable  

In this section we do not change the amplitude of the coefficient of nonlinear diffusion, 

so parameter 𝛽 in Equations 34 is constant.  Instead, we alter the magnitude of 𝐷0 and observe 

changes in BCLend in response to variations of D0 (Fig. 18).  
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Figure 18 - Dependence of BCLend on 𝐷0 with injury located at the center of the PNs. Panels 

(a), (b) are computed for 𝛼 = 7 and 2, respectively. The green and red lines in both panels 

relate to L= 200Δ𝑥 and L= 400Δ𝑥, respectively. δ= 0.45 and 𝛽 = 0.12. 

 

Figure 18a demonstrates that for longer injury (α = 7) oscillatory behavior of BCLend is 

practically synchronous in the lower range of 𝐷0 < 0.5. However, for values of 𝐷0 greater than 

0.5 the phases of BCLend oscillations gradually diverge suggesting a decline of resonant diffusion 

patterns. These patterns considerably alter for shorter injury regions (α = 2) as synchronous 

oscillations, unlike figure 18a, appear only at 𝐷0 > 0.5 (figure 18b). It should be noted that 

regardless of the injury’s spatial extension the amplitude of BCLend oscillations for longer PNs is 

noticeably higher compared to PNs of shorter length.  
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Comparison of dependences of 𝐁𝐂𝐋𝐞𝐧𝐝 on D0 for nonlinear quadratic diffusion at different 

values of cable lengths in injured PNs and with injury at the end of the cable.  

 

Figure 19 - Excitable cable with inhomogeneous diffusion injury profile ds(𝑥) described by 

equations 35. α =2.0, 𝛽 = 0.18 𝐿 = 200∆𝑥. Inhomogeneous injury at the end of the cable. 

 

In this section we also do not change the amplitude of the coefficient of nonlinear 

diffusion, so parameter 𝛽 in Equations 34 remains intact.  Instead, we alter the magnitude of 𝐷0 

and observe changes in BCLend in response to variations of D0 and compare with different injury 

locations (middle of the cable and end of the cable) for various lengths (200Δ𝑥 and 400Δ𝑥) 
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Figure 20 - Dependence of BCLend on 𝐷0 with injury located at both the center (red) and 

end (green) of the PNs. Panels (a), (b) are computed for lengths 𝟐𝟎𝟎∆𝒙 and 𝟒𝟎𝟎∆𝒙 

respectively.  In both cases 𝛼 = 2, δ= 0.45 and 𝛽 = 0.12.  

 

The Fig. 20a demonstrates that for injuries located at the center and at the end of the PN 

of shorter length, oscillatory behavior of BCLend is synchronous in the higher range of 𝐷0 > 0.5. 

However, for values of 𝐷0 less than 0.5 the phases of BCLend oscillations gradually diverge 

suggesting a decline of resonant diffusion patterns. Further, for longer PNs there was completely 

no synchronicity of BCLend vs D0 oscillations between the cases when injury was located at the 

end and at the center of PN.  

 

The Evolution of action potential in longer cable length with injury at the center of the 

cable. 

In order to reveal the mechanism of BCLend oscillations in injured PNs we studied the 𝐷0 

dependent spatiotemporal evolution of AP waves in longer PN shown in Fig. 21-23. 
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Figure 21 - Spatiotemporal evolution of action potential (blue curve) in PN with injury 

located at its center shown in green. Red curve is a recovery variable. This evolution is 

determined at PN stimulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.49, δ= 0. 45 and 𝛽 
= 0.12. The length of the cable is 400∆𝑥, time distance between snapshots is 28∆𝑡, time for 

the upper left panel snapshot is 6∆𝑡. 
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Figure 22 - Spatiotemporal evolution of action potential (blue curve) in a PN with injury 

located at its center shown in green. Red curve is a recovery variable. The evolution is 

determined at PN simulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.5, δ = 0.45 and 𝛽 = 
0.12. The length of the cable is 400∆𝑥, time distance between snapshots is 20∆𝑡, time for 

the upper left panel snapshot is 5∆𝑡. 
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Figure 23 - Spatiotemporal evolution of action potential (blue curve) in a PN with injury 

located at its center shown in green. Red curve is a recovery variable. The evolution is 

determined at PN simulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.51, δ = 0.45 and 𝛽 
= 0.12. The length of the cable is 400∆𝑥, time distance between snapshots is 17∆𝑡, time for 

the upper left snapshot is 6∆𝑡. 

 

As depicted in figures 21-23 periodic stimuli applied at the left ends of the injured PNs 

initiate the propagation of AP waves with length and speed increasing for greater values of 𝐷0. 

The AP waves gradually evolve in time until they reach entirely developed steady state regimes 
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with progressively shortening periods of time 𝑇𝐹(21) = 224∆𝑡, 𝑇𝐹(22) = 160∆𝑡 and 𝑇𝐹(23) = 

102∆𝑡  as shown in figures 21, 22 and 23, respectively.   

To allow additional waves to be inserted after each successive stimulation applied at PN’s 

left end, the corresponding duration of BCLend should be shorter than any of mentioned above 

values of 𝑇𝐹(𝑖). Fig. 21 and 22 show AP evolutions when this condition is met, so both 𝑇𝐹22 and 

𝑇𝐹23 are greater than BCLend = 152∆𝑡 depicted in Fig. 18a (𝐷0 = 0.49 − 0.5, red curve). 

However, when 𝐷0 increases further to 0.51 (Fig. 23) the speed and spatial dimensions of 

the AP wave rapidly increase to the level sufficient to prevent multiple wave insertions. Indeed, a 

really wide steady state AP wave forms just within a short period of time (𝑇𝐹(23) = 102∆𝑡) after 

only two wave insertions resulting in much greater value of  BCLend = 474∆𝑡. 

Further growth of 𝐷0 establishes conditions when only one AP wave can propagate in 

PN. When this wave approaches to the right end of PN, repolarization variable, 𝑣, is almost at 

the level of equilibrium, so multiple wave insertions shown in Fig. 21 and 22 may occur again, 

thus ensuring subsequent shortening of BCLend and continuation of BCLend oscillations. 

 

Evolution of action potential in longer PN with injury located at the end of the PN. 

We further studied the 𝐷0 dependent spatiotemporal evolution of AP waves in PN of 

length 400∆x but with injury located at the end of the PN (Fig. 24 - 26). 
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Figure 24 - Spatiotemporal evolution of action potential (blue curve) in PN with injury 

located at the end of cable shown in green. Red curve is a recovery variable. This evolution 

is determined at PN stimulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.49, δ= 0. 45.  

The length of the cable is set at the value of 400∆𝑥, time distance between snapshots is 

12∆𝑡, time for the upper left snapshot is 6∆𝑡. 
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Figure 25 - Spatiotemporal evolution of action potential (blue curve) in PN with injury 

located at the end of cable shown in green. Red curve is a recovery variable. This evolution 

is determined at PN stimulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.50, δ= 0. 45. 

The length of the cable is set at the value of 400∆𝑥, time distance between snapshots is 

18∆𝑡, time for the upper left snapshot is 4∆𝑡. 
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Figure 26 - Spatiotemporal evolution of action potential (blue curve) in PN with injury 

located at the end of cable shown in green. Red curve is a recovery variable. This evolution 

is determined at PN stimulations period equal to BCLend for 𝛼 = 7.0, 𝐷0 = 0.51, δ= 0. 45. 

The length of the cable is set at the value of 400∆𝑥, time distance between snapshots is 

26∆𝑡, time for the upper left snapshot is 6∆𝑡. 
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Figures 24-26 demonstrate that unlike the previous case (injury at the center of the 

cable) periodic stimuli applied at the left ends of the injured PNs initiate the propagation of AP 

waves with length and speed decreasing for greater values of 𝐷0. Just like in the previous case, 

the AP waves gradually evolve in time until they reach developed steady state regimes. 

However, in this case, as 𝐷0 increase the periods of time between successive APs get longer 

growing from 𝑇𝐹(24) = 492∆𝑡 to 𝑇𝐹(25) = 506∆𝑡 and 𝑇𝐹(26) = 544∆𝑡  (Fig. 24 - 26).   

   

   

 

 

Figure 27 - Spatiotemporal evolution of action potential (blue curve) in PN with injury 

located at its center (first row) and end (second row). Similar sequence in PN without 

injury is shown in third row. Red curve is a recovery variable. Upper panels shown from 

left to right correspond to 𝐷0 = 0.49, 0.5, and 0.51, respectively. Bottom panel relates to 𝐷0 

= 0.51. Stimulations applied at the left ends of PNs occur at periods equal to BCLend. Other 

parameters are δ= 0.4. 𝛼 = 7.0.   
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Figure 27 readily demonstrates that as the value of 𝐷0 increases the AP wavelength may 

get longer or shorter depending on location of the injury. Such alteration can be explained from 

the following considerations. If the injury is located at the center of PN, the AP wave does not 

have enough space to reach its steady state length and slows down sufficiently fast right after 

its initiation at the entrance of the nerve. It happens because the area of injury is somewhat too 

close to the entrance of PN. Such decelerated wave propagation contributes to the insertion of 

additional AP waves since the initial wave is sufficiently short. When injury is away from the 

entrance and closer to the end of the nerve, the initial AP wave accelerates significantly and 

gets substantially longer thus preventing the insertion of additional waves of comparable 

length. It should be noted that, as one would expect, regardless of values of 𝐷0 the reported in 

Fig. 27 periods 𝑇𝐹(𝑖) are greater than the average BCLend estimate of 440∆𝑡1 computed for the 

case of PN with no injury.    

 

Discussion 

It was observed that stability of AP propagation was different in injured and healthy 

nerves. We noticed that oscillations of BCLend were present in both healthy and injured PNs but 

 

1  Since simulations in injured PN were performed around 𝐷0 = 0.5 we compared 𝑇𝐹 

measurements with similar D0 values and mid values of nonlinear diffusion red curve in Fig. 

13a, 𝑑 = 0.02, 𝐷0 = 0.5). 
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in injured PNs they had markedly higher amplitudes dependent on the nerve’s length and the 

extension of its injured part. It has been noticed that at longer injuries the BCLend oscillations 

did not significantly differ between longer and shorter PNs. However, at shorter injuries 

average BCLend values were significantly shorter especially in the lower range of 𝐷0 smaller 

than 0.5. Also, it was found that in healthy nerves BCLend oscillations evolved with a positive 

diffusion dependent trend while the same oscillations in injured PNs occurred almost without a 

shift in equilibrium values of BCLend. Furthermore, we noted a distinct alternating behavior in 

spatiotemporal evolution of AP waves in injured PNs with injuries at the center and at the end 

of the nerve.  

Conclusion 

We opine that it is reasonable to conclude that high amplitude oscillations of BCLend 

analyzed in our model of excitation in injured PNs could be associated with tingling (short 

BCLend) and numbness (prolonged BCLend) typical for various peripheral neuro-pathologies 

associated with impaired electrical conductance67. Results of our study may improve 

monitoring of peripheral nerve growth and enhance adjustment of propagation of excitation to 

re-establish impaired connectivity in injured peripheral nerves.   
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CHAPTER IV: CONCLUSIONS 

 

In this thesis, we investigated the stabilization of propagation in healthy and injured 

peripheral nerves with impaired electrical conductance. Current work on injured peripheral 

nerves, which is mostly limited to the medical field, focuses primarily on surgical interventions 

to repair severely damaged nerves without hopes of natural spontaneous recovery. In Chapter II 

and Chapter III, we were able to establish the theoretical framework that can help monitor the 

regrowth of injured peripheral nerves and also improve the propagation of excitation in such.  

In Chapter I, we introduced models that can be used to describe excitability in excitable 

media in general. We also introduced some theoretical background that was used as a framework 

to develop the model we eventually used.  

In Chapter II, we demonstrated that a 1D FN model which we modified to include 

nonlinear diffusion, is adequate to describe propagation of action potential in a small healthy 

peripheral nerve. We showed that every parameter of the nonlinear diffusion component plays a 

very important role in the stabilization of propagation in healthy peripheral nerves. We also 

observed that there was some form of dependency of stability on FN relaxation parameter ε. We 

further established the oscillatory dependance of BCLend and APDend on d in both the quadratic 

and quartic cases of the nonlinear diffusion. We found that while both BCLend vs d and 

APDend vs d curves trended positively upwards, the APDend vs d curves generally presented 

lower amplitudes of oscillation in both quadratic and quartic cases. 

In Chapter III, we modified the model from Chapter II even further by replacing its 

nonlinear diffusion coefficient d, with inhomogeneous diffusion 𝑑𝑠(𝑥) to model the area of 

injury in peripheral nerves.  Due to severe demyelination in severe injury, we were considering, 
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there was a reduction in ionic conductance and complete conduction block. As a result of this 

conditions, we applied a stronger initial stimulus   , than when we investigated healthy 

peripheral nerves. To ensure that there was a stable propagation of excitation throughout the PN, 

we included additional stimuli which was 3% amplitude of the primary current initially applied 

at the left end of the cable.  We went further to analyze the dependance of 𝐵𝐶𝐿𝑒𝑛𝑑 and 𝐴𝑃𝐷𝑒𝑛𝑑  

on 𝐷0 for various lengths of the PN.  We found that the dependance in both cases were 

oscillatory in behavior. Furthermore, we observed that irrespective of the spatial extension of the 

injury, the amplitude of 𝐵𝐶𝐿𝑒𝑛𝑑oscillation is higher in longer PNs than shorter ones. We 

concluded the chapter by showing the spatiotemporal evolution of action potential in PNs with 

injury at the center and at the end. We found that patterns of insertion of additional waves at the 

left end of the PN alternated depending on location of the injury. 
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APPENDIX A: COMPUTATION FOR COMPARISON OF RESTITUTION  

"""Created by Olu Oni at 10/21/20 

""" 

Program to compute comparison between linear and nonlinear restitution 

""" 

import numpy as np 

from matplotlib import pyplot as plt 

 

# Geometry 

x1 = 0 

x2 = 400 

 

# Spatial grid 

dx = .5 

nx = int((x2 - x1) / dx) 

x = np.linspace(x1, x2, nx) 

 

# Time grid 

dt = dx / 10 

nt = 100000 

 

# media property 

 

epsilon = 0.005 

gamma = 2.0 

a = -2.0 

u0, u1, u2 = 0, .63, 2.25 

diff = u2 - u1 

check = 0 

check1 = True 

counter = 0 

amax = 9.0 

q = 5.0 

flag = False 

kmax = 120 

kcount = 0 

taStart = 0 

taEnd = 0 

startTimer = 0 

endTimer = 0 

 

 

 

def f(x, u0, u1, u2): 

    """ 



 

  73 

    reaction function for FitzHugh Nagumo model 

    :param x: independent variable 

    :param u0: typically 0 

    :param u1: point of equilibrium 1 

    :param u2: point of equilibrium 2 

    :return: the function a(x-u0)(x-u1)(x-u1) 

    """ 

    return a * (x - u0) * (x - u1) * (x - u2) 

 

 

def diff_func(d): 

    return d 

 

def diff_func_D(D0, d, u): 

    """non-linear diffusion function""" 

    return D0 + d * u ** 2 

 

 

def fn_computation(kcount, flag, startTimer, endTimer, taStart, taEnd, epsilon, gamma, 

D0, d, dk, testSpot, 

                   status): 

    global label 

    u = np.zeros(nx) 

    v = u 

    APD_plot = [] 

    DI_plot = [] 

    print(coeffs) 

    time = np.zeros((kmax, 2)) 

 

    for k in range(kmax): 

        period = 12007 - k * dk 

        tapd = [] 

        tdi = [] 

 

        for n in range(1, nt + 1): 

            # continuous propagation 

            if n % period == 0: 

                u[0:10] = u2 - u1 

 

            un = u.copy() 

            vn = v.copy() 

            if status == "nlinear": 

                u[1:-1] = un[1:-1] + dt * (f(un[1:-1], u0, u1, u2) - vn[1:-1]) + diff_func_D(D0, 

d, un[1:-1]) * \ 

                          (dt / dx ** 2) * (un[2:] - 2 * un[1:-1] + un[0:-2]) 

                label = f"{D0} + ${d}*u^2$" 
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            else: 

                u[1:-1] = un[1:-1] + dt * (f(un[1:-1], u0, u1, u2) - vn[1:-1]) + diff_func(D0) * \ 

                          (dt / dx ** 2) * (un[2:] - 2 * un[1:-1] + un[0:-2]) 

                label = f"$D_0 = {D0}$" 

                # setting Boundary Conditions 

            u[0] = u[2] 

            u[-1] = u[-3] 

            v = vn + dt * (epsilon * (gamma * un - vn)) 

 

            if not flag and u[testSpot] > 0.5: 

                flag = True 

 

            if abs(u[testSpot] - v[testSpot]) < 0.01 and u[testSpot + 10] < u[testSpot] and 

startTimer < 0 and flag: 

                taStart = n 

                tdi.append(taStart - taEnd) 

                startTimer = 500 

 

            if abs(v[testSpot] - u[testSpot]) < 0.01 and u[testSpot + 10] > u[testSpot] and 

endTimer < 0 and flag: 

                taEnd = n 

                tapd.append(taEnd - taStart) 

                # count += 1 

                endTimer = 500 

 

            startTimer -= 1 

            endTimer -= 1 

        if tapd: 

            if (tapd[-1] - tapd[-2]) < 10 and (tdi[-1] - tdi[-2]) < 10: 

                try: 

 

                    time[kcount, :] = [tapd[-1] * dt, tdi[-1] * dt] 

                    print([tapd[-1] * dt, tdi[-1] * dt]) 

                except IndexError: 

                    addition = np.array([tapd[-1] * dt, tdi[-1] * dt]) 

                    time = np.vstack((time, addition)) 

            else: 

                break 

        kcount += 1 

    time = time[~np.all(time == 0, axis=1)] 

    plt.scatter(time[:, 1], time[:, 0], label=label, ) 

    plt.plot(time[:, 1], time[:, 0]) 

    plt.xticks(fontsize=15) 

    plt.yticks(fontsize=15) 

    return [tapd[-1] * dt, tdi[-1] * dt] 

 



 

  75 

 

D = [1.0, ] 

coeffs = [ .02,.03, .04, .05] 

for D0 in D: 

    for d in coeffs: 

        fn_computation(kcount, flag, startTimer, endTimer, taStart, taEnd, epsilon, gamma, 

D0, d, dk=160, testSpot=100, 

                       status="nlinear") 

        print("\n") 

        fn_computation(kcount, flag, startTimer, endTimer, taStart, taEnd, epsilon, gamma, 

D0, d, dk=160, 

                       testSpot=100, status="linear") 

 

        plt.ylabel(r'APD ,$\Delta t$', fontsize=20) 

        plt.xlabel(r'RI ,$\Delta t$', fontsize=20) 

        plt.xticks([250, 350, 450], fontsize=25) 

        plt.yticks([80, 90, 100, 110, 120,], fontsize=25) 

    plt.show() 

plt.show()
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APPENDIX B: COMPUTATION FOR END OF APD AND BCL  

from matplotlib import pyplot as plt 

import pandas as pd 

import numpy as np 

""" 

Created on Wed Nov 25 08:45:08 2021 

 

@author: OTONI 

""" 

 

""" 

# Created by Olu Oni at 10/21/20 

 

""" 

 

Program to compute the end of APD and BCL 

""" 

 

# Geometry 

x1 = 0 

x2 = 400 

 

# Spatial grid 

dx = .5 

nx = int((x2 - x1) / dx) 

xx = np.linspace(x1, x2, nx) 

 

# Time grid 

dt = dx / 10 

nt = 100000 

 

# media property 

 

epsilon = 0.005 

gamma = 2.0  # 2.0 original 

a = -2.0 

u0, u1, u2 = 0, .63, 2.25 

diff = u2 - u1 

check = 0 

check1 = True 

counter = 0 

amax = 9.0 

q = 5.0 

flag = False 

kmax = 120 
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kcount = 0 

taStart = 0 

taEnd = 0 

startTimer = 0 

endTimer = 0 

checker = True 

checker1 = True 

I_stim = 0.0045 

 

def heaviside_funct(): 

    t = np.linspace(0, 10, 398) 

    N = len(t) 

    A = 0.005 

    shift = 0 

    u = np.zeros(N) 

    for i in range(0, N): 

        if t[i] >= -shift: 

            u[i] = A 

    return u 

 

 

def f(x, u0, u1, u2): 

    """ 

    reaction function for FitzHugh Nagumo model 

    :param x: independent variable 

    :param u0: typically 0 

    :param u1: point of equilibrium 1 

    :param u2: point of equilibrium 2 

    :return: the function a(x-u0)(x-u1)(x-u1) 

    """ 

    return a * (x - u0) * (x - u1) * (x - u2) 

 

 

def diff_func(d): 

    return d 

 

 

def diff_func_D(D0, d, u): 

    """non-linear diffusion function""" 

    return D0 + d * u ** 2 

 

 

def new_diff_func_D(D0, u, x, sigma, a, c): 

    return D0 + sigma * (np.tanh(3 * (x + a)-c) - np.tanh(3 * (x - a)-c)) * u ** 2 
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def fn_computation(kcount, flag, startTimer, endTimer, taStart, taEnd, epsilon, gamma, 

D0, dk, testSpot): 

    global label, checker, n 

    df = pd.DataFrame(columns=['x', 'APD', 'DI', 'BCL',]) 

    u = np.zeros(nx) 

    v = u 

    xvalue = [0] 

     

    # injury profile 

    x1 = np.linspace(0, 400, 1000) 

    s = -0.5 

    b = 3.0 

    a = 7.0 

    d = 0.12 * 10 

    c = 600 

    y1 = s*d*(np.tanh(b*(x1+a)-c) - np.tanh(b*(x1-a)-c)) 

 

    for x in xvalue: 

        time = np.zeros((kmax, 2)) 

        for k in range(kmax): 

            period = (12007 - k * dk) 

            tapd = [] 

            tdi = [] 

            if period < 0: 

                break 

         

            for n in range(1, nt + 1): 

                # continuous propagation 

                if n % (period) == 0: 

                    u[0:10] = (u2 - u1)/2.5 

                un = u.copy() 

                vn = v.copy() 

                u[1:-1] = I_stim + un[1:-1] + dt * (f(un[1:-1], u0, u1, u2) - vn[1:-1]) + 

new_diff_func_D(D0, u[1:-1], x, sigma=0.1, a=2.0,c=1050) * \ 

                            (dt / dx ** 2) * (un[2:] - 2 * un[1:-1] + un[0:-2])  

                label = f"{D0} + ${0.5 * (np.tanh(3 * (x + 2.0)) - np.tanh(3 * (x - 2.0)))}*u^2$ 

for x = {round(x, 3)}" 

                

                

                # setting Boundary Conditions 

                u[0] = u[2] 

                u[-1] = u[-3] 

                v = vn + dt * (epsilon * (gamma * un - vn - 0.4))                              

                if not flag and u[testSpot] > 0.5: 

                    flag = True 
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                if abs(u[testSpot] - v[testSpot]) < 0.01 and u[testSpot + 10] < u[testSpot] and 

startTimer < 0 and flag: 

                    taStart = n 

                    tdi.append(taStart - taEnd) 

                    startTimer = 500 

 

                if abs(v[testSpot] - u[testSpot]) < 0.01 and u[testSpot + 10] > u[testSpot] and 

endTimer < 0 and flag: 

                    taEnd = n 

                    tapd.append(taEnd - taStart) 

                    # count += 1 

                    endTimer = 500 

 

                startTimer -= 1 

                endTimer -= 1 

                 

                

 

            if len(tapd) > 1: 

                if (tapd[-1] - tapd[-2]) < 10 and (tdi[-1] - tdi[-2]) < 10: 

                    try: 

                        time[kcount, :] = [tdi[-1] * dt, tapd[-1] * dt] 

                        data1 = pd.DataFrame(u) 

                    except IndexError: 

                        addition = np.array([tdi[-1] * dt, tapd[-1] * dt]) 

 

                        time = np.vstack((time, addition))             

            kcount += 1 

        xmax, ymax = time.max(axis=0) 

 

        time = time[~np.all(time == 0, axis=1)] 

        if x == 0: 

            plt.scatter(time[:, 0] + time[:, 1], time[:, 0],) 

        data = pd.DataFrame(time) 

        # data.to_excel(f'sample_data{D0}_1.xlsx', sheet_name=f'{D0}', index=True) 

         

        try: 

            df = df.append({'x': x, 'DI': time[-1][0], 'APD': time[-1][1], 'BCL':time[-1][0] + 

time[-1][1]}, ignore_index=True) 

        except IndexError: 

            # break 

            pass 

    return df 

 

def collated_calc(D, coeffs): 

    df1 = pd.DataFrame({'x': coeffs}) 
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    ax = None 

    for D0 in D: 

        print(D0) 

 

        df = fn_computation(kcount, flag, startTimer, endTimer, taStart, taEnd, 

                            epsilon, gamma, D0, dk=160, testSpot=200, 

                            ) 

        print("\n") 

        print(df) 

        leg = plt.legend(loc='upper left', ncol=2, mode=None, shadow=True, 

fancybox=True) 

        leg.get_frame().set_alpha(0.5) 

        plt.title("Plot of restitution for various corresponding to alpha = 4.0 with Istim") 

        plt.xlabel("BCL") 

        plt.ylabel("APD") 

        plt.show() 

        df1 = df   

        df1.columns = ['i', 'DI', f'APD for D0 = {D0}', f'BCL for D0 = {D0}']   

    return df1 

D = [.52,] 

xvalue = [0.0] 

soln = collated_calc(D, xvalue) 
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