
OH, JIYOUNG, M.S. Stabilizing RED Queue Oscillation using the Logistic Map in
AutoRED Mechanism. (2009)
Directed by Dr. Shan Suthaharan. 108 pp.

Active queue management (AQM) is one of the ways to control congestion at

Internet Routers. One of the widely used AQM’s is the random early detection (RED)

scheme. The RED scheme suffers from chaotic queue oscillation problem particularly in

a highly congested network. It causes jitter, high queuing delay when the queue size stays

high, and underutilization when the queue size is low. Recently AutoRED algorithm has

been proposed as a solution to the chaotic queue oscillation problem in that AutoRED

calculates the weight, wq, continuously as opposed to a constant value set by a user [1].

AutoRED displays the reduction of the chaotic queue oscillation by network performance

metrics and queue behavior graphs, but there has been no metric known to measure the

degree of queue oscillation in terms of its effect on the Quality of Service (QoS).

The purpose of the present study is twofold. Firstly, the possibility of an

improvement by modifying AutoRED using a Logistic Map is investigated. This new

technique introduces a user control parameter that can contribute to further

improvements. Secondly, a new metric is proposed to show the degree of queue

oscillation with regards to its effect on the QoS. The experiments are done by applying

the new technique to network simulations in TCP only and TCP and UDP combined

traffic environments. The results are compared with RED and AutoRED with regards to

the proposed metric coupled with the network performance measurements and the

statistical measurements of the queue behavior.

STABILIZING RED QUEUE OSCILLATION

USING THE LOGISTIC MAP IN

AUTORED MECHANISM

by

Jiyoung Oh

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2009

Approved by

Committee Chair

To my heavenly Father for His unfailing love

and

To my earthly parents for their patience and support

ii

APPROVAL PAGE

 This thesis has been approved by the following committee of the Faculty of The

Graduate School at The University of North Carolina at Greensboro.

 Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination

iii

iv

ACKNOWLEDGMENTS

A great deal of appreciation goes to Dr. Shan Suthaharan for his continual support

and guidance. I am also thankful to Rev. Yoochan Choi and the congregation of the

Korean First Presbyterian Church for their financial support during this semester. My

appreciation also goes to Jungho Pak for proofreading and Gloria Fang for supporting it

financially.

Last but not least, I am grateful for the support and encouragement of John C.

Chang and his family, and Jonghee Shim.

v

TABLE OF CONTENTS

Page

CHAPTER

I. INTRODUCTION ...1

Overview ...1
Research Problem ..6
Structure of Thesis...8

II. PRELIMINARIES ...9

RED Algorithm ...9
AutoRED Algorithm ...13

III. A NEW PROPOSED TECHNIQUE ...18

Fundamentals of the Logistic Map ..18
A New Technique: Lmap-RED ...21

IV. A NEW PROPOSED METRIC ...24

Background ...25
A New Metric: Segmented Time for QoS ...27

V. RESULTS ..35

TCP-only Environment ...41
TCP and UDP Combined Environment ..65

VI. DISCUSSIONS ..85

VII. CONCLUSIONS..96

REFERENCES ..98

APPENDIX A. Lmap-RED SIMULATION DATA ...100

1

CHAPTER I

INTRODUCTION

Overview

The past two decades have seen the Internet growing from a network of a group

of researchers to a worldwide communication channel and information reservoir. As

more technologies are developed, many new facets have been added to the textual, wired-

based communication. On top of that, crossover between data networks and traditional

PSTN channels and cellular networks are increasingly more available essentially creating

an integrated communication environment.

High quality of service coupled with minimal delay has been the expectations of

Internet users. The realization of such expectations has been made more difficult by the

exponential growth of the number of users as the applications and services offered

through the Internet become more versatile. Given that the existing resources in the

network infrastructure would not be able to meet all of the needs of service providers and

end users, the network channels are often congested. This happens particularly at what is

known as a bottleneck which is a network link whose bandwidth is not sufficient enough

to meet the aggregate demand of the network links that are directly connected with.

Intermediate devices known as routers or gateways interfaced with such bottleneck where

2

traffics from end users and from other gateways pass through are most likely to

experience high levels of congestion.

The control of such congested traffic has become one of the main research topics

in the field of computer networks. The goal is to maximize the throughput while

minimize the delay and loss at the same time. Researchers have approached solving this

problem from largely two angles. One approach looks into controlling data sending rate

at the end user level whereas the other considers the congestion control mechanism at the

gateway level.

The first approach incorporates a mechanism that reacts to congestion level by

controlling data sending rate at the end user level. Simply put, when resources are

available end user’s data gets transmitted at a higher rate and when the network

congestion is sensed the end user data transmission goes into an abeyance and slowly

resumes as it probes the congestion level of the network. This congestion avoidance

mechanism was first introduced by Nagle [2] triggered by the “Internet meltdown” which

occurred in the mid 80’s during the early growth of the Internet. Transmission Control

Protocol (TCP) employs this mechanism in its variants that increases and reduces the

transmission rates of end user data based on the congestion level. Such variations include

Tahoe [3], Vegas [4], and Reno [5]. TCP schemes “sense” the congestion level by

absence and delay of acknowledgement packets from recipient based on the time-out

determined either by a fixed timer or an adaptive retransmission timer [6]. This works as

a feedback from the network. TCP then applies its response to a window size which

works as a leash to the packet transmission rate. TCP Reno, for example, reduces its

3

window size to half when congestions is sensed and then increase it one-by-one in

recovery as the mechanism receives acknowledgement packets.

While this governs the behavior of the transmission at the end user level, the

Internet gateways or routers also have to be controlled because packets do not travel from

one end to the other on a single hop but each packet may travel different routes consisted

of various bandwidths and network conditions and a number of gateways that

interconnects such diverse network routes. As a packet is received at a router, the router

reads the packet, determines an appropriate port based on the destination address, and

then sends the packet on the port onto the next hop. To improve router performance and

control the congested traffics, mainly two approaches have been made.

One approach, known as “scheduling”, deals with the order of processing packets

by their types or priorities. This provision is to improve the QoS based on traffic types

and priorities which gateways employing only the best effort mechanism cannot adhere

to. In this mechanism, packets have indications for their types and priorities recognized

by the scheduling policy which in turn allocates bandwidth accordingly.

The other group of researchers have worked on mechanisms categorized as

“queue management” algorithms [7]. Routers are equipped with a queue or buffer that

holds incoming packets while processing one packet at a time. Queue management

algorithms determine when and how to drop packets. Dropped packets become lost and

the end user will sense the network congestion by the absence of acknowledgement

packets for the lost packets. The most widely deployed mechanism of managing the

queue is known as “Drop Tail” mechanism. When packets arrive faster than a router can

4

process them, the router queue becomes full and the packets arrived while the queue is

full are dropped.

 Drop Tail is easy to understand and simple to implement. However it has

exhibited serious disadvantages. Reference [7] notes them as the “lock-out” phenomenon

and “full-queues” problem. Certain network situations such as traffic bursts often activate

a “drop tail” queue to drop correlated packets from a segment of network flows which

then responds by slowing down the transmission rate. Then the network flows unaffected

by this monopolize router resources. Often the case is the group of flows that have

slowed down suffers from synchronization while the unaffected group gets to use queue

space exclusively. This is called a lock-out phenomenon created by timing effects of TCP

congestion avoidance scheme.

The full-queues problem stems from the fact that in a congestive network drop-

tail queue is unable to “inform” end nodes of the congestion until it becomes full and

subsequently drops packets. Considering the Internet witnesses burst traffics, ideally, a

queue should maintain room to absorb short bursts of traffics for overall high throughput

and low end-to-end delay [7]. Other similar mechanisms such as “drop front on full” or

“random drop on full” may well alleviate the lock-out phenomenon but the full-queues

problem still remains unresolved.

As a response to these issues, a group of new mechanisms have been introduced.

These mechanisms are called “Active Queue Management (AQM)” techniques. Random

Early Detection (RED) [8], Virtual Queue (VQ) [9], Random Early Marking (REM) [10],

and Adaptive Virtual Queue (AVQ) [11] are examples.

5

The main goal of AQM is to keep the network traffic volume under control in

such a way that a router queue does not overflow while maintaining a steady flow of

throughput. To achieve this, AQM mechanisms detect the incipient congestions and

signal responsive network sources to reduce their transmission rates. As a part of this,

AQM mechanisms maintain the current size of a queue at a desired level below its full

capacity in a steady state. The space between the desired level and the maximum capacity

are to be occupied when congestion or a bursty traffic occurs.

The question is then what should be an appropriate queue level in a steady state

and a drop probability that maintains the queue level and allows it to increase when

needed?

Employing the algorithms addressing these questions, RED has been

recommended by ITEF as a congestion control policy at gateways for the Internet [7].

Conceptually, congestion control at gateways that can adapt to dynamically changing

network traffics is a logical development. However, designing algorithms that can

actually perform well in real network environment has been a very difficult task.

Although the algorithms in RED are relatively simple and easy to understand, its

implementation has not been as successful as anticipated due to the sensitivity of its

control parameter values resulting in unexpected outcomes. General consensus has been

that the interaction between RED gateways and TCP/IP mechanisms is not well

understood. For this reason, reference [12] reported more research on the understanding

of the dynamics of RED and TCP/IP should precede the deployment of RED. Since then,

6

many researches have been conducted on understanding RED theoretically and

empirically.

As a result, a group of RED variants have been suggested as well, notably FRED

[13], stabilized RED (SRED) [14], Blue [15], adaptive RED (ARED) [16], and

Exponential-RED [17] and AutoRED [1].

Particularly, AutoRED incorporates an additional algorithm into RED that allows

one of the control parameters in RED to be calculated dynamically based on the current

network characteristics. This addresses the observation made by [12] that a static RED

does not produce better result than that of Drop-tail in dynamic and heterogeneous

network environments.

Research Problem

One of the unexpected behaviors exhibited by RED is non-deterministic chaotic

queue oscillation. This along with the sensitive nature of its control parameters has been

reported [12], [18]-[20]. In addition to the fact that the chaotic queue oscillation

contributes to low throughput and high packet loss, it is problematic largely on two

accounts. Firstly, a large queue delay for one cluster of packets and almost no delay on

next increases a chance of jitter at a receiving end. Secondly, in a valley of oscillation

where the current queue size is below the average queue size, gateway resources are

underutilized while in a peak period packets are dropped due to the overflow. To address

this issue, AutoRED has been proposed such that it reduces the chaotic queue oscillation

by continuously calculating the weight parameter based on network characteristics [1].

Simulation results and illustrations reported in [1] exhibit visible improvements in the

7

behavior of the current queue size over time of an AutoRED scheme than that of RED.

However, in a highly congested network where AutoRED appears to reduce the chaotic

queue oscillation the most, it also shows high packet loss rate and a higher overall average

queue size resulting in larger queuing delays. This finding has prompted the further study

on AutoRED for possible improvements.

As noted earlier, chaotic queue oscillation is problematic because of low

performance, jitter, and under-utilization of queue resources. By plotting current queue

size over time, one can visibly identify a region of chaotic queue oscillation. However,

other than the graphical representation, there has been no definitive metric that measures

the degree of queue oscillation with regards to its effect on the Quality of Service (QoS).

While the instantaneous queueing delay is indirectly measured by the queue size itself at

the moment, the queueing delay alone cannot provide the information regarding how long

the queue size stays above the overall average queue size or below the average. This

information is important particularly for the QoS in that end users would be less satisfied

due to high delays as the queue size stays above the average. Similarly, network service

providers would be less satisfied due to the under-utilization of the resources if the queue

size stays below the average. In both cases, the longer the queue size stays as it has, the

less satisfied end users and service providers would be.

In this respect, chaotic queue oscillation has poor QoS because it typically

exhibits longer periods of queue size staying above or below the average than non-

chaotic queue oscillation does. Therefore, an indicator of such queue behavior should

exist that represents its effect on the QoS.

8

Structure of Thesis

The composition of the remainder of this thesis is as following. In the second

chapter RED mechanism is presented with the original RED and Auto RED described in

more detail. The third chapter contains the fundamentals of the logistic map and how it is

applied to the proposed mechanism called Lmap-RED. The fourth chapter presents the

definition of the new metric. In the fifth chapter, the experimental results comparing RED,

AutoRED, and Lmap-RED in terms of the new metric are given. The methodology of the

simulation experiments is also included in this chapter followed by discussions in the sixth

chapter. Lastly the seventh chapter concludes with the suggestion for future research.

9

CHAPTER II

PRELIMINARIES

RED Algorithm

AQM mechanisms strive to maintain the average queue size in a router at a

certain level while leaving a room to absorb bursty network traffics. Authors of RED list

four design goals in [8]. The first and main goal is to control the average queue size in

order to provide congestion avoidance instead of reaction to congestion. By keeping the

average queue size at around a region of high throughput and low delay, the queuing

delay is lowered and therefore the end to end delay is reduced. Additionally, by reducing

the packet transmission rates preemptively through congestion avoidance mechanism of

TCP, the router queue should be able to process incipient bursts in network traffics and is

unlikely to overflow. Then, transmitted packets are hardly dropped, hence, minimizing

the packet loss rate. Second in the list is global synchronization avoidance and the third is

avoidance of a bias against bursty traffic. Global synchronization occurs when congestion

is noticed globally and all flows retreat from sending packets at the same time. This can

be avoided at gateways by choosing appropriate flows and notify to back off at the onset

of congestion. This way, only a portion of connections responds with congestion

avoidance mechanisms while other flows transmit in a normal fashion. In addition, unlike

10

Drop Tail in which bursty traffics are unfavorably treated, RED can decide which flows

to notify of congestion in a way that it avoids a bias against bursty flows.

In fact, RED employs a randomized algorithm in order not to penalize particular

sources. Lastly, RED should be capable of maintaining an upper bound on the average

queue size even without network sources with congestion avoidance mechanisms. This

can be done by actually dropping incoming packets when the average queue size exceeds

the imposed maximum threshold. It should be noted that original RED “marks” incoming

packets instead of dropping to notify of the congestion if a gateway queue is not full.

With these goals, RED employs a relatively simple mechanism composed of two

main parts with a set of control parameters. The first part is calculating an average queue

size and the other is deciding whether to discard an incoming packet or not. Based on the

estimation of the average queue size, the algorithm determines how to handle an

incoming packet.

Upon arrival of each packet in the queue, an average queue size is calculated by a

method known as exponentially weighted moving average (EWMA) as in (1) using the

notation presented in [1].

qavg,t = (1 – wq) × qavg,t-1 + wqqt (1)

where wq is the weight parameter chosen by a user. The average queue size is

used instead of the actual queue size in order to filter out incipient congestion. It should

be noted here that the weight, wq, determines how much portion of the actual queue size

at time t, qt, to be accounted in calculating the average queue size, qavg,t. When the weight

is small, the average queue size sustains its previous level without closely following the

11

movement of the instantaneous queue size. This is a desirable setting so that the average

queue size does not rapidly react to transient congestion.

After the average queue size is calculated, if the average queue size is under the

minimum threshold, the packet is queued. No incoming packet is dropped or marked if

the average queue size is lower than the minimum threshold. Likewise, if any packet with

the average queue size on or over the maximum threshold is dropped or marked. Now the

incoming packets with the average queue size being on or over the minimum and under

the maximum threshold are determined to be queued or dropped/marked based on the

maximum probability. The probability of being dropped/marked increases as the average

queue size becomes closer to the maximum threshold. This is the second component

which is further described in the next paragraph. All of these parameters, wq, minimum

and maximum thresholds, and the maximum probability are chosen by a user. Authors of

RED mechanism in [8] provide three guidelines as to choosing parameters. First, wq ≥

0.001 and their choice of value is 0.002. Second, the minimum and the maximum

thresholds to be set high enough to maximize the network power, and third, the maximum

threshold to be at least as twice as the minimum threshold.

The second part of deciding packet discard is essentially determining how

frequently incoming packets are marked or dropped. When the average queue size is in a

critical region which is between the minimum threshold and the maximum threshold, the

original RED algorithm applies a packet-marking probability increased linearly as the

average gets closer to the maximum threshold. The packet-marking probability is also

increased when the count of consecutively queued packets is increased. This way, a RED

12

queue does not wait too long before marking a packet and packets are marked at evenly

spread out intervals. It is to ensure the fair and random treatment of various sources to

avoid biases and global synchronization. Mathematical representation is presented in

three steps. First, the fraction, Fr, of the region less than the average queue size is as

following:

thth

thtavg
r

q
F

minmax
min,

−
−

= (2)

Then, a packet-marking probability, Pb, is computed by

Pb = Pmax × Fr where 0 ≤ Fr ≤ 1 (3)

(note that Fr = 1 when qavg,t = maxth)

On top of this, in order to incorporate the count factor, the final packet-marking

probability, Pa, is computed by

)1(b

b
a Pcount

P
P

×−
= (4)

Although RED mechanism seems superior to that of Drop Tail theoretically and

experimentally, its parametric sensitivity makes it difficult for wide deployment. One of

the abnormal behaviors of a RED queue is its chaotic queue oscillation illustrated in Fig.

1 resulting in unexpected network delays, jitter, and underutilization of router resources.

13

Figure 1. An example of chaotic queue oscillation with a queue size of 60 packets on 30
TCP flows

AutoRED Algorithm

Within the frame of RED mechanism, AutoRED modifies the way the weight, wq,

in EWMA is obtained, thereby affecting the calculated value of the average queue size.

Therefore, it may be viewed as calculating the average queue size in two steps: first

calculate wq and then calculate the average queue size using the outcome of the first step.

Instead of wq being a constant value chosen by a user, AutoRED continuously calculates

the value of wq by a product of three mathematical functions modeling congestion

characteristics, traffic characteristics, and queue normalization. Therefore, the

mathematical notation of the average queue size at time t becomes (5) where wq from the

original RED algorithm is replaced by a time dependent wq,t. And the total product of the

three functions for calculating wq,t is denoted in (6).

14

qavg,t = (1 – wq,t)qavg,t-1 + wq,t qt (5)

wq,t = pt(1 – pt) ×
|)q - q|ln(5.923

|)q - q|2(5.923

tavg,t

tavg,t

+

+ ×
qs

1 (6)

Equation (6) is broken down into the following three components;

Congestion characteristics = pt(1 – pt) (7)

Traffic characteristics =
)(5.923

)2(5.923

|q - q|ln

|q - q|

tavg,t

tavg,t

+

+ (8)

Queue normalization =
qs

1 (9)

It should be noted that the queue normalization is based on the queue size, qs,

which is a fixed value. Therefore, the congestion characteristics and the traffic

characteristics are contributing factors to varying wq,t values over time.

Modeling the congestion characteristics in (7) is derived from the probability law

of Geometric distribution as following:

P = pt(1 – pt)n-1 where n = 2 (10)

Reference [1] describes a random variable Yt as a pointer for congestion at time t

in this way:

⎩
⎨
⎧

=
0
1

tY

In other words, if the current queue size at time t is greater than the average queue

size at time t - 1, it is regarded as an indicator that the network is heading for congestion

at time t + 1 and if the queue size is less, the network is not heading for congestion.

Mathematically this sequence of trials whose outcome is either 1 or 0 can be construed as

if qt - qavg,t-1 > 0

if qt - qavg,t-1 ≤ 0
(11)

15

Bernoulli trials. In this case, the outcome 1 means congestion and 0 means no congestion.

From this, assuming pt represents the probability that the network may head for

congestion at time t + 1 based on Yt at time t, it is stated that the probability law of

Geometric distribution governs the number of trials required to formulate the first

indication of congestion as in (10). The equation means that the queue status at time t

represents the probability that the network is heading for congestion at time t + 2, which

is in two steps. This notion is important in the new proposed scheme because the

congestion characteristics value serves as a seed value in the logistic map used in the new

scheme. More details are covered in the third chapter.

Now, pt is calculated based on Yt in the following way:

pt = the number of outcome of Yt being 1 over the total number of trials

Therefore, (1 – pt) = the number of outcome of Yt being 0 over the total number of

trials

This has been the process of calculating the congestion characteristics in

AutoRED and its values can range from 0 to 0.25 mathematically.

The function (8) for the traffic characteristics is also time-dependent. Reference

[1] states the mathematical function models the dynamics of the traffic characteristics in

that it increases as the current queue size increases. Not only this aspect but it also

satisfies what is called the “1- unit packet increase” effect in [1]. The 1-unit packet

increase means when qt – qavg,t-1 = xt and qt+1 – qavg,t = xt + 1. The effect of the number of

unit packet increase at time t when there is 1-unit packet increase at time t + 1 is 50% at

maximum which comes from xt = 1 at time t. Then at time t + 1, qt+1 – qavg,t gives xt + 1

16

which is 2. Therefore, the effect of 1-unit increase at time t + 1 over the total increase, xt

+ 1, at time t + 1 (2 in this case) is 50%. Since xt ranges 1 ≤ xt ≤ qs, the effect of the 1-

unit packet increase diminishes as xt increases. Based on this, [1] presents a mathematical

function f(xt) that satisfies the condition of |f (xt + 1) – f (xt)| ≤ 0.5. Function (8) is chosen

as it satisfies these attributes mentioned above.

Reference [1] shows that AutoRED with the automatic calculation of the weight

wq produces adequate results of reducing chaotic queue oscillation that are visible in

illustrations especially in a highly congested network. However, further research shows

that AutoRED exhibits higher packet loss rates and tends to increase overall average

queue size thereby increasing queuing delays as shown in Table I. While controlling

chaotic queue oscillation by AutoRED shows positive results, the mechanism appears to

be less than ideal in terms of packet loss rates and queuing delays. This may leave a room

for further improvements particularly when fine tuning may be necessary.

As looking further into this matter, the possibility of improvements may be found

by introducing a control parameter. In addition, currently no specific metric exists in

measuring the effect of chaotic queue oscillation with respect to the QoS. This has been

incorporated in the fourth chapter.

17

Table I. Comparison of network performance of RED and AutoRED in highly congested
networks: RED exhibits the chaotic queue oscillation from 30 TCP flows and up.
AutoRED values greater than those of RED are in bold.

RED AutoRED

Number
of TCP
flows

Link
utilization

Packet
loss
rate

Overall
average
queue
size

Link
utilization

Packet
loss
rate

Overall
average
queue
size

10 99.60% 0.30% 16.28 99.41% 0.30% 16.35
20 99.81% 0.36% 24.08 99.76% 1.29% 22.98
22 99.72% 0.60% 26.58 99.69% 1.99% 24.31
23 99.49% 1.91% 27.60 99.55% 2.64% 25.39
25 99.72% 2.69% 28.16 99.83% 3.14% 27.04
30 99.22% 4.94% 28.83 99.79% 4.50% 28.09
40 99.36% 8.08% 30.67 99.79% 8.00% 30.63
50 99.64% 10.98% 32.32 99.84% 11.68% 32.51
60 99.73% 13.85% 33.64 99.88% 14.06% 33.57
70 99.82% 15.32% 34.14 99.90% 15.86% 34.35
80 99.83% 16.88% 34.75 99.91% 17.38% 34.98
90 99.87% 19.12% 35.59 99.90% 19.27% 35.75

100 99.88% 20.02% 36.05 99.90% 19.79% 35.97

18

CHAPTER III

A NEW PROPOSED TECHNIQUE

The logistic map is looked into mainly because the mathematical function of the

congestion characteristics used in AutoRED displays a very similar pattern to that of the

logistic map. Therefore, a new proposed technique called Lmap-RED utilizes a logistic

map function in place of the function of the congestion characteristics in AutoRED

mechanism while the traffic characteristics and the queue normalization remain the same

in computing the weight, wq,t, in EWMA. Before describing further of the mechanism of

Lmap-RED, first the fundamentals of the logistic map are described.

Fundamentals of the Logistic Map

Logistic map is first presented by Robert May in his 1976 paper, analogous to the

logistic equation which Pierre François Verhulst introduced in 1838 as modeling

biological population growth [21]. The difference equation is following:

Xn+1 = rXn(1 – Xn) (12)

where 0 ≤ Xn ≤ 1, Xn is the population size in the nth generation and hence X0 is

the initial population. As a model for biological population, the equation is designed to

represent population growth as well as reduction due to overcrowding and limited

resources in the environment. r value is meant to capture this combination of growth and

reduction rate.

19

Depending on r value, this seemingly simple nonlinear dynamic map exhibits

complex and chaotic behavior as following [21][22]:

• For 0 < r < 1, the population goes extinct, regardless of the initial

population.

• For 1 ≤ r < 2, the population rapidly reaches a steady state at
r
11− .

• For 2 ≤ r < 3, the population first oscillates around
r
11− and eventually

stabilizes on the value. When r = 3, the rate of convergence is very slow.

• For 3 ≤ r < 1 + 6 (approximately 3.449), as a population model, it

alternates between a large population and a small population in one

generation and another oscillating around
r
11− . This is a period-2 cycle

which repeats every two generations.

• For 3.449 ≤ r < 3.544 (approximately), the population oscillates between 4

values, repeating every four generations, a period-4 cycle. At around

3.544, the period doubles to 8, and then to 16 at around 3.564, to 32 at

3.568, and so on. Incidentally, this observation fits the period-doubling

cascade with the ratio of two successive periods being 4.669…., the

Feigenbaum Constant [21].

• Around r = 3.5699 is the onset of chaos and r values beyond that exhibits

characteristics pertained to chaos.

20

Figure 2. Congestion characteristics = pt(1 - pt)

Figure 3. Logistic map Xn+1 = rXn(1 – Xn) where r = 2

In [1], a mathematical model for the dynamics of the congestion characteristics is

shown as a graph in Fig. 2. And a simple plot of (Xn, Xn+1) in the logistic map when r = 2

illustrated in Fig. 3 displays very similar pattern to that of the congestion characteristics.

In the case of the logistic map, however, it should be noted that as r value increases and

21

the equation goes into the bifurcation region, the pattern changes. The pattern shown in

Fig. 3 holds up to when r = 3. For r > 3, bifurcation starts. In addition, the maximum

value at Xn = ½ is a quarter of r value. Hence, r value should be 0 ≤ r ≤ 4 in order to meet

the condition of 0 ≤ Xn ≤ 1.

A New Technique: Lmap-RED

Equation (13) shows the mathematical model of Lmap-RED in which the function

modeling the congestion characteristics in the AutoRED algorithm is replaced by the

logistic map equation, Xt in (14).

wq,t = Xt ×
|)q - q|ln(5.923

|)q - q|2(5.923

tavg,t

tavg,t

+

+ ×
qs

1 (13)

Xt = r Xt-1(1 – Xt-1) (14)

where X0-1 is the initial value of the logistic map for calculating wq,t at time 0. In

fact, in the network simulation setting for experiments covered in the fifth chapter,

experiments start with the AutoRED algorithm and the moment when the AutoRED

algorithm is switched over to Lmap-RED is viewed as the start of the Lmap-RED algorithm

and the initial value of (14) is X0-1 and the time, t, at that moment is 0. Incidentally, it is at

5 seconds into the simulations when AutoRED is switched to Lmap-RED in the

experiments in the fifth chapter.

Therefore, equation (14) can be written as the following for the moment of the

switch-over:

X0 = r X0-1(1 – X0-1) (15)

22

Since Lmap-RED does not start until time 0, time 0 – 1 as in X0-1 in (15) represents

the previous step still in the AutoRED algorithm and its value is the congestion

characteristics value at that time. Based on the meaning of the congestion characteristics

in AutoRED defined by the “probability that the system can lead to congestion in two

steps [1],” Fig. 4 illustrates this concept showing at the current time t denoted by a solid

black dot predicts the congestion characteristics at time t + 2.

Figure 4. Congestion Characteristics predicting two steps ahead at time t

As this is applied to the switch-over to Lmap-RED at time 0, the congestion

characteristics value that Lmap-RED inherits from the AutoRED algorithm is the

probability value of what is likely to happen at time 0 + 1 having predicted it at time 0 –

1. Thus Lmap-RED employs a value that has the attribute of predicting what is likely to

happen at time 0 + 1 at time 0, which is essentially the next step. Fig. 5 illustrates this as

below.

t t+1 t+2

AutoRED

23

Figure 5. Congestion characteristics value at the switch-over

Therefore it can be said that the logistic map is employed in Lmap-RED in this

regard that the function of the logistic map follows the probability of the congestion

characteristics in the next step as in population growth the equation is modeling.

24

CHAPTER IV

A NEW PROPOSED METRIC

Just as cars in a traffic jam alternate between moving forward and stopping,

network traffics experience similar behavior at a router when queue oscillation occurs. In

one moment a network flow stops moving as packets are admitted in the queue where

sometimes it overflows. In the next moment, however, packets move forward with hardly

any delay in the queue, but then only few sources are sending packets.

A severe case of this type of queue behavior known as chaotic queue oscillation in

a router is to be avoided especially because of its effects on the QoS. It is an established

fact that the throughput and the packet loss rate suffer when the chaotic queue oscillation

occurs. These performance metrics are usually measured over a period of time and assist

the understanding of the network status over such time. It is not as meaningful to use

these metrics over a very short period due to the varying nature of network traffics. There

are other effects of the chaotic queue oscillation on the QoS that are problematic even

during a short period of time. Even if it may be remotely possible that a router with

chaotic queue oscillation produces the same throughput and packet loss rate for a period

of time as a router with stabilized queue oscillation, the effect of the chaotic queue

oscillation on the QoS over a short period still remains. It is granted that problems for a

short period of time only augment when they persist longer. Looking into the chaotic

25

queue oscillation, these effects have to be considered and possibly measured. This section

describes two such problematic effects and it is followed by an attempt to create a new

metric for such effects.

Background

When the effect of the chaotic queue oscillation on the QoS over a short period

time is dissected, two problems stand out. First, large queuing delays for a cluster of

packets at one moment and almost no delay at next increases jitter at a receiving end.

There are greater chances of packets arriving out of order. Not only that, a group of

packets may arrive after the wait time has passed, in which case the receiver would have

sent a retransmission request to the sender. Therefore otherwise unnecessary network

traffic is added in the pipeline and this may invoke unwarranted congestion avoid

mechanism at the source. This is not desirable especially for time-sensitive traffics.

Second, in a valley of oscillation where the current queue size is very low, router

resources are underutilized while in a peak period more packets are marked or even

dropped due to an overflow. Queue overflow is what AQM mechanisms aim to eliminate.

If the queue had not been widely fluctuating and the same number of packets had come in

steadily, no packet drop would have been necessary and the resources utilized more

effectively. In this respect, even with the same throughput and packet loss rate, stabilized

queue oscillation produces better QoS than the chaotic queue oscillation.

From a customer’s point of view, the network delay caused by a high queue size

means low QoS. The longer a queue stays highly occupied (i.e. high queue size persists),

the less the customer would be happy about the network performance. On the other hand,

26

when the queue is underutilized (i.e. low queue size persists) network service providers

would be unhappy. The longer the queue stays that way, the less the service providers

would be satisfied with router resource utilization. It is worth noting that not only the

service providers but also those customers whose network transmissions had been backed

off due to the decrease of TCP window size would experience low QoS since it is one of

the main reasons why the queue becomes underutilized in the first place. So in terms of

the QoS, note that not only the moment of high or low queue size but also how long or

how persistently the queue stays the way it has been matters.

Therefore, it is important to be able to observe this aspect of queue behavior and

to do so in an objective way. The method of calculating queuing delays presented in [23]

can be one way, but it alone is not sufficient in portraying the behavior of queue size in

that the method computes queuing delay based on the overall average queue size. It is

probable that both a chaotic queue oscillation and a stabilized one may have

approximately the same overall average queue size. Thus, it is not adequate as a metric in

representing the degree of queue oscillation although the queuing delay based on the

overall average queue size is still an important metric for the QoS in a router. Looking at

the degree of queue oscillation with regard to its statistics, the minimum and the

maximum queue size and the standard deviation may somewhat represent the behavior of

queue oscillation coupled with the overall average queue size. It can then be said that the

degree of queue oscillation is more severe statistically as its minimum value lower, the

maximum value higher, and the standard deviation larger.

27

A New Metric: Segmented Time for QoS

In addition to these pointers, this thesis proposes a new metric called “Segmented

Time for the QoS (Seg-time)” that measures queue oscillation in time indicating the

effect of its behavior on the QoS. More specifically, Seg-time is to answer the question,

“how long does it take for the queue size to go back to its average from this moment?”

While the queue size goes up and down over time, Seg-time first measures, at each

segment (hence the name), the difference in time between the timestamp of the

instantaneous queue size and the timestamp of a corresponding reference point which is

the timestamp when the queue size becomes the same as the overall average queue size as

illustrated in Fig. 6 with a simplistic view of queue oscillation.

Whenever the instantaneous queue size returns to the same value as the overall

average queue size of the duration of measurement, the timestamp at that moment is the

reference point for all segments that come after the previous reference point. Hence the

three reference points denoted by a perforated line in the figure lie at a cross section

where the current queue size moving vertically meets the overall average queue size

drawn horizontally. The horizontal arrow in the figure from Segment 1 to the next

reference point corresponds to the duration of time that it takes to return to its overall

average queue size. In the same manner the rest of the segments get their value. Then

these values are averaged out for an overall measurement in a given duration. This

average is the Seg-time for the duration.

28

Figure 6. An simplified illustration of Seg-time measurement

The definition of Seg-time, avgST , in mathematical notation is presented as below.

Assuming the overall average queue size has been calculated for the duration of

measurement, D. Then, D can be divided into a total number of n parts where each part is

Time(sec)0

Overall
average

queue size

2

4

5

3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

queue
size

1

R1 R2 R3

2
4 5

3
6 7 8 9 1011

12
13

141516171819
2021 2223

Time

Segment Si

1

29

composed of a segment portion, Mj, and a reference point Rj, such that D = M1R1M2R2

…MjRj …Mn-1Rn-1 MnRn where a reference point, Rj, is a timestamp when the current

queue size is the same as the overall average queue size.

A segment portion Mj comprises segments, Si, such that

111 mSSM K= ,

21 12 mm SSM K+= ,

32 13 mm SSM K+= ,

M

jj mmj SSM K11+−
=

M

nn mmn SSM K11+−
=

where Si is a timestamp for the segment i and mj is the total number of segments

counted from M1 to Mj. The total number of all segments in the measurement time D,

thus, is mn. And 1−− jj mm is the number of segments in the segment portion Mj which

contains segments from the mj-1+1th , 11+−jmS , to the mj
th ,

jmS .

Then, the sum of the time difference between segments and a reference point in

each part, Pj, is calculated by

∑
+= −

=
j

j

m

mi
ijj S- RP

11

)(

Therefore, P1, P2, Pn, can be written as following:

∑
=

=
1

1
1)(

m

i
i1 S- RP

∑
+=

=
2

1 1
2)(

m

mi
i2 S- RP

30

M

∑
+= −

=
n

n

m

mi
inn S- RP

11

)(

Then the total sum, sumST , can be written as:

∑ ∑∑
= +== −

==
n

j

m

mi
ij

n

j
jsum

j

j

 S- RPST
1 11 1

)((16)

Finally, Seg-time, avgST is computed by dividing sumST in (16) by the total

number of segments in D, mn

n

sum
avg m

STST = (17)

This avgST is considered as the new metric that measures the effect of the degree

of queue oscillation on the QoS.

Fig. 7 exhibits the plot of (Rj – Si) for each incoming packet for computing Seg-

time in the network simulation of 30 TCP flows in the TCP-only environment. The

behavior of the current queue size over the given time duration is shown in Fig. 8. The

overall average queue size in this particular example is 28.8281 as indicated in Fig. 8

with a thick line. It can be observed that each cross-section of the overall average queue

size and the actual current queue size in Fig. 8 corresponds to the value 0 in Fig. 7.

Moreover, as the duration between one reference point and the next is longer in Fig. 8,

the corresponding spike in Fig. 7 goes higher. The spike from around 16 seconds to a

little over 17 seconds is circled in red as an example.

31

Figure 7. The plot of (Rj – Si) for each incoming packet (X axis in ms)

Figure 8. The current queue size behavior of 30 TCP flows in the TCP-only environment

32

One may ask why not use the time duration from one reference point to the next

reference point so as to represent how long a period of high or low queue size persists.

One reason why a time difference value between two reference points is not used is that

whether processing 1,000 packets or 10,000 packets in the same time difference implies

different levels of the QoS. Handling 10,000 packets would have the better QoS in terms

of the delay per packet. Additionally, although queue oscillation appears to be periodic

and sinusoidal, in a closer look it is not. Therefore, given the same value of the time

difference, various forms of peaks or lows may exist. This is another reason why

segmented intervals or each packet should be used for a meaningful measurement.

One may also ask why the overall average queue size is used as a basis for

reference points. The overall average queue size can be regarded as a queue size that a

particular AQM retains in a period of time considered for measurement. It can also be

viewed as a negotiated point of the link utilization and the resource utilization that can

reasonably satisfy both end users and service providers.

A larger Seg-time value means longer durations for the queue size to get back to

the overall average value. If the queue is underutilized currently, a larger Seg-time means

longer durations for the queue to exit the underutilization and get back up to the average

level of occupation. Along this line of thinking, it can be said that the lesser value of the

Seg-time means a better quality of service in terms of less jitter, less delay, and less

underutilization of queue resources. Experiments in the next chapter display analogous

results.

33

In the simulation experiments, the implementation of measuring Seg-time

includes the followings: each incoming packet is regarded as a segment on its own. Since

the overall average queue size is unlikely to be an integer, two integers are taken such

that, for the overall average queue size, q_avgall , ⎣ ⎦ q_avgall and ⎡ ⎤allq_avg are regarded

as the overall average queue sizes for the purpose of calculating Seg-time. For example,

the simulation for the 30 TCP flows on RED in TCP-only environment yields 28.8281 as

the overall average queue size as shown in Table II in the fifth chapter. Since

⎣ ⎦ 2828.8281 = , ⎡ ⎤ 298281.28 = , timestamps of whenever the current queue size is either

28 or 29 are taken as reference points. Here is an excerpt of the movement of the current

queue size over time taken from the same simulation:

Furthermore, if the current queue size suddenly drops from a queue size greater

than 29 to less than 28, or vice versa, the middle of the timestamps of the two points, one

greater than 29 and the other less than 28, is taken as a reference point as below.

Timestamp queue size

16.467793 27

16.469025 27

16.469047 28 reference point

16.469127 29 reference point

16.469213 30

16.470257 30

16.470445 31

34

It should also be noted that a Seg-time value for the purpose of comparison of the

degree of queue oscillation is only meaningful when all the topological parameters are

kept the same.

Timestamp queue size

16.028739 32

16.031718 30

16.038431 25

16.038856 26

16.03508 is taken as a
reference point

35

CHAPTER V

RESULTS

Using NS-2 as the network simulation tool [24], experiments are performed in

both a TCP-only environment and a TCP and UDP combined environment for RED,

AutoRED and Lmap-RED. As illustrated in Fig. 9, network topology for the simulation

consists of n number of source nodes, the matching number of destination nodes, and one

bottleneck link. This is known as a “dumbbell” configuration.

Figure 9. The network topology for experiments

The network and gateway parameter setups are as following:

• TCP type : Reno with window size at each source node = 8000

A B

1

n

2

1

n

210Mb
20ms

10Mb 10Mb

36

• TCP packet size = 1500 bytes

• UDP packet size = 1000 bytes for the TCP and UDP combined environment

• Bandwidth between node A and B = 10 Mbps

• Delay of the link between node A and B = 20 ms

• Queue size on the bottleneck link = 60 packets. For the ease of representation,

queue size in packet is chosen rather than the queue size in byte option.

• Bandwidth of the links from source nodes to the bottleneck node A = 10 Mbps

• Delay of each link from source node to node A : a random number in [0 .. 35] ms

• Bandwidth of the links between node B and destination nodes = 10Mbps

The bottleneck queue parameters shared by RED, AutoRED, and Lmap-RED are as

follows:

• Minimum threshold = 10 packets

• Maximum threshold = 30 packets

• Maximum probability = 0.02

• Explicit Congestion Notification (ECN) is set to True. ECN allows the queue to

set the ECN bit in the TCP header of incoming packets to notify source nodes of

congestion status in order that source nodes can invoke the congestion avoidance

mechanism.

• “gentle” parameter is set to True. This modification to RED is recommended by

the authors of RED for robustness [25]. When this parameter is set to True, the

packet-dropping probability increases from the maximum probability to 1 as the

average queue size increases from the maximum threshold to twice the maximum

37

threshold. As a note, the authors claim that this option makes RED more robust to

the setting of the parameters, the maximum threshold and the maximum

probability. However, reference [26] shows that the option is not effective in

stabilizing chaotic queue oscillation. Still this option is set to True in this

experiments per the recommendation.

Aside from these common parameters shared with other mechanisms, RED uses a

constant value for the weight parameter, wq, set to 0.002. The same parameter is

automatically calculated in AutoRED and Lmap-RED.

In case of Lmap-RED, in addition to the common parameters, r value from its

algorithm (14) is controlled by user. Based on the characteristics of the logistic map

behaviors varied by r value, eight r values are chosen for simulation. These values are

composed of boundary and middle values and the justification of their selection is briefly

described as below:

• 1.333: AutoRED simulations observe the congestion characteristic value

approaching toward the value 0.25 in a steady state as in Fig. 10. And r value of

1.333 provides Xn+1 stabilizing around 0.25. Supposedly this r value models the

original AutoRED in a steady state. Therefore r value = 1.333 may generalize

AutoRED in its steady state.

38

Figure 10. Congestion characteristics value in AutoRED for 40 TCP flows

• 1.5 : a middle value of the region of 1 ≤ r < 2 and Xn+1 stabilizes on 0.333

• 2 : a boundary value of the region of 2 ≤ r < 3 and Xn+1 stabilizes on 0.5

• 2.5 : a middle value of the region of 2 ≤ r < 3 and Xn+1 stabilizes on 0.6

• 3 : a boundary value of the region of 2 ≤ r < 3 and Xn+1 eventually stabilizes on

0.666 though very slowly

• 3.2 : a middle value of the region of 3 ≤ r < 1 + 6 (≈ 3.449) where Xn+1

oscillates between two values

• 3.5 : a middle value of the region of 1 + 6 (≈ 3.449) ≤ r < 3.544 where Xn+1

oscillates between four values

• 3.58 : a boundary value of the region where the logistic map exhibits chaos

The main variable in the experiment is the number of network flows. In the TCP-

only environment, the number of TCP network flows is increased from 5 to 240 so as to

39

control the level of congestion in the network. In the TCP and UDP combined

environment, the number of TCP flows is set to 10 while the number of UDP network

flows is varied from 5 to 50. This way the effect of the UDP flows can be observed. In

case of Lmap-RED, the eight r values are run per each number of flows to examine the

effect of varying r values in the same congestion level in both environments.

 Time control scenario of network traffic in each simulation is as follows. In both

TCP-only and TCP and UDP combined environments, each simulation last 60 seconds. It

is assumed that the network should be in steady state after 5 seconds. For the first 5

seconds, the original RED algorithm runs and then at the 5th second AutoRED or Lmap-

RED algorithm takes over. In Lmap-RED, it should be noted that the initial value X0-1 in

(15) comes from calculating the congestion characteristics value of AutoRED in (7) for

the first 5 seconds. Although it is RED that runs as the queue management mechanism

during that time period, the computation runs in parallel in order to seed Lmap-RED

algorithm properly. At the 5th second when the simulation transitions to Lmap-RED from

RED, the congestion characteristics value of AutoRED at the previous step is plugged in

to X0-1 in the Lmap-RED algorithm in (15).

Simulation results are presented with link utilization and packet loss rate as

performance metrics. Additionally, overall average queue size, minimum queue size,

maximum queue size, and standard deviation are included as statistical measures for the

comparison of the degree of queue oscillation. Also Seg-time is presented for measuring

the effect on the QoS by queue oscillation.

40

Overall average queue size × packet size (data + header) × 8 (bit)

Maximum bandwidth of the link in bps

As a note, link utilization is calculated from throughput in Mbps. Total throughput

is divided by the maximum bandwidth of the bottleneck link which is 10 Mbps in the

experiments. The percentile of this value is the link utilization. Depending on the context,

link utilization and throughput may be used interchangeably in the thesis.

In assessing network performance metrics, it is obvious that higher link utilization

and lower packet loss rate are regarded as more favorable. Statistical metrics for the

degree of queue oscillation represent more stabilized queue behavior when minimum

queue size is higher, and maximum and standard deviation lower. Likewise, lower Seg-

time is interpreted as leading to a better QoS.

More careful approach is called for in assessing queuing delays. It should be

noted that higher queuing delays are necessary for better throughput as long as the overall

average queue size is under the maximum threshold parameter in RED and its variants.

Maintaining the overall average queue size to maximize the network power is one of the

design goals of RED. Keeping the overall average queue size at a certain level inevitably

requires the corresponding queuing delay because the only varying factor in the

computation of queuing delay is the overall average queue size based on the method

presented in [23]. This method is used for the experiments presented.

The formula for calculating the queuing delay, Dq, is as below:

Dq =

41

TCP-only Environment

The number of TCP Reno flows in each run of simulation is accrued from 5 to

240 in varied increments to congest the network at the bottleneck. All of the TCP flows

start at the beginning with randomized delays ranging from 0 to 35 ms and the

measurement of statistical metrics and Seg-time starts from 5.5 seconds. This is to filter

out any transient behaviors that may occur when the queue management mechanism

changes at 5 seconds.

Comparison of RED and AutoRED and a Validation of Seg-time

First of all, the performance metrics for RED and AutoRED are compared. As

Fig. 11 shows, AutoRED yields higher link utilization in more congested networks where

the number of TCP flows is 23 and above.

Figure 11. Comparison of link utilization of RED with AutoRED

42

On the other hand, packet loss rates of AutoRED are consistently higher than those

of RED and queuing delays display no visible improvements in highly congested networks

as shown in Fig. 12 and Fig. 13 respectively. The actual data of the results of these

simulations are presented in Table II.

Figure 12. Comparison of packet loss rate

In these simulations, both RED and AutoRED exhibit the overall average queue

size under 30, which is the maximum threshold, up to 30 TCP flows as shown in Table II.

Therefore, higher queuing delays in RED queue for the number of flows up to 30 is

considered more favorable in terms of throughput. This is analogous of the simulation

results showing higher throughput in RED queues up to 22 TCP flows. However, the

RED throughput drops from 23 TCP flows. The simulations with 23, 25, and 30 TCP

flows have lower throughput even though they exhibit higher overall average queue size

43

under the maximum threshold. The statistical metrics and Seg-time measurements

coincide with the network performance results in that the values of minimum and

maximum queue size, standard deviation, and Seg-time on RED scheme are assessed

unfavorable exactly in the same region that the network performance seems poor. This

shows, first, that there exists a strong relation between the degree of queue oscillation and

the network performance. Secondly, this also confirms the improvements made by

AutoRED of the network performance through reducing the chaotic queue oscillation.

Last but not least, this serves as a validation of Seg-time as an applicable metric

representing the effect of queue oscillation on the QoS.

Figure 13. Comparison of queuing delay

44

Table II. Comparison data of network performance metrics

RED AutoRED

Number
of TCP
flows

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

5 98.9284% 0.2979% 12.8534 0.0158 98.1856% 0.3002% 11.7040 0.0144
10 99.5956% 0.3020% 16.2785 0.0201 99.4083% 0.3047% 16.3520 0.0201
20 99.8070% 0.3565% 24.0809 0.0297 99.7633% 1.2876% 22.9815 0.0283
22 99.7245% 0.5972% 26.5759 0.0327 99.6938% 1.9856% 24.3068 0.0299
23 99.4863% 1.9120% 27.6037 0.0340 99.5543% 2.6408% 25.3937 0.0313
25 99.7205% 2.6873% 28.1569 0.0347 99.8331% 3.1374% 27.0373 0.0333
30 99.2215% 4.9416% 28.8281 0.0355 99.7921% 4.4967% 28.0922 0.0346
40 99.3591% 8.0835% 30.6688 0.0378 99.7945% 8.0037% 30.6343 0.0377
50 99.6361% 10.9782% 32.3210 0.0398 99.8353% 11.6832% 32.5137 0.0401
60 99.7265% 13.8491% 33.6447 0.0415 99.8785% 14.0645% 33.5703 0.0414
70 99.8152% 15.3224% 34.1401 0.0421 99.8970% 15.8571% 34.3478 0.0423
80 99.8342% 16.8809% 34.7464 0.0428 99.9052% 17.3782% 34.9815 0.0431
90 99.8741% 19.1234% 35.5908 0.0438 99.8970% 19.2678% 35.7544 0.0440

100 99.8824% 20.0174% 36.0479 0.0444 99.8950% 19.7927% 35.9658 0.0443
120 99.9196% 21.7804% 36.7682 0.0453 99.9202% 21.8081% 36.8767 0.0454
140 99.9236% 22.9056% 37.1838 0.0458 99.9236% 23.1668% 37.3555 0.0460
180 99.9263% 25.5528% 38.3172 0.0472 99.9256% 24.9881% 38.1792 0.0470
240 99.9317% 27.3717% 38.9788 0.0480 99.9321% 26.9708% 38.8190 0.0478

Now moving on to the comparison of statistical metrics and Seg-time, the

comparison of minimum and maximum queue size, standard deviation, and Seg-time are

illustrated in Fig. 14, Fig. 15, and Fig. 16, respectively. The detailed data are presented in

Table III.

45

Figure 14. Comparison of minimum and maximum queue size

Fig. 14 exhibits that from 23 TCP flows maximum queue sizes of RED scheme

leaps close to the maximum queue capacity which is 60 packets whereas those of

AutoRED increase very gradually. Over 30 TCP flows, minimum queue sizes of RED are

smaller than those of AutoRED. In fact, up until 120 flows, the queue oscillation of RED

hits the bottom of the queue at 0 packet level. While the range of queue oscillation on

AutoRED scheme is mostly contained between 15 and a little over 50 in highly congested

networks, the queue oscillation on RED shows much higher degree by 25 packets. This

clearly shows that RED contains the elements of wider oscillation vertically. This

behavior is consistent in the number of flows on or above 23.

46

Figure 15. Comparison of standard deviation

Figure 16. Comparison of Seg-time

As displayed in Fig. 15, the region below 23 flows shows contained values of

standard deviation for both RED and AutoRED schemes with those of AutoRED showing

47

slightly higher values. Starting from 23 flows, standard deviation values of RED jump

and stay high until around 80 flows and start decreasing but still over twice as high as

those of AutoRED. While the standard deviation values start increasing on RED

mechanism at 23 flows, those of AutoRED actually start decreasing gradually, meaning

more controlled queue behavior. This observation agrees with the minimum and

maximum queue size trend in Fig. 14.

Seg-time trend illustrated in Fig. 16 seems analogous to that of standard deviation

in that there is a small leap at 23 flows and a big leap at 30 flows on RED mechanism

retaining high values until around 80 flows and then it starts abated. Seg-time on

AutoRED also shows similar values until 23 flows where RED and AutoRED part their

ways. While Seg-time values on RED soar, those on AutoRED are gradually reduced in

a pattern similar to the trend of standard deviation values.

It is striking that the pattern of standard deviation and that of Seg-time seem to be

almost identical in that the number of TCP flows on or above 23 exhibits much higher

standard deviation and longer Seg-time on RED mechanism over those of AutoRED. And

after around 80 TCP flows the values of both metrics on RED appear to be abated

although they are still higher than those of AutoRED. In a very simplistic view, standard

deviation can be considered as representing how high and low the queue oscillation

varies vertically from the overall average queue size whereas Seg-time can be regarded as

describing how wide each peak and valley of the queue oscillation is horizontally. While

vertical swing implies possible overflows of the queue and underutilization of the

resources, horizontally wide peaks and valleys imply that the possible problems persist

48

degrading the level of the QoS further. Expectedly these two representations of the same

queue oscillation go hand in hand since it can be viewed as looking at the same behavior

from two different angles. And the relation of standard deviation and Seg-time in the

measurements of these simulations affirms this.

Table III. Comparison data of statistical metrics for queue oscillation

RED AutoRED
Number
of TCP
flows

mini
mum

maxi
mum

standard
deviation Seg-time mini

mum
maxi
mum

standard
deviation Seg-time

5 0 35 5.9470 0.0651 0 28 6.1598 0.0628
10 0 35 7.2376 0.0533 0 36 7.0119 0.0552
20 1 47 6.7018 0.0474 0 46 7.1774 0.0425
22 0 55 6.7582 0.0477 0 47 7.3068 0.0440
23 0 56 8.9831 0.0909 0 45 6.9629 0.0396
25 0 60 9.6099 0.0902 0 45 6.0229 0.0301
30 0 60 13.9038 0.1777 0 45 5.9705 0.0290
40 0 60 15.1281 0.1797 9 47 5.2796 0.0229
50 0 60 15.2728 0.1750 13 51 4.6592 0.0183
60 0 60 14.9611 0.1687 15 49 4.5476 0.0163
70 0 60 14.9927 0.1657 17 51 4.3933 0.0173
80 0 60 14.9903 0.1711 17 50 4.3792 0.0170
90 0 60 13.6055 0.1541 20 51 4.2032 0.0156

100 0 60 12.6802 0.1430 20 53 4.1458 0.0158
120 1 60 11.2312 0.1228 20 52 4.1361 0.0155
140 4 60 10.4931 0.1177 23 51 4.1979 0.0158
180 10 60 9.5397 0.1015 23 52 4.0144 0.0149
240 5 60 9.3287 0.1020 22 52 4.0947 0.0163

In summary, the results of the comparison of minimum and maximum queue size,

standard deviation, and Seg-time show that the simulations on RED scheme exhibit a

49

much higher degree of queue oscillation both vertically and horizontally than those on

AutoRED, especially in the region on or above 23 TCP flows. Also it should be noted

that the region exhibiting the greatest difference in their values between RED and

AutoRED, which is from around 23 TCP flows up to about 80, coincides with the lower

throughput region of RED in Fig. 13. Therefore, this observation seems to confirm the

strong relation between high degrees of queue oscillation and poor network performance.

The results also tell that AutoRED improves network performance by controlling the

chaotic queue oscillation although it shows higher packet loss rate.

Not unexpectedly, the region from 5 TCP flows to 22 flows showing better

throughput and lower packet loss rate on RED displays more favorable standard deviation

and Seg-time values meaning that their queue oscillation is controlled. In addition, better

performances in lower numbers of flows by RED can be interpreted as RED performing

well in less congested networks.

This result also supports the validity of Seg-time as an applicable measure in that

Seg-time displays a near linear relation to standard deviation in representing the degree of

queue oscillation. Moreover, it is also affirmed by the fact that the effect of the degree of

queue oscillation represented by Seg-time agrees with the proven relation between the

network performance and the degree of queue oscillation.

Another validation method of Seg-time is comparing the Seg-time data and visual

representations of queue behavior. Illustrations of queue behavior over time have been

used for exhibiting the existence or the degree of chaotic queue oscillation.

50

RED with 20 flows
Seg-time = 0.0474

Notice that in Table III the values of Seg-time in RED column jump from 0.0477

seconds to 0.1777 seconds from 20 flows to 30 flows with 23 and 25 showing a small

amount of increase. On the other hand, Seg-time on AutoRED on 30 flows is still

maintained in the order of 1/100th seconds as before. In fact, the Seg-time values on

AutoRED gradually decrease from 5 flows as the number of flows increases. Fig. 17

illustrates queue behavior over time with 20, 22, 23, 25, 30, and 40 TCP flows on RED

on the left and on AutoRED on the right column in the next two pages. This visual

comparison of queue behaviors on RED and AutoRED seems equivalent to the numeric

values in Table III. This also validates the applicability of Seg-time as an appropriate

metric in measuring the degree of queue oscillation particularly in relation to its effect on

the QoS.

Figure 17. Visual comparison of queue behavior on RED and AutoRED

AutoRED with 20 flows
Seg-time = 0.0425

51

Figure 17. Visual comparison of queue behavior - continued

RED with 22 flows
Seg-time = 0.0477

AutoRED with 22 flows
Seg-time = 0.0440

RED with 23 flows
Seg-time = 0.0909

AutoRED with 23 flows
Seg-time = 0.0396

RED with 25 flows
Seg-time = 0.0902

AutoRED with 25 flows
Seg-time = 0.0301

52

RED with 30 flows
Seg-time = 0.1777

RED with 40 flows
Seg-time = 0.1797

AutoRED with 40 flows
Seg-time = 0.0229

AutoRED with 30 flows
Seg-time = 0.0290

Figure 17. Visual comparison of queue behavior - continued

Lmap-RED Simulation Results

On each number of TCP flows, eight simulations are run with eight different r

values. Then the best result of each metric for network performance and degree of queue

oscillation is selected with its corresponding r value. The full data can be found in

Appendix A. 1.

53

Overall, network performance results of the simulations on Lmap-RED

approximate to those of AutoRED with slight but consistent improvements. The

measurement results of link utilization and packet loss rates are shown in Fig. 18 and Fig.

19 respectively. The detailed data shown in Table IV display the steady improvements in

both categories.

On link utilization, less congested networks under 25 TCP flows exhibit larger

improvements. As for packet loss rates, improvements range from 0.001% to 0.6%

throughout all numbers of flows except for 240.

Figure 18. Comparison of link utilization on AutoRED and Lmap-RED

54

Figure 19. Comparison of packet loss rates on AutoRED and Lmap-RED

These improvements are in addition to those that AutoRED has already made

from the RED mechanism and thus their scale is very small. It should be noted that,

although Lmap-RED improves packet loss rates from AutoRED, the RED mechanism still

has advantages in packet loss rates in less congested networks up to 25 TCP flows and

50, 70, and 80 in these simulations.

55

Table IV. Comparison data of link utilization and packet loss rate with r value

 AutoRED Lmap-RED AutoRED Lmap-RED

Number
of TCP
flows

Link
utilization

Link
utilization

Best r
value for

Link
utilization

Packet
loss rate

Packet
loss rate

Best r
value for
Packet

loss rate

5 98.1856% 98.5645% 2.5 0.3002% 0.2990% 2.5
10 99.4083% 99.5580% 3.2 0.3047% 0.3045% 1.333
20 99.7633% 99.8070% 3 1.2876% 1.0984% 1.333
22 99.6938% 99.7351% 1.5 1.9856% 1.7766% 1.333
23 99.5543% 99.5919% 3.5 2.6408% 2.5107% 1.333
25 99.8331% 99.8375% 3.58 3.1374% 2.9871% 3.58
30 99.7921% 99.8024% 2.5 4.4967% 4.4212% 3.2
40 99.7945% 99.7945% 3.2 8.0037% 7.8811% 3.5
50 99.8353% 99.8354% 3 11.6832% 11.0888% 3.2
60 99.8785% 99.8785% 3 14.0645% 13.6780% 3
70 99.8970% 99.8970% 3.2 15.8571% 15.5751% 3.2
80 99.9052% 99.9059% 1.5 17.3782% 17.0319% 3.2
90 99.8970% 99.8971% 3.2 19.2678% 18.6498% 2

100 99.8950% 99.8950% 3.5 19.7927% 19.6624% 3
120 99.9202% 99.9208% 2 21.8081% 21.2969% 3.2
140 99.9236% 99.9236% 3.58 23.1668% 22.6621% 3.58
180 99.9256% 99.9266% 3.58 24.9881% 24.5788% 2
240 99.9321% 99.9321% 2.5 26.9708% 27.1491% 2

Fig. 20 illustrates the improvements made by Lmap-RED over the results of

AutoRED on queuing delays. As discussed earlier, higher queuing delays are regarded

better under 30 TCP flows in light of making most out of the network. Over 30, lesser

queuing delays are considered advantageous. This is the pattern in which Lmap-RED

improves over AutoRED consistently except for 240 TCP flows.

56

Figure 20. Comparison of queuing delays on AutoRED and Lmap-RED

Table V presents the actual data including queue delays and overall average queue

size along with the best r values that provide the improved results.

Looking at packet loss rates and overall average queue size, one thing to make a

note of is that the simulation results on RED, AutoRED, and Lmap-RED in the TCP-only

environment all seem to exhibit a strong relation between packet loss rates and overall

average queue size as can be observed in Fig. 12 and 13 for the comparison of RED and

AutoRED, and in Fig. 19 and 20 for the comparison of AutoRED and Lmap-RED. More

specifically, pivoted at around 30 and 40 TCP flows where the overall average queue size

57

hits the maximum threshold, 30, higher overall average queue size goes together with

lower packet loss rate up to 30 flows displaying an inverse relationship. But over 30

flows, overall average queue size appears to have a direct relationship to packet loss rate.

The detailed data for this comparison are presented in Table VI.

Table V. Comparison data of queuing delay and overall average queue size with r value

 AutoRED Lmap-RED

Number
of TCP
flows

Overall
average
queue
size

Queuing
delay

Overall
average
queue
size

Queuing
delay

Best r
value for
queuing

delay

5 11.7040 0.0144 11.68137 0.0144 1.5
10 16.3520 0.0201 16.57656 0.0204 1.333
20 22.9815 0.0283 23.10391 0.0285 3.58
22 24.3068 0.0299 24.69771 0.0304 1.333
23 25.3937 0.0313 26.02212 0.0321 1.333
25 27.0373 0.0333 26.34913 0.0325 2
30 28.0922 0.0346 27.8203 0.0343 3.58
40 30.6343 0.0377 30.19001 0.0372 3.2
50 32.5137 0.0401 32.22483 0.0397 3.2
60 33.5703 0.0414 33.43114 0.0412 3
70 34.3478 0.0423 34.21268 0.0422 3.2
80 34.9815 0.0431 34.82078 0.0429 3.2
90 35.7544 0.0440 35.47095 0.0437 2

100 35.9658 0.0443 35.89763 0.0442 3
120 36.8767 0.0454 36.5995 0.0451 3.2
140 37.3555 0.0460 37.13542 0.0458 3.58
180 38.1792 0.0470 37.95568 0.0468 2
240 38.8190 0.0478 38.93321 0.0480 2.5

58

Table VI. Comparison of packet loss rate and overall average queue size

RED AutoRED Lmap-RED

Number
of TCP
flows

Packet
loss rate

Overall
average

queue size

Packet
loss rate

Overall
average

queue size

Packet
loss rate

Overall
average

queue size

5 0.2979% 12.8534 0.3002% 11.7040 0.2990% 11.681371
10 0.3020% 16.2785 0.3047% 16.3520 0.3045% 16.576555
20 0.3565% 24.0809 1.2876% 22.9815 1.0984% 23.103912
22 0.5972% 26.5759 1.9856% 24.3068 1.7766% 24.697705
23 1.9120% 27.6037 2.6408% 25.3937 2.5107% 26.022119
25 2.6873% 28.1569 3.1374% 27.0373 2.9871% 26.349133
30 4.9416% 28.8281 4.4967% 28.0922 4.4212% 27.820304
40 8.0835% 30.6688 8.0037% 30.6343 7.8811% 30.190014
50 10.9782% 32.3210 11.6832% 32.5137 11.0888% 32.22483
60 13.8491% 33.6447 14.0645% 33.5703 13.6780% 33.431137
70 15.3224% 34.1401 15.8571% 34.3478 15.5751% 34.212681
80 16.8809% 34.7464 17.3782% 34.9815 17.0319% 34.820782
90 19.1234% 35.5908 19.2678% 35.7544 18.6498% 35.470952

100 20.0174% 36.0479 19.7927% 35.9658 19.6624% 35.897634
120 21.7804% 36.7682 21.8081% 36.8767 21.2969% 36.599499
140 22.9056% 37.1838 23.1668% 37.3555 22.6621% 37.135416
180 25.5528% 38.3172 24.9881% 38.1792 24.5788% 37.955678
240 27.3717% 38.9788 26.9708% 38.8190 27.1491% 38.933207

As far as the degree of queue oscillation is concerned, the improvements made by

Lmap-RED with regards to statistical metrics and Seg time, are relatively larger as shown

in the following three figures: Fig. 21 for the minimum and maximum queue size, Fig. 22

for standard deviation, and Fig. 23 for Seg-time. The detailed data with the best r values

producing these results are shown in Table VII.

59

Figure 21. Comparison of minimum and maximum queue size

Figure 22. Comparison of standard deviation

60

AutoRED with 23 flows
Seg-time = 0.0396

Figure 23. Comparison of Seg-time

As an example, 23 TCP flows is taken to show the visual representation of these

improvements in standard deviation and Seg-time. It is apparent that there are no high

peaks in the queue behavior of both AutoRED and Lmap-RED. Lmap-RED hits lows less

frequently controlling the queue oscillation more evenly.

Figure 24. Visual comparison of queue behaviors on AutoRED and Lmap-RED

Lmap-RED with 23 flows for r = 2
Seg-time = 0.0291

61

 Table VII. Comparison data of the minimum and maximum queue size, standard
deviation, and Seg-time with best r value

Tables IV, V, and VII contain r value coulmns that produce the best possible

results for each metric per each simulation. An r value producing the best value in one

metric category also produces in another or more. From this, relationships between

categories are found in that there are two categories that share the same r values more

often than others. First of all, the obvious relationship as mentioned in the comparison of

 AutoRED Lmap-RED AutoRED Lmap-RED

Number
of TCP
flows

mini
mum

maxi
mum

standard
deviation

mini
mum

maxi
mum

standard
deviation

Best r
value
for

stdev

Seg-time Seg-time
Best r

value for
Seg-time

5 0 28 6.1598 0 27 5.7322 3.58 0.0628 0.0542 2
10 0 36 7.0119 0 36 6.0475 3.2 0.0552 0.0397 3.2
20 0 46 7.1774 0 42 6.3293 3.58 0.0425 0.0334 3.58
22 0 47 7.3068 0 43 6.2666 3.5 0.0440 0.0332 3.5
23 0 45 6.9629 0 42 6.0198 2 0.0396 0.0291 2
25 0 45 6.0229 5 44 5.7524 3.58 0.0301 0.0278 3.58
30 0 45 5.9705 3 43 5.5004 2.5 0.0290 0.0258 3.58
40 9 47 5.2796 10 46 4.8461 2.5 0.0229 0.0188 2.5
50 13 51 4.6592 14 46 4.3357 3 0.0183 0.0150 3
60 15 49 4.5476 16 49 4.1095 3.5 0.0163 0.0140 3
70 17 51 4.3933 18 49 4.0114 2.5 0.0173 0.0131 2.5
80 17 50 4.3792 19 49 3.8986 2.5 0.0170 0.0133 2.5
90 20 51 4.2032 20 50 3.8392 3.2 0.0156 0.0130 3.2

100 20 53 4.1458 21 50 3.7691 3.58 0.0158 0.0127 3.58
120 20 52 4.1361 18 49 3.8322 3.2 0.0155 0.0130 3.2
140 23 51 4.1979 20 51 3.7911 2.5 0.0158 0.0130 3.58
180 23 52 4.0144 23 51 3.7367 3 0.0149 0.0126 3.2
240 22 52 4.0947 23 53 3.5547 3.58 0.0163 0.0124 3.58

62

the results of RED and AutoRED experiments is the one between standard deviation and

Seg-time. As illustrated in Fig. 25, many dots are overlapped meaning the same r value

produces the best results for both standard deviation and Seg-time. Since both are

representations of queue oscillation, this result is not surprising.

Figure 25. Best r values for standard deviation and Seg-time

The second relationship is between packet loss rate and overall average queue size

(or queuing delay) displayed in Fig. 26. In highly congested networks from 50 flows to

180, an r value that provides the best packet loss rate in one simulation generates the best

queuing delay as well.

63

Figure 26. Best r values for packet loss rate and queuing delay

This relationship has been speculated earlier but looking at the effect of r values

on otherwise the same simulation helps identifying the relationship more closely. What is

seen from the illustrations of packet loss rates and overall average queue size over eight r

values is that up to 30 flows an inverse relationship is observed while over 30 a direct

relationship is clearly shown. Fig. 27 demonstrates this by presenting plots of packet loss

rates on the left and overall average queue size on the right varied by eight r values for

the number of flows – 5, 25, 40, 90, and 240.

64

Packet loss rate - 5 TCP flows

Figure 27. Relationship of packet loss rate and overall average queue size

Packet loss rate - 25 TCP flows

Overall average queue size - 5 TCP flows

Overall average queue size - 25 TCP flows

Packet loss rate - 40 TCP flows Overall average queue size - 40 TCP flows

65

Figure 27. Relationship of packet loss rate and overall average queue size - continued

This concludes the description of experiments done in TCP-only environments

and their findings.

TCP and UDP Combined Environment

In experimenting behaviors of RED, AutoRED, and Lmap-RED in a mixed

network environment of TCP and UDP flows, the number of UDP flows is increased

from 5 to 50 while the number of TCP flows is kept at 10 as the 10 TCP flows have

exhibited higher performance metric values for RED in the TCP-only environment. UDP

flows are injected into the network at 9.5 seconds and all measurements for both network

Packet loss rate - 90 TCP flows Overall average queue size - 90 TCP flows

Packet loss rate - 240 TCP flows Overall average queue size-240 TCP flows

66

performance and degree of queue oscillation, start from 10 seconds giving 0.5 seconds

for filtering any transient behaviors. TCP packet size is 1,500 bytes whereas UDP packet

size is 1,000 bytes because NS-2 breaks UDP packets larger than 1,000 bytes. Broken

packets are undesirable because they will occupy two packet spaces in the queue. 10 TCP

flows with 15 UDP flows, thus, can be translated to about an equal share of the

bandwidth at the bottleneck. Additionally, the interval of CBR over UDP used in these

simulations is to set 40 packets per second or at 3.2Mbps. The full data of Lmap-RED with

eight r values per each number of UDP flows can be found in Appendix A. 2.

Overall, AutoRED and Lmap-RED exhibit better throughput and less packet loss

rate than RED as shown in Fig. 28 and Fig. 29 respectively. All accounts of throughputs

on AutoRED are equal to or greater than those of RED and Lmap-RED shows further

improvements from AutoRED even in a larger scale than that of the TCP-only

environment. Packet loss rates on AutoRED show small improvements over those on

RED in 20, 25, and 50 flows, but in fact AutoRED exhibits poor packet loss rates worse

than RED in the rest of flows. In contrast, it is the Lmap-RED that displays improvements

in packet loss rates in all simulations except for 5 UDP flows. The noticeable dip in link

utilization on 15 and 20 UDP flows on RED appears to be the same pattern exhibited in

the TCP-only environment. The detailed data for the comparison of link utilization,

packet loss rate, and overall average queue size can be found in Table VIII which helps

recognizing the improvements made in a small scale not so apparent in the figures.

67

Figure 28. Comparison of link utilization

Figure 29. Comparison of packet loss rate

68

Table VIII. Comparison data of link utilization, packet loss rate, and overall average queue size with r value

RED AutoRED Lmap-RED

Number
of UDP
flows

Link
utilization

Packet loss
rate

Overall
average

queue size

Link
utilization

Packet loss
rate

Overall
average
queue
size

Best r
value for

Link
utilization

Link
utilization

Best r
value
for

Pack
et

loss
rate

Packet loss
rate

Best r
value
for

average
queue
size

Overall
average
queue
size

5 99.7341% 0.8748% 19.2620 99.8500% 1.0165% 18.9676 2.5 99.9574% 3.58 0.9146% 2 18.8889
10 99.5798% 1.9561% 22.5489 99.5994% 2.2931% 20.7895 2.5 99.8435% 1.333 1.8156% 3 21.3694
15 99.0188% 3.9025% 25.6297 99.5853% 4.0941% 23.1975 3 99.9096% 2.5 3.5691% 3.5 23.5992
20 98.6361% 6.4394% 27.0872 99.9174% 6.1532% 26.4205 2 99.9505% 2.5 5.5439% 2 26.5165
25 99.7256% 9.9146% 29.0824 100.0048% 9.3852% 30.0423 2.5 100.0019% 3.2 8.6823% 2.5 30.1761
30 99.9998% 14.4148% 33.3497 100.0024% 15.5870% 34.0826 3 100.0030% 3.58 14.1431% 3.58 33.3799
40 100.0502% 26.6715% 39.1618 99.9999% 26.9060% 39.2197 1.333 100.0181% 2.5 25.9403% 1.333 38.8307
50 100.0072% 39.3144% 43.7521 100.0079% 39.2869% 43.9609 1.5 100.0596% 1.5 39.0250% 1.333 43.9722

69

One thing to note is that some link utilization numbers are over 100% as in Table

VIII. Throughput is measured by the number of dequeued packets from the node A with

the AQM queue and it can be speculated that some packets have been already in the pipe

when the measurement starts at 10 seconds. Furthermore, throughput of TCP flows and

that of UDP flows are calculated separately and added together for the total throughput

and their start and end time is slightly different. This may have attributed to that as well.

It should be safe to assume the link utilization to be nearly 100%.

Again, RED exhibits favorable overall average queue size in that, as is in the

TCP-only environment, the number close to the maximum threshold, 30, is considered

better. For example, on 25 UDP flows, the overall average queue size 29.0824 on RED is

regarded as better than 30.0423 on AutoRED and 30.176 on Lmap-RED. The region that

RED displays better overall average queue size is again in less congested networks. This

result is parallel to that of the TCP-only environment as shown in Fig. 30.

It should be noted that in the TCP and UDP combined environment, queuing

delays cannot be calculated in the same method presented earlier because TCP and UDP

packet sizes are different and the queue capacity in these simulations is in the unit of

packets instead of bytes. However, the overall average queue size can replace queuing

delay in observing its effect and relationship with other metrics because they have a

direct linear relationship.

70

Figure 30. Comparison of overall average queue size

In measuring the degree of queue oscillation, AutoRED and Lmap-RED show

favorable values for the minimum and maximum queue size, standard deviation, and Seg-

time. Lmap-RED shows improvements in all accounts over the results of AutoRED that

exhibit better outcomes than those of RED. Fig. 31, Fig. 32, and Fig. 33 illustrate the

comparison of the minimum and maximum queue size, standard deviation, and Seg-time

respectively. It should be noted that there is a single set of r values chosen for both link

utilization and packet loss rates on UDP flows because the number of enqueued packets

are the same per given number of flows in CBR applications. The actual data for these

metrics and the best r values are found in Table IX.

71

Figure 31. Comparison of minimum and maximum queue size

Figure 32. Comparison of standard deviation

72

Figure 33. Comparison of Seg-time

73

Table IX. Comparison data of the minimum and maximum queue size, standard deviation, and Seg-time with r value

RED AutoRED Lmap-RED

Number
of UDP
flows

mini
mum

maxi
mum

standard
deviation

Seg-
time

mini
mum

maxi
mum

standard
deviation

Seg-
time

Best r
value
for

stdev

mini
mum

maxi
mum

standard
deviation

Best r
value

for
Seg-
time

Seg-
time

5 0 54 8.9785 0.1031 0 40 7.4206 0.0633 2.5 0 39 6.82071 2.5 0.0503
10 0 58 10.6440 0.1283 0 44 8.2435 0.0707 3 0 41 7.22894 3 0.0506
15 0 60 12.7720 0.1484 0 44 8.5980 0.0677 3.5 0 41 7.17993 3.5 0.0494
20 0 60 16.4059 0.1980 0 44 7.0956 0.0439 3.2 0 43 6.52776 3.2 0.0362
25 0 60 17.0618 0.2067 0 45 4.9042 0.0256 3 0 42 4.0769 3 0.0162
30 0 60 10.1227 0.1368 23 45 3.0265 0.0060 2.5 24 45 2.87104 2 0.0048
40 25 54 4.0161 0.0944 33 49 2.5994 0.0046 3 33 47 2.46506 3.2 0.0043
50 33 54 2.9205 0.0682 38 53 2.2848 0.0036 1.333 38 52 2.28632 1.333 0.0036

74

Noticeably in Fig. 32 and Fig. 33, the simulations on RED exhibit higher degrees

of queue oscillation especially starting at 15 and 20 flows peaking at 25. This is also the

same region the link utilization is poor on RED. However, it drops from 30 UDP. The

visual comparison of queue behaviors on RED with those of Lmap-RED is presented in

Fig. 34.

Figure 34. Visual comparison of queue behaviors on RED and Lmap-RED

RED with 15 UDP flows
Seg-time = 0.1484

Lmap-RED with 15 UDP flows for r = 3.5
Seg-time = 0.0494

RED with 20 UDP flows
Seg-time = 0.1980

Lmap-RED with 20 UDP flows for r = 3.2
Seg-time = 0.0362

75

Figure 34. Visual comparison of queue behaviors on RED and Lmap-RED - continued

RED with 30 UDP flows
Seg-time = 0.1368

RED with 25 UDP flows
Seg-time = 0.2067

RED with 40 UDP flows
Seg-time = 0.0944

Lmap-RED with 25 UDP flows for r = 3
Seg-time = 0.0162

Lmap-RED with 30 UDP flows for r = 2
Seg-time = 0.0048

Lmap-RED with 40 UDP flows for r = 3.2
Seg-time = 0.0043

76

Note that the injection of UDP traffic starts at 9.5 seconds, therefore, the time

between 0 and 9.5 seconds only consists of 10 TCP flows. In the case of Lmap-RED, as in

the TCP-only environment, 0 to 5 seconds is on RED and then the AQM mechanism is

switched to Lmap-RED. The increase and decrease of the chaotic queue oscillation on RED

is shown clearly.

As in the TCP-only environment, the relationship between Seg-time and standard

deviation is observed. The plot of the best r values for standard deviation and Seg-time

affirms this as shown in Fig. 35.

Figure 35. Comparison of best r values for standard deviation and Seg-time

Compared with the TCP-only environment, the relationship between packet loss

rate and overall average queue size is not found to be as strong. They do not share the

same r value as they do in the TCP-only environment. And the inverse relationship

77

observed in the simulations of which overall average queue size is less than the maximum

threshold is not apparent.

Fairness Analysis

How fair are RED, AutoRED, and Lmap-RED in treating TCP and UDP flows

when they are combined? Two approaches have been made in an attempt to answer this.

One way is to look at TCP and UDP traffics independently as if they are not combined.

Each type of traffic is measured in terms of link utilization and packet loss rate separately

from the other. This helps to see how the performance of TCP and UDP traffics changes

as the number of UDP flows increases. Moreover, it allows the comparison of TCP and

UDP performances by their type. The other method is to explore the ratio in link

utilization and packet loss rate of TCP traffics versus UDP traffics with regards to those

of the combined traffics. This is to investigate if any mechanism favors one type of

traffics over the other.

Since the values of aggregate link utilization are very close to 100%, the

independent value of TCP and UDP traffics is approximately equivalent to their ratio.

Minor differences come from the fact that some of the aggregate link utilization is less

than 100% and that the TCP payload of 1,500 bytes without the 40 bytes of header has

been used in calculating throughput. Therefore, only the independent values of link

utilization of TCP traffics and UDP traffics are shown in Fig. 36 and Fig. 37 respectively.

Table X presents the detailed data. The ratio of link utilization between TCP and UDP

traffics is contained in Table XI.

78

Figure 36. Comparison of TCP composition in link utilization

In these figures, the performance of Lmap-RED shows better link utilization in all

simulations for both TCP and UDP traffics. It increases overall throughput without

favoring either TCP traffics or UDP traffics. AutoRED exhibits very slight improvements

over RED in UDP link utilization from 10 to 25 flows.

No apparent differences are found in treating TCP and UDP traffics on all three

schemes. One minor point is that RED has less TCP traffics than UDP traffics on 30 and

40 flows compared with AutoRED and Lmap-RED.

79

Figure 37. Comparison of UDP composition in link utilization

Table X. Comparison data of independent link utilization of TCP and UDP with r value

RED Auto-RED Lmap-RED
Link utilization Link utilization Link utilization

No. of
TCP
flows

No. of
UDP
flows

TCP UDP TCP UDP

Best r
value
for

TCP

TCP

Best r
value
for

UDP

UDP

10 5 81.1597% 18.5744% 81.2820% 18.5680% 2.5 81.3718% 3.58 18.6512%
10 10 65.8390% 33.7408% 65.8106% 33.7888% 3 66.1200% 1.333 34.0016%
10 15 50.5772% 48.4416% 51.1133% 48.4720% 3.2 51.4227% 2.5 48.7360%
10 20 36.2553% 62.3808% 37.4118% 62.5056% 2 37.6065% 2.5 62.8928%
10 25 25.0728% 74.6528% 24.9984% 75.0064% 2 25.7445% 3.2 75.6704%
10 30 15.1086% 84.8912% 16.3032% 83.6992% 2.5 16.6321% 3.58 85.1456%
10 40 3.8374% 96.2128% 4.0591% 95.9408% 3.5 5.1868% 2.5 97.2304%
10 50 0.9704% 99.0368% 0.8959% 99.1120% 3.2 1.2230% 1.5 99.5488%

80

Table XI. Comparison data of ratio between TCP and UDP link utilization with r value

RED Auto-RED Lmap-RED
Link utilization Link utilization Link utilization

No. of
TCP
flows

No. of
UDP
flows

TCP UDP TCP UDP

Best r
value

for
TCP

TCP

Best r
value
for

UDP

UDP

10 5 80.9738% 19.0262% 81.4037% 18.5963% 2.5 81.0047% 3.58 19.0734%
10 10 65.5245% 34.4755% 65.4822% 34.5178% 3 65.6345% 1.333 34.7611%
10 15 50.4188% 49.5812% 50.6672% 49.3328% 3.2 50.8748% 2.5 49.4613%
10 20 36.1423% 63.8577% 36.8278% 63.1722% 2 37.0090% 2.5 63.5461%
10 25 24.6485% 75.3515% 24.5026% 75.4974% 2 25.2440% 3.2 76.1517%
10 30 14.7727% 85.2273% 15.9458% 84.0542% 2.5 16.2700% 3.58 85.4745%
10 40 3.6924% 96.3076% 3.9570% 96.0430% 3.5 5.0588% 2.5 97.3005%
10 50 0.9386% 99.0614% 0.8642% 99.1358% 3.2 1.1740% 1.5 99.5607%

In comparing packet loss rates, the TCP payload size of 1,500 bytes has been used

for computing the ratio as in link utilization. However, unlike the computation of link

utilization in which throughputs of TCP and UDP in Mbps are put together and divided

by the bandwidth of the link, the packet loss rate of the combined traffics is not the sum

of each packet loss rate of TCP and UDP flows. Each type calculates packet loss rate as if

the other type of traffic does not exist. Hence, the packet loss rate for TCP flows is the

percentage of the number of dropped TCP packets out of the number of enqueued TCP

packets and so the UDP packet loss rate is the dropped UDP packets out of enqueued

UDP packets. Thus these rates are not the composition of the combined network as is the

case with link utilization. First the packet loss rates of each type of flows are shown in

Fig. 38 for TCP and Fig. 39 for UDP. The detailed data can be found in Table XII.

81

Figure 38. Comparison of independent TCP packet loss rates

Figure 39. Comparison of independent UDP packet loss rates

82

Lmap-RED exhibits favorable packet loss rates in all accounts except for TCP

packet loss rates from 5 to 15 flows where RED displays better packet loss rates. The

packet loss rate on Lmap-RED on 5 flows is the worst of the three mechanisms. RED

shows poor packet loss rates on 20 and 25 flows for both TCP and UDP while AutoRED

displays poor packet loss rates on 30 and 40 flows for both TCP and UDP traffics. In

addition, the UDP packet loss rates are almost identical in 50 UDP flows on all three

schemes while the TCP packet loss rates rather differ.

Table XII. Comparison data of independent packet loss rate of TCP and UDP with r
value

RED Auto-RED Lmap-RED
 Packet loss rate Packet loss rate Packet loss rate

No. of
TCP
flows

No. of
UDP
flows

TCP UDP TCP UDP

Best r
value

for
TCP

TCP

Best r
value
for

UDP

UDP

10 5 0.0030% 3.2667% 0.1876% 3.3000% 2.5 0.1904% 3.58 2.8583%
10 10 0.1905% 4.1045% 0.9305% 3.9636% 1.333 0.5385% 1.333 3.3682%
10 15 1.6248% 5.3875% 2.2476% 5.3188% 2.5 1.7375% 2.5 4.7781%
10 20 4.4489% 7.1690% 4.0192% 6.9571% 1.333 3.3434% 2.5 6.3571%
10 25 8.2424% 10.2712% 7.3807% 9.8077% 3.2 6.9557% 3.2 9.0346%
10 30 14.4730% 14.4081% 15.2792% 15.6258% 3.58 13.9678% 3.58 14.1629%
10 40 27.3629% 26.6537% 27.9965% 26.8756% 1.333 27.0433% 2.5 25.8927%
10 50 40.1840% 39.3088% 41.8152% 39.2716% 3.2 37.2751% 1.5 39.0029%

The ratio of the packet loss rates is based on the number of bytes accounted by

dropped TCP or UDP packets out of the total number of bytes dropped in a simulation.

Therefore, for example, two lost TCP packets in bytes are equivalent to three lost UDP

83

packets. The ratio of packet loss rates between TCP traffics and UDP traffics are shown

in Fig. 40 and 41 for TCP and UDP respectively.

Figure 40. Comparison of the ratio of TCP packet loss rates

Figure 41. Comparison of the ratio of UDP packet loss rates

84

First of all, it is apparent that UDP packet loss is much greater than that of TCP in

all number of UDP flows even when TCP traffics are prevailing. The ratio of UDP packet

loss ranges from 70 % to over 99%. From 5 to 15 flows, the ratio of UDP packet loss

decreases on all three schemes while the ratio of TCP packet loss increases even though

the number of UDP flows increases. From 20 UDP flows, the ratio of UDP packet loss

increases as the UDP flows increase.

No variation is found in each scheme’s treatment on or above 20 UDP flows in

highly congested networks. But the results from 5 to 15 UDP flows on RED stand out.

They show much smaller ratio of TCP packet loss comparing with that of AutoRED and

Lmap-RED. Contrary to this, the ratio of TCP packet loss on AutoRED is higher than RED

and Lmap-RED in the same region of 5 to 15 flows. The complete data for the ratio of

TCP and UDP traffics in packet loss rates are presented in Table XIII.

Table XIII. Comparison data of the ratio of TCP and UDP packet loss rates with r value

RED Auto-RED Lmap-RED
 Packet loss rate Packet loss rate Packet loss rate

No. of
TCP
flows

No. of
UDP
flows

TCP UDP TCP UDP

Best r
value
for

TCP

TCP

Best r
value
for

UDP

UDP

10 5 0.3812% 99.6188% 19.0184% 80.9816% 2.5 19.8738% 3.58 76.8197%
10 10 7.8101% 92.1899% 30.1562% 69.8438% 1.333 22.5705% 1.333 77.4295%
10 15 22.7772% 77.2228% 29.5967% 70.4033% 2.5 26.4727% 2.5 73.5273%
10 20 25.4426% 74.5574% 24.6130% 75.3870% 1.333 22.3381% 2.5 77.3577%
10 25 20.4261% 79.5739% 19.2207% 80.7793% 3.2 19.0698% 3.2 80.9302%
10 30 14.8427% 85.1573% 15.5914% 84.4086% 3.58 14.3275% 3.58 85.6725%
10 40 3.8219% 96.1781% 4.1743% 95.8257% 1.333 3.3179% 2.5 96.9520%
10 50 0.9707% 99.0293% 0.9569% 99.0431% 3.2 1.0691% 1.5 99.4227%

85

CHAPTER VI

DISCUSSIONS

Main findings of the experiments include the following points:

The comparison of RED, AutoRED, and Lmap-RED in TCP-only environments

presents the relationship between network performance and the chaotic queue oscillation

as previous works have stated [1], [17], [19]. RED exhibits low link utilization especially

in the region where the overall average queue size is near the maximum threshold of the

RED mechanism. The region of lower throughput on RED which is from 23 flows to 80

flows is the same region where the chaotic queue oscillation is observed visibly and

statistically with its queue size swinging from bottom to top and larger values of standard

deviation and Seg-time. AutoRED and Lmap-RED display improvements in link

utilization in this region. However RED shows better link utilization and packet loss rates

in less congested networks along with better queuing delays in that region. The best

values of Lmap-RED present slightly more favorable results where AutoRED has already

made improvements.

In TCP-UDP combined environments, the best values of Lmap-RED display

improvements in all accounts except for the packet loss rate on 5 UDP flows, the least

amount of traffics in these simulations. RED exhibits its strength in controlling overall

average queue size better than Lmap-RED and AutoRED. RED still displays the chaotic

86

queue oscillation until 30 and 40 UDP flow simulations where UDP flows dominate. All

three schemes seem to treat TCP and UDP traffics without favoring one over the other

except for RED showing lower packet loss rates on TCP traffics in 5, 10, and 15flows.

RED’s chaotic queue oscillation is stabilized in both AutoRED and Lmap-RED.

The newly proposed metric, Seg-time, is discussed for representing a type of delay

caused by the queue oscillation. The comparison of RED and AutoRED in the TCP-only

environment serves as a test bed in verifying Seg-time as a valid metric. The Seg-time

measurement provides analogous results in that the region of higher Seg-time values on

RED is the same region that exhibits the chaotic queue oscillation visibly and statistically.

Particularly, Seg-time and standard deviation appear to exhibit a direct linear relationship

as shown in Fig. 14 and Fig. 16.

One way of interpreting Seg-time values in terms of its effect on the QoS is this.

In the bottleneck link with 10Mbps bandwidth, the transmission time of one TCP packet

of 1,540 bytes is 0.001232 seconds, which is calculated by 1540 × 8 bits divided by 107.

Then the largest Seg-time value in the simulations in the TCP-only environment, 0.1797

seconds, on 40 TCP flows on RED can be translated into at least 145 packets as opposed

to 10 packets on the 240 flows on Lmap-RED. This can mean that on average the queue

may stay overloaded or underutilized in 145 packet-time. The comparison data of Seg-

time in TCP packet in the TCP-only and the TCP and UDP combined environments are

found in Table XIV and Table XV respectively. Since a UDP packet size is 1,000 bytes,

the number of UDP packets in the same Seg-time is greater than that of TCP packets.

87

While measuring queuing delay is straightforward without consuming hardly any

computational resources since it directly derives from the current queue size, measuring

Seg-time takes multiple steps. Furthermore, unlike queuing delay which can be measured

almost instantaneously as it happens, current Seg-time calculation is for measuring what

has happened in a period of time since it requires the calculation of the overall average

queue size and reference points first. Hence, the weakness of Seg-time includes the

complexity of calculation with inevitable resource consumption and the fact that it can

only be a “hindsight” view at least with the current algorithm.

Table XIV. Comparison data of Seg-time in TCP packet in TCP-only environment

RED Lmap-RED

No. of TCP flows Seg-time Seg-time in packet Seg-time Seg-time in packet

5 0.0651 52.84 0.0542 44.02
10 0.0533 43.23 0.0397 32.22
20 0.0474 38.49 0.0334 27.11
22 0.0477 38.69 0.0332 26.94
23 0.0909 73.78 0.0291 23.61
25 0.0902 73.20 0.0278 22.58
30 0.1777 144.22 0.0258 20.96
40 0.1797 145.83 0.0188 15.22
50 0.1750 142.03 0.0150 12.18
60 0.1687 136.96 0.0140 11.40
70 0.1657 134.47 0.0131 10.64
80 0.1711 138.87 0.0133 10.80
90 0.1541 125.09 0.0130 10.52

100 0.1430 116.05 0.0127 10.34
120 0.1228 99.69 0.0130 10.53
140 0.1177 95.57 0.0130 10.52
180 0.1015 82.35 0.0126 10.23
240 0.1020 82.77 0.0124 10.03

88

Table XV. Comparison data of Seg-time in TCP packet in TCP and UDP environment

RED Lmap-RED

No. of UDP flows Seg-time Seg-time in packet Seg-time Seg-time in packet

5 0.1031 83.67 0.0503 40.79
10 0.1283 104.15 0.0506 41.10
15 0.1484 120.44 0.0494 40.13
20 0.1980 160.71 0.0362 29.42
25 0.2067 167.80 0.0162 13.16
30 0.1368 111.06 0.0048 3.90
40 0.0944 76.61 0.0043 3.52
50 0.0682 55.37 0.0036 2.94

In light of the experimental results, what are the contributing factors to stabilizing

chaotic queue oscillation and improving network performance? The chief difference in

the algorithms of RED, AutoRED, and Lmap-RED is of course the weight parameter, wq,

in EWMA. Fig. 42 illustrates this difference in AutoRED and Lmap-RED since wq in

RED is a constant value 0.002.

89

Figure 42. Comparison of wq value of AutoRED and Lmap-RED in TCP-only environment

AutoRED with 5 flows Lmap-RED with 5 flows for r = 2.5

AutoRED with 30 flows Lmap-RED with 30 flows for r = 3.2

Lmap-RED with 100 flows for r = 3

AutoRED with 100 flows

90

Aside from the fact that wq values in AutoRED and Lmap-RED are changing

dynamically, their lower bounds show differences. Comparing the algorithms of wq

calculation of AutoRED and Lmap-RED, it can be seen that the differences in the lower

bounds come from the first components, namely, the congestion characteristics in

AutoRED, and the logistic map in Lmap-RED.

In steady states as in the experiments, the congestion characteristics value seems

to approach its upper bound, 0.25, rather quickly. In the case of Lmap-RED, the lowest

value of r value, 1.333, produces approximately the same value as the upper bound of the

congestion characteristics. This is in fact the lower bound of the logistic map values

produced by the rest of r values whose characteristics are presented in the fifth chapter.

Fig. 43 shows these differences in each component of the algorithms of AutoRED and

Lmap-RED.

91

Figure 43. Comparison of congestion characteristics and logistic map values

Eventually, a higher wq value makes the values of average queue size change as

current queue size changes in a higher proportion. As plotting of average queue size over

time in Fig. 44 shows, average queue size of AutoRED and Lmap-RED moves in wider

ranges than those of RED.

Lmap-RED with 5 flows r = 2.5 AutoRED with 5 flows

Lmap-RED with 30 flows r = 3.2 Lmap-RED with 100 flows for r = 3

92

Figure 44. Comparison of average queue size over time in RED, AutoRED, and Lmap-RED

RED with 5 flows

RED with 30 flows

Lmap-RED with 5 flows for r = 2.5

Lmap-RED with 30 flows for r = 3.2

AutoRED with 5 flows

AutoRED with 30 flows

93

Figure 44. Comparison of average queue size over time in RED, AutoRED, and Lmap-RED – continued

RED with 100 flows AutoRED with 100 flows Lmap-RED with 100 flows for r = 3

94

At this point, it is necessary to discuss certain characteristics of the behavior of

the RED mechanism. As the experimental results show, RED seems to have achieved its

design goals in that overall average queue size is closer to the maximum threshold and its

packet loss rate is lower on a given number of TCP flows as long as the overall average

queue size is not greater than the maximum threshold. However, as the overall average

queue size becomes close to the maximum threshold, RED appears to drop packets at a

much higher rate as its packet-marking probability increases as shown in Fig.12. As

pointed out in [16], RED frequently exhibits poor throughput and increased packet loss

rates especially when average queue size is larger than the maximum threshold.

In light of this, since average queue sizes on RED move in a smaller scale, when

the overall average queue size is around the maximum threshold, calculated average

queue sizes tend to stay in that range resulting in a higher packet loss rate and low

throughput. On the other hand, in the case of AutoRED and Lmap-RED, it can be said that

a wider range of average queue size works in their advantage in that the sensitive nature

of RED’s parameters is watered down. Even when the overall average queue size is close

to the maximum threshold, for example, in 30 TCP flows in Fig. 44, various average

queue sizes are in mixed regions of packet-marking probabilities. Lmap-RED introduces

further randomizing effects through the bifurcations resulted by some r values in

calculating wq.

In terms of the complexity of computation, it is understandable that the algorithms

of AutoRED and Lmap-RED bound to increase their computing time and consume more

computing power comparing with the algorithm of RED scheme. But comparing

95

AutoRED and Lmap-RED, they should be at the same level because their computation part

is virtually the same.

Albeit the favorable experimental results, one of the biggest drawbacks of Lmap-

RED is that the control parameter r value introduces the possibility of improvements but

also unpredictability. Currently no relationship is observed between r values and network

traffic characteristics or any aspects of network performance except that the r values used

in the experiments yield lesser degrees of queue oscillation than those of RED.

96

CHAPTER VII

CONCLUSIONS

The new metric called Seg-time can definitely be used as a measurement for a

type of delay caused by queue oscillation in a gateway that affects the network

performance and the QoS. Seg-time answers how long a period of high queue size or low

queue size persists with reference to the overall average queue size. It is validated by its

direct relationship with the statistical metrics and visual representation of queue

oscillation as a measurement of the degree of oscillation in terms of the QoS. However, it

is not easy to calculate and it does not provide measurements instantaneously. Therefore,

it may be more suitable for an in-depth network analysis rather than for dealing with

what’s happening currently in the network.

Lmap-RED mechanism, an AQM scheme newly proposed in this thesis, shows the

possibility of further improvements from what has been achieved by AutoRED. By

modifying AutoRED’s algorithm using the logistic map function, Lmap-RED improves

throughput and stabilizes the chaotic queue oscillation in highly congested networks

where RED does not function well. Experimental results display that Lmap-RED

additionally improves packet loss rates in the TCP and UDP combined network

environment. The biggest drawback of Lmap-RED is that no guideline is set for choosing

its control parameter, r, so that it will yield the best possible results for a given network

97

scenario. Therefore, AutoRED should be recommended for general purpose due to its

advantage of calculating the weight parameter, wq , automatically. For those users who are

able to experiment with Lmap-RED to find an appropriate r value for the characteristics of

their network or for a particular purpose, Lmap-RED may produce better results.

This leads to the future research topic for Lmap-RED. Setting a guideline for

choosing appropriate r value will require more thorough analysis of the relationship

between the value r and the results it produces. In terms of the future work on Seg-time,

it will include implementing the Seg-time measurement in live networks for the

verification of its applicability to real life situations. Devising an algorithm easier to

implement would be an ideal future topic as well.

98

REFERENCES

[1] S. Suthaharan, “Reduction of queue oscillation in the next generation Internet
routers,” Computer Communications, vol. 30, pp. 3881–3891 , December 2007.

[2] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, January 1984.

[3] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM’88, August
1988.

[4] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New Techniques for
Congestion Avoidance,” in Proceedings of ACM SIGCOMM’94, pp. 24-35, Oct.
1994.

[5] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP,” ACM Computer Communication Review, vol. 26, no. 3, pp. 5-21, July 1996.

[6] W. Stallings, Computer Networking with Internet Protocols and Technology. Upper
Saddle River, NJ: Pearson Prentice Hall, 2004.

[7] B. Braden , D. Clark , J. Crowcroft , B. Davie , S. Deering , D. Estrin , S. Floyd , V.
Jacobson , G. Minshall , C. Partridge , L. Peterson , K. Ramakrishnan , S. Shenker , J.
Wroclawski , L. Zhang, “Recommendations on Queue Management and Congestion
Avoidance in the Internet,” RFC 2309, April 1998.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, August
1993.

[9] R. J. Gibbens and F. Kelly, “Resource Pricing and the Evolution of Congestion
Control,” Automatica, vol. 35, pp. 1969–1985, 1999.

[10] S. Athuraliya, S. Low, V. H. Li, and Q. Yin, “REM: active queue management,”
IEEE Network, vol. 15, pp. 48–53, May/June 2001.

[11] S. Kunniyur and R. Srikant, “Analysis and design of adaptive virtual queue
algorithm for active queue management,” in Proceedings of ACM SIGCOMM, San
Francisco, CA, 2001.

[12] M. May, C. Diot, B. Lyles, and J. Bolot, “Reasons not to deploy RED,” Seventh
International Workshop on 31 May–4 June 1999, IWQoS ’99, pp. 260–262, 1999.

99

[13] D. Lin and R. Morris, “Dynamics of random early detection,” In Proceedings of the
ACM Sigcomm, pp. 127–137, New York, NY, September 1997.

[14] T. Ott, T. Lakshman, and L. Wong, “SRED:stabilized RED,” In Proceedings of The
IEEE Infocom, vol. 3, pp. 1346–1355, New York, NY, March 1999.

[15] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The BLUE Active Queue
Management Algorithm,” IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp.
513-528, August 2002.

[16] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm for
increasing the robustness of RED’s active queue management,” August 2001.
Available from: <http://www.icir.org/floyd/papers/adaptiveRed.pdf>.

[17] S. Liu, T. Başar and R. Srikant, "Exponential-RED: A Stabilizing AQM Scheme
for Low- and High-Speed TCP Protocols", IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp.1068-1081, October 2005.

[18] V. Firoiu, and M. Borden, “A study of active queue management for congestion
control,” in Proc. of IEEE INFOCOM, Tel Aviv, Israel, 2000, pp. 1435–1444.

[19] P. Ranjan, E.H. Abed, and R.J. La, “Nonlinear instabilities in TCP-RED,”
IEEE/ACM Transactions on Networking, vol. 12, pp. 1079-1092, December 2004.

[20] Cisco Systems, Inc., “Congestion Avoidance Overview,” October 2002. Available
from:<http://www.cisco.com/en/US/docs/ios/12_0/qos/configuration/guide/qcconavd.
html>.

[21] S. Strogatz, Nonlinear Dynamics and Chaos, Cambridge, MA: Perseus
Publishing, 2000.

[22] Wikipedia the free encyclopedia, “Logistic map”, Available from:
<http://en.wikipedia.org/wiki/Logistic_map>.

[23] E. Altman and T. Jiménez, “NS-2 for beginners,” 2003. Available from:
<http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS/n3.pdf>

[24] The Network Simulator: ns-2 [online]. Available from:
<http://www.isi.edu/nsnam/ns/>.

[25] S. Floyd, “Recommendation on using the ‘gentle_’ variant of RED,” March 2000.
Available from: <http://www.icir.org/floyd/red/gentle.html>.

[26] J.H.C. Nga, H.H.C. Iu, S.H. Ling and H.K. Lam, “Comparative study of stability
in different TCP/RED models,” Chaos, Solitons & Fractals, vol. 37, pp. 977-987,
August 2008.

http://www.icir.org/floyd/papers/adaptiveRed.pdf�
http://www.cisco.com/en/US/docs/ios/12_0/qos/configuration/guide/qcconavd.html�
http://www.cisco.com/en/US/docs/ios/12_0/qos/configuration/guide/qcconavd.html�
http://en.wikipedia.org/wiki/Logistic_map�
http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS/n3.pdf�
http://www.isi.edu/nsnam/ns/�
http://www.icir.org/floyd/red/gentle.html�

100

Appendix A. Lmap-RED Simulation Data

1. TCP-only environment

No. of
TCP
flows

r
value

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

mini
mum

maxi
mum

standard
deviation

Seg-
time

5 1.333 98.2154% 0.3001% 11.4934 0.01416 0 29 6.0623 0.0671
5 1.5 98.3262% 0.2997% 11.6814 0.01439 0 28 5.8745 0.0592
5 2 98.2933% 0.2998% 11.3659 0.01400 0 28 5.7816 0.0542
5 2.5 98.5645% 0.2990% 11.5176 0.01419 0 27 5.8140 0.0547
5 3 98.2175% 0.3001% 11.4971 0.01416 0 30 5.8521 0.0559
5 3.2 98.3982% 0.2996% 11.6192 0.01431 0 27 5.7462 0.0583
5 3.5 98.3013% 0.2999% 11.4449 0.01410 0 28 5.8640 0.0586
5 3.58 98.5395% 0.2991% 11.5120 0.01418 0 27 5.7322 0.0545

10 1.333 99.4864% 0.3045% 16.5766 0.02042 0 37 7.0797 0.0573
10 1.5 99.5006% 0.3064% 16.4633 0.02028 0 37 6.6938 0.0491
10 2 99.5318% 0.3104% 16.3572 0.02015 0 37 6.6802 0.0483
10 2.5 99.5046% 0.3290% 16.1552 0.01990 0 36 6.6237 0.0472
10 3 99.5109% 0.3228% 16.2579 0.02003 0 36 6.3017 0.0450
10 3.2 99.5580% 0.3083% 16.3604 0.02016 0 36 6.0475 0.0397
10 3.5 99.4923% 0.3332% 16.3985 0.02020 0 36 6.6287 0.0477
10 3.58 99.5232% 0.3125% 16.3327 0.02012 0 35 6.3819 0.0442
20 1.333 99.7847% 1.0984% 22.7821 0.02807 0 43 6.8629 0.0388
20 1.5 99.7512% 1.2734% 22.8735 0.02818 0 46 7.0162 0.0393
20 2 99.7923% 1.3072% 22.8942 0.02821 0 41 6.5926 0.0370
20 2.5 99.7839% 1.3892% 22.8164 0.02811 0 42 6.6539 0.0374
20 3 99.8070% 1.3429% 22.7401 0.02802 0 42 6.6193 0.0373
20 3.2 99.7532% 1.4216% 22.8421 0.02814 0 42 6.6316 0.0380
20 3.5 99.7900% 1.3171% 22.5154 0.02774 0 42 6.5437 0.0358
20 3.58 99.7867% 1.2874% 23.1039 0.02846 0 42 6.3293 0.0334
22 1.333 99.7306% 1.7766% 24.6977 0.03043 0 46 6.5795 0.0353
22 1.5 99.7351% 1.8597% 24.5445 0.03024 0 44 6.5969 0.0361
22 2 99.7327% 1.9910% 24.4856 0.03017 0 43 6.4515 0.0361
22 2.5 99.7306% 1.9705% 24.3206 0.02996 0 46 6.3738 0.0347
22 3 99.7165% 2.0722% 24.2206 0.02984 0 42 6.6446 0.0369
22 3.2 99.7333% 2.0285% 24.3360 0.02998 0 43 6.4329 0.0347
22 3.5 99.7289% 2.0083% 24.5035 0.03019 0 43 6.2666 0.0332
22 3.58 99.7247% 1.9179% 24.0372 0.02961 0 44 6.4758 0.0351
23 1.333 99.5915% 2.5107% 26.0221 0.03206 0 47 6.4624 0.0330
23 1.5 99.5580% 2.5724% 25.5069 0.03142 0 44 6.5705 0.0364
23 2 99.5786% 2.5956% 25.8463 0.03184 0 42 6.0198 0.0291
23 2.5 99.5855% 2.7688% 25.1497 0.03098 0 43 6.4654 0.0353
23 3 99.5909% 2.6755% 25.5044 0.03142 0 43 6.0677 0.0314
23 3.2 99.5704% 2.6307% 25.3496 0.03123 0 42 6.1229 0.0327

101

No. of
TCP
flows

r
value

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

mini
mum

maxi
mum

standard
deviation

Seg-
time

23 3.5 99.5919% 2.6985% 25.3347 0.03121 0 43 6.3615 0.0325
23 3.58 99.5826% 2.7452% 25.2130 0.03106 0 44 6.4114 0.0351
25 1.333 99.8255% 3.3135% 26.1525 0.03222 0 48 6.9822 0.0394
25 1.5 99.8272% 3.1460% 26.3086 0.03241 0 44 6.4909 0.0331
25 2 99.8331% 3.1302% 26.3491 0.03246 0 45 6.0008 0.0300
25 2.5 99.8375% 3.1573% 26.2249 0.03231 0 46 6.0234 0.0285
25 3 99.8358% 3.3224% 26.2274 0.03231 0 44 6.0973 0.0312
25 3.2 99.8270% 3.3975% 25.9988 0.03203 0 43 6.4574 0.0357
25 3.5 99.8228% 3.3070% 26.2978 0.03240 0 45 6.1273 0.0308
25 3.58 99.8375% 2.9871% 26.2461 0.03234 5 44 5.7524 0.0278
30 1.333 99.7902% 4.5615% 27.6870 0.03411 0 46 6.5837 0.0338
30 1.5 99.8024% 4.5200% 27.7270 0.03416 2 46 6.1868 0.0315
30 2 99.7964% 4.5519% 27.6303 0.03404 0 46 6.0621 0.0291
30 2.5 99.8024% 4.5426% 27.8097 0.03426 3 43 5.5004 0.0260
30 3 99.7965% 4.5898% 27.5326 0.03392 0 44 5.9051 0.0302
30 3.2 99.8024% 4.4212% 27.6168 0.03402 1 44 5.7186 0.0277
30 3.5 99.8004% 4.4961% 27.5962 0.03400 0 45 5.7960 0.0271
30 3.58 99.8024% 4.5698% 27.8203 0.03427 1 43 5.5041 0.0258
40 1.333 99.7945% 8.0955% 30.6107 0.03771 5 49 5.5443 0.0239
40 1.5 99.7945% 8.2001% 30.6752 0.03779 6 49 5.1196 0.0225
40 2 99.7945% 7.9801% 30.4930 0.03757 5 49 5.1754 0.0207
40 2.5 99.7944% 7.9799% 30.5068 0.03758 10 46 4.8461 0.0188
40 3 99.7945% 7.9686% 30.2521 0.03727 7 47 5.2359 0.0210
40 3.2 99.7945% 7.9453% 30.1900 0.03719 5 47 5.3449 0.0232
40 3.5 99.7942% 7.8811% 30.2727 0.03730 8 46 5.1043 0.0198
40 3.58 99.7945% 8.0459% 30.4783 0.03755 8 46 5.0171 0.0213
50 1.333 99.8354% 11.5478% 32.4813 0.04002 5 50 4.6669 0.0171
50 1.5 99.8354% 11.2230% 32.2680 0.03975 12 48 4.6849 0.0179
50 2 99.8354% 11.4426% 32.3890 0.03990 13 48 4.5696 0.0164
50 2.5 99.8354% 11.2532% 32.2733 0.03976 12 48 4.5459 0.0155
50 3 99.8354% 11.2287% 32.2532 0.03974 14 46 4.3357 0.0150
50 3.2 99.8353% 11.0888% 32.2248 0.03970 14 47 4.4831 0.0160
50 3.5 99.8354% 11.2922% 32.3149 0.03981 10 48 4.4760 0.0154
50 3.58 99.8352% 11.3890% 32.2358 0.03971 7 47 4.5829 0.0168
60 1.333 99.8785% 13.8500% 33.4388 0.04120 14 52 4.6229 0.0182
60 1.5 99.8785% 14.3094% 33.7162 0.04154 16 49 4.4227 0.0157
60 2 99.8785% 13.8414% 33.4653 0.04123 15 46 4.2903 0.0155
60 2.5 99.8785% 13.9250% 33.5627 0.04135 14 48 4.3038 0.0148
60 3 99.8785% 13.6780% 33.4311 0.04119 16 47 4.1742 0.0140
60 3.2 99.8785% 14.0041% 33.5116 0.04129 18 48 4.2284 0.0147
60 3.5 99.8783% 13.8421% 33.5004 0.04127 16 49 4.1095 0.0140
60 3.58 99.8785% 14.3900% 33.7666 0.04160 14 49 4.1492 0.0143

102

No. of
TCP
flows

r
value

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

mini
mum

maxi
mum

standard
deviation

Seg-
time

70 1.333 99.8969% 15.8019% 34.2865 0.04224 17 51 4.4528 0.0158
70 1.5 99.8970% 16.0015% 34.3697 0.04234 17 49 4.2784 0.0156
70 2 99.8970% 16.2022% 34.4791 0.04248 17 50 4.1071 0.0140
70 2.5 99.8970% 15.8991% 34.3404 0.04231 18 49 4.0114 0.0131
70 3 99.8970% 15.7897% 34.2739 0.04223 16 48 4.2776 0.0147
70 3.2 99.8970% 15.5751% 34.2127 0.04215 16 49 4.1860 0.0148
70 3.5 99.8970% 16.2657% 34.5302 0.04254 15 48 4.0713 0.0140
70 3.58 99.8970% 15.5924% 34.2510 0.04220 17 48 4.0626 0.0134
80 1.333 99.9054% 17.3060% 34.9723 0.04309 17 51 4.3157 0.0173
80 1.5 99.9059% 17.6289% 35.1183 0.04327 19 50 4.1156 0.0144
80 2 99.9055% 17.0856% 34.8445 0.04293 19 50 4.1326 0.0146
80 2.5 99.9055% 17.4894% 35.0315 0.04316 19 49 3.8986 0.0133
80 3 99.9059% 17.3282% 34.9486 0.04306 18 48 3.9393 0.0141
80 3.2 99.9053% 17.0319% 34.8208 0.04290 15 49 3.9804 0.0140
80 3.5 99.9053% 17.1874% 34.9211 0.04302 19 49 3.9529 0.0143
80 3.58 99.9050% 17.4139% 34.9900 0.04311 17 48 3.9475 0.0143
90 1.333 99.8971% 19.0714% 35.6710 0.04395 18 51 4.2034 0.0165
90 1.5 99.8971% 18.7277% 35.5161 0.04376 16 51 4.1626 0.0150
90 2 99.8968% 18.6498% 35.4710 0.04370 18 50 4.0619 0.0141
90 2.5 99.8970% 19.1389% 35.7052 0.04399 18 50 4.0259 0.0143
90 3 99.8970% 18.7626% 35.5644 0.04382 16 49 4.0401 0.0143
90 3.2 99.8971% 18.7610% 35.5569 0.04381 20 50 3.8392 0.0130
90 3.5 99.8971% 18.8012% 35.5342 0.04378 18 49 3.8963 0.0134
90 3.58 99.8971% 18.6737% 35.4993 0.04374 19 50 3.9448 0.0141

100 1.333 99.8950% 19.9875% 36.0736 0.04444 18 50 4.1838 0.0151
100 1.5 99.8948% 20.1378% 36.1269 0.04451 16 50 3.9942 0.0139
100 2 99.8950% 20.4529% 36.3522 0.04479 20 49 3.9269 0.0134
100 2.5 99.8949% 20.1542% 36.1212 0.04450 19 49 3.7829 0.0130
100 3 99.8947% 19.6624% 35.8976 0.04423 20 51 3.8969 0.0142
100 3.2 99.8947% 19.7558% 35.9814 0.04433 21 48 3.9275 0.0145
100 3.5 99.8950% 19.9148% 36.0619 0.04443 20 49 3.8603 0.0134
100 3.58 99.8948% 20.0214% 36.0762 0.04445 21 50 3.7691 0.0127
120 1.333 99.9199% 21.5077% 36.7021 0.04522 18 52 4.1678 0.0160
120 1.5 99.9204% 22.0060% 36.9478 0.04552 21 51 4.0204 0.0159
120 2 99.9208% 21.7931% 36.8780 0.04543 23 50 3.9472 0.0144
120 2.5 99.9202% 21.6454% 36.7562 0.04528 20 50 3.9302 0.0144
120 3 99.9196% 21.4909% 36.6947 0.04521 20 50 3.8391 0.0139
120 3.2 99.9194% 21.2969% 36.5995 0.04509 18 49 3.8322 0.0130
120 3.5 99.9198% 22.2306% 37.0792 0.04568 21 53 3.8528 0.0135
120 3.58 99.9197% 21.4956% 36.7148 0.04523 21 53 3.9715 0.0140
140 1.333 99.9236% 23.1522% 37.3416 0.04600 22 55 4.1534 0.0154
140 1.5 99.9236% 23.1140% 37.3556 0.04602 21 50 4.0530 0.0147

103

No. of
TCP
flows

r
value

Link
utilization

Packet
loss rate

Overall
average
queue
size

Queuing
delay

mini
mum

maxi
mum

standard
deviation

Seg-
time

140 2 99.9236% 23.2014% 37.3985 0.04607 22 50 3.8178 0.0136
140 2.5 99.9236% 23.2357% 37.4722 0.04617 20 51 3.7911 0.0130
140 3 99.9236% 23.1902% 37.3994 0.04608 22 51 3.7963 0.0131
140 3.2 99.9236% 23.0691% 37.3585 0.04603 20 51 3.7985 0.0134
140 3.5 99.9236% 22.9173% 37.3190 0.04598 20 50 3.8410 0.0132
140 3.58 99.9236% 22.6621% 37.1354 0.04575 22 49 3.8004 0.0130
180 1.333 99.9257% 25.0508% 38.1968 0.04706 19 53 4.1636 0.0162
180 1.5 99.9255% 25.0992% 38.1985 0.04706 22 53 3.9808 0.0145
180 2 99.9255% 24.5788% 37.9557 0.04676 21 50 3.9298 0.0149
180 2.5 99.9256% 25.2850% 38.2514 0.04713 23 51 3.8087 0.0137
180 3 99.9259% 25.1782% 38.2574 0.04713 23 51 3.7367 0.0137
180 3.2 99.9260% 24.8863% 38.1301 0.04698 20 51 3.8078 0.0126
180 3.5 99.9255% 24.9036% 38.0727 0.04691 23 50 3.8328 0.0131
180 3.58 99.9266% 24.8275% 38.0770 0.04691 21 51 3.8203 0.0138
240 1.333 99.9321% 27.3763% 39.0643 0.04813 23 53 4.1028 0.0157
240 1.5 99.9321% 27.4620% 39.0846 0.04815 23 54 3.9431 0.0143
240 2 99.9319% 27.1491% 38.9389 0.04797 23 53 3.7243 0.0139
240 2.5 99.9321% 27.1663% 38.9332 0.04797 23 51 3.6962 0.0142
240 3 99.9321% 28.1069% 39.3974 0.04854 25 53 3.6534 0.0127
240 3.2 99.9318% 27.2450% 38.9870 0.04803 24 51 3.7087 0.0149
240 3.5 99.9321% 27.4619% 39.0656 0.04813 26 52 3.6146 0.0127
240 3.58 99.9319% 27.3426% 39.0768 0.04814 23 53 3.5547 0.0124

2. TCP and UDP combined environment

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

5 1.333 TCP 81.1181% 0.2604%
5 1.333 UDP 18.5872% 3.1500%
5 1.333 Total 99.7053% 1.0306% 18.82921 0 39 7.6927 0.0633
5 1.5 TCP 81.0856% 0.2244%
5 1.5 UDP 18.6016% 3.1333%
5 1.5 Total 99.6872% 1.0006% 18.76784 0 41 7.0351 0.0559
5 2 TCP 81.2442% 0.2269%
5 2 UDP 18.5984% 3.1000%
5 2 Total 99.8426% 0.9922% 18.88889 0 38 6.9599 0.0536

104

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

5 2.5 TCP 81.3718% 0.1904%
5 2.5 UDP 18.5856% 3.1750%
5 2.5 Total 99.9574% 0.9847% 18.80505 0 39 6.8207 0.0503
5 3 TCP 81.2104% 0.2933%
5 3 UDP 18.6112% 3.0583%
5 3 Total 99.8216% 1.0295% 18.60136 0 38 7.1054 0.0545
5 3.2 TCP 81.2630% 0.3354%
5 3.2 UDP 18.5616% 3.3167%
5 3.2 Total 99.8246% 1.1288% 18.63506 0 39 7.4639 0.0601
5 3.5 TCP 81.2463% 0.2600%
5 3.5 UDP 18.6176% 3.0000%
5 3.5 Total 99.8639% 0.9894% 18.78099 0 38 7.0575 0.0529
5 3.58 TCP 81.2470% 0.2088%
5 3.58 UDP 18.6512% 2.8583%
5 3.58 Total 99.8982% 0.9146% 18.56178 0 38 7.0007 0.0523

10 1.333 TCP 65.5156% 0.5385%
10 1.333 UDP 34.0016% 3.3682%
10 1.333 Total 99.5172% 1.8156% 19.56807 0 43 8.0888 0.0646
10 1.5 TCP 66.0402% 0.8465%
10 1.5 UDP 33.7248% 4.1409%
10 1.5 Total 99.7650% 2.3241% 20.95036 0 41 7.9524 0.0630
10 2 TCP 65.8736% 0.9224%
10 2 UDP 33.7600% 4.0545%
10 2 Total 99.6336% 2.3288% 20.70374 0 41 7.5945 0.0561
10 2.5 TCP 66.0403% 0.8287%
10 2.5 UDP 33.8032% 3.9591%
10 2.5 Total 99.8435% 2.2333% 20.88060 0 40 7.5170 0.0608
10 3 TCP 66.1200% 0.8129%
10 3 UDP 33.7200% 4.1500%
10 3 Total 99.8400% 2.3092% 21.36937 0 41 7.2289 0.0506
10 3.2 TCP 65.7365% 0.8436%
10 3.2 UDP 33.8160% 3.9227%
10 3.2 Total 99.5525% 2.2286% 20.91545 0 40 7.5111 0.0597
10 3.5 TCP 65.8903% 1.0028%
10 3.5 UDP 33.7888% 3.9773%
10 3.5 Total 99.6791% 2.3377% 20.53946 0 43 7.9181 0.0627
10 3.58 TCP 65.9128% 0.8703%
10 3.58 UDP 33.8320% 3.8500%
10 3.58 Total 99.7448% 2.2081% 20.55094 0 40 7.6445 0.0563

105

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

15 1.333 TCP 51.1098% 1.9927%
15 1.333 UDP 48.5520% 5.1219%
15 1.333 Total 99.6618% 3.8757% 23.00018 0 44 8.2003 0.0609
15 1.5 TCP 51.3577% 2.1827%
15 1.5 UDP 48.4752% 5.2938%
15 1.5 Total 99.8329% 4.0504% 23.29369 0 43 8.0386 0.0617
15 2 TCP 51.2257% 1.9375%
15 2 UDP 48.4768% 5.2719%
15 2 Total 99.7025% 3.9426% 23.32106 0 42 7.7336 0.0583
15 2.5 TCP 51.1309% 1.7375%
15 2.5 UDP 48.7360% 4.7781%
15 2.5 Total 99.8669% 3.5691% 22.73165 0 41 7.5325 0.0556
15 3 TCP 51.2792% 1.9081%
15 3 UDP 48.6304% 5.0094%
15 3 Total 99.9096% 3.7727% 23.22719 0 43 7.3833 0.0524
15 3.2 TCP 51.4227% 2.0324%
15 3.2 UDP 48.3632% 5.4875%
15 3.2 Total 99.7859% 4.1066% 23.55310 0 43 7.6033 0.0512
15 3.5 TCP 51.2939% 1.8011%
15 3.5 UDP 48.5504% 5.1219%
15 3.5 Total 99.8443% 3.7982% 23.59923 0 41 7.1799 0.0494
15 3.58 TCP 51.3947% 2.1066%
15 3.58 UDP 48.4928% 5.2500%
15 3.58 Total 99.8875% 3.9933% 23.19219 0 42 7.8523 0.0582
20 1.333 TCP 37.0918% 3.3434%
20 1.333 UDP 62.8240% 6.4690%
20 1.333 Total 99.9158% 5.6232% 25.45406 0 45 7.4505 0.0535
20 1.5 TCP 37.1188% 3.9789%
20 1.5 UDP 62.7616% 6.5690%
20 1.5 Total 99.8804% 5.8640% 25.35854 0 45 7.9714 0.0574
20 2 TCP 37.6065% 3.8057%
20 2 UDP 62.3440% 7.1833%
20 2 Total 99.9505% 6.2570% 26.51647 0 44 6.7626 0.0410
20 2.5 TCP 37.0417% 3.3485%
20 2.5 UDP 62.8928% 6.3571%
20 2.5 Total 99.9345% 5.5439% 25.89003 0 42 6.7574 0.0425
20 3 TCP 37.0392% 3.5460%
20 3 UDP 62.8608% 6.4167%
20 3 Total 99.9000% 5.6394% 25.48309 0 42 7.0989 0.0496

106

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

20 3.2 TCP 37.4189% 3.9405%
20 3.2 UDP 62.5296% 6.9476%
20 3.2 Total 99.9485% 6.1252% 26.37617 0 43 6.5278 0.0362
20 3.5 TCP 37.0935% 3.3932%
20 3.5 UDP 62.8544% 6.4262%
20 3.5 Total 99.9479% 5.6051% 25.79748 0 43 6.8167 0.0432
20 3.58 TCP 37.4806% 4.3484%
20 3.58 UDP 62.4064% 7.0976%
20 3.58 Total 99.8870% 6.3422% 26.38697 0 44 7.0383 0.0455
25 1.333 TCP 25.1516% 7.9805%
25 1.333 UDP 74.8496% 9.9885%
25 1.333 Total 100.0012% 9.6352% 30.52464 0 45 4.4333 0.0192
25 1.5 TCP 25.4796% 8.6211%
25 1.5 UDP 74.5216% 10.3923%
25 1.5 Total 100.0012% 10.0756% 30.59180 2 45 4.8453 0.0222
25 2 TCP 25.7445% 8.7545%
25 2 UDP 74.2560% 10.7019%
25 2 Total 100.0005% 10.3503% 30.85828 3 44 4.3661 0.0184
25 2.5 TCP 24.8771% 8.2319%
25 2.5 UDP 75.1248% 9.6865%
25 2.5 Total 100.0019% 9.4324% 30.17606 0 44 4.6207 0.0203
25 3 TCP 25.5580% 8.8674%
25 3 UDP 74.4400% 10.4865%
25 3 Total 99.9980% 10.1956% 30.89379 0 42 4.0769 0.0162
25 3.2 TCP 24.3309% 6.9557%
25 3.2 UDP 75.6704% 9.0346%
25 3.2 Total 100.0013% 8.6823% 29.62063 5 42 4.5361 0.0215
25 3.5 TCP 25.5844% 8.7106%
25 3.5 UDP 74.4160% 10.5231%
25 3.5 Total 100.0004% 10.1977% 30.84437 5 43 4.2688 0.0167
25 3.58 TCP 24.7760% 8.2748%
25 3.58 UDP 75.2256% 9.5769%
25 3.58 Total 100.0016% 9.3502% 30.21555 8 45 4.4064 0.0212
30 1.333 TCP 16.3806% 16.0773%
30 1.333 UDP 83.6224% 15.7016%
30 1.333 Total 100.0030% 15.7442% 34.13364 24 46 2.9847 0.0053
30 1.5 TCP 16.0198% 14.2801%
30 1.5 UDP 83.9808% 15.3371%
30 1.5 Total 100.0006% 15.2219% 33.86068 19 46 3.0682 0.0068

107

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

30 2 TCP 16.2781% 15.4427%
30 2 UDP 83.7232% 15.6016%
30 2 Total 100.0013% 15.5838% 34.06685 23 44 2.8788 0.0048
30 2.5 TCP 16.6321% 15.1565%
30 2.5 UDP 83.3696% 15.9581%
30 2.5 Total 100.0017% 15.8669% 34.21761 24 45 2.8710 0.0050
30 3 TCP 16.4926% 15.4584%
30 3 UDP 83.5104% 15.8145%
30 3 Total 100.0030% 15.7742% 34.13299 24 45 2.9631 0.0058
30 3.2 TCP 15.4032% 14.9252%
30 3.2 UDP 84.5968% 14.7161%
30 3.2 Total 100.0000% 14.7383% 33.64231 19 44 3.0014 0.0060
30 3.5 TCP 15.3194% 14.9863%
30 3.5 UDP 84.6816% 14.6371%
30 3.5 Total 100.0010% 14.6740% 33.62001 22 44 2.8979 0.0054
30 3.58 TCP 14.8566% 13.9678%
30 3.58 UDP 85.1456% 14.1629%
30 3.58 Total 100.0022% 14.1431% 33.37986 22 43 2.9505 0.0059
40 1.333 TCP 3.2981% 27.0433%
40 1.333 UDP 96.7200% 26.2793%
40 1.333 Total 100.0181% 26.2959% 38.83069 33 47 2.4673 0.0044
40 1.5 TCP 3.6827% 28.0135%
40 1.5 UDP 96.3184% 26.5878%
40 1.5 Total 100.0011% 26.6230% 39.07895 33 48 2.5074 0.0044
40 2 TCP 3.5460% 28.1578%
40 2 UDP 96.4544% 26.4866%
40 2 Total 100.0004% 26.5264% 39.10552 33 48 2.4952 0.0044
40 2.5 TCP 2.7750% 28.4345%
40 2.5 UDP 97.2304% 25.8927%
40 2.5 Total 100.0054% 25.9403% 38.83135 33 48 2.4818 0.0044
40 3 TCP 3.0581% 28.1323%
40 3 UDP 96.9424% 26.1098%
40 3 Total 100.0005% 26.1514% 38.97079 33 47 2.4651 0.0043
40 3.2 TCP 4.2218% 27.9344%
40 3.2 UDP 95.7792% 27.0000%
40 3.2 Total 100.0010% 27.0263% 39.43389 33 48 2.5224 0.0043
40 3.5 TCP 5.1868% 28.0780%
40 3.5 UDP 94.8144% 27.7329%
40 3.5 Total 100.0012% 27.7448% 39.80092 33 48 2.5250 0.0044

108

No. of
UDP
flows

r
value

Traffic
type

Link
utilization

Packet
loss rate

Overall
average
queue
size

mini
mum

maxi
mum

standard
deviation

Seg-
time

40 3.58 TCP 4.5120% 28.7222%
40 3.58 UDP 95.4880% 27.2134%
40 3.58 Total 100.0000% 27.2591% 39.51225 33 49 2.5129 0.0044
50 1.333 TCP 0.8798% 40.7654%
50 1.333 UDP 99.1216% 39.2637%
50 1.333 Total 100.0014% 39.2725% 43.97220 38 52 2.2863 0.0036
50 1.5 TCP 0.5108% 45.6973%
50 1.5 UDP 99.5488% 39.0029%
50 1.5 Total 100.0596% 39.0250% 44.00059 38 51 2.2909 0.0039
50 2 TCP 0.7078% 41.8367%
50 2 UDP 99.2960% 39.1569%
50 2 Total 100.0038% 39.1697% 44.21833 39 51 2.2987 0.0039
50 2.5 TCP 0.7428% 42.4901%
50 2.5 UDP 99.2752% 39.1676%
50 2.5 Total 100.0180% 39.1840% 44.28871 39 51 2.2870 0.0038
50 3 TCP 0.6700% 42.0259%
50 3 UDP 99.3328% 39.1343%
50 3 Total 100.0028% 39.1474% 44.29510 39 51 2.2869 0.0038
50 3.2 TCP 1.2230% 37.2751%
50 3.2 UDP 98.7952% 39.4627%
50 3.2 Total 100.0182% 39.4462% 44.38905 39 52 2.2962 0.0038
50 3.5 TCP 1.1417% 38.2716%
50 3.5 UDP 98.8880% 39.4069%
50 3.5 Total 100.0297% 39.3988% 44.38463 39 51 2.2874 0.0038
50 3.58 TCP 0.6804% 41.8947%
50 3.58 UDP 99.3200% 39.1422%
50 3.58 Total 100.0004% 39.1549% 44.30534 39 52 2.2885 0.0038

	CHAPTER I
	INTRODUCTION
	Overview
	Research Problem
	Structure of Thesis

	CHAPTER II
	PRELIMINARIES
	RED Algorithm
	AutoRED Algorithm

	CHAPTER III
	A NEW PROPOSED TECHNIQUE
	Fundamentals of the Logistic Map
	A New Technique: Lmap-RED

	CHAPTER IV
	A NEW PROPOSED METRIC
	Background
	A New Metric: Segmented Time for QoS

	CHAPTER V
	RESULTS
	TCP-only Environment
	Comparison of RED and AutoRED and a Validation of Seg-time
	Lmap-RED Simulation Results

	TCP and UDP Combined Environment
	Fairness Analysis

	CHAPTER VI
	DISCUSSIONS
	CHAPTER VII
	CONCLUSIONS
	REFERENCES

