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Abstract:  

We report the results of a comprehensive investigation of the queen size dimorphism in the 

North American ant Leptothorax rugatulus. Employing allozymes and microsatellites as genetic 

markers, we found no evidence that the gene pools of large (macrogynes) and small 

(microgynes) queens are distinct. Queens in polygynous colonies are related to each other, 

supporting the hypothesis that colonies with more than one queen commonly arise by the 

adoption of daughter queens into their natal colonies. The higher fat content of macrogynes, their 

predominance in monogynous societies and in small founding colonies, and their greater flight 

activity favor the view that macrogynes predominantly found colonies independently, while 

microgynes are specialized for dependent colony founding by readoption. When comparing the 

genetic structure of three different subpopulations, we found that the alternative life histories had 

no significant effect on population viscosity at the scale investigated. 

Keywords. Size polymorphism - Microgynes - Reproductive tactics - Life history evolution - 

Population structure 

   

Article: 

INTRODUCTION 

Body size is a crucial parameter for the physiology (Schmidt-Nielsen 1990), life history (Roff 

1992; Stearns 1992), and fitness (Darwin 1871; Brown et al. 1993) of all organisms. In eusocial 

insects, and ants in particular, the size dichotomy between reproductive females (queens) and 

workers is related to their different roles in the colony (Wilson 1971; Oster and Wilson 1978). 

Worker size is selected for efficiency in e.g., brood caring, colony maintenance, and foraging, 

while the almost invariably larger queens are specialized for mating, dispersal, colony initiation, 

and egg production (Hölldobler and Wilson 1990). The latter two features probably select for 

large body size in queens, given that egg production is strongly correlated with female body size 

in insects (Thornhill and Alcock 1983). Colony founding typically requires extensive body 

reserves (Keller and Passera 1989, 1990; Wheeler and Buck 1995), and thus a comparatively 

large body size (Stille 1996), because most queens rear their first workers in complete isolation 
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(claustral, independent mode of colony founding) (Wilson 1971; Hölldobler and Wilson 1990; 

Bourke and Franks 1995). 

 

However, some ant species have alternative modes of reproduction that bypass solitary nest 

founding (Wheeler 1933; Hölldobler and Wilson 1990; Keller 1991; Heinze and Tsuji 1995). 

Young queens establish themselves with the help of the work force of existing colonies 

(dependent colony founding), either by seeking adoption into their natal colony (secondary 

polygyny) or by trying to enter and exploit unrelated colonies (inter- or intraspecific social 

parasitism) (Hölldobler and Wilson 1990; Heinze and Tsuji 1995; Rüppell and Heinze 1999; 

Heinze and Keller 2000). The queens of such species do not require large body reserves and 

consequently can be smaller (Keller and Passera 1989; Stille 1996). Thus, intraspecific size 

polymorphism of ant queens could evolve into social parasitism or a more pronounced dispersal 

polymorphism, i.e., wing dimorphism (Rüppell and Heinze 1999). In general, intraspecific 

polymorphism gives the opportunity to study current selection pressures little affected by 

evolutionary latency. However, investigations along this line are scarce, especially in the 

interesting case of queen size polymorphism, in which behavioral, morphological, and life 

history traits seem to be linked. 

 

Apart from a reduction in queen body size, secondary polygyny entails a syndrome of life history 

adaptations (Keller 1991; Bourke and Franks 1995), including colony budding for short-range 

dispersal. This commonly leads to clusters of related colonies and thereby increases population 

viscosity (Stille and Stille 1993; Seppä and Pamilo 1995; Chapuisat et al. 1997). 

 

In a number of taxonomically unrelated species, queen size appears to be bimodally distributed 

(Rüppell and Heinze 1999). In most cases this has been interpreted as evidence for different 

modes of colony founding (e.g., Myrmica ruginodis: Elmes 1991; Solenopsis geminata: McInnes 

and Tschinkel 1995; Pseudomyrmex veneficus: Janzen 1973). However, we still do not know 

how closely behavior is linked to morphology in these cases, and the potential consequences for 

life histories, mating structure, socio- and population genetics await clarification. 

 

Furthermore, few studies have addressed the question as to whether queen size polymorphism is 

a stable phenomenon in itself, or whether it constitutes a transitory phase in the evolution of 

inquilinism (Bourke and Franks 1991) or a more pronounced dispersal polymorphism with wing 

reduction (Heinze and Hölldobler 1993). In the genus Leptothorax, a taxon comprising many 

social parasites and wing-dimorphic species, these questions are of particular interest (Bourke 

and Franks 1991). Moreover, queen size dimorphism seems to be more common in the genus 

Leptothorax than in other genera (Rüppell and Heinze 1999). 

 

The aim of this study was to investigate the widespread queen size dimorphism in the 

facultatively polygynous ant Leptothorax rugatulus (Rüppell et al. 1998). We addressed five 

main questions. (1) Do large queens (macrogynes) and small queens (microgynes) belong to the 

same species or are their gene pools separated? (2) What is the evidence for the hypothesis that 

microgynes found colonies dependently while macrogynes disperse and initiate new colonies 

independently? (3) If microgynes start reproduction dependently, do they employ social 

parasitism or secondary polygyny? (4) What environmental factors are ultimately affecting the 



balance between macro- and microgynes? (5) How is the genetic population structure of this 

queen-dimorphic species affected by the alternative life histories? 

 

In this study, we tried to answer these questions by evaluating social, physiological, and 

behavioral data and by genetic analyses. 

 

METHODS 

Field methods 

L. rugatulus occurs throughout most of western North America (Creighton 1950). We collected 

1,310 colonies (244 microgynous, 669 macrogynous, 231 mixed, and 166 queenless), 

predominantly in mixed coniferous forests, in Arizona, New Mexico, and Colorado in the 

summers 1996-1999. Voucher specimens have been deposited in the collection of P. Ward 

(University of California, Davis). 

 

In most colonies, winged male and female sexuals, workers, and queens were counted 

immediately, and from colonies that showed sexual activity within 2 days after collection, one 

male and/or one gyne was collected for determination of fat content according to the method of 

Keller and Passera (1989). To investigate ecological correlates of queen morphology, the 

following parameters were determined for collection sites with more than 20 colonies: 

geographical location, altitude, vegetation type, nesting substrate, sun exposure, and an estimate 

of colony density (Table 1). 



 
 

We investigated the relationship between the morphology of a colony's queens and its social 

structure (queen number) and the correlation across sample sites between the frequency of 

macrogynes in polygynous colonies (i.e., the tendency for dependent founding by macrogynes) 

and the relative abundance of microgynes. The relationship between colony size, queen 

morphology, and queen number was also analyzed. Despite deviations of the data from 

normality, parametric statistics were most appropriate for these analyses (Lindman 1974; 

StatSoft 1994). 

 



During the mating period, we trapped alates in the Chiricahua Mountains, Cochise County, Ariz., 

at three sites (subpopulations OS, NBL, and BL) that differed in their frequency of macro- and 

microgynes (Table 1). In each location, one Malaise trap (2x1.4 m capturing area), three aerial 

eclectors (Mühlenberg 1993), and 20 sticky traps (30x20 cm foil-covered cardboard with 

brushed-on insect glue) were set up from 15 June to 20 August 1998 and checked on average 

every 4 days. 

 

A systematic subpopulation comparison was performed in 1998 by sampling every visible 

potential nesting site and mapping colony positions at three sample sites (Fig. 1): West Turkey 

Creek Valley (WTC; Chiricahua Mountains, Cochise County, Ariz., 800 m
2
; ), Magdalena 

Mountains (MA; Socorro County, N.M., 800 m
2
), and Tajique Valley (TA; Manzano Mountains, 

Torrance County, N.M., 200 m
2
). Colonies were immediately stored in 96% ethanol for later 

investigation of colony contents, exact size measurement of the queens (Rüppell et al. 1998), and 

genetic analysis of all queens or one arbitrary worker in queenless colonies.  

 

 
Fig. 1. Colony density, colony composition, and genetic structure of Leptothorax rugatulus were 

compared in three subpopulations. Relative colony position and queen content for these sites are 

shown 

 

Laboratory methods 

For the allozyme analysis, ten different enzymes were initially screened using polyacrylamide 

gels and cellulose acetate plates following the protocols given in Heinze et al. (1995). Glucose-6-

phosphate dehydrogenase, hexokinase, lactate dehydrogenase, phosphogluconate dehydrogenase, 

and xanthine dehydrogenase showed no scorable alleles and isocitrate dehydrogenase, malate 

dehydrogenase, and malic enzyme were monomorphic. Only glucose-6-phosphate isomerase 

(GPI) and phosphoglucomutase-1 (PGM-1) were polymorphic and could be scored consistently 

on polyacrylamide gels. Subsequently, the genotypes of 467 workers at the GPI locus and 473 at 

the PGM locus were determined from 191 macro- or microgynous colonies. 

 

For a more detailed genetic analysis, we attempted to adopt 15 primers for microsatellite loci in 

other Leptothorax species (Hamaguchi et al. 1993; Bourke et al. 1997; Foitzik et al. 1997) using 

various PCR protocols. Four loci (L18 from L. nylanderi, and LXGT104, LXGT218, and 

LXGT228 from L. spinosior) were finally used, with slightly different PCR conditions for each 



locus, to genotype 471 queens (263 macrogynes, 160 microgynes, 48 unclassified) from 195 

colonies (technical details of DNA extraction, PCR conditions, and allele identification are 

available from the first author on request). Furthermore, for 18 similarly sized, monogynous 

colonies (6 microgynous and 6 macrogynous colonies from the predominantly microgynous 

sample sites NBL and TA, and 6 macrogynous ones from the macrogynous site WTC), we 

checked whether the distribution of queen and six worker genotypes was compatible with the 

hypothesis of independent colony founding (i.e., all workers are daughters of the present queen). 

Colonies were assigned to "independent founding" when, beside the queen's alleles, only one 

other allele was present, to "multiple mating" when worker genotypes were compatible with the 

present queen assuming multiple mating (which is unlikely but could not be ruled out), and to 

"dependent founding" when at least one of the six workers did not share alleles with the present 

queen at one or more loci. 

 

Genetic data analysis 

The computer program GDA (Lewis and Zaykin 1999) was used to calculate the number of 

alleles, and observed and expected heterozygosity for each allozyme and microsatellite locus. To 

investigate the genetic separation between macro- and microgynes, the allozyme and the 

microsatellite data were subjected to a hierarchical analysis of molecular variance (AMOVA). 

One hundred new data sets were generated by drawing at random one individual from each 

analyzed colony because genotypes within a colony are not independent. Subsequently, each 

resampled data set was subjected to a three-level AMOVA using GDA and values averaged over 

the 100 resamples. As there was no a priori reason for nesting morphs within populations (K.G. 

Ross, personal communication), both possible hierarchies ("individuals within morphs within 

populations" and "individuals within populations within morphs") were analyzed. 

 

The "morph-groups" (all individuals from either a macro- or a microgynous colony) were 

clustered with the program TFPGA (Miller 1998) in a UPGMA tree based on Reynolds 

coancestry coefficient (Reynolds et al. 1983). Clustering by Wright's modification of Roger's 

distance (Wright 1978) and Nei's D (Nei 1972), as well as using the GDA UPGMA and 

neighbor-joining algorithms, or excluding rare alleles did not change the results. 

 

Average within-colony relatedness estimates for queens from polygynous colonies were obtained 

from all microsatellite genotypes by the method of Queller and Goodnight (1989), using the 

computer program Relatedness 5.02 (Goodnight and Queller 1998). Subpopulation allele 

frequencies were calculated from individual genotypes with bias correction by colony. 

Relatedness values were averaged over individuals, and the 95% confidence interval and SE 

were obtained by jackknifing over colonies. 

 

To assess potential effects of queen morphology and the correlated life history on the genetic 

population structure, we investigated population viscosity in three subpopulations (Fig. 1): 

relatedness coefficients and spatial distance between colonies were correlated using Mantel tests 

(with TFPGA). 

 

In the two polygynous subpopulations, TA and MA, the hypothesis that queens within the same 

colony were unrelated to each other was evaluated against two null hypotheses, namely a 

mother-daughter and a full-sister relationship using Kinship 1.1.2 (Goodnight and Queller 1999). 



As a conservative estimate, only those queens were scored as unrelated to the colony for which 

all intranidal comparisons resulted in a significant rejection of the two null hypotheses. To avoid 

undefined likelihood ratios (Kinship 1.1.2 Manual), the theoretical relatedness coefficient of 1 

(for paternal relatedness of full-sisters and maternal relatedness of mother-daughter) was 

approximated by 0.99. 

 

RESULTS 

Field data 

Social colony structure (queen number) and the frequencies of macro- and microgynes varied 

strongly among sample sites, even within a few kilometers (Table 1). These two parameters were 

strongly correlated: only 51 of 2,056 microgynes were found in monogynous colonies compared 

to 472 of 1,665 macrogynes (x
2
=509.6, df=1, P<0.0001). 58.6% (472 of 806) of colonies with 

macrogynes were monogynous, while this fraction for microgynes was only 12.9% (51 of 394) 

(x
2
=224.0, df=1, P<0.0001). These overall contingencies became even stronger when 

subpopulation effects were accounted for by multiway frequency analyses: x
2

indiv.(maximum 

likelihood)=3,086.6, df=78, P<0.0001 and x
2

colony (maximum likelihood)=302.7, df=66, 

P<0.0001). 

 

The size of a colony (number of workers) was strongly dependent on its social structure 

(monogynous/polygynous) and on the morphology of its queens (two-way ANCOVA: 

Fsocial(1,927)=27.5, P<0.0001; Fmorph(1,927)=26.1, P<0.0001, Finteraction(1,927)=2.4, P=0.12; 

"subpopulation" as covariate). Polygynous colonies were larger than monogynous colonies 

[91±85 (SD) vs 65±42] and colony size decreased from mixed colonies to macrogynous to 

microgynous ones (122±125 vs 79±62 vs 65±58). Nevertheless, we found 20 very small colonies 

(putative founding colonies with one founding queen and less than five workers) headed by a 

macrogyne and only one such colony with a microgyne. Colony size was more strongly 

correlated to the number of macrogynes in the colony than to the number of its microgynes 

(partial correlation: rmacro=0.66, rmicro=0.39, n=954, P<0.0001). When the total number of queens 

was accounted for, the partial correlation coefficient of the number of microgynes became 

slightly negative (r=-0.11, n=954, P<0.001), while that of macrogynes was insignificant (r=0.05, 

n=954, P=0.12). 

 

The trapping yielded 5/0, 4/1 and 2/1 macro-/microgynes at OS, BL, and NBL, respectively. We 

compared these data to the values that would be expected under the null hypothesis that queen 

morphs did not differ in their reproductive behavior and thus were trapped according to their 

subpopulation frequencies. The combined probability test of the three binomial tests (Sokal and 

Rohlf 1995) indicated that macrogynes were significantly more likely to be trapped (Cp=22.4, 

df=6, P<0.005). 

 

When comparing different sample sites, we found a significant positive correlation between the 

proportion of macrogynes in polygynous colonies and the relative abundance of microgynes 

(Spearman's rank correlation: rs=0.69, n=15, P=0.004). Angular-transformed microgyne 

frequency was neither correlated with latitude (partial correlation coefficient rp=0.17, t15=0.23, 

P=0.82) nor with altitude (rp=0.48, t15=2.04, P=0.06), or sun exposure (north-facing slopes vs 

south facing slopes; rp=-0.35, t15=-1.41, P=0.19), but there was a significant relationship with 



nest density (high vs low; rp=0.51, t15=2.22, P=0.04; e.g., Fig. 1) and nest site stability (in the 

soil under a stone=low vs in rock crevices=high; rp=0.60, t15=2.82, P=0.01). 

 

Fat content 

Males contained the smallest amount of fat in absolute [10.1±9.0 (SD) µg, n=40] and relative 

(6.2±5.0%) terms, and their size was not correlated to their relative fat content (Pearson's 

correlation: rp=-0.10, P=0.52). In female sexuals however, more fat was stored by macrogynes 

(fatabsolute: 466.4±146.9 µg, n=35; fatrelative: 47.7±8.1%) than by microgynes (fatabsolute: 

51.4±12.3 µg, n=10, fatrelative: 23.5±5.4%). Differences were significant in both absolute (Mann-

Whitney's U10,35=350.0, P<0.0001) and relative (U10,35=339.0, P<0.0001) terms. Relative fat 

content was not correlated with head width in microgynes (rp=-0.19, P=0.60), but was in 

macrogynes (rp=0.42, P=0.01). 

 

Allozymes 

For both loci, GPI and PGM, over all populations, five alleles could be distinguished 

electrophoretically, but allele frequencies were highly skewed and consequently both loci were 

only weakly polymorphic (Table 2). The genetic differentiation between morphs was only 

significant when they were nested within populations, whereas populations had significantly 

different allele distribution in both hierarchical AMOVA orders (Table 3). There was no 

indication of inbreeding. The amount of information gained from the two loci was insufficient to 

derive any significant clustering of morph groups or meaningful intracolonial relatedness 

coefficients. 

 

Table 2. Descriptive statistics of genetic data from allozymes and microsatellites over all 

populations of Leptothorax rugatulus 

Locus Overall sample size Allele number Hexp/Hobs 

Glucose-6-phosphate isomerase 464 5 0.184/0.183 

Phospoglucomutase 470 5 0.373/0.283 

LXGT104 390 9 0.653/0.438 

L18 410 32 0.894/0.824 

LXGT218 409 9 0.528/0.528 

LXGT228 370 31 0.942/0.900 

Table 3. Results of the three-level hierarchical analyses of molecular variance for allozyme and 

microsatellite data. 95% confidence intervals (CIs) are given in parentheses and significant 

positive F-values (P<0.05) are italicized 

AMOVA FIS FIT F(population) F(morph) 

Allozymes 

Morphs nested in 

populations 

0.090 (-0.003-

0.154) 

0.167 (0.100-

0.220) 

0.066 (0.032-

0.106) 

0.085 (0.057-

0.115) 

Populations nested in 

morphs 

0.090 (-0.003-

0.154) 

0.144 (0.079-

0.200) 

0.059 (0.038-

0.084) 

-0.031 (-0.043 - -

0.021) 



AMOVA FIS FIT F(population) F(morph) 

Microsatellites 

Morphs nested in 

populations 

0.040 (-0.005-

0.072) 

0.146 (0.048-

0.285) 

0.114 (0.051-

0.234) 

0.110 (0.044-

0.235) 

Populations nested in 

morphs 

0.040 (-0.005-

0.072) 

0.121 (0.034-

0.243) 

0.084 (0.031-

0.188) 

-0.025 (-0.048 - -

0.012) 

 

Microsatellites 

The four employed microsatellite loci were more polymorphic than the allozymes (Table 2). 

Parallel to the allozyme analysis, the three-level AMOVA indicated for both hierarchies, a 

significant differentiation at the population level, but differentiation between morphs was only 

significant when morphs were nested in populations (Table 3). The mating structure did not 

deviate significantly from random mating. 

 

The cluster analyses further supported the view that the genetic separation was stronger between 

populations than between morphs because the different "morph-groups" of the same population 

strictly clustered together (Fig. 2).  

 

 
Fig. 2. Cluster analysis (UPGMA) of the different morphs (macro- and microgynes) in different 

populations based on Reynold's coancestry distance computed from allele frequencies at four 

microsatellite loci. Numbers over the nodes indicate bootstrapping values in percent 

 

Significant genetic structuring was found at the colony level: overall, the average queen-queen 

relatedness within colonies was r=0.400±0.036 (SE). The relatedness coefficient among 

macrogynes (r=0.438±0.038) was slightly higher than the relatedness coefficient among 

microgynes (r=0.365±0.089) or between macro- and microgynes (r=0.351±0.079) but 

differences were not significant (Table 4).  

Table 4. Queen-queen relatedness in colonies of L. rugatulus. 95% CIs were obtained by 

jackknifing over colonies (n number of colonies, N number of individuals) 

Relatedness between Coefficient of relatedness 95% CI n N 

All queens 0.400 0.329-0.471 102 379 



Relatedness between Coefficient of relatedness 95% CI n N 

Macrogynes 0.438 0.3626-0.514 59 190 

Microgynes 0.365 0.183-0.547 30 134 

Macrogynes and microgynes 0.351 0.188-0.514 25 122 

 

Intercolonial relatedness was not correlated to spatial distance in any of the three compared 

subpopulations (WTC: rmatrix=-0.07, n=15, P>0.1; MA: rmatrix=-0.08, n=21, P>0.1; TA: 

rmatrix=0.001, n=32, P>0.1) at the scale investigated (Fig. 1). 

 

The tests whether queens were more likely to be unrelated than related as mother-daughters or 

full-sisters to the rest of their colony were significant for 4 macrogynes (out of 40) and no 

microgyne (out of 4) in MA, and for 1 macrogyne (out of 50) and 5 microgynes (out of 51) in 

TA. The ratios of macrogynes to microgynes did not differ significantly from the expected 

values derived from the subpopulation frequencies (x
2
MA=0.82, P=0.36; x

2
TA=1.68, P=0.19; 

combined probability: P>0.1). 

 

The genetic composition of monogynous colonies revealed strong differences between the three 

compared groups (x
2

max.lik.=13.8, df=4, P<0.01; Table 5): the genotypes of workers could not be 

explained by the present queen (as single foundress) in any of the six microgynous colonies, 

whereas this was the case in at least half of the macrogynous colonies from WTC. As we cannot 

rule out multiple mating in this species, macrogynous colonies from NBL and TA are 

intermediate. 

 

Table 5. The most parsimonious explanations of worker genotypes suggest different modes of 

colony founding in macrogynous and microgynous colonies 

Worker genotypes 

compatible with 

Microgynous colonies 

from NBL and TA 

Macrogynous colonies 

from NBL and TA 

Macrogynous 

colonies from WTC 

Independent 

founding 
0 0 3 

Multiple mating 0 2 2 

Dependent founding 6 4 1 

 

DISCUSSION 

Species consistency 

Allozyme and microsatellite allele frequencies both indicate that the separation of the gene pools 

between macro- and microgynes of L. rugatulus is weaker than that between different 

populations. This supports our hypothesis that both morphs belong to the same species, the 

hypothesis being initially based on the production of similar males and workers by macro- and 

microgynes and their overall morphological resemblance (Rüppell et al. 1998). Thus, queen size 

dimorphism in L. rugatulus is one of the rare cases of alternative reproductive morphotypes in 

females of one species (Gross 1996; Rüppell and Heinze 1999). 

 

 



Reproductive polymorphism commonly leads to reproductive isolation and thus sympatric 

speciation (Coyne and Orr 1998) which has also been proposed for the case of microgyny in ants 

(Buschinger 1990; Bourke and Franks 1991). Given species identity in L. rugatulus (and 

consequently the nesting of "morph-groups" within populations), a slight but significant genetic 

differentiation between morphs was apparent. This indicates the potential for sympatric 

speciation in this case, but gene flow by males may maintain species integrity. Comparisons 

between mitochondrial and nuclear genetic structures of ant populations have been successfully 

employed to identify male gene flow and separation between alternative social forms (Ross and 

Shoemaker 1997; Ross et al. 1997), whereas studies confined to the nuclear level have mostly 

failed to find any differentiation (e.g., Seppä 1994). Thus, to evaluate the prospects for speciation 

further, investigations of mtDNA population structure combined with determination of the 

heritability of queen morphology are needed. 

 

Alternative tactics 

Direct observations of colony-founding behavior are difficult to obtain for most ant species. 

Consequently, only for M. ruginodis (Brian and Brian 1955) is there direct evidence that 

microgyny is linked to dependent colony founding. In all other queen-size-polymorphic species, 

the conclusions about alternative reproductive tactics are drawn from indirect evidence (e.g., 

Janzen 1973; McInnes and Tschinkel 1995; DeHeer and Tschinkel 1998). This study provides 

five separate lines of indirect evidence, which together strongly support the view that microgynes 

and macrogynes are specialized for and employ predominantly alternative reproductive tactics: 

 

1. Relatively more macrogynes than microgynes were found in monogynous colonies. As 

monogynous colonies mostly originate by independent colony founding of one self-

contained queen, and polygynous colonies arise mainly by adoption of additional queens 

into existing colonies (Hölldobler and Wilson 1977, 1990; Bourke and Franks 1995), the 

correlation between queen morphology and social colony type provides evidence that 

macrogynes establish independent colonies more frequently. This was further supported 

by the genetic investigations of monogynous colonies which suggested that microgynes 

become queens in monogynous colonies only by budding or the death of their nestmate 

queens, whereas at least some of the macrogynes found independently. However, we 

want to stress that the behavior of macrogynes seems to be plastic or at least uncoupled 

from their morphology to some extent. 

2. The ratio of 20 putative founding colonies with a macrogyne to only 1 with a microgyne 

cannot be explained by the higher abundance of macrogynes. Thus, the most 

parsimonious explanation is that macrogynes are more likely to initiate colonies 

independently, or that they are more successful in doing so. 

3. Although sample sizes were small, there is evidence that macrogynes are more likely than 

microgynes to be trapped in flight traps during swarming. This suggests that macrogynes 

show higher flight activity during mating and/or dispersal flights. Both are typically 

correlated with each other and with independent colony founding (Bourke and Franks 

1995), while readoption into the mother nest requires restricted flight activity (e.g., 

Sundström 1995), as relocating the natal nest over distance may be extremely difficult 

after swarming. 

4. Generally, polygyny is a good indicator of dependent colony founding (Hölldobler and 

Wilson 1977; Keller 1991; Bourke and Franks 1995). Thus, the degree of polygyny of 



macrogynes at a given sample site identifies the tendency of L. rugatulus queens at this 

site to engage in dependent colony founding, irrespective of body size. This behavioral 

decision may be regarded as an adaptive response to environmental conditions. Its 

positive correlation with the frequency of microgynes indicates that both dependent 

colony founding and microgyny are favored by similar environmental conditions. This 

corresponds well to the hypothesis that microgynes constitute an adaptation to a 

dependent mode of colony founding. 

5. Macrogynes are physiologically adapted to independent colony founding because they 

harbor more body reserves prior to mating and colony establishment. In a cross-species 

comparison (Keller and Passera 1989) macrogynes of L. rugatulus classify as 

independent foundresses, while the relative fat content of microgynes is comparable to 

species that found dependently. Purely allometric effects can be ruled out on the basis of 

the fact that in neither males nor within microgynes are relative fat content and body size 

correlated. 

 

Dependent colony founding 

Some of the arguments employed above have implied that microgynes are specialized for 

secondary polygyny by readoption. However, we have so far only argued for their dependent 

mode of colony founding which could involve intraspecific social parasitism or secondary 

polygyny by readoption or both. In S. invicta, microgyny has been viewed as a parasitic tactic 

(Tschinkel 1996) and for L. rugatulus also, we have argued previously (Rüppell et al. 1998) that 

microgynes might be efficient "searchers" of unrelated host colonies. Their low flight activity in 

the field contradicts this hypothesis,and, in general, L. rugatulus resembles more the facultatively 

polygynous species for which the link between microgyny and readoption has been shown 

(Camponotus yamaokai: Satoh et al. 1997) or suggested (M. ruginodis: Elmes 1991). The high 

intracolonial queen-queen relatedness revealed in our study supports the view that most 

dependently founding macro- and microgynes are readopted into their natal colonies. Although 

occasional adoptions of unrelated queens seem to occur as in other facultatively polygynous ant 

species (e.g., Stille and Stille 1992), no significant differences in relatedness were found between 

macro- and microgynes. Thus, microgyny seems not to be a special adaptation to intraspecific 

social parasitism. 

 

Nevertheless, the slightly negative correlation between colony size and number of microgynes 

(controlling for total queen number) can be interpreted as negative effects of microgynes on 

colony fitness. While the term "social parasite" seems too strong in this case, microgynes might 

be selfishly pursuing their own interests in conflict with the rest of the colony, an idea that has 

been suggested on theoretical grounds (Bourke and Ratnieks 1999). However, adaptive 

differences in colony dynamics (e.g., budding) provide an alternative explanation. 

 

Ecological parameters 

This study is the first to investigate systematically social and genetic structure in relation to 

queen morphology in a queen-size-dimorphic ant species in several populations. As morph 

frequencies and the social structure of L. rugatulus colonies varied strongly among 

subpopulations, we conclude that studying a number of populations that differ in their ecological 

conditions (Travis 1994) is very important for understanding the evolutionary ecology of any 

species. 



 

Dispersal polymorphism in female ants is linked to habitat patchiness (Heinze and Buschinger 

1989; Heinze 1993; Heinze and Tsuji 1995) and in L. rugatulus, this patchiness is twofold: at a 

large scale (>50 km), mixed forests on mountain ranges that constitute suitable habitats are 

patchily distributed in the semideserts of southwest North America ("sky islands"; Heald 1951), 

and at a finer scale (<5 km), patches with suitable nest sites seem to be separated by largely 

uninhabitable areas (Rüppell et al.; unpublished data). Presumably, macrogynes are better 

colonizers, whereas microgynes may establish new colonies more competitively within high-

density patches by budding, and profit from stable nesting substrate (rocky outcrops) which 

makes potential inheritance of the mother colony (Nonacs 1988) more rewarding. At the 

metapopulation level, the polymorphism may be balanced by the contrasting selection within and 

between populations (Olivieri et al. 1995) and different ecological conditions in different 

locations. 

 

The sharp clines in morph frequencies without dispersal barriers in L. rugatulus, and other 

species (e.g., Hamaguchi et al. 1998), indicate strong differential selection, probably by mutual 

competitive exclusion. 

 

Consequences for population genetics 

A clear effect of the alternative reproductive tactics and correlated social colony structure was 

expected on population viscosity. Increased viscosity in polygynous ants has been demonstrated 

in other species at a larger spatial scale (Seppä and Pamilo 1995; Chapuisat et al. 1997) but in 

our study no isolation-by-distance effects were detected in any of the three subpopulations. This 

homogenous population structure might be due to long-range budding or gene flow via males. 

We favor the latter explanation because Leptothorax ants are not very mobile on foot (Herbers 

1984; Heinze et al. 1996) and the random breeding structure allows for substantial gene flow via 

the males if females are philopatric. Similar weak nuclear differentiation between social forms 

opposed to strong mitochondrial differentiation has also been reported from L. acervorum (Stille 

et al. 1991; Stille and Stille 1993) and S. invicta (Ross and Shoemaker 1997). 
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