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Abstract: 

Extracts of milk thistle have been recognized for centuries as "liver tonics" and are well-known to prevent or 

reverse hepatotoxicity of reactive drug metabolites or naturally occurring toxins. Milk thistle extracts are now 

under intense study in the experimental therapeutics of cancer for chemoprevention, treatment, and amelioration 

of chemotherapy side effects. Precision in nomenclature, however, has lagged behind this progress. The crude 

commercial product of milk thistle is termed silymarin, a complex of at least 7 flavonolignans and 1 flavonoid 

that comprises 65% to 80% of milk thistle extract. From silymarin is derived silibinin, a semipurified fraction 

once thought to be a single compound but now recognized as a 1:1 mixture of 2 diastereoisomers, silybin A and 

silybin B. The distinction between silymarin and silibinin is not only important to understanding the historical 

literature, but thorough characterization and use of chemically defined mixtures in preclinical and clinical 

studies are essential to the progress of these botanical compounds as human therapeutics. As a result, we urge 

clinicians and preclinical investigators alike to exercise rigor in nomenclature and use pure compounds or 

precisely defined chemical mixtures in subsequent studies. Herein, we provide a guide to the proper 

nomenclature and composition of milk thistle extracts and discuss the known pharmacokinetic studies of these 

botanical medicines. The drug-interaction potential of these extracts appears to be quite low, and in fact, 

silibinin appears to synergize with the antitumor effects of some commonly used chemotherapeutics. However, 

some precautions are advised as high-dose, phase II studies are conducted.  
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Article: 

 

  "The beginning of wisdom is to call things by their proper names." 

  Chinese proverb attributed often to Confucius 

Milk thistle (Silybum marianum [L.] Gaertn. [Asteraceae]; synonym Carduus marianus L.) is a hardy and often 

invasive plant indigenous to the Mediterranean region whose achenes, often referred to as seeds, have been 

valued for their medicinal qualities. (1) Most research and application of the phytomedicinal extract of milk 

thistle seeds had been directed toward disorders of the liver, particularly cirrhosis, hepatitis, and in protection 

and treatment of xenobiotic-mediated liver injury. In the early 1990s, several reports began to appear suggestive 

of milk thistle as a potential cancer chemopreventive agent. The 1994 report of Agarwal et al (2,3) 

demonstrating silymarin inhibition of tumor promotion by phorbol ester in the SENCAR mouse is viewed 

widely as the catalyst for studying milk thistle as a cancer preventive and potential treatment. The subsequent 

progress of milk thistle in cancer research will be covered elsewhere in this volume by Deep and Agarwal. (4) 

The purpose of this review is instead to discuss the chemistry and composition of milk thistle extracts, discuss 

the pharmacokinetic studies with milk thistle extracts, and urge a renewed attention to detail in milk thistle 

nomenclature to clarify the literature and maximize the potential clinical applications of this promising 

botanical medicine.  

http://libres.uncg.edu/ir/uncg/clist.aspx?id=2969
http://ict.sagepub.com/


Nomenclature of Milk Thistle Compounds  

In the August 2000 issue of Hepatology, the prolific Czech consortium of milk thistle researchers led by Drs 

Vilim Simanek and Vladimir Kren emphatically raised attention to proper milk thistle nomenclature in a letter 

to the editor entitled, "Silymarin: What Is in the Name ...? An Appeal for a Change of Editorial Policy." (5) 

Their essay, in response to a review of herbal products for liver diseases, raised several key issues that 

converged on the inappropriate nomenclature and incomplete characterization of milk thistle products published 

in preclinical and clinical studies. The authors closed their editorial as follows:  

 

  We strongly recommend that investigators should either (1) give the 

  exact composition of the "silymarin complex" or "the principle" used, 

  or (2) use pure, chemically defined compounds. Implementation of these 

  changes would greatly clarify the literature describing the biology of 

  silymarin and its constituents. (5) 

This issue is not a new one in the study of botanical medicines, as most plant extracts contain a number of 

bioactive compounds yet are usually only standardized (if at all) for 1 compound or a number of compounds 

with similar spectroscopic characteristics. As milk thistle extracts prove increasingly useful in preclinical 

studies, progression to clinical studies will require complete and precise chemical characterization of study 

materials. As members of our research group were the first to purify milligram quantities of all 7 milk thistle 

flavonolignan compounds for biological studies, (6) we hope to answer the call of our colleagues in promoting 

clarity in the nomenclature of biologically active compounds derived from milk thistle.  

Table 1 contains a quick glossary of terms used to describe milk thistle components in the literature, often 

interchangeably and, unfortunately, incorrectly. The term "silymarin," a clever condensation of the plant's Latin 

binomial, was introduced originally in 1968 by the revered German phytochemist, Professor Hildebert Wagner, 

and colleagues to describe the mixture of flavonolignans that had been characterized at the time (silybin, 

isosilybin, silydianin, and silychristin). (7,8) Although many studies were conducted over the ensuing 3 

decades, the Research Triangle Institute Natural Products Laboratory first reported on the resolution and 

purification of all 7 flavonolignans from this mixture (Figure 1). (6) What was first termed silybin can be 

resolved into 2 diastereoisomers, silybin A and silybin B. A similar diastereoisomeric mixture exists, yielding 

isosilybin A and isosilybin B (which are regioisomers of silybin A and silybin B). The other 3 flavonolignans, 

which are "constitutional" or "structural" isomers of the aforementioned compounds, are silychristin, 

isosilychristin, and silydianin. The isolation and absolute stereochemistries of all these compounds were 

subsequently confirmed by Lee and Liu. (9) The chemical structures of the 7 flavonolignans and taxifolin are 

shown in Figure 1.  

 

 

Figure 2 displays high-pressure liquid chromatography (HPLC) chromatograms of silymarin, silibinin, and 

isosilibinin mixtures relative to all of the compounds isolated individually (silybin A, silybin B, isosilibin A, 

and isosilybin B on the left panel and taxifolin, isosilychristin, silychristin, and silydianin on the right panel). 

For those readers who are not well-versed in the intricacies of chromatography, one can consider these 

chromatograms like fingerprints. It is our intention to demonstrate the remarkable differences between these 

substances, which are all too often treated in the literature as being equivalent. From this, it should be apparent 

that silymarin is a complex mixture, silibinin and isosilibinin are each a mixture of 2 compounds, and all of the 

compounds can be isolated from each other (see Table 1 for a quick guide to these terms).  

Why is silymarin such a complex mixture? Silymarin is simply the initial extract of milk thistle seeds made with 

ethanol (or other solvents (10,11)) that contains 65% to 80% total flavonolignans and a small amount of a 

flavonoid (taxifolin, barely discernable in the HPLC chromatogram of silymarin) (Figure 2), with the remainder 

containing fatty acids and polyphenolic compounds. (1,6,12) The most commonly cited silymarin product used 



in clinical trials is Legalon, or Thisilyn in the United States, a milk thistle extract sold by Madaus AG that is 

standardized to 80% silymarin. Hence, a 175-mg capsule of Thisilyn contains 140 mg of a mixture of the 8 

compounds in Figure 1.  

The most abundant compounds in silymarin are the 2 diastereoisomers that comprise the semipurified mixture, 

silibinin. One of the problems with silibinin reports in the literature is that it is considered a single compound 

when, in fact, it is 2: roughly equal percentages of silybin A and silybin B. Even Sigma-Aldrich, the source of 

silibinin for most preclinical studies, continues to sell its silibinin (#S0417) with a description that implies it is a 

purified single compound from silymarin.  

Why the Nomenclature Matters Outside of Chemistry  

First, and most obviously, any preclinical or clinical study should be informed by the knowledge of whether one 

is testing a mixture of 8 compounds or 2. Particularly in the case of silymarin, the abundance of each of the 

compounds may vary depending on the source of botanical material, supplier, and extraction processes 

employed.  

Nature is variable, even within the same species of plant grown in the same exact place. This fact is well-

accepted by those who enjoy wine, where a bottle created by the same vintners, grown on the same vines, but 

produced in 2 different years can be quite distinct. The same can be true of herbal materials. Yet, all too often in 

the scientific literature, many herbal extracts are treated, erroneously, as being completely equivalent. (13) In 

clinical studies of pharmaceuticals, GMP-grade material is used such that the identity and reproducibility of the 

study agent can be ensured. In clinical studies of botanicals, however, this is often not the case, making 

comparisons between trials nearly impossible.  

Biologically, the relative importance of each compound is emerging as pure compounds are isolated from 

silymarin or silibinin in quantities sufficient for pharmacological evaluation. The importance of mixtures or 

pure compounds will likely depend on the biological endpoint under study and the intended therapeutic 

intervention. For example, the silymarin mixture has been shown to contain a modest ligand for the [beta] form 

estrogen receptor (ER[beta]). (14) ER[beta] expression may serve to prevent breast cancer growth and serve as 

an antagonist to the mitogenic effects of ER[alpha]. (15-18) Follow-up transcriptional activation studies have 

revealed that silybin B and taxifolin are the only compounds in silymarin capable of stimulating an 

estrogenresponsive reporter plasmid construct in T47D breast cancer cells. (19) Both are of similar potency 

([EC.sub.25] of 4.4 and 11.0 [micro]M, respectively), but taxifolin achieved a higher level of maximal 

stimulation. (19) We have shown that 3 silymarin products range from 21.6% to 23.8% silybin B, whereas 

taxifolin is present only at 1.6% to 2.2%. (12) With regard to silymarin, silybin B may be most important for its 

ER[beta] activity, but the data also suggest that pure taxifolin might be investigated individually as a breast 

cancer chemopreventive.  

 

 

In our work with prostate carcinoma cells in culture, (12) 4 compounds had the most consistent antiproliferative 

effects across LNCaP, DU145, and PC3 cells: silybin A, silybin B, isosilybin A, and isosilybin B. Of these, 

isosilybin B was uniformly the most potent compound, but isosilybin A was equally efficacious (DU145) in 

some cases, whereas silybin B was as efficacious in others (PC3). In the androgen-dependent LNCaP prostate 

carcinoma cell line, prostate-specific antigen (PSA) secretion was most effectively suppressed by isosilybin A 

and isosilybin B. (12) Therefore, a combination of these 2 compounds, which we term "isosilibinin," may be 

preferable for future studies in prostate carcinoma.  

Conversely, the free radical scavenging activity of pure compounds is reported to vary considerably, with 

silydianin and silychristin exhibiting 2- to 10-fold greater potency than the silibinin mixture. (20) Silydianin and 

silychristin are present exclusively in silymarin; they are absent from silibinin. This factor likely accounts for 



the observation that, on a mass basis, silymarin is 8-fold more potent than silibinin as a free radical scavenger. 

(20)  

Therefore, as biological studies progress, it remains important to make the distinction between silymarin and 

silibinin, and their respective and distinct compositions. In fact, 1 herbal marketer has already cited our 2005 

Cancer Research paper (12) and labels their silymarin product explicitly as containing isosilybin B, the most 

broadly potent of the flavonolignans in arresting prostate cancer growth (Mega Silymarin with Isosilybin B, 

Life Extension, Hollywood, Fla). This clever marketing, however, obscures the truth that all silymarin products 

we have tested contain some isosilybin B, albeit at concentrations at 2.1% to 4.4% by weight. (12) Other 

compounds are equally effective at higher concentrations, but this is not the case in all biological endpoints. 

Hence, a careful analysis of the biological activities of each pure compound should be undertaken in any system 

where either preparation exhibits promising activity.  

The distinction between silymarin and silibinin is also important as clinical investigators might seek to pool 

existing studies for meta-analyses. Even silymarin products vary in chemical composition among themselves 

depending on the source of the milk thistle extract. So, there is some hesitation in even comparing results with 

silymarin products obtained from different suppliers, for example, as shown in the pharmacokinetic results of 

Schulz et al. (21) While silymarin does indeed contain a subset of the compounds in silibinin (silybin A and 

silybin B), we would further hesitate to pool silymarin and silibinin data, as the nonsilibinin compounds in 

silymarin may have distinct effects. Indeed, some of these effects may be overlapping and redundant, such as 

suppression of human prostate carcinoma cell proliferation in vitro. (12) But depending on the outcome 

monitored, it is entirely possible that silymarin and silibinin may behave differently. Therefore, in any 

consideration of the clinical responses to milk thistle extract, careful distinction should be made between 

silymarin and silibinin, at the very least.  

A Few Words About Units of Concentration  

There is 1 caveat as milk thistle studies are discussed: nearly all published pharmacokinetic studies use total 

silibinin as the measurement but treat it as a single pure compound, expressing its concentration in terms of 

molarity, usually micromolar ([micro]M). Semantically, molar values should be reserved for pure compounds. 

Concentrations of mixtures, like silibinin and silymarin, are usually referred to in the natural products literature 

in micrograms per milliliter ([micro]g/mL), particularly because mixtures often contain compounds with 

different molecular weights. Expression in molarity helps one compare potency of compounds that differ in 

their molecular (or formula) weight. In the case of silibinin, both compounds share the same molecular weight 

of 482.1, and in silymarin, 7 of the 8 primary compounds also share this same molecular weight.  

 

 

Hence, a "30-[micro]M" solution of silibinin is actually a mixture of 15 [micro]M silybin A and 15 [micro]M 

silybin B because we know silibinin is roughly a 1:1 mixture of each compound. 12 However, in a 

pharmacokinetic study, a reported concentration of 30 [micro]M silibinin in plasma does not tell one the 

respective contributions of each compound, particularly because each compound can be handled differently by 

the body. This is not purely a semantic issue of chemistry because 1 study has demonstrated that after in vitro 

incubation with liver microsomes, silybin B is glucuronidated far more efficiently than is silybin A. (22) 

Therefore, it is highly likely that these 2 compounds have distinct pharmacokinetic characteristics after being 

administered orally as silibinin.  

Now that analytical methods exist to separate the various milk thistle flavonolignans, (6,9,23) we encourage 

those conducting future pharmacokinetic studies to use the molarity term only for pure compounds. In 

discussions that follow, however, we will use the term "[micro]M silibinin equivalents" to refer to studies that 

treat silibinin as a single compound.  



Pharmacokinetics of Milk Thistle Compounds--Low-Dose Studies  

Clinical studies of milk thistle extracts in cancer have lagged behind preclinical studies, but there have been 2 

very recent, repeated dose-escalation phase I pharmacokinetic studies (24,25) that have followed from several 

single- and repeated-low-dose studies published in the 1990s. These studies are essential in moving milk thistle 

extracts forward as potentially useful antitumor adjuncts for the simple and similar reason that many 

pharmaceutical candidates do not move forward to efficacy trials: they fail to achieve meaningful plasma or 

tissue concentrations. Therefore, a primary purpose of pharmacokinetic studies is to provide assurance and 

correlation that the dose administered gives rise to plasma and/or target tissue concentrations consistent with 

those required to produce effects in vitro. One fault of many clinical studies of botanicals is that adequate 

pharmacokinetic analyses are not completed prior to initiating efficacy trials. We have noted previously that 

some botanicals may fail in efficacy trials not because the botanical is itself without activity, but because the 

dosing was not sufficient to achieve pharmacologically meaningful concentrations. (26)  

Pharmacokinetic studies of milk thistle extracts are particularly important in making in vitro-in vivo correlations 

because the flavonolignans are notorious for their poor and erratic bioavailability. A 1995 study (21) revealed 

that among 3 silymarin products standardized for similar silibinin content, total bioavailability of a single dose 

varied by 2.2-fold, and peak plasma concentrations varied by nearly 3-fold. Another study reported on 1 

participant from a group of 9 whose peak plasma silibinin concentrations were 20-fold greater than the mean of 

the other 8. (27)  

To maximize oral bioavailability, the formulation most commonly employed in pharmacokinetic trials has been 

a mixture of silibinin and phosphatidylcholine sold by Indena SpA (Milan, Italy) as silipide, Siliphos[R], or IdB 

1016. Barzaghi et al (27) reported on a trial in normal healthy volunteers given 120 mg silibinin equivalents bid 

for 8 days. Mean peak plasma concentrations at day 1 and day 8 were 240 ng/mL and 183 ng/mL, 

corresponding to 0.50 and 0.38 [micro]M, respectively. Terminal half-life ranged from 2.6 to 3.4 hours. This 

early study noted that the flavonolignans were highly conjugated to glucuronic acid with under 3% of the total 

dose recovered in the urine.  

Weyhenmeyer et al (28) sought to identify the disposition of the 2 silibinin diastereoisomers but only referred to 

them as isomer 1 and isomer 2 owing to the lack of reference standards at the time (we now surmise these to be 

silybin A and silybin B, respectively) (Figure 2). In this study, 6 healthy male volunteers were given single 

doses of a silymarin product (Legalon 140, Madaus AG, Koln, Germany) standardized to 51 mg silibinin 

equivalents per capsule in a 4- way change-over design for dose escalation (102, 153, 203, and 254 mg 

silibinin). The bioavailability and peak plasma concentrations of isomer 1 were 2- to 3-fold greater than that of 

isomer 2, and mean peak plasma concentrations of combined isomers ranged from 0.24 [micro]M (at the 102-

mg dose) to 0.66 [micro]M (at the 254-mg dose) silibinin equivalents.  

Schandalik et al (29) examined biliary secretion of flavonolignans because the liver is the drug target for 

traditional uses of the herb in mushroom poisoning. These investigators examined both silipide and silymarin 

(source not defined), both dosed at 120 mg total silibinin. Remarkably, peak concentrations of silibinin 

equivalents achieved a mean of 116 [micro]g/mL (240 [micro]M) in the bile after silipide and 29 [micro]g/mL 

(60 [micro]M) after silymarin. Hence, biliary concentrations were 250 to 1000 times plasma concentrations 

reported previously. This study was also notable for examining other flavonolignans in bile. The low-abundance 

isosilybin diastereoisomer mixture appeared in bile at nearly the same concentrations as silibinin, despite the 

former being present in silymarin at one tenth the concentrations of silibinin. Unfortunately, the plasma 

determinations in this study were of low sensitivity such that even silibinin was only detectable in 2 of 9 

patients. Nevertheless, this study is often cited as evidence for the 4.2-fold preferential bioavailability of 

silibinin from silipide versus silymarin.  

As this last study was completed about the time of the first milk thistle chemoprevention paper from the 

Agarwal group, (2) one must consider the concentrations of silibinin required in vitro to observe the tumor cell 



growth-arresting effects in the interpretation of past and current pharmacokinetic studies. In studies of various 

epithelial cancer cell lines, double-digit micromolar concentrations of silibinin equivalents have usually been 

required to observe changes in most endpoints. The secretion of IGFBP-3 by prostate carcinoma cells occurs 

with concentrations as little as 2 [micro]M, (30) but the [IC.sub.50] of silibinin equivalents for growth 

inhibition or apoptosis is usually greater than 20 [micro]M in most studies. (12,31) In 2002, Singh et al (32) 

conducted the most complete pharmacokinetic and pharmacodynamic studies in athymic nude mice harboring 

DU145 human prostate carcinoma xenografts. Two treatment groups were employed in this study with animals 

given silibinin in the diet at 0.05 and 0.1% (w/w). Monitoring of feed intake revealed that the mean dose in each 

group was 65 and 130 mg/kg per day, respectively. After 60 days, tumor volume was reduced by 35% and 58%, 

with tumor wet weights reduced by 29% and 40%, respectively. IGFBP-3 in plasma increased 4- and 5.8-fold, 

respectively, providing a pharmacodynamic confirmation of in vitro findings. Most important, however, were 

the plasma and tissue concentrations associated with these responses. Plasma levels of silibinin equivalents 

were 7 to 13 [micro]g/mL (15-27 [micro]M silibinin equivalents), and prostate concentrations were 3.7 to 4.6 

[micro]g/g tissue wet weight (6-10 [micro]moles silibinin equivalents/g wet weight). (32) Therefore, these 

preclinical studies guided the design of subsequent human pharmacokinetic studies in aiming to achieve plasma 

or tissue concentrations greater than 10 to 15 [micro]M silibinin equivalents. It was clear that dosing far in 

excess of conventional dietary supplement label indications would be required to obtain these levels.  

In more recent human studies, Hoh et al (24) tested somewhat higher conventional doses (up to 1.44 g/d) of 

silibinin-phosphatidylcholine (silipide; IdB 1016, Indena SpA) in 12 patients who were to undergo colorectal 

resection and another 12 who were to undergo liver surgery for hepatic metastases of colorectal cancer. The 

implicit but not stated rationale was that the high biliary concentrations observed in previous studies might be 

equally significant in liver and intestinal mucosa. Three oral dose levels (360, 720, and 1440 mg silibinin daily) 

were selected for 7 days prior to surgery, and blood levels of parent compound and metabolites were measured, 

as well as the concentrations in colorectal and hepatic tissue. Although analytical methods showed 2 

chromatographic peaks for silibinin, the authors unfortunately did not differentiate between silybin A and 

silybin B in their quantitative measurements. Mean plasma concentrations of 3 to 4 [micro]M were achieved in 

the highest dose group. In the liver group, hepatic tissue concentrations were quite variable and ranged from 1.0 

to 2.5 [micro]M across the dosage groups. Hence, older studies show that considerable enrichment of silibinin 

in the bile (29) is not associated with similar increases in hepatic parenchyma. Instead, the colorectal mucosal 

levels were dramatically higher than blood concentrations (141 [+ or -] 169 [micro]M at the highest dose level) 

but also quite variable. The investigators also examined pharmacodynamic endpoints including IGF-1, IGFBP-

3, and the lipid peroxidationgenerated DNA adduct, [M.sub.1]dG, but none of these were altered significantly 

during this 7-day trial.  

Pharmacokinetics of Milk Thistle Compounds--High-Dose Studies  

Flaig et al (25) recently provided the best evidence that silibinin can be administered to humans at doses 

producing anticancer-relevant concentrations with minimal or no side effects. This study employed the largest 

doses to date ranging from 2.5 to 20 g of silibinin-phosphatidylcholine (Indena's Siliphos brand 

"silybinphytosome") daily given in 3 divided doses for 4 weeks to 13 men with a history of prostate carcinoma 

(mean age of 70 years). To accommodate these large doses, Siliphos powder was mixed with apple sauce at a 

ratio of 1/4 teaspoon powder to 1 tablespoon apple sauce. A dose of 5 to 10 g/d was required to achieve mean 

peak plasma concentrations above 25 [micro]M silibinin equivalents. However, escalation to 15 to 20 g/d did 

not increase concentrations above 50 [micro]M silibinin equivalents and was discontinued due to asymptomatic 

hyperbilirubinemia, due most likely to inhibition of the glucuronyltransferase, UGT1A1. When the largest 

cohort of 6 patients was given a daily dose of 13 g/d, mean peak plasma concentrations of 75 [micro]M silibinin 

equivalents were obtained. Mild hyperbilirubinemia was still observed but improved with treatment cessation in 

all patients.  

The half-life of plasma silibinin ranged from 1.8 to 5 hours, consistent with previous studies, and there was 

extensive glucuronidation. Urinary free silibinin and conjugates were subject to a high degree of interpatient 



variability. Hence, a clear dose response was not discernible: mean silibinin in the urine was 6.4 [micro]M 

silibinin equivalents (range, undetectable to 28.2 [micro]M), and mean silibinin-glucuronide was 253 [micro]M 

silibinin equivalents (range, 1.5-982 [micro]M silibinin). Although the main objective of the trial was to 

recommend a dose for phase II trials, PSA was followed in all patients, but none exhibited greater than a 50% 

decrease in PSA levels. However, several patients exhibited prolonged stable disease.  

These data are the first to suggest that a milk thistle extract administered to human volunteers can be achieved 

in plasma at concentrations of silibinin equivalents consistent with inhibition of prostate carcinoma cell growth 

in culture. (25) However, these studies also point to a very important consideration if silibinin is to be used in 

the oncological setting. The authors report that the hyperbilirubinemia observed was due to inhibition of 

UGT1A1, whose [IC.sub.50] has been reported at 1.4 [micro]M silibinin equivalents. (33) Glucuronidation of 

the semisynthetic camptothecin derivative, irinotecan, is quite sensitive to UGT1A1 status, and patients with a 

UGT1A1 polymorphism that impairs activity are very sensitive to irinotecan toxicity. (34,35) A previous study 

indicated that milk thistle extracts do not influence irinotecan pharmacokinetics, but plasma silibinin 

equivalents achieved then were no greater than 0.26 [micro]M silibinin, below the [IC.sub.50] for UGT1A1 

inhibition. Therefore, high doses of silibinin (>13 g/d) should be used cautiously in patients with compromised 

hepatic function and should be contraindicated for concomitant administration with irinotecan.  

One Final Word About Hepatic Effects of Milk Thistle Extracts  

The potential for herb-drug interactions between milk thistle extracts and conventional pharmaceuticals appears 

to be quite low, (36) particularly at doses less than 1 to 5 g/d. However, it is recognized that several reports have 

appeared suggesting that silibinin or silymarin can inhibit some isoforms of the cytochrome P450 family, 

including CYP3A4 and CYP2C9. (33,37,38) In cancer therapeutics, these findings are important because 

several conventional chemotherapeutic drugs are also metabolized by CYP3A4, raising some concerns 

regarding other milk thistle-drug interactions in oncology or other settings. Inhibition of purified enzymes was 

somewhat substrate selective, with [K.sub.i] values for silibinin equivalents of 32 to 166 [micro]M for CYP3A4 

and 5 [micro]M for CYP2C9. (33) In cultured human hepatocytes, CYP3A4 activity was inhibited by 50% at 

100 [micro]M and 100% at 250 [micro]M silymarin, concentrations that are quite high and difficult to relate to 

silibinin equivalents. (38) It bears noting that Gurley et al (36) reported that silibinin administration to human 

volunteers had no effect on model substrate metabolism by any of the 4 CYP isoforms his group measured, 

including CYP3A4; however, the dose used likely would not have produced plasma concentrations greater than 

1 [micro]M silibinin equivalents.  

There are several reasons to note the potential for CYP inhibition by milk thistle extracts as clinical efficacy 

trials might move forward. First is that plasma concentrations of silibinin equivalents at an oral dose of 13 g/d 

(25) may begin to approach concentrations for CYP inhibition. Second is that Sridar et al (33) noted that in vitro 

enzyme inhibition was "mechanism-based," meaning that inhibited P450 activities could not be restored by 

dialysis of silibinin and that inhibition may have resulted from a reactive metabolic intermediate that bound 

covalently to the heme moiety of the enzymes. This irreversible type of inhibition would pose a potentially 

more serious drug interaction risk if it were to occur in human hepatocytes or, obviously, human volunteers. 

However, there is no information at this point to suggest that P450 inhibition occurs in patients, and there has 

yet to be a conclusive demonstration of a covalent silibinin-P450 heme adduct in any in vitro study. In fact, 

there has yet to be a systematic dissection of cytochrome P450 inhibition by any of the single, pure 

flavonolignans. Hence, even if clinically relevant P450 inhibition were observed, it may only be restricted to 

individual flavonolignans. In this theoretical case, offending compounds could be separated from those that 

retain anticancer activity.  

In the meantime, clinicians should be aware that high doses of milk thistle extracts, perhaps greater than 5 g/d, 

may have the potential to inhibit the metabolism of other drugs that are substrates for CYP3A4 or CYP2C9. 

Investigators conducting future high-dose studies may also wish to consider investigating the disposition of 



CYP model substrates to address this important question, particularly since there is a growing appreciation for 

the potential metabolic interactions between drugs and dietary substances. (13)  

Conclusions  

The primary intent of this review article has been to make a strong case for accuracy in the description of milk 

thistle study materials used in in vitro, in vivo, and clinical studies. The argument has been made that attention 

to proper nomenclature is not germane only to chemistry but rather is essential to the further progress of milk 

thistle studies in the preclinical and clinical experimental therapeutics of cancer. Without attention to this 

important detail, comparisons between studies are fraught with errors. The authors recognize that FDA 

regulations for approval of a botanical investigational new drug application will likely dictate that milk thistle 

extracts, rather than pure compounds, will continue to move forward in clinical trials. Therefore, it is essential 

that all involved in basic and translational cancer research recognize the chemical complexity of the botanical 

extracts being tested and that greater attention be paid to the pharmacodynamic and pharmacokinetic 

characteristics of the pure compounds that comprise these promising therapeutic mixtures.  
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Table 1. Quick Reference Glossary of Milk Thistle Nomenclature 

  

Milk thistle extract  The initial extract of crushed milk thistle seeds, 

                        usually with ethanol, that contains 65% to 80% 

                        silymarin and 20% to 35% fatty acids, such as 

                        linoleic acid. 

Silymarin             A complex of at least 7 flavonolignans and 1 

                        flavonoid that comprises 65% to 80% of milk 

                        thistle extract. 

Silibinin             A semipurified, commercially available fraction of 

                        silymarin. Silibinin was once thought to be a 

                        single compound and is often treated so in the 

                        literature. In fact, silibinin is a roughly 1:1 

                        mixture of 2 diastereoisomeric compounds, 

                        silybin A and silybin B. 

Isosilibinin          Similar to silibinin, this semipurified fraction 

                        of silymarin contains a roughly 1:1 mixture of 2 

                        diastereoisomeric compounds, isosilybin A and 

                        isosilybin B. Isosilibinin is currently under 

                        evaluation as a more potent alternative to 

                        silibinin that may be produced more economically 

                        than either pure compound. 

Flavonolignan         The most common class of compound present in milk 

                        thistle extract. Milk thistle flavonolignans 

                        result from a peroxidase reaction in the plant 

                        that fuses the flavonoid, taxifolin (known also 

                        as dihydroquercetin), with coniferyl alcohol, 

                        resulting in at least 7 compounds that all share 

                        the formula weight of 482.1. 

 


