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Abstract: 

Tumors associated with Kaposi's sarcoma–associated herpesvirus infection include Kaposi's sarcoma, primary 

effusion lymphoma, and multicentric Castleman's disease. Virtually all of the tumor cells in these cancers are 

latently infected and dependent on the virus for survival. Latent viral proteins maintain the viral genome and are 

required for tumorigenesis. Current prevention and treatment strategies are limited because they fail to 

specifically target the latent form of the virus, which can persist for the lifetime of the host. Thus, targeting 

latent viral proteins may prove to be an important therapeutic modality for existing tumors as well as in tumor 

prevention by reducing latent virus load. Here, we describe a novel fluorescence-based screening assay to 

monitor the maintenance of the Kaposi's sarcoma–associated herpesvirus genome in B lymphocyte cell lines 

and to identify compounds that induce its loss, resulting in tumor cell death. 

 

Article: 

Introduction 

Kaposi's sarcoma–associated herpesvirus (KSHV), or human herpesvirus-8, is a member of the 

gammaherpesvirus family, distinguished by the ability of its members to transform host cells. KSHV has been 

linked to multiple types of cancer, including all forms of Kaposi's sarcoma (1), primary effusion lymphoma (2), 

and the plasmablastic variant of multicentric Castleman's disease (3). These cancers are more prevalent in 

immunodeficient populations, such as transplant patients and HIV-infected individuals (3–6). In fact, Kaposi's 

sarcoma is the most frequent AIDS-associated cancer in the U.S. and worldwide (7).  

 

Following primary infection, KSHV establishes latent infection in the host cell, with only a small population of 

cells undergoing spontaneous lytic reactivation (8, 9). During latency, a limited number of viral proteins are 

expressed, including the latency-associated nuclear antigen (LANA), vFLIP, vCyclin, kaposin, and K15 (10, 

11). Each viral latent protein plays an important role in viral pathogenesis and KSHV-associated tumorigenesis. 

LANA plays a pivotal role in the maintenance and segregation of the viral genome during latency (12), and 

thus, is also essential for cell survival (13). Maintenance of the viral genome is absolutely dependent on the 

LANA protein, which tethers the latent viral episome to the host cell chromosome, ensuring that the viral 

genome is replicated with the host genome and is not diluted out of the expanding population of latently 

infected cells (14, 15). If the viral episome is lost, LANA and the other latent viral oncogenes are no longer 

expressed, and the tumor cell dies.  

 

Currently, there is neither a cure nor a therapeutic vaccine for KSHV infection. Highly active antiretroviral 

therapy has reduced the incidence of KSHV-associated tumors in the HIV-positive population, yet Kaposi's 

sarcoma remains the most prevalent AIDS-associated neoplasm, even in individuals on long-term therapy (16). 

Ganciclovir, which specifically inhibits lytic viral replication, has reduced the incidence of KSHV-related 

tumors in transplant recipients (reviewed in ref. 17). However, treatment for preexisting KSHV-associated 
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malignancies relies on IFN-α administration and systemic chemotherapeutic regimens, developed for non–

virus-associated cancers that target DNA replication of all dividing cells (reviewed in ref. 18). Although clinical 

trials are assessing new treatment options, a cure remains elusive largely due to the lack of compounds that 

specifically target latent proteins, which allow the virus to persist throughout the host's lifetime. Recently, 

Curreli et al. reported that high concentrations of glycyrrhizic acid, originally isolated from licorice 

(Glycyrrhiza glabra), could down-regulate the expression of LANA in vitro (19).  

 

Nature continues to be a valuable source for new antimicrobial and anticancer pharmaceuticals (20, 21). From 

1984 to 1995, >65% of new drugs in these medical fields were derived directly from natural sources or were 

synthesized, but modeled after a natural product lead compound (22, 23). Two anticancer chemotherapeutics 

derived from natural products, taxol (paclitaxel; ref. 24) and Food and Drug Administration–approved 

analogues of camptothecin (irinotecan and topotecan; ref. 25), together represent at least one third of the 

worldwide market for antineoplastic agents (26). Indeed, natural products represent a rich reservoir of 

chemically diverse compounds with biological relevance in many disease states (27).  

 

This report describes the development of a fluorescence-based assay to screen for samples that inhibit latent 

KSHV persistence. The assay identifies samples that interfere with viral genome maintenance during latency 

irrespective of the specific biochemical mechanism, thus multiple targets are screened for simultaneously. In 

order to accomplish this, a KSHV–green fluorescent protein (GFP) recombinant virus (28) was introduced into 

a KSHV-negative B lymphocyte cell line (BJAB) to create a KSHV-BJAB cell line. KSHV-BJAB cells were 

chosen for two reasons. First, fluorescence, and hence, viral genome maintenance, could be monitored over time 

in live KSHV-BJAB cell cultures. Samples that interfere with viral genome maintenance could be identified by 

measuring an accelerated reduction in fluorescence with respect to a vehicle control because the recombinant 

viral genome is expelled from the dividing cell population. Second, because the BJAB cell line does not require 

KSHV infection for its survival but can support long-term latent viral persistence (29), using KSHV-BJAB cells 

uniquely allowed the distinction between samples that caused loss of the latent viral episome and those that 

were generally toxic to the host cell. This was essential, because naturally infected primary effusion lymphoma 

cell lines, such as BCBL-1 (30), require viral infection to survive, and therefore do not allow a distinction 

between specific antiviral and broadly cytotoxic compounds because compounds that induce loss of the virus 

also lead to cell death. As broadly cytotoxic compounds are often associated with multiple side effects resulting 

from nonselective toxicity, the utility of a live cell screen should improve the identification of compounds that 

may exhibit selective antiviral activity in vivo. In this report, samples that proved efficacious in the KSHV-

BJAB cell line were also tested in the naturally infected BCBL-1 cell line to confirm that loss of the virus 

corresponded with primary effusion lymphoma cell death.  

 

In addition to the application described here, this assay can be adapted for use with other viruses, such as EBV, 

that exist episomally in the host cell. It can be used to screen various collections (ranging from pure compounds 

to crude extracts) for samples that interfere with viral persistence. In this report, we used this assay to screen a 

small library of plant extracts and identified two that selectively induced loss of KSHV virus from infected 

cells.  

 

Materials and Methods 

Cells and Media 

The KSHV-negative BJAB lymphoid cell line and the KSHV-positive BCBL-1 cell line were obtained from 

American Type Culture Collection. BJAB cells were maintained in RPMI 1640 supplemented with 10% fetal 

bovine serum, 100 units/mL of penicillin, and 100 μg/mL of streptomycin. BCBL-1 cells were maintained in the 

same medium additionally supplemented with 1 mmol/L of NaHCO3 (Life Technologies) and 0.05 mmol/L of 

2-mercaptoethanol (Sigma). The BJAB-derived cell line, KSHV-BJAB, was created by nucleofection of 

KSHV-negative BJAB cells with the KSHV bacterial artificial chromosome containing a hygromycin antibiotic 

resistance marker and the GFP expression cassette (28). Cells containing the KSHV genome were selected for a 

minimum of 2 weeks in RPMI 1640 supplemented with 10% fetal bovine serum, 100 units/mL of penicillin, 



100 μg/mL of streptomycin, and 0.2 mg/mL of hygromycin B. Unless otherwise noted, growth media and 

supplements were obtained from Cellgro.  

 

Plant Collection and Processing 

Plant samples were collected in Manus Island, Papua New Guinea, in 2003 under a UIC-UPNG Memorandum 

of Agreement 2003–2008 and approval of the PNG BioNET/Department of Environment and Conservation 

dated May 21, 2003. A set of voucher herbarium specimens has been deposited at both the Herbarium of the 

University of Papua New Guinea, Port Moresby and the John G. Searle Herbarium, Field Museum, Chicago, IL. 

Taxonomic identifications were done by one of the authors (P. Piskaut) and confirmed by staff of the Lae 

Herbarium, Papua New Guinea and by one of the authors (D.D. Soejarto). The collection and processing 

strategies for these understudied plant specimens from tropical rainforests has been recently reviewed (31). 

Briefly, a pilot sample (∼20 g, dry weight) was extracted with a 9:1 methanol/water solution. The resultant 

extract was defatted with hexanes, and the residual materials were partitioned in a 4:1:5 

chloroform/methanol/water solution. Importantly, the organic-soluble fraction was washed with 1% NaCl to 

remove tannins (32), which are known to interfere with some biological assays. The detannified organic fraction 

of each sample was tested for biological activity.  

 

Fluorescence Assay 

One hundred thousand cells from each B lymphocyte cell line were suspended in RPMI 1640 (Cellgro) 

supplemented with 2% fetal bovine serum (Cellgro), 100 units/mL of penicillin and 100 μg/mL of streptomycin 

(Cellgro) and were placed in subsequent wells of a 24-well plate. Hygromycin selection was withdrawn from 

KSHV-BJAB cells to prevent competition with screened samples. In the case of plant samples, the detannified 

organic fraction or an equal volume of DMSO was added to the growth medium at a final protein concentration 

of 2 μg/mL. The pure compound and positive control, glycyrrhizic acid (Sigma) dissolved in 5% ethanol at a pH 

of 7.2, was diluted to 2 mmol/L (1,680 μg/mL), 3 mmol/L (2,520 μg/mL), 4 mmol/L (3,360 μg/mL), and 6 

mmol/L (5,040 μg/mL) in RPMI 1640 (Cellgro) supplemented with 2% fetal bovine serum (Cellgro), 100 

units/mL of penicillin and 100 μg/mL of streptomycin (Cellgro). Half of the culture medium was siphoned from 

each well and replenished with fresh medium and identical concentrations of glycyrrhizic acid or plant sample 

(2 μg/mL) twice each week without passaging the cells. Mean fluorescence of the live cultures, incubated with 

test or control samples was measured using a Fluostar fluorimeter every 2 to 3 days. Optimal variables for 

detection were an excitation wavelength of 485 nm, an emission wavelength of 510 nm, and orbital well 

scanning.  

 

Real-time Quantitative PCR 

Total DNA (including cellular genomic and viral DNA) was isolated from cells after 5 weeks of incubation with 

test samples or vehicle controls using the Promega Wizard Genomic DNA kit. Real-time quantitative PCR (RT-

QPCR) was done with primers specific for the cellular U6 gene and the viral vGPCR gene as previously 

described (33). Using this method to analyze BCBL-1 cells serially diluted in a suspension of uninfected BJAB 

cells, we were able to detect as few as 1 in 10,000 infected cells with 95% efficiency (Supplementary Fig. S1).
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In the BJAB and BCBL-1 cells, the cytotoxicity of the plant samples was assessed using the equation 1.9
−ΔCT(U6)

 

to normalize the data to the DMSO control. Results were expressed as the percentage of viability. In KSHV-

BJAB cells, selective inhibition of the virus was assessed by first normalizing the cellular and viral data to the 

DMSO control, then determining the ratio, or selectivity index (SI = 1.9
[ΔCT(U6)−ΔCT(vGPCR)]

), of viral toxicity 

versus cellular toxicity.  

 

Immunofluorescence 

After 1 week, ∼100,000 BCBL-1 cells cultured with plant extract or a DMSO vehicle control were spotted on 

slides. Cells were fixed and permeabilized in precooled acetone at −20°C for 15 min. Slides were washed in 

PBS. Normal goat serum (10% in PBS) was used to block nonspecific antibody binding. The slides were 

incubated for 1 h at room temperature with anti–KSHV ORF-73 (LANA) rat monoclonal antibody (1:100, 

Advanced Biotechnologies). Slides were washed twice in PBS, then incubated for 30 min at room temperature 



with anti–rat TRITC-conjugated IgG (1:100, Sigma). Slides were washed twice in PBS and once in distilled 

water and allowed to dry. Vectashield was applied to preserve fluorescence.  

 

Results 

Development of the Screening Assay 

The KSHV-BJAB cell line was established by introducing the complete KSHV genome in the context of a 

bacterial artificial chromosome (KSHV-BAC; ref. 28) into uninfected B lymphocytes (BJAB). The KSHV-BAC 

contains both a mammalian hygromycin antibiotic resistance marker and the GFP expression cassette. 

Transfection of BAC viral DNA was previously shown to result in fully replication-competent virus and 

circumvented any receptor or post-entry blocks that may limit the efficiency of natural infection of B cells with 

KSHV (28, 29, 34). KSHV-BJAB cells were selected in 0.2 mg/mL of hygromycin B in order to achieve a 

stable KSHV-positive cell line.  

 

KSHV-BJAB cells harboring the KSHV-BAC express GFP, thus providing a means to screen for samples that 

interfere with latent viral genome maintenance. Inhibition of viral genome maintenance results in loss of 

fluorescence as the viral episome is lost from the dividing cell population. Because KSHV episome loss occurs 

at cell division (35), multiple cell division cycles must take place before a significant loss of fluorescence can 

be observed. The design, as a multicycle assay, also increased the sensitivity and allowed us to prioritize 

potential lead samples based on their effectiveness.  

 

To screen for samples with activity against latent KSHV infection, hygromycin selection was removed from the 

KSHV-BJAB cells to prevent competition with the screened samples. Cells were incubated with test and control 

samples for 5 weeks. Culture medium and samples were replenished twice each week without passaging the 

cells. Primary screening of samples was achieved by measuring the mean fluorescence of the GFP-positive 

KSHV-BJAB cells every 2 to 3 days (Fig. 1A ). Mean fluorescence was plotted over time to identify samples 

that accelerated loss of fluorescence in the KSHV-BJAB cell line with respect to a vehicle control. The 

uninfected BJAB cell line served as an additional control against broad-spectrum cytotoxic effects of the tested 

samples. A naturally infected KSHV-positive primary effusion lymphoma cell line, BCBL-1 (30), was also 

included to confirm the antiviral effects of lead samples by real-time QPCR and indirect immunofluorescence 

assays for LANA (Fig. 1A).  

 

 

 



 
 

Figure 1.  
Validation of the assay. A, cells from three B lymphocyte cell lines (BJAB, KSHV-BJAB, and BCBL-1) were 

incubated in RPMI containing test or control samples. Samples were initially screened for loss of fluorescence 

in the KSHV-BJAB cells, suggestive of loss of virus. To verify loss of virus from the cells, additional assays 

were done including real-time PCR viral load assays and immunofluorescence assays for LANA. B, incubation 

of KSHV-BJAB cells with a known inhibitor of KSHV latency, glycyrrhizic acid, leads to a dose-dependent 

decrease in mean fluorescence as compared with an ethanol control. C, digital images of the KSHV-BJAB cells 

incubated with glycyrrhizic acid (2 and 6 mmol/L) or an ethanol control. Top, fluorescence images; bottom, 

merged fluorescent and bright-field images. D, real-time QPCR using primer sets to amplify viral (vGPCR) and 

cellular (U6) regions of DNA isolated from BCBL-1 cells incubated with glycyrrhizic acid (GA) or an ethanol 

(EtOH) control. Dose-dependent increases in the cycle threshold for viral (○) and cellular (⧫) template as 

compared with the ethanol control were evident. 

 

Validation of the Screening Assay 

To validate the assay, a known inhibitor of KSHV latency, glycyrrhizic acid was tested. At 3 mmol/L, 

glycyrrhizic acid has been shown to down-regulate the expression of LANA from KSHV (19). KSHV-BJAB 

cells were incubated with 2 to 6 mmol/L of glycyrrhizic acid or an ethanol control (final ethanol concentration, 

0.6%). Culture medium was replaced twice each week with fresh medium plus glycyrrhizic acid without 

passaging the cells. In the ethanol control or 2 to 4 mmol/L glycyrrhizic acid–treated KSHV-BJAB cultures, 

fluorescence increased from days 1 to 7 as KSHV-BJAB cells proliferated. After day 7, fluorescence leveled off 

in the ethanol control cultures, whereas cells incubated with glycyrrhizic acid showed a dose-dependent 

decrease in mean fluorescence (Fig. 1B). At 6 mmol/L, glycyrrhizic acid inhibited the initial proliferative burst 

of KSHV-BJAB cells, most likely due to broad cytotoxicity. By day 18, the majority of KSHV-BJAB cells 



incubated with 2 mmol/L of glycyrrhizic acid no longer exhibited green fluorescence, but remained viable (Fig. 

1C, middle), in contrast to the gross cytotoxicity observed at 6 mmol/L of glycyrrhizic acid (Fig. 1C, right). On 

day 18, uninfected BJAB cells also remained viable at 2 mmol/L of glycyrrhizic acid, but lost viability at 6 

mmol/L of glycyrrhizic acid (data not shown).  

 

The antiviral effect of glycyrrhizic acid was verified by viral load assays. Total cellular and viral genomic DNA 

was isolated from BCBL-1 cells or KSHV-BJAB cells incubated with glycyrrhizic acid or an ethanol control for 

7 days. As expected, the cycle threshold for both the cellular (U6) and viral (vGPCR) primer sets increased in a 

dose-dependent manner, indicating a simultaneous reduction of both viral and cellular DNA (Fig. 1D). This was 

expected as glycyrrhizic acid interfered with viral latency, leading to loss of viral DNA and, because the KSHV 

genome is required for BCBL-1 cell survival, a loss of cellular DNA as well. Glycyrrhizic acid selectively 

inhibited the virus in KSHV-BJAB cells, which do not depend on the virus for survival, with reductions in viral 

load on average 17 times greater than reductions in cellular DNA (data not shown). These results served to 

validate our assay. However, cumulative cytotoxic effects became evident in all glycyrrhizic acid cultures, 

including the uninfected BJAB cultures, after 18 days of treatment (data not shown). Therefore, despite its 

initial selective antiviral effect, glycyrrhizic acid is unlikely to be a good drug candidate given its cumulative 

broad cytotoxicity. Moreover, the relatively high concentration required for a positive response in vitro could be 

difficult to achieve in vivo.  

 

Identification of Antiviral Plant Extracts 

Having validated the assay, a screening set of 81 plant extracts was tested for anti-KSHV activity. All extracts 

were dissolved in DMSO and were tested at a final concentration of 2 μg/mL in RPMI. An equal volume of 

DMSO served as a vehicle control. Culture medium was replaced twice each week with fresh medium plus 

plant extract, without passaging the cells. Mean fluorescence measurements from KSHV-BJAB cultures were 

taken every 2 to 3 days. Fluorescence from KSHV-BJAB cells treated with DMSO plateaued within 1 week as 

the cells achieved equilibrium. Sixty-two extracts exhibited insignificant changes in the fluorescence of KSHV-

BJAB cultures with respect to the DMSO control. Eight extracts marginally reduced fluorescence, whereas six 

extracts consistently decreased fluorescence by at least 50% of the DMSO control without apparent cytotoxicity 

(Supplementary Table S1).
6
 Four extracts exhibited acute and one delayed (cumulative) cytotoxic effects 

irrespective of the cell's infection status.  

 

Extracts that Decreased Fluorescence. Figure 2 displays the mean fluorescence graphs of six extracts 

(A05810, A05830, A05831, A05853, A05898, and A05901) that consistently decreased fluorescence by ≥50% 

of the DMSO control in four separate trials. Two distinct trends were observed within this group of six extracts. 

Fluorescence of KSHV-BJAB cells incubated with extracts A05810, A05830, and A05898 (Fig. 2A) peaked 

within 7 days, then decreased steadily until achieving a new plateau level of fluorescence at least 50% less than 

the DMSO control, but still above background. Fluorescence from KSHV-BJAB cells incubated with extracts 

A05831, A05853, and A05901 (Fig. 2B) peaked within 7 days, then steadily declined throughout the 

experiment.  

 

 



 
 

Figure 2.  

Initial screening for antiviral activity is based on loss of fluorescence. Mean fluorescence of live B lymphocyte 

cultures incubated with potential antiviral compounds is measured every 2 to 3 d for 5 wks. A, extracts A05810 



( ), A05830 (

), and A05898 (

) caused accelerated loss of mean 

fluorescence in KSHV-BJAB cultures as compared with the DMSO control (

), eventually establishing a new plateau 

level of fluorescence ≥50% less than the DMSO control. B, after incubation with extracts A05831 (

), A05853 (

), and A05901 (

) fluorescence declined steadily and 

without leveling off, suggesting continuous reduction of the viral load.  

 

 



 
 

  

Figure 3 displays digital images of KSHV-BJAB cells after 20 days of incubation with the six aforementioned 

extracts and the DMSO control. Roughly equivalent numbers of cells were present in each field. However, the 

number of GFP-positive cells was reduced ≥50% by each of the extracts as compared with the DMSO control. 

No visually apparent cytotoxic effects of these extracts were evident at day 20. Furthermore, these extracts were 

assessed at day 14 in uninfected BJAB cells (Supplementary Fig. S2A)
6
 and in three unrelated cancer cell lines 

(Supplementary Fig. S2B)
6
 and were found to have limited cytotoxicity in these assays. These six extracts that 

repeatedly decreased the fluorescence of KSHV-BJAB cells may interfere with episomal maintenance and were 

chosen for further analyses. 

 

Cytotoxic Extracts. In contrast to the extracts that showed a consistent decrease in fluorescence without 

visually apparent cytotoxicity, four extracts, as represented by extract A05854 in Fig. 4 , were acutely and 

uniformly cytotoxic to all three B lymphocyte cell lines tested regardless of their infection status. Additionally, 

one extract (A05814) was found to have cumulative nonspecific cytotoxic effects. As before, fluorescence from 

DMSO-treated KSHV-BJAB cells increased sharply as cells proliferated, whereas the fluorescence of KSHV-

BJAB cells incubated with the acutely cytotoxic extract (A05854) failed to increase at all and quickly achieved 

baseline levels (Fig. 4A). Extract A05814 initially permitted cell proliferation concomitant with escalating 

fluorescence measurements (Fig. 4A). However, by day 14, fluorescence had plummeted to near-background 



levels. Whereas the cytotoxicity of extract A05854 was unmistakable (Fig. 4B) at day 20, with only few 

apoptotic cells present, many more cells were present in the A05814 culture (Fig. 4B), with apoptotic changes 

just becoming visually apparent at this time point. Key to the distinction and subsequent exclusion of these 

cytotoxic extracts from further analyses was their nonselective toxicity to uninfected BJAB and infected BCBL-

1 cells alike (data not shown). Thus, the inclusion of uninfected BJAB cultures in this assay distinguishes 

generally cytotoxic samples from those that are selectively active against KSHV-infected cells and allows us to 

separate specific antiviral activity in our samples from acute and delayed cytotoxic activity. 

 

 
Figure 4.  
Five extracts exhibited cytotoxicity to all three B lymphocyte cell lines. A, mean fluorescence graph 

representative of acute and delayed cytotoxic samples, A05854 (○) and A05814 (▪), respectively. B, digital 

images of KSHV-BJAB cells incubated with acutely cytotoxic sample A05854 or delayed cytotoxic sample 

A05814. Left, fluorescence images; right, merged fluorescent and bright-field images. 

 

Confirmation of Antiviral Activity by Real-time QPCR 

The six extracts (A05810, A05830, A05831, A05853, A05898, and A05901; Figs. 2 and 3) that decreased 

fluorescence with respect to the DMSO control in the initial fluorescence-based screen were selected for further 

study. After incubation with test or control samples for 5 weeks, viral genomic and host chromosomal DNA 

was isolated from BJAB, KSHV-BJAB, and BCBL-1 cells. Each culture began with an identical number of 

cells and was not split during the course of the experiment. The isolated DNA was resuspended in the same 

volume of buffer, and an equal volume of the isolated DNA was used as a template for real-time QPCRs with 

viral (vGPCR) and cellular (U6) primer sets. Thus, any increases in cycle threshold for the cellular primer set 

were likely due to the cytotoxic effects of the extract, whereas changes in the viral cycle threshold were due to 

changes in the cell-associated viral load. After normalizing the raw data to the DMSO control, either toxicity in 

BJAB and BCBL-1 cultures or selectivity in KSHV-BJAB cultures were ascertained.  

 

As expected, the non–template control yielded no signal with either primer set after 40 cycles. Likewise the 

cycle threshold (CT) for the viral primer set in uninfected BJAB cells was 40, indicating the absence of viral 

DNA, whereas the cellular primers (directed against the U6 gene) gave a consistent signal (mean CT = 22 ± 1, 

across the six extracts) similar to the DMSO control (CT = 21 ± 1). Although BJAB cultures remained at least 

80% viable at day 14, as measured by trypan blue exclusion (Supplementary Fig. S2A),
6
 cytotoxic effects 

became apparent by QPCR at 5 weeks (Fig. 5A ). BJAB cells treated with extracts A05830 and A05831 

remained viable (109% and 89% viable, respectively, as compared with the DMSO control). Extracts A05810 



and A05898 reduced viability by ∼50%, whereas extracts A05853 and A05901 reduced viability by >80% 

compared with the DMSO control.  

 

 
Figure 5.  
Real-time QPCR allows potential hits to be stratified based on selectivity and specificity. Real-time QPCR was 

done using viral (vGPCR) and cellular (U6) primer sets. For uninfected BJAB (A) and naturally infected 

BCBL-1 cells (B), cell viability of extract-treated cells was normalized to the DMSO control using the equation: 



1.9
−ΔCT(U6)

. C, cellular and viral DNA in extract-treated KSHV-BJAB cells were first normalized to DMSO-

treated KSHV-BJAB cells. Then, the selectivity index was calculated as the ratio of changes in viral DNA to 

changes in cellular DNA.  

 

Next, naturally infected BCBL-1 B lymphoma cells were evaluated. Each cell contains approximately 70 copies 

of the KSHV episome (36) and its maintenance is vital for BCBL-1 survival. If all viral genomes are lost, the 

cell dies. Given the interdependence of viral genome maintenance and cell survival in BCBL-1 cells, we 

analyzed only the cytotoxicity of the extracts in BCBL-1 cells compared with the DMSO control (Fig. 5B). Two 

of the six extracts—A05831 and A05853—were toxic to BCBL-1 cells, reducing viability to 46% and 2%, 

respectively. These extracts exhibited expectable increases in both viral and cellular cycle thresholds compared 

with DMSO (Supplementary Table S1).
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Finally, the selectivity of each extract was assessed in KSHV-BJAB cells (Fig. 5C), representing the key 

innovation of this report because nonspecific cytotoxic effects can be uncoupled from changes in viral load as 

KSHV-BJAB cells do not require the virus for survival. Here, the KSHV-specific primers (directed against the 

vGPCR gene) detected drastic changes in KSHV viral DNA resulting in CT values ranging from 28 ± 1 to 39 ± 

1 in extract-treated cells and 25 ± 1 in DMSO-treated cells, whereas the cellular DNA (U6 gene) remained 

largely unchanged (mean CT = 22 ± 1 across six extracts; CT = 20 ± 1 in DMSO-treated cells). Changes in 

cellular and viral genomic DNA were first individually normalized to DMSO-treated cells. The selectivity index 

of each extract was then determined by the ratio of viral DNA reduction to host DNA reduction, i.e., cytotoxic 

effects. Three extracts—A05831, A05853, and A05901—were highly selective as indicated by selectivity 

indexes >10, indicating that extract-mediated reductions in viral DNA were 232, 13, and 152 times greater, 

respectively, than reductions in KSHV-BJAB cellular DNA.  

 

Taken together, the information gleaned from each QPCR experiment was used to prioritize samples according 

to the selectivity of their antiviral activity and the specificity of their cytotoxic effects. Specifically, extracts that 

exhibit (a) high selectivity (selectivity index >10 in KSHV-BJAB cells), (b) large reductions in BCBL-1 

viability (>50%), and (c) minimal cytotoxic effects in BJAB cells would receive higher priority in subsequent 

analyses. Of the three highly selective extracts we identified, only extracts A05831 and A05853 were toxic to 

BCBL-1 cells, resulting in 54% and 98% reductions in BCBL-1 viability, respectively. Whereas extract A05831 

was mildly toxic to uninfected BJAB cells (11% reduction in cell viability), A05853 was significantly toxic 

(84% reduction in cell viability) and may require further refinement to achieve priority status. Nonetheless, the 

fluorescence-based screening assay and the QPCR data suggest that extracts A05831 and A05853 selectively 

interfere with viral genome maintenance, and were chosen for further study as described below. However, it 

should be noted that of all the extracts tested, extract A05831 was most selective for viral genome loss with 

minimal cytotoxicity in BJAB cells.  

 

Assessing LANA Expression by Immunofluorescence 

We used an indirect immunofluorescence assay against KSHV LANA as a first step toward elucidating the 

antiviral mechanism(s) behind extracts A05831 and A05853. BCBL-1 cells were incubated with plant extracts 

for 7 days, then stained with an antibody directed against LANA (anti–KSHV ORF-73) followed by 

fluorophore-conjugated anti-idiotypic immunoglobulins. Cells incubated with either the DMSO control (Fig. 6A 

) or extract A05807 (Fig. 6B) that showed no antiviral effect in the screening assays, displayed characteristic 

speckled nuclear staining. In BCBL-1 cells that were incubated with extracts A05831 or A05853 (Fig. 6C and 

D, respectively), anti-LANA immunofluorescent staining was decreased to near-background levels, indicating 

that loss of viral genome correlated with loss of LANA expression.  

  



 
Figure 6.  
Indirect immunofluorescence assays for LANA investigate possible mechanisms of interference with viral 

genome maintenance. BCBL-1 cells incubated with plant extract or a DMSO control were spotted on slides and 

fixed with precooled acetone. Incubations with anti–KSHV ORF-73 (LANA) monoclonal antibody followed by 

TRITC-conjugated anti-rat IgG were used to detect the presence of LANA. Left, bright-field images; right, 

fluorescent staining of the KSHV LANA. A, DMSO control; B, extract A05807; C, extract A05831; and D, 

extract A05853.  



 

Discussion 

Eradicating latently infected cells represents the ultimate goal in the therapy of KSHV-associated malignancies, 

in which loss of the viral episome expectedly leads to tumor cell death. Currently, treatment of Kaposi's 

sarcoma, primary effusion lymphoma, and multicentric Castleman's disease typically includes chemotherapeutic 

agents that target all replicating cells, failing to distinguish between virally infected and uninfected cells. Such 

regimens are associated with severe side effects, including myelotoxicity and pancytopenia, which can become 

life-threatening in an already immunocompromised population. Because KSHV infection remains in a latent 

state in the majority of infected tumor cells, drugs that target latent viral proteins may be more effective than 

current regimens at both preventing and treating disease and may have an added benefit of fewer side effects.  

 

This report describes an assay designed to identify samples that induce viral episome loss, irrespective of the 

specific mechanism, and without generalized cytotoxicity. The design hinges on a two-step screen. The first 

step identifies samples that cause loss of the latent virus in a cell line (KSHV-BJAB) that does not depend on 

the virus for viability. The second step validates those hits in a cell line (BCBL-1) that does depend on the virus 

for survival.  

The initial screening step employs a B lymphocyte cell line (KSHV-BJAB) carrying the KSHV-BAC and 

expressing GFP. KSHV-BJAB cells are incubated in medium containing test samples and are monitored for loss 

of fluorescence (i.e., loss of the viral episome). Seven percent of 81 screened plant extracts consistently reduced 

fluorescence by ≥50% in KSHV-BJAB cells as compared with a DMSO control. An additional 6% of the 

extracts were cytotoxic to all B lymphocyte cell lines tested, regardless of their KSHV infection status. Eighty-

seven percent had no significant effect (data not shown).  

 

Because nonspecific promoter silencing could diminish fluorescence in KSHV-BJAB cells, virus-specific 

effects were verified by real-time QPCR for the viral genome. Using primer sets for both a viral (vGPCR) and a 

cellular (U6) gene and DNA templates isolated from BJAB, KSHV-BJAB, or a primary effusion lymphoma cell 

line, BCBL-1, after incubation with the test samples, the cytotoxicity and selectivity of each extract was 

assessed. Six extracts, identified as potential hits (≥50% reduction of fluorescence) in the first screening step, 

were tested. Extracts A05831 and A05853 showed selective activity against latent virus, as the viral episome 

was lost from a model infection (KSHV-BJAB) at least 10 times more efficiently than host chromosomal DNA 

(corresponding to cell death). Furthermore, both extracts resulted in at least a 50% reduction in cell viability 

from naturally infected tumor cells (BCBL-1), as compared with a DMSO control. Extract A05831 receives 

higher priority for further study because it is relatively nontoxic in uninfected BJAB cells, whereas extract 

A05853 may prove too nonselectively toxic in its unrefined state.  

 

In principle, compounds that interfere with viral genome maintenance may target cellular or viral proteins 

required to maintain latency. Samples exerting their effects by targeting viral proteins are preferred because a 

specific antiviral effect may be less toxic to other highly replicating cells and, presumably, would have fewer 

side effects than currently available chemotherapeutics. KSHV LANA is a likely viral target for antiviral 

samples because it is essential for KSHV genome maintenance. In a complex with multiple cellular proteins 

(37–43), LANA tethers the viral genome to the cellular chromosome, ensuring that the two are replicated 

coincidentally and are segregated equally to each daughter cell. Samples that target LANA may accomplish 

their antiviral effect by one or more means, including (a) transcriptional down-regulation, (b) degradation or 

posttranslational modification, (c) sequestration outside the nucleus, (d) interference with binding to the host 

chromosome or the viral genome, or (e) similarly targeting cellular proteins that complex with LANA. 

Additionally, other viral latent proteins may also be involved in viral genome maintenance and may also be 

targeted.  

 

To explore the mechanism(s) by which extracts A05831 and A05853 propel episomal loss, a LANA 

immunofluorescence assay was done on BCBL-1 cells incubated with the two lead extracts, identified by the 

initial fluorescence-based screening step and verified by QPCR. Both extracts resulted in near-background 

levels of LANA immunofluorescent staining. Thus, these plant extracts may contain one or more compounds 



that down-regulate the transcription of LANA, accelerate its degradation, or cause posttranslational 

modifications that render it undetectable by this antibody. Therefore, extracts A05831 and A05853 are prime 

candidates for further experimentation. Because each extract likely contains hundreds of compounds, future 

studies will employ a bioactivity-directed fractionation strategy to purify and identify the antiviral 

constituent(s).  

 

Loss of fluorescence mediated by culturing KSHV-BJAB cells with antiviral samples is dependent on two 

things: loss of the KSHV-BAC, which contains the GFP gene and degradation of GFP that is made prior to loss 

of the gene. GFP has a reportedly long half life, ranging from 26 to 80 h in eukaryotic cells (44–46), which 

contributed to the length of the initial screen, which was further extended to 5 weeks in order to assess 

cumulative cytotoxicity. Analysis of the data, however, showed that the most potent inhibitors already displayed 

a significant effect by day 20, and the second screening step allowed for the earlier detection of cumulative 

cytotoxic effects.  

 

In modern medicine, many highly effective therapeutic agents such as camptothecin and taxol/paclitaxel, were 

first isolated from plant extracts and have revealed novel targets and mechanisms for antitumor drug action. 

Although certain herbal extracts were recently found to reactivate KSHV (47), the novel assay described in this 

report identifies plants as a rich source for antiviral compounds that may cure KSHV infection by interfering 

with latent viral episome maintenance. Although a relatively small sample set was tested, the results are 

representative of the discovery potential for samples with therapeutic promise, as an overall hit rate of 2% is 

consistent with other natural product screens, in which hit rates typically range from 0.5% to 5%, regardless of 

the biological target. Indeed, small molecule libraries derived from plant or other natural product sources may 

prove to be repositories for antiviral agents with varied targets and activities against a breadth of currently 

incurable viral infections.  
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