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Abstract: 
 
Chemical investigation of an organic extract of a fungus isolated from submerged wood 
collected from fresh water (strain G173), identified as a Talaromyces amestolkiae (Eurotiales; 
Trichocomaceae), led to the isolation of three coumarins, three dihydroisocoumarins, a dibenzo-
α-pyrone, a meroterpenoid, and a merodrimane. Three of the isolated compounds, namely 7-
chloropestalasin A (3), 4-hydroxyaspergillumarin (6), and ent-thailandolide B (9) were new. The 
structures were elucidated using a combination of spectroscopic and spectrometric techniques. 
The absolute configurations of 2, 3, 5, and 6 were established via a modified Mosher’s ester 
method, whereas for 9 a combination of TDDFT ECD and ORD calculations were employed. 
Compounds 1–9 were evaluated for antimicrobial activity against a group of bacteria and fungi. 
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As part of an ongoing project to uncover new chemistry from nature [1], [2], [3], [4], [5], our 
group has been investigating freshwater fungi [6], [7], [8], [9], [10], [11]. Lignicolous freshwater 
fungi represent a viable resource for discovering new secondary metabolites with a broad range 
of biological activities [12], [13], [14]. 
 
A fungal strain accessioned as G173 and identified as Talaromyces amestolkiae (Eurotiales; 
Trichocomaceae) was isolated from submerged wood in a small pond near Bur-Mil Park, 
Guilford County, North Carolina. From an ecological point of view, strain G173 is not a true 
indweller of freshwater but can be defined as an immigrant species [15], [16]. Fractionation of 
the organic extract of G173 using flash chromatography, followed by preparative RP-HPLC, 
resulted in the isolation of three coumarins (1–3), three dihydroisocoumarins (4–6), a dibenzo-α-
pyrone (7), a meroterpenoid (8), and a merodrimane (9), with >97% purity according to UPLC-
PDA (Fig. S1). 
 
Compounds 1 (12.2 mg) and 2 (1.0 mg) were isolated as colorless amorphous solids with 
molecular formulas of C12H12O5 and C14H16O5, respectively, as determined by HRESIMS. The 
NMR (Fig. S2) and HRMS data identified 1 as the known compound, 3-hydroxymethyl-6,8-
dimethoxycoumarin (Fig. 1), which was previously isolated from the soil fungus T. flavus [17]. 
In addition, 2 was identified as pestalasin A (Fig. S3), a coumarin that was reported from 
the endophytic fungus Pestalotiopsis sp., which was isolated from the leaves of the 
Chinese mangrove Rhizophora mucronata [18]. The absolute configuration of 2 was not 
previously reported; therefore it was assigned via a modified Mosher’s ester method [19], 
establishing the configuration as 2′S (Figs. 2 and S4). 
 

 
Fig. 1. Structures of compounds 1–9. 
 



 
Fig. 2. ΔδH values [Δδ (in ppm) = δS − δR] obtained for (S)- and (R)-MTPA esters 2a and 2b for 
pestalasin A (2), 3a and 3b for 7-chloro-pestalasin A (3), and 6a and 6b for 4-
hydroxyaspergillumarin A (6), in pyridine-d5. 
 
Compound 3 (0.5 mg) was obtained as a white solid [20]. The molecular formula was 
determined as C14H15ClO5 by HRESIMS and analysis of 1H, HMBC, and edited-HSQC NMR 
data (Table 1, Fig. 3, and Figs. S5–S7). The HRMS and NMR data indicated 3 as a chlorinated 
analogue of 2, which was supported by both the presence of the characteristic isotopic pattern of 
chlorine in the HRMS data of 3, and the replacement of the meta-coupled aromatic protons 
(δH 6.45 and 6.65 for H-5 and H-6, respectively, JH-5/H-7 = 2.65 Hz) in 2 (Fig. S3), by a singlet 
aromatic proton (δH 6.70 for H-5) in 3 (Fig. S5). Analyses of the 2D NMR data (Fig. 3) gave the 
structure of 3, which was ascribed the trivial name 7-chloropestalasin A. The absolute 
configuration of 3 was assigned via a modified Mosher’s ester method [19], establishing the 
configuration as 2′S (Figs. 2 and S8). 
 
Table 1. 1H and 13C NMR data of 3 (400 MHz for 1H; 100 MHz for 13C, CDCl3) 
and 6 (700 MHz for 1H; 175 MHz for 13C, CDCl3). 

Position 
3 6 
δC* δH mult (J in Hz) δC δH mult (J in Hz) 

1 
  

168.8 
 

2 161.4 
   

3 128.4 
 

83.3 4.43, ddd (8.6, 3.4, 2.9) 
4 137.6 7.95, s 67.4 4.78, dd (8.6, 2.3) 
4a 109.6 

 
141.9 

 

5 100.0 6.70, s 116.1 7.07, d (7.5) 
6 151.8 

 
137.1 7.53, dd (8.0, 7.5) 

7 118.1 
 

117.8 6.98, d (8.0) 
8 146.1 

 
162.2 

 

8a 137.9 
 

106.8 
 

9 57.4 3.92, s 
  

10 56.9 3.95, s 
  

1′ 41.1 2.64, dd (13.7, 8.2) 30.7 1.76, m   
2.83, dd (13.7, 3.7) 

 
1.92, m 

2′ 66.7 4.16, m 18.4 1.75, m     
1.90, m 

3′ 23.7 1.28, d (6.4) 42.9 2.56, ddd (9.2, 6.3, 2.9) 
4′ 

  
209.2 

 

5′ 
  

30.3 2.16, s 
4-OH 

   
2.76, br. s. 

8-OH 
   

10.91, s 
*13C NMR data for 3 were obtained from HMBC and edited-HSQC spectra. 
 



 
Fig. 3. Key HMBC, COSY, and NOESY correlations of 3, 6 and 9. 
 
Compounds 4 (10.5 mg; colorless oil) and 5 (2.0 mg; colorless crystal) were isolated with 
molecular formulas of C14H16O4 and C14H18O4, respectively, as determined by HRESIMS. The 
NMR (Figs. S9 and S10) and HRMS data identified 4 and 5 as the known dihydroisocoumarins, 
aspergillumarins A and B, respectively (Fig. 1), which were previously reported from the culture 
broth of a marine-derived fungus Aspergillus sp., isolated from the fresh leaf of the mangrove 
tree Bruguiera gymnorrhiza collected from the South China Sea [21]. The NMR data of 5 
matched those reported by Li and co-workers, except for the chemical shift of the 5′-methyl 
group (δH 2.34, d, J = 6 Hz) [21], which was observed at δH 1.22, d, J = 6 Hz (Fig. S10). The 
absolute configuration of 5 at C-4′ was not determined by Li and co-workers [21]. Therefore, we 
attempted to assign the absolute configuration via a modified Mosher’s ester method [19]; 
however, these results indicated that 5 was a racemic mixture. Indeed, four products were 
observed, a major and a minor product from each reaction in a 3:1 ratio (Fig. S11). 
 
Compound 6 (0.6 mg) was obtained as a white solid [22], with a molecular formula of 
C14H16O5 as determined by HRESIMS along with 1H, 13C, and edited-HSQC NMR data (Table 
1, Figs. S12 and S13), establishing an index of hydrogen deficiency (IHD) of 7. The NMR data 
suggested 6 as a dihydroisocoumarin analogue of 4. A key difference was replacement of the 
allylic methylene moiety (δH/δC 2.93/34.1, m, for H2-4/C-4) in 4 by an oxymethine 
in 6 (δH/δC 4.78/67.4, dd, J = 8.6, 2.3 for H-4/C-4). These data, along with a 16 amu difference in 
the HRMS data between 4 and 6, indicated hydroxylation at the C-4 position in 6. The coupling 
constant (JH-4/H-3 = 8.6 Hz) implied a pseudoaxial/pseudoequatorial trans orientation in 6 (Table 
1, Fig. S12). A NOESY correlation observed between 4-OH and H-3 indicated that these two 
protons were on the same face (Figs. 3 and S15). Analyses of the COSY and HMBC NMR data 
(Figs. 3 and S14), established the structure of 6, which was given the trivial name 4-
hydroxyaspergillumarin A. The absolute configuration of 6 was assigned via a modified 
Mosher’s ester method19 as 4S (Figs. 2 and S16). 



 
Compounds 7 (5.8 mg) and 8 (6.3 mg) were isolated as colorless crystalline solids and identified 
using HRMS and NMR data as graphislactone A (a dibenzo-α-pyrone) [23] and berkeleyacetal C 
(a meroterpenoid) [24] (Figs. S17 and S18), respectively. Graphislactone A was first isolated 
from the lichen Graphis scripta var. pulverulenta [25], while berkeleyacetal C was isolated from 
extracts of a Penicillium sp. [24]. 
 
Compound 9 (2.9 mg) was obtained as a white solid [26], with a molecular formula of 
C27H32O8 as determined by HRESIMS and NMR data (Table S3 and Figs. 3 and S19–S22), 
establishing an IHD of 12. The HRMS and NMR data of 9, including the NOESY spectrum, 
were identical to that of thailandolide B, a merodrimane isolated from T. thailandiasis [27]. 
However, the specific rotation of 9 ([α]D

20 − 47, CHCl3, c 0.05) was found to be opposite to that 
of thailandolide B ([α]D

24 + 134, CHCl3, c 0.1), suggesting that 9 could be an enantiomer of 
thailandolide B [27]. Thus, the absolute configuration of 9 was determined using electronic 
circular dichroism (ECD) and optical rotatory dispersion (ORD) spectroscopy combined with 
time-dependent density functional theory (TDDFT) and quantum chemical calculations. The 
calculated TDDFT-ECD spectrum of 9 matched the measured data, displaying two positive 
(~230 and ~310 nm) and two negative (~270 and ~350 nm) Cotton effects, respectively (Fig. 4). 
The calculated spectra for thailandolide B was, as expected, opposite to 9 (Fig. 4). Unfortunately, 
no experimental data were published for thailandolide B for comparison purposes. However, the 
calculated ORD value for 9 ([α]D

20 − 88.5 in CHCl3) agreed with the experimental data. Thus, 
the absolute configuration of 9 was established as 5S,7R,8S,9S,10R,18S,19S and given the trivial 
name ent-thailandolide B. 
 

 
Fig. 4. Comparison of experimental and calculated ECD spectra of 9 and thailandolide B in 
MeOH. 
 
Compounds 1–9 were tested for antimicrobial activity against a group of bacteria and 
fungi [28] and found to be inactive. 
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