The Economics of Cyberattacks on Brazil

By: Nir Kshetri and Joanna F. DeFranco

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract:

Cyberattacks have significant economic, political, and privacy-related impacts in Brazil. Regulatory and enforcement measures have been insufficient to prevent these attacks. The authors analyze these trends and assess some recent measures to address these issues.

Keywords: data privacy | Brazil | cyberattacks | computer crime | economics | government | companies | computer hacking

Article:

Cyberattacks are a serious problem in Brazil. It was reported that, in October 2019, the personal information of 92 million Brazilians was auctioned off in an underground forum. The culprits were suspected to have illegally accessed the data from a stolen government database. According to Symantec, in 2017, more than 60% of Brazilian Internet users (some 62 million people) were victimized by cybercriminals leading to a loss of US$22 billion. In 2018, such attacks affected more than 70 million citizens. The cybersecurity firm Trend Micro’s study indicated that Brazil was the world’s second largest victim of ransomware attacks in the first quarter of 2019. Brazil’s ransomware attacks account for 10.64% of the global ransomware attacks. A 2019 report of the International Telecommunication Union noted that Brazil’s cyberattack-related economic losses were second highest in the world.

In 2018, Brazilian companies lost more than US$20 billion to cyberattacks. The average annual cost of cybercrime for a Brazilian company was estimated at US$7.24 million in 2018. Unfortunately, cybersecurity initiatives have not been well developed in Brazil to deal with these growing threats. While Brazil has developed guidelines and best practices to deal with cyber threats, prevention measures and a national security strategy is lacking.

On the privacy front, the Brazilian General Data Protection Law [Lei Geral de Proteção de Dados (LGPD)] was ratified in the congress in mid-2018, which was scheduled to into effect on 15 August 2020. The LGPD is inspired by and modeled after the European Union’s General Data Protection Regulation (GDPR). However, Brazil lacks a national data protection authority to enforce basic provisions of the LGPD. The country’s congress had passed the creation of a...
federal agency, the National Data Protection Authority, or Autoridade Nacional de Proteção de Dados, to enforce data protection rules. Nonetheless, then-President Michel Temer vetoed the legislation, arguing that such initiatives should be undertaken by the executive branch rather than the congress. Before leaving office, his government had formed an interim agency with a two-year mandate. However, after the current president Jair Bolsonaro took office in January 2019, the ability of the new agency to impose penalties for the violation of the LGPD has been restricted.

Cyberthreats Facing Brazil

Brazil has earned its reputation as the “king of the banking Trojan.” A Trojan can identify the Internet Protocol address of a user of an infected web page, which enables it to perform targeted attacks. The Brazilian financial system faces about 15,500 cyberattacks and 500 new malware threats daily. Bancos, a well-known password-stealing Trojan, which is designed to steal banking information mainly from Latin American consumers, is believed to have originated in Brazil. Other well-known banking Trojans, such as ZeuS, SpyEye, and CARBERP, are also reported to be increasingly common in Brazil.

Brazil’s cybercrime setting presents a security professional with a significantly more challenging landscape. One of the reasons is that antivirus/malware products used are locally developed. Unlike their Eastern European counterparts, Brazilian cybercrime groups have not realized the need to internationalize their operations due to Brazil’s well-developed financial sector. The Brazilian hackers mainly target Brazilians.

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Political</td>
<td>Feb. 2011: A Brazilian power plant was infected by Conficker worm, which caused its management systems to freeze up and not display data.</td>
</tr>
<tr>
<td>• June 2011: The hacking group LulzSec shut down the website of Petrobras with a DDoS attack for part of a day.</td>
<td>• Feb. 2011: A Brazilian power plant was infected by Conficker worm, which caused its management systems to freeze up and not display data.</td>
</tr>
<tr>
<td>• 2013: Anonymous Brazil defaced the website of the Brazilian Air Force.</td>
<td>• 2018: Russian hackers’ interference in the presidential elections using social media.</td>
</tr>
<tr>
<td>• 2014: Anonymous Brazil’s attack (publishing stolen usernames and passwords) on Brazilian government websites to protest against the 2014 FIFA World Cup.</td>
<td>• 2012: a cyber espionage campaign targeted high-profile oil companies, including those of Brazil, according to Dell Secure Work CTU.</td>
</tr>
<tr>
<td>• 2018: Anonymous group’s Twitter campaign to interfere with the Brazilian election #OpEleiçãoContraFascismo.</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td>The NSA’s alleged industrial espionage on the oil giant Petrobras.</td>
</tr>
<tr>
<td>• 2014: Cyberattack on Boleto Bancário system (a Brazilian payment method).</td>
<td>• O Globo: Canadian spy agencies tracked the Brazil’s Mines and Energy Ministry emails and phone calls as well as communications to other countries.</td>
</tr>
<tr>
<td>• February 2012: a coordinated attack that coincided with quarterly earnings reports and victimized most major Brazilian banks.</td>
<td>• 2012: a cyber espionage campaign targeted high-profile oil companies, including those of Brazil, according to Dell Secure Work CTU.</td>
</tr>
</tbody>
</table>

Recent measures have further increased Brazil’s vulnerability. In April 2019, in an attempt to improve efficiency in the financial system, the central bank (Banco Central do Brasil) published new guidelines that require financial institutions to share customer data with third parties (such
as financial technology companies), product aggregators, and nonfinancial companies (such as Uber and Google14). These third parties may not have the same level of security as banks and thus may be more vulnerable to attack. Table 1 presents additional internal economic examples of real and perceived cyberthreats facing Brazil.

In a high-profile cyberattack reported in mid-2014, Brazil’s popular payment method, Boleto Bancário, was targeted. Criminals attempted to steal US$3.75 billion. Researchers from the Internet security company RSA traced the crime to a gang in Brazil20. A report from the Igarape Institute noted that a few cybercriminals who had been caught fit a profile: “well-educated, upper-middle-class males from 25 to 35 years old.”21

Brazil also faces politically motivated internal and external cyberthreats, such as distributed denial of service (DDoS) attacks and the Conficker Worm (a virus that disables security features and backup settings as well as creates a path for communication from remote systems) (Table 1). In 2011, LulzSecBrazil, a Brazilian component of the hacker group LulzSec (Lulz Security), released personal information including identification numbers and bank details of the employees of energy producer Petrobras.22

Websites have also been attacked to interfere with elections and protests. For instance, the websites of Brazilian government agencies have been attacked frequently by Anonymous (a secret group of online hackers) and other hacking groups.23 In June 2014, as a protest against the 2014 FIFA World Cup, the hacker group Anonymous Brazil defaced a number of Brazilian government websites. The Foreign Ministry’s server and FIFA partner sites were attacked, which compromised emails and attachments. An alleged Anonymous hacker emailed Reuters news organization the following threat: “Companies and institutions that work with a government that denies the basic rights of its people to promote a private, exclusive, and corrupt sports event will be targeted.”24

Brazil is also reported to be among the top countries in terms of the government’s actions to control and monitor citizens’ activities online. For instance, around the time of the 2013 antigovernment protests, the country’s intelligence agencies allegedly compiled a list of 700 topics that they considered potential security threats. As a result, an operation code-named Mosaico was launched that actively trawled through social media websites such as Facebook, Twitter, WhatsApp, and Instagram.25

A report of the IT security company Imperva noted that “strong government or corporate resentment in a population is a key factor” behind the escalation of cyberattacks in Brazil.21 Thus, Brazilians perceived that many of their targets deserved attack by the hacktivists. Imperva notes, “In the minds of many Brazilians, the cyber mayhem was no crime.”26 This was a crucial factor in increasing hacking and cyberattacks in Brazil.

There are also external threats. Russian hackers reportedly tried to interfere with the country’s 2018 presidential elections using social media.27 For instance, according to the cybersecurity firm FireEye, the hackers used bots to increase the distribution of posts that criticized the Brazilian democratic model and questioned the legitimacy of the election. The Brazilian branch
of the Anonymous group (@anonopsbrazil) had also started a Twitter campaign #OpEleiçãoContraOFascismo (Operation Against Fascism).

A turning point for Brazil was when U.S. National Security Agency (NSA) whistleblower Edward Snowden revealed the NSA’s alleged industrial espionage on the oil giant Petrobras, Latin America’s largest energy producer. The United States has denied spying for commercial advantage; many Brazilians do not seem to be convinced. President Dilma Rousseff argued that if the allegation of the NSA’s breaking into Petrobras computers is true, then gathering economic information would be the motive.\(^{28}\) The networks of Ministry of Mines and Energy were also hacked, which, together with Petrobras, was involved in the auction of oil fields.\(^ {29}\) Specifically, Brazilians think that the company’s data on Brazil’s offshore oil reserves and plans for allocating licenses for exploration to foreign companies were the intended targets.\(^ {1}\)

In 2012, the Dell SecureWorks Counter Threat Unit (CTU) research team tracked a cyberespionage campaign that targeted high-profile oil companies in a number of countries, including those in Brazil.\(^ {30}\) Likewise, according to Brazilian television OGlobo, Canadian spy agencies tracked the Brazil’s Mines and Energy Ministry emails and phone calls as well as communications to other countries, including the Ecuador-based Latin American Energy Organization.\(^ {31}\)

Cyberthreat Mitigation Challenges

Brazil has faced many challenges in dealing with the cyberthreats, as there is severe congestion in the law enforcement system—only 5–8% of crimes are solved in Brazil.\(^ {32}\) This remarkable situation is a direct consequence of the scarcity of law enforcement resources. A prevailing culture of violence takes most of the available law enforcement resources with little law enforcement left to address cybercrimes. There is also a cybersecurity skill shortage. In a global survey conducted by Sophos in 13 of the major world economies in 2019, 83% of Brazilian respondents reported that they face challenges in recruiting people with cybersecurity skills.\(^ {33}\)

Recent Initiatives and Actions to Strengthen Security and Privacy

Security

In terms of strategic planning to deal with cyberthreats, Brazil has lagged behind other regional economies, such as Argentina, Chile, and Mexico. For instance, in 2017, Chile and Mexico published their Cybersecurity Strategies, which outlined what, how, and when to address various types and categories of cybersecurity risks. Mexico’s focus has been to boost its economy and innovation, strengthen civil society and public institutions, and improve public and national security. Chile’s cybersecurity strategy aims to improve its digital infrastructure and people’s rights in cyberspace, develop a cybersecurity culture, and promote the growth of its cybersecurity industry. Likewise, Argentina’s Programa Nacional de Infraestructuras Críticas de Información y Ciberseguridad seeks to improve the regulatory framework for identifying and protecting its digital infrastructures.\(^ {34}\) Brazil has realized the urgency of addressing the cybersecurity threats. The Institutional Security Cabinet, which is an executive cabinet office of the country’s federal government, has been working to develop a national cybersecurity strategy.\(^ {9}\) In November 2019,
the Brazilian government announced the creation of a network of eight R&D labs. One of them will focus on the use of artificial intelligence technology in cybersecurity, which will involve the Brazilian Army. Nonetheless, the Brazilian cybersecurity strategy has much to learn from other countries in the region.

Privacy

Currently, Brazil has more than 40 legal norms at the federal level that directly and indirectly deal with the protection of privacy and personal data. These norms often function in a sector-based system and sometimes are conflictive. The lack of clear legal rules has hindered legal certainty and predictability, which has reduced the country’s competitiveness. The LGPD is expected to address these concerns.

The LGPD is described as Brazil’s first significant attempt to deal with digital privacy. Whereas the existing laws are primarily directed toward regulating Internet service providers and requiring them to store and make data available for law enforcement and government agencies, the LGPD addresses Brazilian citizens’ right to data privacy and security. It will replace the existing patchwork of legislation governing cybersecurity issues, such as the Civil Rights Framework for the Internet (Internet Act), the Civil Code, and the Consumer Protection Code.

As is the case of GDPR, the LGPD has outlined new rules regarding how personal data can be collected, used, processed, and stored. The LGPD will affect all industries and economic sectors. For instance, Article 18 of the LGPD gives consumers rights for their personal data. Organizations are required to ensure personal data are “anonymized, redacted, or eliminated.” The country has also created the Brazilian National Data Protection Authority to enforce the LGPD.

The LGPD applies to domestic as well as foreign entities that collect or process personal data in Brazil or provide goods or services to individuals in Brazil. For instance, a business that collects or processes personal data of individuals in Brazil is required to follow the LGPD even if it does not have a physical presence in Brazil. The fines of violating the LGPD can be up to 2% of the company’s gross revenues derived from Brazil, or 50 million reals (about US$13 million).

Brazil’s social, economic, political, and cultural characteristics provide insights into the key drivers of cybercrimes and the nature of cybersecurity measures. This country has been exposed to significant cyberthreats due to the country’s financially motivated cybercriminal gangs. The detection of threats are difficult since many of the domestically originated attacks do not pursue foreign targets and hence are unknown to international security researchers.

Finally, there is an underlying and subtle warning here. Countries that do not treat cybersecurity as a national security threat incur enormous economic risks to their citizens, corporations, and democratic elections.

Acknowledgment
We thank Jeffrey Voas (editor in chief, *Computer*) for his many rewrites and suggestions on this article.

References

Nir Kshetri is a professor of management in the Bryan School of Business and Economics at the University of North Carolina at Greensboro and the “Computing’s Economics” column editor for Computer. Contact him at nbkshetr@uncg.edu.

Joanna F. Defranco is an associate professor of software engineering at Penn State Great Valley School of Graduate Professional Studies. Contact her at jfd104@psu.edu.