
MUKHERJEE, AVIK, M.S. Regulation of Sumoylation by Dtopors During Male Meiosis 
in Drosophila melanogaster. (2009)  
Directed by Dr John Tomkiel. 55pp 
 
 

The Topors protein is a tumor suppressor in human that associates with and 

regulates a number of cell cycle regulators that including topoisomerase I and p53. It 

possesses both ubiquitin and SUMO ligase activity and its mutation or downregulation 

has been associated with some human cancers and diseases. The Drosophila homologue, 

dTopors, is an ubiquitin E3 ligase. We have investigated the role of Dtopors in 

sumoylating proteins in the male germ line. Although nuclear lamin localization is 

disrupted in dtopors mutants, we find no evidence of lamin modification by Dtopors. We 

observe an increase in the overall sumoylation of testis proteins and a corresponding 

decrease in the pool of free SUMO in homozygous dtopors versus heterozygous dtopors 

flies. Based on this result, we propose a model explaining the role of dtopors in altering 

germline sumoylation. We have constructed a SUMO-GFP transgenic protein to 

investigate how dtopors is altering the pool of SUMO in the cell. We demonstrate that 

this transgenic construct can rescue smt3 mutant flies and is expressed in spermatocytes. 

This tool will allow one to measure SUMO synthesis and processing, and how these 

aspects of SUMO dynamics are affected by dtopors during meiosis in D. melanogaster 

males.  
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CHAPTER I 

INTRODUCTION 
 
 

 Protein function is regulated by post-translational modifications, and these 

modifications are essential for cell viability.  Ubiquitin (Ubi) and ubiquitin-like proteins 

(Ubls), including SUMO (Small Ubiquitin-like Modifier), are a subset of post-

translational modifications in which a small peptide is conjugated to the target protein, 

altering its fate or activity. Ubiquitinconjugation, or ubiquitination, is a major pathway 

for regulated degradation of intracellular proteins in eukaryotes. Ubiquitin-directed 

proteolysis is a two-step process in which a ubiquitin molecule is first covalently attached 

to the target protein in a reaction catalyzed by three enzymes (E1 activating, E2 

conjugating and E3 ligase) working in concert. Subsequently, the 26S proteosome 

recognizes the ubiquitin-tagged target proteins and degrades them into small peptides. 

The ubiquitin is released and  is reusable (Wilkinson 1995; Goldberg 2003). 

  SUMO was originally identified as smt3 in Saccharomyces cerevisiae a 

suppressor of a mutation in the centromeric protein MiF2 (Meluh and Koshland 1995). 

Yeast two hybrid assays showed that human SUMO is a binding partner of the double-

strand break repair proteins RAD-51 and RAD-52 (Shen, Cloud et al. 1996), the 

apoptosis-inducing factor Fas/APO-1(Okura, Gong et al. 1996) and PML (Boddy, Howe 

et al. 1996). A cellular consequence of covalent attachment of SUMO (sumoylation) was 

first demonstrated in a study of the RanGTPase-activating protein RanGAP1. 



2 
 

Sumoylation was found to modulate its partitioning between the cytosol and the nuclear 

pore complex (Matunis, Coutavas et al. 1996). These studies indicated that sumoylation 

is reversible and can alter localization of the modified target by altering protein 

interactions. At the molecular level, sumoylation may alter the exposure of protein 

surfaces and thereby influence interactions with other macromolecules. 

 The three dimensional structure of SUMO resembles that of ubiquitin, but the two 

proteins share less than 20% amino acid sequence identity (Bayer, Arndt et al. 1998; 

Mossessova and Lima 2000; Bernier-Villamor, Sampson et al. 2002). SUMO proteins are 

ubiquitously expressed throughout the eukaryotic kingdom. Some organisms like yeast 

(Lapenta, Chiurazzi et al. 1997), the roundworm C. elegans (Jones and Candido 1993) 

and the fly D. melanogaster (Francois L, 2000) have a single SUMO gene (smt3), 

whereas many plants and vertebrates have several SUMO genes. For example, the human 

genome encodes four SUMO proteins (SUMO1-4) (Li, Guo et al. 2005) and Arabidopsis 

encodes eight paralogs (Kurepa, Walker et al. 2003; Lois, Lima et al. 2003).  

In most cases ubiquitination leads to protein degradation but sumoylation does 

not. In contrast, sumoylation can stabilize the target protein by competitively blocking 

ubiquitination of a particular lysine residue, as in the case of modification of K21 on 

IkappaBalpha (Desterro, Rodriguez et al. 1998). Before the sumoylation pathway is 

initiated SUMO isopeptidases cleave the C-terminal end of SUMO to deglycinate it and 

make it ready for the three-step sumoylation process to follow (Li and Hochstrasser 

2000). SUMO is first covalently linked to the SUMO E1-activating enzyme, and then 
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transferred to the SUMO E2-conjugating enzyme, which carries out target modification 

with the aid of a SUMO E3 ligase. Deconjugation to release free SUMO from the target 

is mediated by SUMO isopeptidases (Desterro, Rodriguez et al. 1998; Gong, Li et al. 

1999; Okuma, Honda et al. 1999; Li and Hochstrasser 2000). The largest group of 

enzymes identified in sumoylation pathway is the SUMO E3 ligases. Some of the E3 

ligases that have been discovered are PIAS1 (Hochstrasser 2001), Siz1 and Siz2 (Johnson 

and Gupta 2001), Mms21(Zhao and Blobel 2005), RanBP2 (Pichler, Gast et al. 2002), 

Pc2 (Kagey, Melhuish et al. 2003) and Topors (Weger, Hammer et al. 2005).  

There is no simple way to predict the consequence of sumoylation on protein 

function as it depends on the target proteins. Genetic studies of sumoylation in different 

model organisms indicate a role for SUMO conjugation in higher order chromatin 

structure and in chromosome segregation, but the molecular basis of these effects is 

largely unknown. Mutations in the SUMO protease ulp2 in S. cerevisiae show many 

phenotypes indicating genomic instability and defective targeting of the condensin 

complex, required for chromosome condensation of rDNA repeats during meiosis (Li and 

Hochstrasser 2000) (Strunnikov, Aravind et al. 2001). In D. melanogaster, mutation of 

the putative PIAS family SUMO E3 ligase Su(var)2-10 leads to chromosome segregation 

defects, enhanced minichromosome loss and abnormal telomere clustering and defects in 

telomere nuclear lamina associations (Hari, Cook et al. 2001). A mutation in the Ubc9 

homolog lesswright (an E2 SUMO conjugating enzyme) perturbs disjunction of 

homologs in meiosis I in Drosophila females (Apionishev, Malhotra et al. 2001). The 

lesswright mutation was originally identified via a second site suppression screen of a 
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mutation in no distributive disjunction (nod), a protein involved in segregating 

achiasmate homologs. The researchers found that lesswright partially suppresses several 

mutations that affect chromosome segregation in Drosophila female meiosis (Apionishev, 

Malhotra et al. 2001).  A more specific meiotic role of sumoylation has been identified in 

the assembly of the synaptonemal complex (SC). The SC is a zipper-like structure 

connecting paired homologous chromosomes during meiosis I prophase (von Wettstein 

1984 ; Page and Hawley 2004). Cheng, Lo et al.(2006) first established the relationship 

between SC formation and Ubc9-mediated sumoylation. They showed that Zip3, a 

SUMO E3 ligase, is involved in initiation of SC formation. In a zip3 null mutant, 

polycomplex forms in place of SC. Their result suggested that Zip1, a “building block” of 

SC, binds to SUMO-conjugated proteins. This data suggests a role of SUMO-conjugated 

products in SC polymerization via Zip3-dependent SUMO modifications (Cheng, Lo et 

al. 2006). Sumoylation has been detected to be an important modification of all 

cohesion/condensin SMC complexes in yeast (Lee and O'Connell 2006). A non-SMC 

component of cohesion complex, Mms21, is reported to be a SUMO ligase which can 

recognize its own complex as a substrate. Mms21-mediated sumoylation most likely 

controls chromosome localization and may affect the  role of Mms21 in recombination 

during meiosis (Lee and O'Connell 2006).  

An additional role of sumoylation in meiosis may be the formation of the 

mammalian sex body, a specialized transcriptionally repressed chromatin domain 

occupied by the sex chromosomes during meiotic prophase in spermatogenesis (Solari 

1974)(Handel 2004). For proper spermatogenesis, the timely proliferation of 
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spermatogonia, meiotic division of spermatocytes and post-meiotic maturation of 

spermatids is essential (La Salle, Sun et al. 2008). Indirect immunofluorescence studies 

using anti-SUMO antibodies in mouse and human testis show that SUMO is concentrated 

on the sex body during chromatin condensation, when it could facilitate synapsis between 

the X and Y chromosomes (Vigodner and Morris 2005; Vigodner, Ishikawa et al. 2006).  

 It is presently unknown which aspects of these SUMO localizations and functions 

may be widely conserved. In humans during meiotic prophase, SUMO1 has been 

reported to localize additionally to centromeric and pericentromeric heterochromatin, a 

pattern that is not observed in mouse (Vigodner, Ishikawa et al. 2006). Dejean and 

colleagues investigated a Ubc9 knockout mouse and studied the effects of its mutation on 

the SUMO-conjugating system (Dejean, 2005). Embryos deficient for Ubc9 die shortly 

after the blastocyst stage (Di Bacco and Gill 2006). Cells subjected to RNAi knockdown 

of SUMO proteases like SNEP5 display impaired growth, binucleated cells and dumbell-

shaped or multi-lobed nuclei, suggesting a balance between sumoylation and 

desumoylation is important for progression of the cell cycle (Di Bacco and Gill 2006). 

Recent studies have further reported that developmental control of sumoylation pathway 

proteins is required for meiotic progression in mouse (La Salle, Sun et al. 2008).  

Alternate achiasmate meiotic pathways have been described in some taxonomic 

groups such as Lepidopteran females and Dipteran males (Wolf 1994), and it is currently 

unclear if these systems also require sumoylation. The best characterized example of an 

achiasmate pathway is in D. melanogaster males, where there is no formation of SC 
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(Meyer, Hess et al. 1961). The male and female meiosis in Drosophila differ in that only 

males lack recombination (Meyer, Hess et al. 1961) (Rasmussen 1973). The lesswright 

mutation disrupts female meiosis but it is not known whether it has any effect in males. 

There are a number of genes that have been identified that affect male meiosis in 

Drosophila (Wakimoto, Lindsley et al. 2004).  One of particular interest with respect to 

sumoylation is dtopors. The human homolog, Topors, can act as both an ubiquitin and 

SUMO ligase. 

A discussion of the possible role(s) of dtopors in male meiosis first requires a 

brief description of this unusual system. To understand the dynamics of homolog pairing 

in male Drosophila, Vazquez, Belmont et al. (2002) designed an experiment that allowed 

them to follow specific chromosomal loci in living spermatocytes throughout all stages of 

meiosis, using a GFP-Lac repressor (GFP-Lac I)/lac operator(LacO) system as a tag. In 

this experiment, an array of LacO sequences were inserted at specific chromosomal 

locations and labeled using a green fluorescent-lacI fusion protein expressed in the male 

germ line. The chromosomes were then tracked live from mitotically dividing 

spermatogonia to mature spermatocytes, and through meiosis. Their results showed that 

most homologs are already paired before entering meiosis, the pairing frequency 

increases as cells transit from spermatogonia to spermatocytes and this pairing is 

observed for 13 different euchromatic lacO inserts tested. The pairing is sustained until 

mid-prophase I. At this stage, chromosomes reorganize and bivalents separate into 

nuclear territories (Cenci, Bonaccorsi et al. 1994). Shortly after the bivalents have 

separated into territories, both homologous pairing and sister chromatid cohesion appear 
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to be released all along the euchromatic regions (Vazquez, Belmont et al. 2002).. While 

maintenance of   homologous pairing in male Drosophila is still not well understood, 

models suggest that it may be mediated by homolog chromosome entanglements 

(Duplantier, Jannink et al. 1995  ;Vazquez, Belmont et al. 2002), via  cohesion in the 

heterochromatin or by the establishment of chromosome domains in spermatocyte 

nucleus (Vazquez, Belmont et al. 2002).  

Although it is unclear how pairing is first established, genetic studies have 

identified a number of genes involved in regulating pairing maintenance. Tomkiel et al. 

(2000) have genetically and cytologically characterized a gene, teflon, specifically 

involved in the maintenance of autosome pairing.  Analysis of four ethyl 

methanesulfonate (EMS)-induced mutations in this gene revealed autosomal 

nondisjunction in meiosis I specifically in male flies. They did not see a measurable 

effect on sex chromosomes, which suggests that sex chromosome and autosome 

segregation are at least in part controlled by different genetic pathways. These results led 

to the conclusion that teflon is involved in mediating or regulating the maintenance of 

autosomal homolog pairing in Drosophila male meiosis I (Tomkiel, Wakimoto et al. 

2001). 

In another study, Thomas et al. (2005)   found two genes stromalin in meiosis 

(snm) and modifier of mdg4 in meiosis (mnm) that were subsequently shown to be 

involved in maintenance of homolog pairing in male Drosophila (Thomas, Soltani-

Bejnood et al. 2005). The two gene products co-localize to sex chromosomes during 

prophase I and metaphase I, but are undetectable at anaphase I. Mutations in either gene 
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result in both sex and autosome nondisjunction, leading to the conclusion that they 

function in stabilizing homolog pairing (Thomas, Soltani-Bejnood et al. 2005). Thomas et 

al. (2005) also found that Teflon is required for MNM localization to autosomes, and 

presumably for its function in autosome pairing. They found that mutations in teflon do 

not affect the localization of MNM and SNM on sex chromosomes while they eliminate 

the localization of MNM on autosomes. A genetic screen for teflon modifiers identified 

mnm mutations, but not snm mutations, as enhancers of teflon (Thomas et al., 2007). This 

supports the model that Teflon recruits and stabilizes MNM to paired autosomes where 

the two proteins may interact to secure the connection between the autosomal bivalents 

(Thomas, Soltani-Bejnood et al. 2005), while a different factor may be required to recruit 

and stabilize SNM and MNM to paired sex chromosomes. This study did not indicate 

whether SNM and MNM have any role in establishing homolog pairing, but rather they 

proposed that these proteins help to maintain pairing in the absence of crossovers during 

meiosis in Drosophila males. 

 The strongest suggestion of a role of sumoylation in fly male meiosis comes from 

the phenotype of mutations in dtopors, the fly homolog of human Topors (topoisomerase 

I interacting RS rich), a nuclear protein that was first identified as a topoisomerase I- 

binding protein (Haluska, Saleem et al. 1999). Topors is the only identified protein 

possessing dual ligase activities, acting as both a ubiquitin and SUMO ligase, (Rajendra, 

Malegaonkar et al. 2004) (Pungaliya, Kulkarni et al. 2007). Homozygous dtopors mutant 

males produce aneuploid progeny in which meiosis I segregation of both autosomes and 

sex chromosomes is disrupted. Mutations in dtopors also disrupt the nuclear lamina in 
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male germline cells. During meiosis in Drosophila males the paired homologs move in to 

separate domains in the nucleus and are in close association with the nuclear lamina. 

Vazquez, Belmont et al. (2002) in their study speculated that at this stage maintenance of 

pairing between   homologs may involve tethering to the nuclear lamina (Vazquez, 2002). 

A condensation defect observed by Matsui, Sharma and Tomkiel (unpublished) in their 

study of dtopors may be a consequence of lamina disruption. Nuclear blebbing is also 

observed in spermatocytes of dtopors mutants (Wakimoto, Lindsley et al. 2004). In this 

phenotype the integrity of the nuclear structure is abrogated resulting in one or more 

protrusions or blebs emanating from the nucleus. In addition, in some cells, the 

perpendicular centriole components of centrosomes appear to precociously separate at 

meiosis I (Matsui, Sharma & Tomkiel unpublished data).  

Human Topors has been studied extensively, as there are suggestions that it may 

act as a tumor suppressor, and it has also been identified as a cause of retinitis 

pigmentosum.  The interaction between Topors and Topoismomerase I has been found to 

occur through the N-terminal 250 amino acids of human Topoisomerase I (TopoI), and 

was detected in a combination of yeast two-hybrid and in vitro binding assays (Haluska, 

Saleem et al. 1999). This interacting region in Topo I has many significant binding 

partners like nucleolin (Bharti, Olson et al. 1996), TATA-binding protein (Merino, 

Madden et al. 1993) and SV40 T antigen (Haluska, Saleem et al. 1999). This suggests 

that Topors may be involved in regulating the interaction of TopoI with its binding 

partners. Topors is also found to interact with p53 (Zhou, Wen et al. 1999), a putative 

prostate tumor suppressor NKX3.1 (Guan, Pungaliya et al. 2008), DJ-1 (Shinbo, Taira et 
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al. 2005), a protein highly expressed in normal human lung (LUN) (Chu, Kakazu et al. 

2001) and regulatory proteins of adeno-associated virus type-2 (AVV-2) (Weger, 

Hammer et al. 2002). Topors has also been shown to increase viral gene expression 

(Weger, Hammer et al. 2002). Topors is the only protein to date  known to have both E3 

ubiquitin and SUMO-1 ligase activity (Saleem, Dutta et al. 2004; Weger, Hammer et al. 

2005).  

Several studies suggest that Topors may act as tumor suppressor by negatively 

regulating cell growth. A study on human colon adenocarcinomas showed that the 

expression of topors mRNA is downregulated in human colon adenocarcinomas, along 

with an increase in methylation of a CpG island in the topors gene promoter (Saleem, 

Dutta et al. 2004). The further study of the publicly available cDNA microarray database 

Oncomine by Rhodes and Kalyana-Sundaram et al. (2007) reveals that Topors mRNA is 

also downregulated in seminomas and ovarian cancers, while in bladder, myeloma, 

endometrial, prostate and salivary gland tumors it is found to be overexpressed (Rhodes, 

Kalyana-Sundaram et al. 2007). Depending on the cellular context Topors may be both 

oncogenic and tumor suppressive.  

More than 50% of human cancers contain mutations in the p53 gene (Levine, 

Chang et al. 1994). p53 is a human tumor suppressor that is universally expressed in 

vertebrates and has important functions in cell cycle control, cell differentiation, 

apoptosis, gene regulation and tumor suppression. p53 induces gene expression in 

response to DNA damage which ultimately leads to either cell cycle arrest or apoptosis 
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(Zhou, Wen et al. 1999). In vitro ubiquitination assays show that in concert with E1 and 

E2 enzymes, Topors induces the formation of polyubiquitin chains. Topors in vitro 

directs the ubiquitination of p53. The in vivo assays revealed that Topors also directs p53 

ubiquitination when overexpressed in both MDM2+ and MDM2- cell lines. This suggests 

an analogy between Topors-p53 and MDM2-p53 relationship. Topors also decreases the 

protein levels of p53 in human osteosarcoma cell lines, confirming that Topors triggers 

the degradation of p53 in vivo (Rajendra, Malegaonkar et al. 2004). 

The NK class homeobox NKX3.1 is the most extensively studied transcription 

factor that acts as a putative tumor suppressor in prostate cancer development and 

carcinogenesis (Shen and Abate-Shen 2003). The GST pull-down assays conducted by 

Guan et al. (2008) demonstrated that NKX3.1 directly interacts with Topors in vivo. In 

vitro studies revealed that NKX3.1 is both mono- and poly-ubiquitinated by Topors. The 

overexpression of Topors resulted in downregulation of NKX3.1 protein levels. The 

colocalization study revealed that both NKX3.1 and Topors localize as nuclear speckles 

with TopoI in a LNCaP cell line (androgen-sensitive human prostate adenocarcinoma 

cells). Furthermore, in vivo studies discussed earlier suggest that Topors may actively 

degrade a pool of NKX3.1 protein in the PML bodies (Guan, Pungaliya et al. 2008). 

The ubiquitination activity is conserved in the Drosophila Topors homolog 

although it may have different targets. Dtopors regulates early embryonic patterning by 

ubiquitinating the transcription factor Hairy. The levels of hairy protein decrease as 

dtopors is overexpressed in the cell line and deletion of dtopors suppresses the embryonic 

http://en.wikipedia.org/wiki/Androgen�
http://en.wikipedia.org/wiki/Prostate�
http://en.wikipedia.org/wiki/Adenocarcinoma�
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patterning defect seen in embryos with a hypomorphic hairy mutation. Thus Dtopors 

decreases the levels of Hairy in embryos (Secombe and Parkhurst 2004). Dtopors was not 

found to ubiquitinate p53 (Secombe and Parkhurst 2004), which indicates that there may 

be a different requirement of the p53-mediated pathway in flies (Rong, Titen et al. 2002; 

Xie and Golic 2004).  

In flies, several novel roles of Dtopors in transcriptional regulation and nuclear 

organization have been discovered.  Dtopors interacts with proteins of the Gypsy 

insulator complex and is required for Gypsy insulator function (Capelson and Corces 

2005).  Chromatin insulators are proposed gene regulatory elements involved in the 

establishment of independent chromatin domains, and are thought to play an important 

role in regulating the proper expression of independent gene units. This is hypothesized 

to be achieved by organizing the chromatin into structural domains that enable the 

autonomy of gene activity (Geyer and Corces 1992). Chromatin insulators have been 

shown to have enhancer-blocking activity, as they are able to oppose promoter-enhancer 

communication (Geyer and Corces 1992  ; Kellum and Schedl 1992) .  They have also 

been proposed to have barrier activity, as they protect incorporated transgenes from the 

influence of the neighboring chromatin (Chung, Whiteley et al. 1993  ; Kellum and 

Schedl 1992).  The gypsy insulator of D. melanogaster is a protein complex that consists 

of three known components, Suppressor of Hairy wing (Su(Hw)), Modifier of mdg4 2.2 

(Mod(mdg4)2.2), (Ghosh, Gerasimova et al. 2001  ; Gause, Morcillo et al. 2001), and 

Centrosomal Protein 190 (CP190) (Pai, Lei et al. 2004). Analysis of Drosophila polytene 
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chromosomes shows that insulator complexes are found at multiple endogenous sites 

dispersed throughout the fly genome (Gerasimova and Corces 1998). 

Capelson and Corces (2005) have proposed that the role of Dtopors in gypsy 

insulator activity is to direct the formation of chromatin domains by promoting the 

association between nuclear insulator complexes and the nuclear lamina.  From a 

combination of co-immunolocalization assays, co-immunoprecipitation experiments and 

yeast two-hybrid assays, they have shown that dTopors interacts directly with the 

proteins of the gypsy insulator and with the major lamina protein Lamin Dm0.  Mutation 

of Mod(mdg4)2.2 leads to disruption of nuclear clustering of insulator complexes and 

perturbs insulator activity, but overexpression of Dtopors in the mod(mdg4)2.2 null 

mutant restores insulator activity and the formation of nuclear insulator bodies. Capelson 

and Corces (2005) demonstrated that mutations in Lamin Dm0 not only perturb Dtopors 

localization but also Gypsy insulator activity and nuclear organization  

Based on knowledge of the Topors and Dtopors activity as E3 ubiquitin ligases 

(Rajendra, Malegaonkar et al. 2004 ;  Secombe and Parkhurst 2004) and Topors as an E3 

SUMO ligase (Weger, Hammer et al. 2005   Capelson and Corces (2006) explored the 

possibility that Dtopors ubiquitination or sumoylation activity may be involved in 

regulating gypsy insulator activity. They generated a dtopors transgenic construct 

carrying a point mutation, which changes a highly conserved cysteine of the RING 

domain to a serine (C118S).  Mutation of this conserved residue has been demonstrated 

to disrupt the ubiquitin ligase activity of MDM2, a mammalian RING finger protein 
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(Honda and Yasuda 2000).  This mutation disrupted insulator function.  None of the 

known insulator complex proteins however, could be demonstrated to be ubiquitinated by 

Dtopors.  

Further experiments, both in vivo and in vitro, showed that Dtopors may 

negatively regulate the sumoylation of CP190 and Mod(mdg4)2.2. In an in vitro 

experiment, Su(Hw), Mod(mdg4)2.2 and CP190 were used as substrates in a sumoylation 

reaction with or without dTopors. All three insulator proteins are potential targets for 

sumoylation as they possess lysines that are located in a SUMO modification consensus 

motif ψKxE (Capelson and Corces 2006). Each reaction consisted of incubating the E1, 

E2 enzymes, SUMO, with in vitro-transcribed and -translated 35S-labeled substrate 

protein and in vitro-generated or -purified recombinant Dtopors. The results showed that 

CP190 and Mod(mdg4)2.2 were SUMO-modified as characterized by higher molecular 

weight bands in presence of sumoylation machinery. However, adding Dtopors decreased 

CP190 and Mod(mdg4)2.2 sumoylation instead of enhancing it (Capelson and Corces 

2006). In an in vivo experiment, Capelson and Corces (2005) overexpressed Dtopors in 

larvae using a UAS-dtopors transgenic construct driven by an actin-GAL4 (ActGAL4) 

promoter. Western blot analysis of protein extracts from larvae showed a decrease in 

sumoylated forms of Mod(mdg4)2.2 and CP190 when Dtopors was induced compared to 

uninduced.  Furthermore, mutations in components of the SUMO conjugation pathway 

improved the enhancer-blocking function of a partially active insulator (Capelson and 

Corces 2006). Based on these findings, it was proposed that SUMO modification of 

insulator complex proteins negatively regulates the activity of the gypsy insulator.  From 
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these studies, dTopors has been proposed to regulate the gypsy insulator activity by 

downregulating insulator sumolylation. 

Insulator complexes may play a yet unrecognized role in male meiosis. A meiotic 

isoform of the insulator complex protein Mod(mdg4), MNM is required for maintaining 

pairing during male meiosis (Thomas, Soltani-Bejnood et al. 2005). Although MNM has 

not been demonstrated to bind to Dtopors, it shares a common BTB-POZ protein 

interacting domain with its somatic isoform Mod(mdg4)2.2 which interacts with Dtopors 

(Capelson and Corces 2005). Thus there can be a link between MNM and Dtopors in 

relation to interaction between chromatin and nuclear lamina that is important for 

maintaining pairing in male Drosophila. It can be further studied whether MNM is 

sumoylated by Dtopors and whether sumoylation of MNM affects pairing. 

This study will report the alteration in sumoylation by dtopors and propose a 

model to understand the role of dtopors in sumoylation in male D. melanogaster.  
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CHAPTER II 

MATERIALS AND METHODS 
 
 

Competent cells 

The Scott-Simanis transformation protocol (M. Montiero, personal 

communication) was used to prepare competent cells. On the first day, a frozen stock of 

E.coli DH5α cells was used to streak a Ψa plate (5g/L Bacto-yeast extract, 20g/L 

Bactotryptone, 5g/L MgSO4*7H2O, pH 7.6, 14g/L BactoAgar) and incubated overnight. 

On the second day, a single resulting colony was picked to inoculate 5 ml Ψβ (5g/L 

Bacto-yeast extract; 20g/L Bactotryptone, 5g/L MgSO4*7H2O, pH 7.6) medium and 

incubated overnight at 37°C at 250 rpm in an orbital shaker. On the third day, the 5 ml 

overnight culture was used to inoculate 500ml of prewarmed Ψβ medium and further 

grown at 37°C at 250 rpm in an orbital shaker until the OD590was approximately  0.48. 

Cells were cooled on ice for 5 min then spun down at 6k for 5 min at 4°C.  Pre-chilled 

pipettes were used to resuspend the cells gently in 100 ml of ice cold TfbI (30 mM 

potassium acetate, 100 mM RbCl2, 10 mM CaCl2 * 2 H20, 50 mM MnCl2 * 4 H20, 15% 

glycerol (v/v), pH 5.8). The mix was left on ice for 5 min then spun down at 6K for 5 min 

at 4°C. The cell pellet was then resuspended in 12.5 ml of ice cold TfbII (10 mM MOPS, 

75 mM CaCl2*2H20, 10 mM RbCl2, pH 6.5, 15% glycerol (v/v)) and 
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incubated on ice for 10 to 15 more min. 200 µl aliquots were snap frozen in liquid 

nitrogen and stored at -80°C. 

Bacterial transformation 

Competent DH5α cells were thawed on ice. 100 µl of cells were used per 

transformation. Different amounts (10 ng, 5 ng and 1 ng) of pCaSpeR-hs plasmid DNA 

(containing an ampicillin-resistance gene) were added to cells and incubated on ice for 20 

min. The cells were then heat-shocked at 42°C for 2 min then returned on ice for 2 min 

before adding 1 ml LB (10g/L Bacto-Tryptone, 5g/L Bacto-yeast extract, 10g/L NaCl, pH 

7.0) and incubating for 1 hr at 37°C. Cells were then plated on LB amp plates (10 g/L  

Bacto-tryptone, 5 g/L  Bacto-yeast extract, 10 g/L NaCl, 15g/L Bacto-agar, 50 ug/ml 

Ampicillin, pH 7.0) and incubated at 37°C overnight.  

Vector preparation 

 The fly vector used was pCaSpeR-hs which expresses the white gene and contains 

a multiple cloning site preceded by the hsp70 basal promoter (Figure 1). The starting 

vector contained a portion of the D. melanogaster teflon cDNA cloned into the BamHI-

NotI sites, in-frame with the EGFP cDNA, which was cloned into the NotI-XbaI sites, 

(pCaSpeR-hs/tefEGFP331-end).  A sample of the purified vector (5µl) was examined by 

electrophoresis on a 1% agarose gel to estimate the DNA concentration. DNA was 

quantified by absorbance at 260 nm. 
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PCR amplification of SUMO cDNA and generation of the fragment 

 The smt3 cDNA (D. melanogaster SUMO homolog, LD07775, Stock # 2904)  

cloned in pBluescript_SK(-) vector was obtained from the  Drosophila Genomics 

Resource Center (DGRC,https://dgrc.cgb.indiana.edu) as spots dried on FTA filter paper 

discs. The plasmid containing smt3 cDNA was extracted from the filter paper by 

following the protocol supplied by DGRC (Kris Klueg Whatman Protocol). 1X TE buffer 

(10 mM Tris-HCl pH 7.5, 1 mM EDTA) was added into the microfuge tube containing 

the disc quickly two times and removed immediately. The microfuge tube was then kept 

on ice and 50µl of competent cells were added. The cells/disc mixture was allowed to 

incubate on ice for 30 min. Halfway into the ice incubation period the cells/disc mix was 

vortexed for one sec and immediately returned to the ice. Then the smt3 cDNA-bearing 

plasmid was transformed in to E.coli DH5α cells. A single fresh colony from the 

transformation plate was used to inoculate 500 ml LB amp medium and incubated at 

37°C overnight at 250 rpm in an orbital shaker. Cells were harvested and smt3cDNA 

plasmid was purified using a plasmid maxi kit (Qiagen, Valencia, CA). A sample of the 

purified plasmid (5 µl) was examined by electrophoresis on a 1% agarose gel to estimate 

the DNA concentration and verify its integrity. DNA was quantified by absorbance at 260 

nm. 

 The full-length smt3 cDNA was amplified from the plasmid DNA by PCR using 

the  primers EcoRI_SUMO_Forward primer (5’- 

GCGAATTCATGTCTGACGAAAAGAAG - 3’) and  NotI_SUMO_Reverse primer (5’-

TAGCGGCCGCAGTAATCTTATGGAGCGC - 3’). PCR amplification cycling 

https://dgrc.cgb.indiana.edu/�
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conditions were 30 cycles of denaturation at 95°C for 30 sec, annealing at 58°C for 30 

sec and elongation at 72°C for 30 sec. All primers were purchased from MWG biotech 

(Huntsville, Alabama). PCR products were purified using Qia-quick kit (Qiagen, 

Valencia, CA) and each DNA product was verified by agarose gel electrophoresis before 

and after purification. 

Cloning smt3 cDNA into pCaSpeR-hs/tef(331-end)-EGFP vector 

The pCaSpeR-hs/tef(331-end)-EGFP vector and smt3 cDNA were doubly 

digested with EcoRI and NotI restriction enzymes (Promega, Madison, WI). Digest 

products were purified using Qia-quick kit (Qiagen, Valencia, CA) and yield was 

estimated using agarose gel electrophoresis. The pCaSpeR-hs/tef(331-end)-EGFPvector 

digested product was run on a agarose gel to verify that the tef fragment was cleaved off 

the vector. The digested smt3 was ligated into the resulting vector downstream from the 

hsp70 promoter and upstream of EGFP (Figure 1) using 1x ligase buffer and T4 ligase 

(Promega, Madison, WI). Ligation products were transformed into DH5α competent cells 

and transformants grown overnight at 37°C on LB amp plates. Resulting colonies were 

used to inoculate 5 ml LB amp media and were grown overnight at 37°C in an orbital 

shaker at 250 rpm. The plasmid DNA from each clone was extracted and purified 

following the mini-prep protocol (Sambrook 1989) and the DNA yield was estimated 

using agarose gel electrophoresis.The mini-prep DNA was digested with EcoRI and NotI 

enzymes and the resulting products were separated by agarose gel electrophoresis to test 

for the presence of the smt3 insert. One colony containing the insert was selected then 
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used to inoculate 500 ml LB amp medium, and was grown at 37°C overnight at 250 rpm 

in an orbital shaker.  The plasmid DNA was extracted and purified using a maxi-prep 

DNA purification kit (Qiagen, Valencia, CA). After confirming the purification yield by 

gel electrophoresis and absorbance at 260 nm, the plasmid DNA was sent to MWG 

Biotech (Highpoint, NC) for DNA sequencing of the cDNA insert. 

Drosophila culture and stocks  

 A w1118fly line was used for establishing the transgenic lines for the smt3 

transgenic flies. For smt3 transgene rescue assays the fly stocks used were 

P{ry[+t7.2]=PZ}smt3[04493] cn[1]/CyO; ry[506] , Df/CyOS2cnbw and w[1118]; 

PBac{w[+mC]=WH}Topors[f05115]/CyO. The smt3 transgenic lines were generated as 

described in Figure 2. All flies were grown on standard cornmeal, molasses, yeast, agar 

medium at room temperature (25°C).   

Transgenic fly stocks 

The pCaSpeRhs smt3-EGFPconstruct was sent to a commercial fly injection 

company to be injected in the fly embryos (Genetics Services, Inc., Salisbury, MA). We 

received 200 injected embryos per clone which gave our first generation (G0) of 

transgenic flies. Only 95 of the injected embryos survived. All the G0 males were 

individually crossed with 5 w1118 virgin females and all G0 females were crossed with 3 

w1118 males. From G1, or the second generation, only w+ flies were collected and used to 

establish independent transgenic fly lines.  The flies were selected from G1 flies were 

crossed with w1118 flies and the offspring produced in G2 were intercrossed. Homozygous 
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transgenic flies were selected based on the eye color intensity and were used to establish 

stable transgenic fly stocks for each line. 

Transgene mapping 

 Transgenes were mapped to individual chromosomes on the basis of the patterns 

of segregation of the [w+] marker from second and third chromosome dominant markers. 

We crossed 2-3 males transgenic flies (w1118/Y) from each of the transgenic lines with 5 

virgin yw; tef k15914/Cy; Sb/TM3, Ser; spapolfemales. F1 [w+], Cy and either Sb or Ser 

males were crossed to w1118females and the offspring were scored to map the transgenes. 

If all males were white then the transgene was on X chromosome. If all Curly flies were 

white then the transgene was on 2nd chromosome. If all Serrate or Stubble flies were 

white then the transgene was on 3rd chromosome. If none of the above, the transgene was 

on 4thchromosome. 

Transgene rescue assay 

The P{ry[+t7.2]=PZ}smt3[04493] cn[1]/CyO; ry[506] fly line containing a null 

mutation in smt3 gene (Schnorr, 2001) was obtained from the  Bloomington Stock Center 

(www.flybase.org). The w1118; PBac{w[+mC]=WH}Topors[f05115]/CyO and Df/CyO 

Roi cn bw flies were used in the rescue assay.  The smt3; PCaSpeR hs smt3-EGFP flies 

were generated by the crossing scheme shown in Figure 2. The fly lines generated were 

kept at room temperature, or alternatively, were heat-shocked for 1 hr each 8 hrs of 

development. The flies were scored every 2 days starting from the 12th day till the 18th 

day of the cross.  
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w/Y : smt3[w+]/Cy; +/+  x   yw/yw : P18839/Cy : Sb/Ser  

 

 

 

yw/w ; smt3[w+]/Cy ; +/Ser      x     +/Y: Df/ CyO Roi cn bw;+/+ 

 

 

 

yw/Y:+/Cy: pCaSpeRhs smt3-GFP[w+]/Sb  x  yw/+: smt3[w+]/ Cy Roi cn bw:+/Ser 

 

 

                       yw/Y  x yw/yw: smt3[w+]/Cy: pCaSpeRhs smt3-GFP [w+]/Ser  

 

 

Figure 1: The scheme for smt3 transgene rescue experiment. 
 
 
Expression of the Smt3-EGFP fusion proteins 
 
 Homozygous smt3-EGFP flies and larvae were heat-shocked by incubation at 

37°C for 1 hr each 8 hrs throughout development. Male flies were dissected to collect 

testis. Salivary glands were dissected from third instar larvae. All dissections were 

performed in Schneider’s insect tissue culture media (GIBCO BRL, Gaithersburg, MD). 

Tissues were transferred to a fresh drop of Phosphate Buffered Saline (PBS; 137 mM 
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NaCl, 10 mM Phosphate, 2.7 mM KCl, pH 7.4) on a microscope slide and covered with a 

coverslip. The tissues were then viewed immediately using an Olympus Fluoview FV500 

confocal laser scanning microscope to detect and record EGFP signal in living tissue. 

Preparation of protein extracts and Western Blot analysis 

 Df(2R)ToporsAA and Canton-S strains were used for collecting testes for Western 

blot analysis. Testes were dissected from 1-day-old adult flies in Schneider’s Medium 

(GIBCO BRL, Gaithersburg, MD) and extracts were sonicated for 1 min in Sample 

Buffer (50 mM Tris:HCl,pH 6.8,15% Sucrose, 2 mM EDTA, 3% SDS and 0.01% 

Bromophenol Blue) with or without Inhibitor Cocktail (0.1 mM MG132, 0.1 M P2714, 

80 mM NEM and 0.4 mM IAA) (Sigma-Aldrich, St Louis, MO). An equal number of 

testes of each sample group were loaded into separate wells of a 10% polyacrylamide gel. 

Molecular weight marker (Amersham Biosciences, Piscataway, NJ) was loaded into one 

lane of the gel. Proteins were resolved by 10% SDS-PAGE for 12-18 hrs at 50-60 V and 

then transferred to Immobilon-P PVDF membranes (Millipore, Billerica, MA) in transfer 

buffer (25 mM Tris, 192 mM Glycine, 10% Methanol).  

Western blots were initially stained with Ponceau S to visualize the proteins and 

confirm equal loading and transfer. Then the blots were probed with rabbit anti-C-

terminal Smt3 at a 1: 100 dilution (Abgent, San Diego, CA) and mouse anti-tubulin 

(Developmental Studies Hybridoma Bank, Iowa City, IA) at a 1:1000 dilution.  

Antibodies were diluted in either PBS containing 3% fraction V bovine serum albumin 

(Fisher Scientific, Fair Lawn, NJ) or in Tween-Tris Buffered Saline (TTBS) (0.15 M 
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NaCl, 0.01 M Tris pH 8.0, 500 μl Tween) containing 1% Non-fat dried milk (NFDM). 

Goat anti-rabbit or goat anti-mouse horseradish peroxidase- conjugated secondary 

antibodies (Sigma-Aldrich, St Louis, MO) were used at a 1:5000 dilution in 1% NFDM 

TTBS. Hybridization was detected by Enhanced Chemiluminescence (ECL) using the 

Supersignal West Pico Chemiluminescent detection kit (Thermo Scientific, Rockford, 

IL). Imaging was performed on a Biorad Chemi Doc XRS imager using the Quantity One 

software. All signals were normalized using the anti-tubulin signals to adjust for minor 

variations in protein loads. The blots were done in triplicate, and the means and standard 

deviations for band intensities were measured using Quantity One software and a Bio 

Rad image aquisition apparatus. 

Statistics 

For Western Blots three biological replicas were used to determine the 

sumoylation of testis protein. P-values were determined using a two-tailed student T-test. 

For the transgene rescue assay the percentage  rescue is calculated as (Cy+ flies 

observed)/(Cy+ expected if 100% survived), e.g. (Cy+ flies observed)/(1/3). The P-

values were determined based on chi-squared values determined from a contingency test. 
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CHAPTER III 
 

RESULTS 
 
 

Alteration of sumoylation by dtopors   

While it is known that human topors acts as both a ubiquitin and SUMO ligase in 

vitro and in vivo (Rajendra R, 2004; Weger, 2005; Pungaliya P, 2007) the ability of the 

fly homolog Dtopors to directly sumoylate other proteins has not been demonstrated.  

There is, however, evidence that Dtopors can at least indirectly affect the status of 

sumoylation of proteins in the fly soma.  It has been suggested that the function of the 

gypsy chromatin insulator complex is negatively regulated by sumoylation. The 

components of gypsy insulator complex CP190 and Mod (mdg4)2.2 are hyper-

sumoylated when the dose of dtopors is halved (Capelson and Corces, 2006). To 

determine if dtopors might similarly affect sumoylation in the testis, we looked for 

changes in the patterns of sumoylated testis proteins in dtopors/+ and dtopors flies.  On 

western blots probed with anti-SUMO antibodies, we observed variation of sumoylation 

in both genotypes compared to that of a wild type Canton S strain. These blots were done 

in triplicate, and the means and standard deviations for band intensities were measured. 

All intensities were normalized for a signal generated by probing the same blots with an 

anti-beta tubulin antibody.  Tubulin appears to be a suitable control for this tissue, as 

estimation of protein loads from Coomassie-stained gels and Ponceau-stained blots were 

comparable to estimations made using anti-tubulin signal intensities.  An example of the 

blots is shown in Figure 2. Surprisingly, for a number of protein bands, we found greater 

differences between wildtype and dtopors/+ flies than dtopors homozygous flies. First, 
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the pool of free SUMO was lower in dtopors/+ versus dtopors/ dtopors testis (P< 0.014). 

The pool of free SUMO was also significantly less in dtopors/+ than in wild type Canton 

S (P <0.04) (Figure 3). These results suggest an effect of dtopors in the germline on 

SUMO production, stability and/or amount of sumoylation or cleavage of SUMO from 

target proteins. When we looked at sumoylated proteins we also observed alterations in 

the abundance of sumoylated forms.  The approximate molecular weights of these 

proteins were calculated by comparison to the migration of molecular weight standards. 

Based on these calculations we assigned the approximate mass of each band in the 

Western blot. We observed significant increases in sumoylated proteins of approximate 

molecular masses of 150 and 105 kd in dtopors homozygous mutants when compared 

with both Canton S and dtopors/+ testis (P <0.045, Figure 2 and 4). Although there is an 

apparent difference in protein band intensity at about 190 kd between dtopors 

homozygous mutants and the wild type Canton S, it is not statistically significant (P 

>0.035, Figure 4). The protein bands at ~62 kd show significant differences in intensity 

between homozygous and heterozygous dtopors mutants (P <0.03, Figure 4), but there 

was no significant difference observed between wild type and mutants. For the lower 

molecular weight bands of ~33 kd and 29 kd the signal decreased significantly when the 

dose of dtopors was halved when compared to the wild type Canton S ( P <0.02, Figure 

4). In case of the dtopors null mutant, however, the signal was increased in comparison to 

heterozygous mutant (P < 0.043), while it was less than observed in wild type (P <0.05, 

Figure 4).  
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As the nuclear lamins are found to be disrupted by dtopors mutation (Matsui, 

Sharma, Tomkiel, unpublished data), we examined the sumoylation status of Lamin C to 

see if it was one of these proteins differentially modified in mutant testis.  Western blot 

analysis was performed in the presence of both sumo isopeptidase inhibitors and 

proteosome inhibitors, allowing visualization of higher molecular weight bands 

corresponding to either ubiquitinated or sumoylated forms. Our results indicated that 

Lamin C is not detectably ubiquitinated or sumoylated. This is shown in the lower half of 

Figure 2. 
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Figure 2: Alteration of sumoylation by dtopors. The left half of the picture is a 
Coommasie stained gel, where L is the molecular weight marker and lane 1 is Canton S 
testis sample without the Inhibitor Cocktail (IC), lane 2 is Canton S testis with IC, lane 3 
is homozygous dtopors testis with IC and lane 4 is heterozygous dtopors/+ testis with IC. 
The right half of the picture is a Western blot probed with anti-SUMO antibodies, where 
lanes 1-4 are the same as the Coommassie stained gel lanes.  
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Figure 3: The pool of free SUMO is altered by dtopors. Quantitation of anti-SUMO 
signal on Western blots of total testis protein from flies of the indicated genotypes. The 
asterisk indicates the absence of Inhibitor cocktail (See Materials and Methods for 
details).  All signals were normalized using an anti-beta tubulin signal as a loading 
control, and then adjusted by setting the Canton S value to 1.   
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Figure 4: Analysis of alteration of sumoylation by dtopors. +, m/m and m/+, indicate 
Canton S, dtopors and dtopors/+ genotypes, respectively. All protein samples were 
prepared in IC. All signals were normalized using an anti-beta tubulin signal as a loading 
control, and then adjusted by setting the Canton S value to 1. 
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Generation of vector for expressing SUMO-EGFP fusion protein  

We have shown that Dtopors alters the profile of sumoylated proteins and the 

pool of free SUMO in the germline of the male. These changes could result from altering 

the dynamics of SUMO, i.e. changing the activity of isopeptidases, or the rate of turnover 

or recycling of SUMO. Alternatively, the pool of free SUMO may change because more 

or less SUMO is conjugated or because more or less SUMO is synthesized. To examine 

these possibilities we developed a tool to investigate the pool of unused SUMO versus 

recycled or processed SUMO.   

We created a construct that would produce a SUMO protein that was tagged at its 

C-terminus with EGFP. In the process of sumoylation, the SUMO molecule undergoes 

cleavage by SUMO isopeptidases at the C-terminus (Li SJ, 2000; Takahashi Y, 2000). 

Our construct will allow us to compare the amount of intact fusion protein versus 

processed protein to estimate the relative changes in processed versus unprocessed via 

isopeptidase cleavage. 

We used PCR to generate a cDNA fragment that encodes full-length SUMO and 

verified the correct size of the resulting PCR product by agarose gel electrophoresis 

(Figure 5). A fly transformation construct expressing a SUMO-EGFP fusion protein was 

generated by subcloning the SUMO cDNA into the pCaSpeRhs expression vector, in 

which the EGFP cDNA had already been inserted. This vector contains the hsp70 

promoter that drives expression of the fusion protein upon heat shock. Putative clones 

were transformed into DH5α cells and plasmid DNA purified (see Materials and 
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Methods). The purified DNA was digested with EcoRI and NotI restriction enzymes and 

separated by agarose gel electrophoresis to verify the presence and size of the insert. The 

expected fragment size of 398 kb was confirmed (Figure 6). To ensure that no mutations 

had been introduced by PCR the insert of each clone was verified by DNA sequencing. 

 

Figure 5: PCR amplification of SUMO cDNA. The arrow indicated the 398 kb PCR 
amplified SUMO cDNA in lane 2 of an agarose gel. L represents exACTGene 24kb Max 
DNA ladder Lane 1 shows PCR product of EGFP molecule. 

 

Figure 6: pCasperhs/SUMO-EGFP clone. Fragments of all prospective SUMO cDNA 
clones were separated by agarose gel electrophoresis after restriction enzyme digestion 
with EcoRI and NotI. Only the clone at the lane number 9 contains the SUMO fragment 
of the correct size. L represents exACTGene 24kb Max DNA ladder. 
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Generation of transgenic flies 

 Two hundred injected embryos were received for the clone, and 95 flies survived 

to give our first generation (G0) of transgenic flies. Each G0 fly was crossed with 5 w1118 

flies (see Materials and Methods) to produce the second generation (G1). From each G0 

cross, a maximum of two transgenic w+ G1 flies were collected, and these flies were used 

to generate 22 (8♀, 12♂) independent transgenic fly lines. Ultimately, only a single line 

was kept from each G0 parent to insure that each line established was independent.  

Resulting w+ G2 offspring were collected and intercrossed. Homozygous G3 transgenic 

flies were selected based on the eye color intensity and were intercrossed to establish 

homozygous transgenic flies stocks for each line. 

Transgene mapping 

As transgenes could have inserted into any of the four chromosomes, we had to 

identify which chromosome was carrying the transgene for each transgenic line. This was 

accomplished by setting up crosses that enabled us to score the patterns of segregation of 

the [w+] transgene from second and third chromosome dominant markers (see Materials 

and Methods). The mapping results are shown in Table 1. 
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Table 1: Chromosomal location of transgene insertions sites 

         Transgene                  Line #           Chromosome 

SUMO full length 1,2,3,4,5,7,10,12,18 ,20 

6,8,9,11,13,14,15,16,17,19,21,22 

                   3 

                   2 

 

Transgene rescue assay 

 Because we did not know if a C-terminal GFP moiety would interfere with 

SUMO processing and conjugation, it was first important to demonstrate that our 

transgene could substitute for endogenous SUMO.  The smt3 homozygous mutation is 

lethal (Schnorr, 2001), so we asked if the smt3-GFP transgene was able to rescue this 

lethality. From a cross between smt3/SM1. Cy; pCaSpeRhs smt3-GFP males and females, 

it was expected that one-third of the F1 should be homozygous for smt3 (as homozygous 

Cy/Cy flies do not survive). We found that 27% of the surviving flies were of this 

genotype when the progeny were raised under heat-shock conditions (see Materials and 

Methods). Our findings show that there is 82.1% rescue of the smt3 mutation by the 

SUMO transgene under cyclical heat shock at 37˚C. The flies kept in room temperature 

did not rescue to the same extent, as only 35.2% of the expected smt3 offspring survived 

(Table 2).  The difference is statistically significant (P <0.01, Figure 7). This result 

suggests that there is some “leaky” transcription of the construct under non-heat-shock 

conditions and supports the conclusion that it is the expression of the transgene, rather 

than some genetic background effect that results in rescue.  From these results, we infer 
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that that the carboxyl-tagged EGFP SUMO molecule can be cleaved by the SUMO 

isopeptidases and used to sumoylate target proteins. This means that this construct may 

be useful to monitor the proportion of processed SUMO in the cell. 

Table 2: Rescue of the smt3 lethality by expression of a smt3-GFP transgene.  F1 
from crosses between smt3/SM1, Cy ; pCaSpeRhs smt3-GFP  males and females.  hs 
indicates that flies were heat-shocked throughout development as described in Materials 
and Methods. %  rescue is calculated as (Cy+ flies observed)/(Cy+ expected if 100% 
survived) = (Cy+ flies observed)/(1/3).  

 

Genotype Cy 
males 

Cy 
females 

+  
males 

+  
females 

% Rescue 
in males 

% Rescue 
In females 

% 
Overall 
Rescue 

smt3 (no hs) 134 117 0 0 0 0 0 
smt3 (hs) 70 78 0 0 0 0 0 
smt3 + SUMO(no hs) 170 168 23 22 35.7 36.6 35.2 
smt3 + SUMO(hs) 132 136 49 52 81.2 82.9 82.1 
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Figure 7: smt3 transgene rescue assay. Comparison of survival of smt3 homozygotes 
with or without the smt3-GFP transgene. Each class was compared with the like class in 
the control. **  P< 0.01 

 

 

Expression of SUMO-GFP transgene 

In order to investigate the expression of the SUMO-GFP transgene, we performed 

Western blots of testis protein using anti-GFP antibodies and examined the expression of 

the transgenic protein directly in living tissues by confocal microscopy. To induce the 

expression of the transgene, the transgenic flies were heat-shocked at 37°C for 1 hr every 

8 hrs throughout their life cycle. Unfortunately, no signal could be detected by Western 

blotting.  As the rescue assay indicated that the transgene was expressed in the soma, this 

may mean that the amount of protein expressed in testis was merely below the level of 

detection by this approach. We did, however, detect an EGFP signal by the more 
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sensitive method of examining live testis using confocal microscopy. Spermatocytes 

showed a subcellular expression in the cytoplasm (Figure 8).   We do not know if this 

corresponds to the full-length fusion protein or to the cleaved EGFP moiety. Because the 

EGFP was expressed at the carboxyl terminus, however, this confirms that the fusion 

protein was being expressed.  

 

 

 

Figure 8: Expression of Smt3-EGFP transgenic protein in testis. Panel A shows a 
DIC image, panel B shows the EGFP signal and panel C is a composite picture of A and 
B merged. All images are captured at 400X magnification. 
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These results from the expression and rescue assays indicate two things. First is 

the presence of EGFP moiety, which means that the transgene is expressed, and second, 

the SUMO molecule is properly processed by the isopeptidases in the cell. The rescue 

assay and expression assay indicated that the transgene with EGFP on its carboxy-

terminus was expressed and processed to be tagged onto SUMO targets. This tool can be 

used to investigate and calculate the relative amounts of free unprocessed SUMO and 

processed SUMO (Figure 9). 

                                                

 

Figure 9: The tool used to investigate amount of unprocessed and processed SUMO 
in the cell. 
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CHAPTER IV 

DISCUSSION 
 
 

In our studies we examined sumoylation in flies both heterozygous (dtopors/+) 

and homozygous (dtopors/dtopors) for a null mutation. Prior observations indicated that 

Dtopors plays an important role in chromosome segregation in male meiosis. Mutations 

in dtopors disrupt chromosome segregation and cause chromosome non-disjunction, 

disruption of the nuclear lamina, nuclear blebs and male sterility (Matsui, Sharma and 

Tomkiel, unpublished data). Other studies have suggested that sumoylation negatively 

regulates insulator function (Capelson and Corces 2006). In a related study, it was 

proposed that dtopors is required for proper function of insulator complexes (Capelson 

and Corces 2005). In our study we investigated whether dtopors mutations alter the 

sumoylation of proteins in the testis.  

 The simplest explanation for these changes is that Dtopors is directly involved in 

conjugating SUMO to target proteins in the germ line, thereby affecting the remaining 

amount of unconjugated free SUMO. We cannot rule out other possibilities resulting 

indirectly from changes in dtopors.  For example, dtopors may alter protein abundance 

by ubiquitinating or sumoylating transcription factors that determine levels of synthesis 

of specific proteins. Thus, changes in band intensities may reflect a change in abundance 

rather than the level of sumoylation per se. Dtopors may alternatively regulate the 
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proteosomal degradation of a particular protein. This may also result in a change in the 

abundance of a sumoylated band. The changes we observe may also reflect differences in 

mono-sumoylation and polysumoylation. The determination of whether a protein is 

mono- or polysumoylated may depend upon the number of free lysine molecules 

available for sumoylation. Finally, ubiquitination and sumoylation may compete for the 

same lysine molecule. Decreasing ubiquitination by decreasing Dtopors may free lysines 

for sumoylation. All these possibilities should be taken in consideration while 

interpreting these data.   

 We found that several high molecular weight protein bands (150 and 105 kd) 

show a difference in intensity when wildtype testis proteins are compared with those of 

dtopors mutants (Figure 2). When we reduced the dose of dtopors gene to half we 

observed a decrease in sumoylation compared to wildtype. Surprisingly when we 

observed the same band in the dtopors homozygous mutant, the intensity of the anti-

SUMO signal looked more like wildtype. This phenomenon somewhat mimics the 

function of dtopors with respect to the gypsy insulator. In a genetic assay using the cut6 

mutation in which a gypsy insulator is inserted into the gene regulatory region, activity of 

the insulator disrupts cut transcription resulting in a severe wing phenotype.  When the 

dose of dtopors is halved insulator function is disrupted, suppressing the cut6 mutant 

phenotype (Capelson and Corces, 2005). In homozygous dtopors null mutants, however, 

gypsy insulator function is restored and appears to be similar to wild type (Matsui and 

Tomkiel, unpublished data).  One model to explain these paradoxical results is that there 

is a balance between Dtopors ubiquitination and sumoylation activities. For example, if 
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Dtopors ubiquitination function alters the levels of sumoylation components then a small 

decrease in Dtopors may favor one activity over the other. An example of how this may 

work is shown in Figure 10. This model could be tested by making separation-of-function 

mutations in dtopors that differentially affect either ubiquitination or sumoylation. 
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Figure 10: Proposed model of dose dependent Dtopors function in sumoylation and 
ubiquitination. A. Ubiquitination and Sumoylation activities are balanced in wildtype 
flies. B. Decrease in Dtopors favors assembly of ubiquitin ligases and decreases 
sumoylation by increasing degradation of SUMO ligases. C. Absence of Dtopors 
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enhances sumoylation by other E3 ligases that are stabilized by lack of Dtopors 
ubiquitination. Dark arrows indicate altered activity.  
 
 

We also observed that the effects of Dtopors are not the same for all proteins. All 

the bands of sumoylated proteins were least intense in the dtopors heterozygotes when 

compared to homozygous mutants and the Canton S wild type. Bands of ~150 and 105 

kDa sizes were least intense in the wild type and heterozygous mutants when compared 

to the homozygous mutants.  These observations indicate that the dtopors mutation may 

alter the sumoylation patterns of proteins in a differential way specific for the protein in 

question. This data set also points out that the effect of dtopors on the sumoylation signal 

is dependent on the dose of dtopors gene. Overall, the pattern of sumoylation was more 

severely altered in heterozygous dtopor flies versus homozygous dtopors mutants. Thus 

while studying the effects of dtopors mutation on sumoylation, the level of dtopors 

expression must be considered.  From previous studies it has been shown that human 

Topors is downregulated in seminomas and ovarian cancers, while in bladder, myeloma, 

endometrial, prostate and salivary gland tumors it is found to be overexpressed (Rhodes, 

Kalyana-Sundaram et al. 2007). This may occur due to stoichiometric differences in the 

balance of ubiquitination and sumoylation functions of dtopors in different tissues. 

In the future it will be very interesting to identify the proteins that correspond to 

the bands altered in the dtopors mutants. Our initial attempts at pull-down studies using 

anti-SUMO antibodies were unsuccessful. Using this approach, however, it should be 

possible to isolate these proteins on two dimensional gel electrophoresis and determine 

their identity via MALDI mass spectrophotometric analysis. Another method to identify 
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these proteins would be to use a candidate gene approach. Western blot analysis could be 

performed using anti-SUMO antibodies on proteins derived from strains of flies mutant 

for a specific protein of interest (such as MNM, the meiotic isoform of Mod(mdg4)2.2)). 

Alternatively, antibodies specific for a candidate proteins of interest could be used to 

probe Western blots of proteins derived from wildtype and dtopors mutants. We used this 

latter method to examine whether lamin C was altered by dtopors, as the nuclear lamina 

shows defects in dtopors mutants. But our results reveal that Lamin C is not modified by 

ubiquitination or sumoylation by dtopors because there is no shift or change in band 

migration of Lamin C in dtopors mutant flies (Figure 2). This indicates that the disruption 

of the nuclear lamina integrity observed in dtopors spermatocytes is not caused by 

changes in  ubiquitination or sumoylation of Lamin C.  Rather, Dtopors may play a 

structural role in spermatocyte lamina assembly, or may regulate some as-yet-

unidentified protein that is critical to lamina assembly and/or stability. 

If MNM and Mod(mdg4)2.2 are similarly altered, it may suggest similarities 

between dtopors function in soma and germ line, and perhaps a role of insulators in 

meiotic chromosome organization. New sumoylation targets in the male germline will 

provide an idea how this particular modification plays its role in cell cycle progression. 

 The second half of the study was dedicated to making a tool to study SUMO 

dynamics with respect to dtopors to further investigate in detail how the regulation might 

occur. Our Western blot analyses showed that the pool of free SUMO gets altered by the 

dosage of dtopors mutation in testis tissue lysates. When the dose of dtopors is halved, 
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the free SUMO pool decreases and when dtopors is eliminated it increases, relative to 

wildtype. This may indicate a role of dtopors in SUMO processing and functioning in 

cell.  One difficulty in interpreting these observations is that we do not know if the pool 

of free SUMO has changed because of changes in SUMO synthesis, or because of 

changes in conjugation to or cleavage from targets.  To help distinguish between these 

alternatives, we made a transgenic construct with EGFP protein tagged onto the carboxyl 

terminus of SUMO. There are SUMO-specific proteases that both process SUMO 

precursors to the mature form with C-terminal di-glycine and deconjugate SUMO from 

modified proteins (Li SJ, 2000; Takahashi Y, 2000).  

To determine if this tool would be useful, it was first important to demonstrate 

that the fusion protein would be recognized and processed by SUMO isopeptidases. To 

do this, we asked if our SUMO-EGFP construct was able to rescue a lethal smt3 null 

mutation in flies, making the assumption that viability would require that the transgene 

protein be properly processed.  We report that it rescues 82.1% of the smt3 mutant flies. 

This result indicates that sufficient SUMO-EGFP is expressed and properly processed in 

the organism to allow for complementation of the essential function. Furthermore, our 

confocal microscopy observations of living spermatocytes indicate that this construct is 

expressed in spermatocytes, as we observed EGFP signal in the cytoplasm in these cells. 

These data together confirm that the carboxy-terminal tag allows for the normal 

processing of the SUMO molecule in cell, and suggest that this will be a useful tool to 

examine germline events. 
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This tool might be made even more useful by the addition of an amino-terminal 

GFP tag as well for use in a FRET assay (Fluorescence Resonance Energy Transfer). By 

expressing a FRET acceptor blue fluorescent protein tag on the amino-terminus, one 

could visualize the intact molecule by FRET, and also both the processed amino and 

carboxyl termini. GFP and BFP are FRET compatible pairs (reviewed by Brian AP, 

1999), as the emission spectrum from BFP will excite GFP.  When the BFP portion of the 

fusion protein is excited at 380nm it will emit at 420nm, which is in the excitation 

spectrum for GFP. The different emissions can be measured and calculated to determine 

how much SUMO is conjugated to proteins, how much is processed and how much is 

recycled during cell cycle progression.  Western blot analysis of smt3 null mutants would 

allow us to quantitate the different processed forms of SUMO, as there will be a size 

difference in SUMO bands with only BFP and both BFP and GFP. Together, these data 

may be useful to examine SUMO dynamics in the cell. Use of this tool to compare a 

dtopors+ and dtopors mutant background might tell us specifically how SUMO 

processing and conjugation is effected by mutations in dtopors. 

 This tool may open up numerous options to study sumoylation and male meiosis 

in D. melanogaster. Sumoylation pathways of proteins involved in meiosis can be 

monitored. This tool will allow differentiating between tagged and untagged SUMO in 

the cell, when emission is measured at a specific wavelength. Cellular localization of 

proteins involved in male meiosis can be more conveniently studied whether they get 

modified via sumoylation. The two different tags give this benefit of tracking a single 

molecule for differential signal. This will be a novel tool to use and study SUMO 
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dynamics which has not been studied before in this approach in male meiosis of D. 

melanogaster.  
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