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Antimicrobial resistance is a major health challenge that causes serious morbidity 

and mortality worldwide. The overuse of antibiotics has sped up the rise of resistant 

pathogens and rendered many antibiotics useless. There has been a worldwide push to use 

antibiotics with more caution, but in order to do so, physicians need quicker diagnostic 

methods than blood cultures for confirming bacterial infections. Sepsis, which is when 

the body’s response to an infection harms its own tissues and organs, is a fast-acting 

syndrome. Delaying administration of antibiotics rapidly increases the risk for mortality, 

forcing physicians to prescribe broad spectrum antibiotics until blood cultures can 

provide more information. To combat these antimicrobial resistant superbugs, not only do 

we need a faster way to diagnose them, but we need more diverse methods to fight them.  

The horseshoe crab, Limulus polyphemus, has an innate property in its blood to 

coagulate in the presence of LPS at the pico- to nanogram level. The limulus amoebocyte 

lysate (LAL) assay has been used for decades by the biomedical industry to verify 

sterility of medical devices. Scientists have attempted to use the LAL assay as a 

diagnostic test for bacterial infections, with much difficulty over the years.  

The overall objective of this research is to investigate the diagnostic and 

therapeutic potential of blood components from Limulus polyphemus. To achieve this 

goal, the first aim will determine a simple protocol to detect bacteria or bacterial 

endotoxin in human blood. Preliminary data shows that anticoagulants that are often 



 
 

found in blood collection tubes will inhibit the LAL assay in the presence of endotoxin. 

We have demonstrated the ability to overcome these inhibitors by isolation and washing 

of the red blood cells. The second part of this aim quantifies the detection limits for 

endotoxin. We performed serial dilutions of pathogen concentrations to determine 

sensitivity of the LAL assay to bacteria and bacterial endotoxin. We also performed the 

LAL assay using E. coli. Our results demonstrate the ability to detect bacteria and 

bacterial endotoxin in human blood samples.  

The second aim of this research focused on the therapeutic potential of the 

horseshoe crab blood and its components. To achieve this, bioassays on different 

fractions and preparations of hemolymph were tested against two strains of 

Staphylococcus aureus to see if any fraction of the blood has bioactivity. We have found 

that antimicrobial activity was not observed in the hemolymph, plasma, and amoebocytes 

of the horseshoe crab blood. Further studies are needed to investigate isolated 

antimicrobial peptides and hemocyanin from amoebocytes for testing.  
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CHAPTER I 

INTRODUCTION 

 

1.1. Sepsis 

Sepsis is a condition that arises when the body’s response to an infection injures its 

own tissues and organs. It is a major public health concern and the incidence of sepsis 

continues to rise, making it one of the most common reasons for hospitalization, with an 

estimated 1.7 million cases annually in the United States (1). One study spanning five 

years found that 265,000 Americans die as a result of sepsis each year, and 1 in 3 patients 

who die in a hospital have sepsis (1). According to the Global Sepsis Alliance, sepsis 

affects 27 to 30 million people every year, 7 to 9 million die, which accounts for one 

death every 3.5 seconds. Septicemia was the most expensive condition treated in the 

United States in 2013, costing hospitals 23.7 billion dollars which will likely continue to 

increase as the population ages (2). It has been shown that early interventions, such as 

appropriate antibiotic therapy, improve survival rate for septic patients, making early 

diagnosis critical (3,4).  One study showed a linear increase in the risk of mortality for 

each hour antibiotic administration was delayed from one to six hours (3). With such a 

small window of opportunity, physicians tend to prescribe broad spectrum antibiotics 

which contributes to the rise of antimicrobial resistant (AMR) strains. Both inaccurate 

diagnosis and the over-prescribing of antibiotics have largely been the result of a lack of 

reliable and rapid diagnostic procedures.
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Even amongst the healthcare community, the definition of sepsis is not well agreed 

upon, contributing to lack of a quick diagnosis for the patient. In fact, at the recent 

International Consensus Definitions for Sepsis and Septic Shock meeting, sepsis was 

defined as a “life-threatening organ dysfunction caused by a dysregulated host response 

to infection” (5). The goal of this updated definition was to help facilitate earlier 

recognition. Along with the new a definition of sepsis, the International Consensus also 

defined that organ dysfunction can be represented by an increase in the Sequential Organ 

Failure Assessment score of 2 points or more (5). Patients that presented with a 

respiratory rate of 22/min or greater, systolic blood pressure of 100 mm Hg or less, or 

altered mental status were identified with suspected infection (5). There currently does 

not exist a standard diagnostic test for sepsis but instead physicians use these clinical 

criteria for diagnosis. Prompt administration of antibiotics is recommended and blood 

cultures should be taken (3,6). However, the current recommendation on incubation 

periods for routine blood cultures is five days (7). Research has shown that the full 5 days 

may not be necessary, but even this research recommends a three day incubation period 

(8). By the time a patient may be considered septic, a physician draws blood, a lab runs 

the culture, and several days have passed that a patient cannot afford to wait for 

antibiotics. New methods are emerging, such as the use of mass spectrometry to identify 

bacterial membrane lipids from patient samples or polymerase chain reaction to detect 

pathogens (9,10). Two platforms based on matrix-assisted laser desorption/ionization 

time-of-flight have been approved by the Food and Drug Administration (FDA) for 
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clinical use (9). This method is quicker than blood cultures, but not cost efficient for 

hospitals to use. 

1.2. Antimicrobial Resistance  

According to the Centers for Disease Control (CDC), AMR is one of the greatest 

global health challenges of modern time (11). The rise of antimicrobial resistance occurs 

when microbes (bacteria and fungi) are able to survive when they are under the influence 

of an antimicrobial agent (12). There are several ways for bacteria to become antibiotic-

resistant, the main method is through selective pressure. Selective pressure occurs when 

not all of the bacteria exposed to an antibiotic are susceptible and the surviving bacteria 

continue to multiply (12,13). This creates a bacterial population that is resistant to the 

antibiotic it was exposed to during the initial infection. Overuse of antibiotics helps speed 

up selection for resistant bacteria. In recent years, AMR has become a bigger problem as 

the discovery of new antibiotics has slowed drastically, while antibiotic use is rising 

(14,15). The CDC estimates that each year, 47 million courses of antibiotics are 

prescribed unnecessarily in the United States alone (14). This overuse of antibiotics only 

quickens the emergence of AMR strains and antibiotics lose their effectiveness. In turn, 

key medical procedures such as gut surgery, caesarean sections, and joint replacements 

could become too dangerous to perform. It will also impact the ability of chemotherapy 

and organ transplants to be successful (12).  

Since antibiotics are used in crops, animals, and people, the selection of resistant 

organisms can occur in each of these populations.  For example, some types of antibiotic-

resistant germs can spread person to person. “Nightmare bacteria” such as carbapenem- 
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resistant Enterobacteriaceae can also survive and grow in sink drains at healthcare 

facilities and spread to patients and to the environment through the wastewater (16–18). 

Candida auris is an emerging fungus that is especially pernicious in its global threat as it 

is often multidrug-resistant, difficult to identify with standard laboratory methods, is 

resistant to most disinfecting protocols for hospital settings, and has caused outbreaks in 

healthcare settings (19). In animals, resistant microbes can be spread between animals 

and people through food or contact with animals as in the case of the multi-drug-resistant 

Salmonella Heidelberg bacteria which can make chickens, cattle, and people sick (20–

22). Lastly, antibiotic-resistant microbes ubiquitous in the environment such as 

Aspergillus fumigatus, a common mold, can make people with weak immune systems 

sick. In 2015, azole resistant A. fumigatus was reported in collected isolates from patients 

around the United States (23). The report also found that United States crop fields were 

treated with fungicides that are similar to antifungals used in human medicine (23,24).  

1.3. Natural Antimicrobial Products 

According to the CDC, no new major classes of antibiotics were approved for gram-

negative infections between 1962 and 2000 (11). With this slow development of 

antibiotics and growing populations of pathogens that have developed resistance to 

antimicrobials, novel products are sorely needed. Researchers have looked to nature for 

inspiration, such as using extracts and oils from plants. There is a push right now to 

discover naturally derived antibacterial agents with a novel mechanism of action (25,26). 

Natural products, such as essential oils from plants, have been investigated for their 

antimicrobial properties against varying pathogens. Rosemary and clove, whether alone 
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or in combination, exhibited antimicrobial properties against gram-positive bacteria, 

gram-negative bacteria, and fungi (27). Another study investigated cinnamon, Chinese 

chive and Corni fructus against bacteria, mold and yeasts (28). The group found that all 

three harbored antimicrobial activity when tested using a disc diffusion method. 

Scientists are not only looking to plants as possible sources, but antimicrobial peptides in 

organisms are being looked at with new eyes for their therapeutic potential. The plasma 

from one species of horseshoe crab (HSC), Carsinoscorpius rotundicauda, has been 

shown to be bioactive against gram-positive and gram-negative strains of bacteria (29). 

The hemocyanin contained in HSC blood has also been investigated for potential 

antimicrobial activity (30,31). 

With a rapidly growing population of antimicrobial resistant strains of pathogens, 

rapid diagnostic tools are desperately needed for more accurate diagnosis of bacterial 

infections. These studies explored the diagnostic and therapeutic potential of the blood 

from the HSC, Limulus polyphemus. While others have investigated individual proteins 

and peptides from HSC blood, we will look at the larger components, such amoebocytes 

and plasma. Our hypothesis is HSC blood can be used to detect bacterial infections in 

human blood samples and that it harbors antimicrobial properties. 
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CHAPTER II 

LITERATURE REVIEW 

 
 
2.1. Gram-Negative Bacteria 

Species of bacteria can be classified using several methods such as their appearance 

(size and shape), gram staining, and whether they are aerobic or anaerobic. A gram stain 

is a quick test to classify bacteria as either gram-negative or gram-positive. Gram-

positive bacteria have a thick peptidoglycan layer that traps the crystal violet dye and will 

stain the cell purple (32). Gram-negative bacteria, by contrast, have a thin peptidoglycan 

layer that will not retain the crystal violet stain and the cell will turn red (32). Gram-

negative bacteria also contain lipopolysaccharides (LPS) in their cell membranes. LPS is 

made of three major components: hydrophilic polysaccharides, hydrophobic lipid A, and 

O-antigen repeats (33). The lipid A portion is responsible for the majority of the 

bioactivity of the endotoxin.  

The bioactivity of LPS, or endotoxin, can stimulate Toll-like receptor 4, which is 

found on several types of immune cells such as macrophages and dendritic cells (33). In 

macrophages, LPS will cause polyclonal B cell activation (34). LPS will also induce the 

release of proinflammatory cytokines, such as tumor necrosis factor and interferon-γ (34). 

Activation of these cells not only induce a non-specific immune response, but a high 

concentration of LPS can induce fever, increase heart rate and possibly lead to septic 

shock (33).
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Since the symptoms of bacterial infections do not differentiate between gram-

negative and gram positive, samples must be characterized in the lab (35). The gram stain 

can quickly distinguish between gram-positive and gram-negative, but further testing is 

required to identify the organism for better treatment. For this, blood cultures and urine 

samples are the most common samples collected (32). Other samples, depending on the 

type of infection suspected, can be used such as tissue or other sterile fluids. Several 

different detection methods are used in the laboratory to identify the bacterial or fungal 

species. These different methods include: cultures, antibody detection, antigen detection, 

and microscopy (32).  

2.2. The Uses of the Horseshoe Crab (Limulus polyphemus) 

The horseshoe crab (HSC), Limulus polyphemus, has an innate property in its blood 

to coagulate in the presence of LPS at the pico- to nanogram level (36). This endotoxin is 

found in the outer membrane of Gram-negative bacteria (37). In HSCs, detection of LPS 

induces the amoebocytes to degranulate and activates the zymogen Factor C to the active 

form of Factor C’. This Factor C’ activates Factor B into Factor B’. The Factor B’ 

proenzyme then activates the proclotting enzyme into the clotting enzyme. The last step 

in this cascade converts coagulogen into a coagulin gel clot, therefore trapping the 

invading bacteria (Figure 2.1). The cascade can also be activated by 1-3β-D-glucan. This 

activates Factor G into Factor G’ which then activates the proclotting enzyme into the 

clotting enzyme (36,37).  
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Figure 2.1. Coagulation Cascade Reaction in the Horseshoe Crab. 
 
 

Levin and Bang discovered this cascade in the 1950’s and 1960’s and the FDA 

approved use of the HSC-derived limulus amoebocyte lysate (LAL) assay in the 1970’s 

(37–39). The LAL assay is widely used by the pharmaceutical industry to test intravenous 

drug products for potential contamination (37,39–41). It is also used to test medical 

products, such as implantable devices for possible endotoxin concentrations to ensure  

sterility (37,41,42).  

Of course, to obtain the LAL needed the HSC must be caught and transported to 

facilities to harvest their blood. The HSC are bled and then placed back in their 

ecosystems. However, transport of the HSCs for blood collection has a high mortality 

rate (10-30%) and disrupts their spawning (41). It is estimated that between the mortality 

rate and the HSCs that are sold as bait after bleeding, approximately 130,000 HSCs are 

killed by the biomedical industry every year (43). Restrictions were placed to regulate the 
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number of HSCs harvested, which has aided their population from dropping rapidly. For 

this reason, research has turned to replicating the key factor in the amoebocytes that 

causes coagulation. The recombinant factor C (rFC) test uses a cloned version from a 

HSC, thereby eliminating the need to repeatedly bleed the HSC (41). The proenzyme will 

activate when it encounters trace amounts of endotoxin. The activated rFC will then serve 

as a catalyst to hydrolyze a synthetic substrate. This will then form a quantifiable product 

that can be measured by both fluorometric and colorimetric assays (37). Although rFC 

would allow more testing without impacting the HSC population, the United States 

Pharmacopeia (USP) recently decided to not include this synthetic testing in the chapter 

of endotoxin testing standards. The USP believes that rFC does not have the same level 

of evidence as compared to LAL (44).  

HSCs have not only been used in the medical industry, but are also harvested for 

bait in commercial fishing, particularly for whelk and eel pots (41). In the late 1990s, 

commercial harvest of the HSC increased, reaching a peak of almost six million pounds 

in 1997 (45). Over the years, regulations and limitations on HSC harvesting, such as 

those from the Atlantic States Marine Fisheries Commission (ASMFC), have been put in 

place. In 2018, the total for bait landings came in below quota with a total harvest of 

658,589 crabs (45). New innovations in bait gear have allowed fishermen to more 

effectively catch eel and whelk using less bait. 

 With HSCs being harvested for bait and biomedical use, their population began to 

dwindle. The ASMFC established a Horseshoe Crab Management Board in 1998 to help 

conserve HSCs at a sustainable level to ensure their role in the coastal ecosystems. Limits 
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were put in place on the number of HSCs each state was allowed to harvest. Some states 

also have limitations or bans on the harvest of female HSCs (46). For the biomedical 

industry, states must report the number of crabs collected, crabs rejected, crabs bled and 

characterize mortality (46). However, the crabs that are bled and then subsequently used 

as bait are counted against state quotas for the commercial fishing industry but not 

included in biomedical use quotas (46). Data from ASMFC does not address the number 

of HSCs that would fall in this category. Post-bleeding mortality rates were analyzed 

using literature and estimated at 15% (46). However, many of the studies analyzed did 

not implement biomedical best practices. The 1998 FMP set a mortality threshold that if 

exceeded, would prompt the board to consider action. The threshold was exceeded in 

2018, as it has been for the last 11 of 12 years (46).  

 The LAL assay has been the gold standard for endotoxin detection in the 

biomedical industry for decades, but HSCs were also previously used as lab animal 

models for other studies. Research on the HSCs eyes have allowed for a better 

understanding on vision mechanisms, such as phototransduction (47,48). LAL has also 

been used for research into bacterial detection in human blood, but with mixed results 

(38,39,49–51).  

2.3. LAL Interaction with Blood 

There are numerous obstacles that have prevented accurate and simple blood 

testing using the LAL assay. The assay can either be suppressed or activated by 

components in whole blood, plasma or serum (38,39). These proteins that interfere must 

be removed before the assay can accurately detect endotoxin levels. Blood collection 
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methods can also affect the outcome of the LAL assay as many blood collection tubes 

contain an anticoagulant. For example, blood collection tubes can contain a sodium 

citrate solution or have another anticoagulant, such as ethylenediaminetetraacetic acid or 

heparin, spray coated on the interior of the tube.  

There is an inherent issue with these anticoagulants inside the tubes which can 

interfere with the LAL assay. Addition of heparin to the lysate prior to the addition of the 

gram-negative bacteria inhibited the reaction and formation of a gel-clot (49). Heparin, a 

glycosaminoglycan, prevents clotting by inhibiting thrombin in the coagulation pathway 

(52). Thrombin is responsible for the activation of several components in the cascade, the 

most important being the conversion of fibrinogen to fibrin which ultimately forms a clot 

(52). The addition of salt, such as sodium chloride, has been shown to prevent heparin 

from inhibiting coagulation in the assay (49). 

 Sodium citrate prevents the formation of a gel-clot through chelation of calcium 

in the bloodstream (53). Calcium is released by platelets and binds to phospholipids, this 

then provides a surface for coagulation factors to assemble (54). It is an essential 

component in the coagulation cascade, without it, the blood is unable to clot. Citrate has 

prevented the LAL assay from initiating a gel-clot in the presence of LPS in previous 

studies (50). Addition of calcium chloride has been shown to inhibit the chelation by 

citrate and improve sensitivity of the LAL assay (50). 

 With both anticoagulants, methods have been proposed to overcome their 

inhibitory effect. However, findings are inconsistent with one another, leading to 

difficulty in using LAL to detect endotoxin in blood samples. Results from studies that 
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use salt to overcome heparin vary widely. Tsuji and Steindler looked into several 

different salts and differing concentrations to determine what would best work to 

overcome the inhibitory nature of heparin. Magnesium (at 50 mM) resulted in the most 

sensitive LAL reaction, with calcium providing only partial gelation (51). A more recent 

study by Solaimanian et al. found that 10 mM concentration of magnesium had the 

optimal recovery of endotoxin (55). Another study found that sodium chloride could be 

used to recover gel formation, but the concentrations varied (49). These varied results 

could be the result of different LAL batches, different preparation methods or 

experimental design variations.  

2.4. Components of Horseshoe Crab (HSC) Blood 

 Hemocyanin is a high molecular weight protein found in the blood of several 

species of mollusks and arthropods, such as the HSC (30,56,57). It is hexameric and 

consists of functionally heterogenous subunits which are made up of three domains 

(30,57,58). The primary function of hemocyanin is oxygen transport through the 

hemolymph (30,56,57). Limulus polyphemus has the largest known arthropod 

hemocyanin and contains 48 binding sites for oxygen (57). More recently, hemocyanin 

has also been implicated in several other physiological and homeostatic processes, such 

as hormone transport, molting and protein storage (30,57). 

  Hemocyanin also contains a pair of deoxygenated copper (Cu I) atoms in the 

second domain (30,57). Upon oxygenation, the copper becomes Cu (II), which imparts 

the blue color of the HSC blood. Copper was recognized as the first metallic 

antimicrobial agent by the Environmental Protection Agency in 2008 (59,60). Currently, 



13 
 

copper is being used in the treatment of drinking water and research has been conducted 

using copper surfaces in hospital settings (60). Copper is thought to act on microbials 

through contact killing, however, the exact mechanism of action is still unknown (59). 

Copper has been recognized as an antibacterial, antifungal, and antiviral agent whether it 

be used as a surface or particle (59).  

 Recent studies have reported that hemocyanin can convert its function from 

binding oxygen to phenoloxidase-like activity (30,57,61). Phenoloxidase is a copper-

containing protein that is involved in the synthesis of melanin and also plays a role in the 

primary immune response of arthropods, such as the HSC (30,57). Hemocyanin can be 

activated by several different factors, in vitro and in vivo (30). In vitro, hemocyanin has 

been activated by sodium dodecyl sulfate micelles and phosphatidylserine liposomes 

(30,57,61,62). In vivo, the activation of hemocyanin phenoloxidase activity is not well 

understood. One study found that treatment with fatty acids and phospholipids caused 

phenoloxidase activity (63). However, the fatty acids and phospholipids were dissolved 

in ethanol, which is a known inducer of phenoloxidase, so it is difficult to determine what 

caused the activity (57).  

 Polyphemusins are a family of antimicrobial peptides located inside the smaller 

granules (Figure 2.2) of the HSC hemocyte (64). These peptides are comprised of a chain 

of 18 amino acid residues with a disulfide bond (64,65). There are three different 

members of this peptide family: polyphemusin I, II, and more recently III (65). 

Polyphemusins have a high affinity for LPS and have been found to disrupt the 

membranes of gram-negative and gram-positive bacteria (65). They have also shown to 
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inhibit fungal growth (66), degrade biofilms (67), inhibit tumor cell growth (68), and 

inhibit HIV cell fusion (69).  

 

 
 
Figure 2.2. Large and Small Granules Located Inside the Amoebocytes of the Horseshoe 
Crab. Created with BioRender.com 
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CHAPTER III 

DIAGNOSTIC CAPABILITIES OF THE LAL ASSAY TO DETECT BACTERIAL 

ENDOTOXIN IN HUMAN BLOOD SAMPLES 

 
3.1. Introduction 

 Detecting LPS in human blood samples comes with several challenges. The main 

obstacle is in the preparation of the sample for testing and how anticoagulants affect the 

process of detection. To assess this, several anticoagulants were selected to determine 

their effect on the LAL assay. Next, a method was developed to rid blood samples of 

inhibiting proteins, thus allowing the blood sample to accurately detect endotoxin in the 

blood. The effects of anticoagulant on this isolation method was also investigated. The 

final step in this aim was investigate the ability of the LAL assay to detect a bacterial 

infection with whole bacteria rather than just the LPS that starts the pathway. Activation 

of Factor C is initiated by LPS, which is normally embedded into the membrane of gram-

negative bacteria. Lyophilized LPS was added to blood samples in most of the 

experiments, but the last one uses bacteria, Escherichia coli, from a culture for the source 

of LPS.  

3.2. Methods 

3.2.1. Blood Sample Collection 

All blood was collected using aseptic techniques by certified phlebotomists, Dr. 

Christopher Kepley and Dr. Anthony Dellinger. Collection and use of human blood were 

covered by approved IRB 13-0276. The area around the blood draw region was cleaned 
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with ethanol wipes and collected via venipuncture into various types of BD vacutainer 

blood collection tubes. Participants did not donate blood more than twice a month and no 

more than 10 mL was taken at one time.   

3.2.2. LAL Assay 

 The following protocol was used for all of the LAL assays. LAL (with a 

sensitivity range of 0.05-0.1 EU/ml), purchased from Sigma Aldrich, was prepared with 

endotoxin-free water (EFW) as per the manufacturer’s directions. Once sample 

preparation was complete, LAL was added to the blood sample and incubated at 37°C for 

one hour. Upon completion of incubation period, samples were visually assessed for gel-

clot formation and clot integrity by inversion of the sample.  

3.2.3. Effect of Anticoagulants on LAL Assay 

 Two different anticoagulants, sodium citrate and lithium heparin, were tested to 

determine what effect they had on the effectiveness and sensitivity of the LAL assay. 

Sodium citrate tubes contain 0.3 ml sodium citrate solution, while lithium heparin tubes 

are spray coated at 37 USP. Sodium citrate is believed to chelate calcium in the blood, 

which is an integral part in the coagulation cascade. Lithium heparin inhibits thrombin, 

which activates several factors in the cascade.  

  Blood was collected as described using previous methods and collected into 

either a sodium citrate tube or lithium heparin tube, purchased from Fisher Scientific. All 

tubes were then gently inverted to properly mix and prevent coagulation. 50 µl of each 

sample were then aliquoted into pyrogen-free glass tubes, followed by the addition of 



17 
 

1.25 µl of the endotoxin standards. 50 µl of LAL were then added to each of the samples 

and the previously described protocol was used to perform the LAL assay.  

There were three different controls used in this experiment. An endotoxin control, 

in EFW, was used to ensure that the LAL would form a clot in the presence of endotoxin.  

A second control was used to ensure that there was no clotting of blood with LPS present 

without the addition of LAL. The final control did not have LPS added to ensure that the 

technique was endotoxin free and did not form a clot. Endotoxin standards were made 

from a stock endotoxin, at a concentration of 4000 EU/ml, using a 10-fold serial dilution. 

The standards of endotoxin tested in both anticoagulants were: 50, 5.0, 0.5, and 0.05 

EU/ml (Table 3.1). 

 
Table 3.1. Treatment for Each Sample in Determining the Effect of Anticoagulants on 
the LAL Assay. 
 

Concentration Blood (µl) LPS Volume (µl) LAL (µl) EFW (µl) 
Endotoxin Control 0 1.25 50 50 

LAL Control 50 1.25 0 50 
0 EU/ml 50 0 50 0 

50 EU/ml 50 1.25 50 0 
5 EU/ml 50 1.25 50 0 

0.5 EU/ml 50 1.25 50 0 
0.05 EU/ml 50 1.25 50 0 

 
 
3.2.4. Location of LPS in Blood   

 To test where LPS localizes in the blood, blood was collected using the aseptic 

technique previously described and distributed into three different types of tubes. The 

first tube contained a clot activator, also purchased from Fisher Scientific, to separate 

serum. The other two types contained sodium citrate and lithium heparin to separate 
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plasma. Two samples for each condition were tested, one with LPS added and another 

without LPS as a negative control. The samples spiked with LPS were at the same 

concentration of 50 EU/ml. All samples were then incubated at room temperature for 30 

minutes. Samples were then centrifuged at 21°C and 1200 rcf for 10 minutes. After 

centrifugation, 50 µl were removed from either the plasma or serum layer and tested in a 

LAL assay using the previously described method.  

3.2.5. Isolating Red Blood Cells and Bound LPS 

 Blood samples were collected using the aseptic techniques previously described 

and aliquoted into either sodium citrate tubes, lithium heparin tubes or blood collection 

tubes with no anticoagulant. Endotoxin, at a concentration of 50 EU/ml, was added to 

samples and allowed to incubate for 15 minutes at room temperature. Samples were then 

centrifuged at 2000 rcf for 10 minutes at 4°C and the supernatant was discarded. Samples 

were then washed in 0.9% NaCl for a total volume of 1 ml and gently resuspended. 

Samples were centrifuged again at the previous conditions and lysed in EFW. All 

samples were then rotated for 20 minutes at 4°C. After rotation, samples were centrifuged 

one final time at 3000 rcf for 10 minutes at 4°C. 100 µl samples were then pulled from 

each condition and used in a LAL assay as previously described. Conditions for each tube 

can be found in Table 3.2. For each condition (no anticoagulant, sodium citrate or lithium 

heparin), there was one sample with no endotoxin added as a negative control, one with 

endotoxin at 50 EU/ml that was washed, one with endotoxin at 50 EU/ml that was 

unwashed, and one that had the endotoxin added after the washing step as a positive 
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control. Control samples were tested in EFW to ensure no contamination of the LAL 

assay and that the assay itself worked. 

 
Table 3.2. Sample Conditions for LAL Assay After RBC Isolation. 

Treatment Anticoagulant Endotoxin Washed 
Cell 

condition 
Blood 
(µl) 

LAL 
(µl) 

1 None <50 EU/ml No  lysed 100 100 
2 None <50 EU/ml Yes lysed 100 100 
3 None 0 EU/ml Yes lysed 100 100 

4 None 
2.5 µl of 4 

EU/ml Yes lysed 100 100 
5 Sodium Citrate <50 EU/ml No  lysed 100 100 
6 Sodium Citrate <50 EU/ml Yes lysed 100 100 
7 Sodium Citrate 0 EU/ml Yes lysed 100 100 

8 Sodium Citrate 
2.5 µl of 4 

EU/ml Yes lysed 100 100 
9 Heparin <50 EU/ml No  lysed 100 100 
10 Heparin <50 EU/ml Yes lysed 100 100 
11 Heparin 0 EU/ml Yes lysed 100 100 

12 Heparin 
2.5 µl of 4 

EU/ml Yes lysed 100 100 
13 None 50 EU/ml No  - - 100 
14 None 5 EU/ml No  - - 100 
15 None 0.5 EU/ml No  - - 100 
16 None 0 EU/ml No  - - 100 

 
 
 The same protocol was used to determine the sensitivity of the method to lower 

levels of LPS. Solutions were made from an endotoxin stock using a serial dilution. The 

final concentrations of LPS in the LAL assay were: 50, 5, 0.5, and 0.05 EU/ml. For this 

experiment, only sodium citrate tubes were used for blood collection. Samples were 

spiked with LPS solutions either prior to the red blood cell (RBC) isolation method or 

after as a positive control and to compare gel-clot formation. The same LPS 
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concentrations were run in EFW rather than blood to ensure the accuracy of the LAL 

assay (Table 3.3). 

 
Table 3.3. Conditions to Determine the Sensitivity of RBC Isolation Procedure on the 
LAL Assay (50-0.05 EU/ml). 
 

Samples 
Blood 

Volume 
(µl) 

Endotoxin 
Volume 

(µl) 

LAL 
(µl) 

Endotoxin-
Free 

Water (µl) 

Final 
Endotoxin 

Concentration 
(EU/ml) 

1 100 25 70 32.5 < 50 
2 100 25 70 32.5 < 5 
3 100 25 70 32.5 < 0.5 
4 100 25 70 32.5 < 0.05 
5 100 - 70 32.5 0 
6 100 2.5 70 30 50 
7 100 2.5 70 30 5 
8 100 2.5 70 30 0.5 
9 100 2.5 70 30 0.05 

10 - 2.5 70 130 50 
11 - 2.5 70 130 5 
12 - 2.5 70 130 0.5 
13 - 2.5 70 130 0.05 
14 - 2.5 70 130 0 

 
 
 The experiment was repeated, this time with different concentrations of LPS in 

order to narrow the sensitivity level of the LAL assay. The final concentrations of LPS in 

the LAL assays were: 50, 25, 12.5, 6.25, and 3.125 EU/ml. Once again, LPS was added 

prior to the isolation method and afterwards as positive controls. Another sample was run 

in EFW to ensure accuracy of the LAL assay. Table 3.4 has the listed conditions for each 

sample tested. 



21 
 

Table 3.4. Conditions to Determine the Sensitivity of RBC Isolation Procedure on the 
LAL Assay (50-3.125 EU/ml). 
 

Samples 
Blood 

Volume 
(µl) 

Endotoxin 
Volume 

(µl) 

LAL 
(µl) 

Endotoxin-
Free 

Water (µl) 

Final 
Endotoxin 

Concentration 
(EU/ml) 

1 100 25 100 0 < 50 
2 100 25 100 0 < 25 
3 100 25 100 0 < 12.5 
4 100 25 100 0 < 6.25 
5 100 25 100 0 < 3.125 
6 100 - 100 0 0 
7 100 2.5 100 0 50 
8 100 2.5 100 0 25 
9 100 2.5 100 0 12.5 

10 100 2.5 100 0 6.25 
11 100 2.5 100 0 3.125 
12 - 2.5 100 100 50 

 
 
3.2.6. LAL Assay with E. coli 

 A bacteria inoculum of Turbo competent E. coli, donated by Dr. Eric Josephs, 

was grown overnight at 37°C in lysogeny broth with ampicillin. The optical density (OD) 

was measured at 600 nm. At an OD600 of 0.3, the bacteria were plated in serial dilutions 

to later perform a colony count. 

 Blood was once again collected using the previously described aseptic techniques 

into sodium citrate tubes. The aliquots (Samples 1-7) had bacterial dilutions added and 

were then incubated at room temperature for 15 minutes (Table 3.5). All samples were 

centrifuged at 13,000 rcf for 10 minutes at 4°C, allowing bacteria and RBCs to pellet. 

Supernatant was removed, samples were washed with 0.9% NaCl solution and 

centrifuged again at the same conditions. Supernatant was removed again and all samples 
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had EFW added to lyse the RBCs. Following this step, all samples were then rotated at 

4°C for 20 minutes. 100 µl from Tube 7, which had only LB broth added, was placed into 

Tubes 8-13. Bacteria were then added to each of the tubes from the serial dilution plates 

as a control for known bacterial concentration in the samples (Table 3.6). Tubes were 

then frozen overnight at -70°C and used the next day for the LAL assay. For the LAL 

assay, all samples were thawed and the LAL assay was run on 100 µl of each sample as 

previously described. Another control was used, running the LAL assay in 100 µl of 

EFW rather than blood to ensure the accuracy of the test. 

 
Table 3.5. Treatments for Samples Performing LAL Assay Using Whole Bacteria Added 
Prior to RBC Isolation. 
 

Samples 
Blood 

Volume 
(ml) 

Bacterial 
dilution volume 

(µl) 

Concentration 
in Blood 
(CFU/ml) 

Concentration 
in LAL Assay 

(CFU/ml) 

Calculated 
OD 

1 1 25 1,250,000 625,000 0.5 x 10-2 
2 1 25 125,000 62,500 0.5 x 10-3 
3 1 25 12,500 6,250 0.5 x 10-4 
4 1 25 1,250 625 0.5 x 10-5 
5 1 25 125 62.5 0.5 x 10-6 
6 1 25 12.5 6.25 0.5 x 10-7 
7 1 25 0 0 0 
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Table 3.6. Treatments for Samples Performing LAL Assay Using Whole Bacteria Added 
After RBC Isolation. 
 

Samples Blood 
Volume (µl) 

Bacterial 
dilution volume 

(µl) 

Concentration in 
LAL Assay 
(CFU/ml) 

8 100 2.5 625,000 
9 100 2.5 62,500 
10 100 2.5 6,250 
11 100 2.5 625 
12 100 2.5 62.5 
13 100 2.5 6.25 
14 100 µl EFW 2.5 625,000 

 
 
3.3. Results 

3.3.1. Effect of Anticoagulants on LAL Assay 

 The effect of sodium citrate and lithium heparin anticoagulants was investigated 

on the LAL assay in blood. Both anticoagulants inhibited the formation of a gel-clot 

during the LAL assay.  

 In the sodium citrate experiment, none of the conditions with the varying 

concentrations of LPS formed gel-clots after 1 hour of incubation at 37°C (Figure 3.1). 

At the highest concentration of LPS, 50 EU/ml, there was a weak clot formation but did 

not withstand inversion of the tube. The endotoxin control in EFW, did form a firm gel-

clot. The second control, with no LAL, did not form a gel-clot. The third control, with no 

LPS, did not form a gel-clot. All controls had the expected results. From 50 EU/ml to 0.5 

EU/ml, there was a small blood clot formed by the LAL in the RBC portion while the 

fluid portion remained as such. It appears that the LAL was able to clot a portion of the 

sample, but not a complete gel-clot as was necessary to pass this assay. 
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Figure 3.1. Combined Results from the LAL Assay with Sodium Citrate Vacutainers. A) 
50 EU/ml LPS control in EFW formed a firm clot within ten minutes of incubation. B) 
No LAL control did not form a clot. C) No LPS control did not form a clot. D) 50 EU/ml 
LPS formed a weak clot after incubation. E) 5 EU/ml LPS, F) 0.5 EU/ml LPS, and G) 
0.05 EU/ml LPS did not form clots.  
 

   
Figure 3.2. Combined Results from the LAL Assay with Lithium Heparin Vacutainers. 
A) 50 EU/ml LPS control in EFW formed a firm clot within ten minutes of incubation. B) 
No LAL control did not form a clot. C) No LPS control did not form a clot. D) 50 EU/ml 
LPS, E) 5 EU/ml LPS, F) 0.5 EU/ml LPS, and G) 0.05 EU/ml LPS did not form clots.  
 
 

For lithium heparin, the controls had the same results as those previously found in 

the sodium citrate experiment. The endotoxin control in EFW did form a gel-clot, once 

again, after approximately 10 minutes of incubation time. None of the LPS 
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concentrations caused gel-clot formation (Figure 3.2). Unlike sodium citrate, even the 

highest concentration of LPS did not induce even a weak clot formation. 

 

 
 
Figure 3.3. Samples After Centrifugation for Serum and Plasma Separation. A-C) 
control samples with no LPS in no anticoagulant, sodium citrate, and lithium heparin, 
respectively. D-F) 50 EU/ml LPS added to samples prior to separation in no 
anticoagulant, sodium citrate, and lithium heparin, respectively.  
 
 
3.3.2. Location of LPS in Blood 

 After the 30-minute incubation period at room temperature, the tubes with no 

anticoagulant added did clot, as expected. The samples in sodium citrate or lithium 

heparin tubes did not clot due to the presence of the anticoagulants. Tubes with no 

anticoagulant did show separation of serum after centrifugation, but the results were more 

visually apparent in the sample with LPS added (Figure 3.3). The sodium citrate and 

lithium heparin samples had clear separation of plasma from the RBCs. In the samples 

with LPS added, the plasma was red in color compared to the yellow of the non-LPS 

samples. The LAL assay was then conducted on all samples, but no treatment produced a 

firm gel-clot (Figure 3.4).  
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Figure 3.4. Combined Results from LAL Assay on Serum and Plasma. A-C) control 
samples with no LPS in no anticoagulant, sodium citrate, and lithium heparin, 
respectively. D-F) 50 EU/ml LPS added to samples prior to separation in no 
anticoagulant, sodium citrate, and lithium heparin, respectively. No firm gel-clots were 
formed in any of the samples. 
 
 
3.3.3. Isolating Red Blood Cells and Bound LPS  

Samples that were not washed with the NaCl solution formed a firm gel-clot in all 

treatments: no anticoagulant, sodium citrate and lithium heparin. Samples that were 

spiked with LPS prior to the isolation procedure, to better mimic in vivo conditions, and 

then washed with NaCl solution also formed a firm gel-clot. These samples in all 

treatments remained clotted for a longer time period than the unwashed samples. The 

positive controls in all treatments, LPS added after the washing and isolation procedure, 

formed a firm gel-clot as well. The negative control in all treatments, no LPS addition, 

did not form gel-clots as expected. Overall, the samples with no anticoagulant (Figure 

3.5) had the weakest clot integrity, followed by lithium heparin (Figure 3.6), and sodium 

citrate (Figure 3.7) having the strongest gel-clots. All samples that formed firm gel-clots 

were able to withstand 180° inversion without movement of the clot. Endotoxin controls 
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were also run at the same time in EFW at concentrations of 50, 5, 0.5, and 0 EU/ml 

(Figure 3.8). The three highest concentrations did form firm gel-clots, as expected. As in 

the previous experiment, 50 EU/ml formed a firm gel-clot within ten minutes but 

softened after one hour of incubation.  

 

 
 
Figure 3.5. Combined Results of Samples with No Anticoagulant. A and B were spiked 
with LPS to give a concentration of < 50 EU/ml and both samples formed firm gel clots. 
A) left unwashed and B) washed with 0.9% NaCl to rid of any further inhibitors left after 
removal of plasma. C) not spiked with any LPS as a negative control and did not form a 
clot as expected. D) spiked with 4 EU/µl LPS after the removal of plasma as a positive 
control and formed a clot as expected. 
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Figure 3.6. Combined Results of Lithium Heparin Samples. A and B were spiked with 
LPS to give a concentration of < 50 EU/ml and both samples formed firm gel clots. A) 
left unwashed and B) washed with 0.9% NaCl to rid of any further inhibitors left after 
removal of plasma. C) not spiked with any LPS as a negative control and did not form a 
clot as expected. D) spiked with 4 EU/µl LPS after the removal of plasma as a positive 
control and formed a clot as expected. 
 
 

 
 
Figure 3.7. Combined Results of Sodium Citrate Samples. A and B were spiked with 
LPS to give a concentration of < 50 EU/ml and both samples formed firm gel clots. A) 
left unwashed and B) washed with 0.9% NaCl to rid of any further inhibitors left after 
removal of plasma. C) not spiked with any LPS as a negative control and did not form a 
clot as expected. D) spiked with 4 EU/µl LPS after the removal of plasma as a positive 
control and formed a clot as expected. 
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Figure 3.8. Combined Results of Control Samples Run in EFW. A) 50 EU/ml, B) 5 
EU/ml, C) 0.5 EU/ml, and D) 0 EU/ml of LPS. 
 
 

The next step was to investigate the sensitivity of the LAL assay using this 

isolation and washing protocol. For this, the concentration of LPS in the samples were: 

50, 5, 0.5, 0.05 and 0 EU/ml. The sample that was treated with 50 EU/ml prior to 

isolation and washing formed a firm gel-clot after the hour of incubation. The sample 

with 5 EU/ml added formed a weak gel-clot that could not withstand inversion and the 

other three samples did not form gel-clots (Figure 3.9). The samples that had LPS added 

after the washing procedure did form gel-clots at 50, 5 and 0.5 EU/ml (Figure 3.10). 

Positive control samples run at the same LPS concentrations but in EFW formed firm gel-

clots at 50, 5 and 0.5 EU/ml as well (Figure 3.11).   
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Figure 3.9. Combined Results of Samples with LPS Added Prior to the Washing and 
RBC Isolation Procedure. A) 50 EU/ml, B) 5 EU/ml, C) 0.5 EU/ml, D) 0.05 EU/ml, and 
E) no LPS added.  
 
 

 
Figure 3.10. Combined Results of Samples with LPS Added After the Washing and RBC 
Isolation Procedure. A) 50 EU/ml, B) 5 EU/ml, C) 0.5 EU/ml, and D) 0.05 EU/ml LPS 
added.  
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Figure 3.11 Combined Results of Titration Control Samples Run in EFW. A) 50 EU/ml, 
B) 5 EU/ml, C) 0.5 EU/ml, D) 0.05 EU/ml, and E) no LPS added. 
 
 

The experiment was repeated with different concentrations of LPS, in order to 

narrow down the sensitivity of the LAL assay. LPS concentrations in the assay tested 

were: 50, 25, 12.5, 6.25, 3.125, and 0 EU/ml. For samples that were treated with LPS 

prior to washing, firm gel-clots were formed at 50, 25, and 12.5 EU/ml. The sample with 

6.25 EU/ml formed a weak gel-clot that was unable to withstand inversion. The other two 

samples did not form a gel-clot at all (Figure 3.12). The samples with LPS added after 

washing, showed similar results. Firm gel-clots were formed at 50 and 12.5 EU/ml 

(Figure 3.13). At 25 EU/ml, a weaker gel-clot formed, but it was unable to withstand 

inversion. The positive control, run in EFW at 50 EU/ml, formed a firm gel-clot.  
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Figure 3.12. Combined Results of LPS Titration with LPS Added Prior to Washing 
Protocol. A) 50 EU/ml, B) 25 EU/ml C) 12.5 EU/ml, D) 6.25 EU/ml, E) 3.125 EU/ml, 
and F) no LPS. Samples A-C formed firm gel clots that could withstand 180-degree 
inversion. Samples D and E formed softer clots that did not withstand inversion. Sample 
F, as the negative control, did not clot.  
 
 

  
Figure 3.13. Combined Results of LPS Titration with LPS Added After the Washing 
Protocol. A) 50 EU/ml, B) 25 EU/ml, C) 12.5 EU/ml, D) 6.25 EU/ml, and E) 3.125 
EU/ml, and F) 50 EU/ml LPS in EFW. Samples A and C formed firm gel clots that 
could withstand 180-degree inversion. Samples B, D and E formed softer clots that did 
not withstand inversion. Sample F, as the positive control, did form a firm gel-clot within 
ten minutes and softened after the hour of incubation.  
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Figure 3.14. Combined Results of LAL Assay with Varying Concentrations of E. coli 
Added Prior to the Washing Protocol. A) 6.25x105 CFU/ml, B) 6.25x104 CFU/ml, C) 
6.25x103 CFU/ml, D) 6.25x102 CFU/ml, E) 6.25x101 CFU/ml, F) 6.25x100 CFU/ml, and 
G) 0 CFU/ml. Samples B, C, E, and F formed firm gel clots that could withstand 180-
degree inversion. Samples A and D formed softer clots that did not withstand inversion. 
Sample G, as the negative control, did not clot.  
 
 
3.3.4. LAL Assay with E. coli 

 The plates made from the dilutions of E. coli had a higher CFU/ml than expected. 

The negative control, with broth alone, had a bacterial count of 0 CFU/, as expected. All 

other plates had a lawn of bacteria, preventing an accurate colony count. Concentrations 

are an estimate of what was expected and do not reflect accurate colony counts. LAL 

assay results were not consistent in clot formation as in previous experiments. For the 

samples that had the addition of bacteria prior to washing, the highest concentration 

sample only had a weak gel-clot formation that could not withstand inversion. The next 

two samples, with a 10-fold and 100-fold lower concentration, did form firm gel-clots. 

There was gel-clot formation in all samples run with bacteria added prior to washing 

(Figure 3.14). The integrity of two clots (625,000 and 625 CFU/ml) were weaker than the 
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other samples that were treated prior to washing. For the positive controls, samples that 

had bacteria added after washing, similar results were found (Figure 3.15). Two samples 

(6,250 and 62.5 CFU/ml) did not form firm clots that could withstand inversion. All other 

samples with that treatment formed firm gel-clots. The negative control did not form a 

gel-clot, while the sample conducted in EFW with the highest bacteria concentration did 

form a gel-clot.  

 

 
 
Figure 3.15. Combined Results of LAL Assay with Varying Concentrations of E. coli 
Added After the Washing Protocol. A) 6.25x105 CFU/ml, B) 6.25x104 CFU/ml, C) 
6.25x103 CFU/ml, D) 6.25x102 CFU/ml, E) 6.25x101 CFU/ml, F) 6.25x100 CFU/ml, and 
G) 6.25x105 CFU/ml in EFW. Samples A, B, D and F formed firm gel clots that could 
withstand 180-degree inversion. Samples C and E formed softer clots that did not 
withstand inversion. Sample G, as the positive control, did form a firm gel-clot within 
ten minutes and softened after the hour of incubation.  
 
 
3.4. Discussion 

3.4.1. Effect of Anticoagulants on LAL Assay 

 In both experiments, the anticoagulants prevented gel-clot formation as expected. 

Sodium citrate chelates calcium in the blood by binding it in a nonionized form (70). In 
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coagulation, the calcium binds to phospholipids, giving a surface for coagulation factors 

to bind to (54). The LAL may have activated the coagulation cascade; however, without 

calcium, the pathway is incomplete. The highest LPS concentration did form a weak gel-

clot, but it still was not enough to overcome the inhibition by sodium citrate.  

 With lithium heparin, none of the LPS concentrations were able to overcome 

inhibition from heparin. Heparin acts by binding to antithrombin, which in turn inhibits 

thrombin and the interaction of several clotting factors (70). Thrombin activates several 

coagulation factors and platelets as well as conversion of fibrinogen to fibrin (52). The 

positive control conducted in EFW did form a firm gel-clot after 10 minutes of incubation 

in both experiments, showing that the LAL assay was working.  

 Based on the observations seen in these results, this assay will not be effective 

unless the anticoagulants are inhibited. Salts, such as calcium chloride, have been found 

to overcome the inhibition and allowed clot formation (49–51). Salt addition or removal 

of the anticoagulant prior to testing blood for bacterial LPS would allow for more 

accurate detection of infection.  

3.4.2. Location of LPS in Blood 

 To determine the location of LPS in the blood, serum or plasma were separated 

for testing. Finding the location of LPS would allow for more effective isolation and thus 

yield more accurate results. The two samples that were collected in vacutainers not 

containing an anticoagulant clotted prior to centrifugation, therefore allowing for 

separation of serum from the rest of the blood. The serum layers in these samples were 

red rather than a yellow color, suggesting hemolysis.   
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 For the samples collected in sodium citrate and lithium heparin vacutainers, the 

samples that did not have LPS added prior had a yellow-colored plasma as expected. 

However, the samples with LPS added had a red color to the plasma, once again 

suggesting hemolysis (Figure 3.3). Incubation of blood with LPS has been found to 

increase free hemoglobin concentration and diminish RBC integrity (71). It is believed 

that, in vitro, LPS interacts directly with the cell membrane, and causes hemolysis (71).  

 The negative results observed in all samples (Figure 3.4) suggests that there is not 

enough free floating LPS to cause clot formation. This suggests that LPS mostly binds to 

the RBCs. A previous study had conducted the LAL assay on plasma samples from 

healthy donors and hospitalized patients (39). Healthy donors had plasma separated and 

then spiked with LPS. Hospitalized patients had symptoms of septic shock. In both cases, 

LPS was high enough in the plasma to cause a positive result. The goal of these 

experiments is to detect infection at an earlier stage. At this point in an infection, LPS 

appears to be mostly bound to the RBCs. 

3.4.3. Isolating Red Blood Cells and Bound LPS 

Centrifuging blood samples after the addition of endotoxin resulted in a clearer 

supernatant, unlike the previous experiment. The washing step with NaCl also yielded 

clear supernatant after centrifuging suggesting that there was no hemolysis. However, 

after adding EFW to lyse RBCs, there was no clear supernatant or pellet formed from 

centrifuging the samples. This suggests that there was complete hemolysis in all of the 

samples. The samples with sodium citrate (Figure 3.7) did result in much clearer 

supernatant after separation, suggesting that this anticoagulant would be the ideal one to 
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use for a diagnostic LAL assay. The clots formed in these samples during the LAL assay 

also withstood inversion the longest. Supernatant from samples without anticoagulant 

were slightly red (Figure 3.5), hinting at a partial hemolysis prior to the lysis step.  

 For the LAL assays conducted, the formation of firm gel-clots in all treatments, 

with the exception of samples with no LPS, shows that this method for isolation of RBCs 

can lead to positive results for LPS detection. Washing samples with 0.9% NaCl did lead 

to stronger clot formation by ridding the samples of more serum or plasma inhibitors. 

Clot formation in sodium citrate samples was superior to those in lithium heparin, while 

those without anticoagulant were the weakest gel-clots. The positive control sample that 

was run in EFW at 50 EU/ml (Figure 3.8) did form a firm gel-clot after ten minutes of 

incubation, as seen in previous experiments. After the full hour of incubation, the clot 

softened, unlike the same concentration in blood. It has been previously found that 

hemoglobin enhances the activity of LPS and acts as an LPS binding protein (34). This 

correlates with our findings of superior clot formation in blood samples compared to the 

positive controls run in EFW.  

 The next experiment investigated the sensitivity of the LAL assay using the 

previous RBC isolation. The 5 EU/ml had weak clot formation that could not withstand 

inversion, so the endpoint for sensitivity is above that concentration (Figure 3.9). For 

comparison, the positive controls that had LPS added after the isolation procedure formed 

firm gel-clots down to 0.5 EU/ml (Figure 3.10). This would suggest that less than 10% of 

LPS remains bound to the RBCs during this isolation method. However, less LAL was 
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used in this experiment as with previous and forthcoming experiments. LAL 

concentration may not have been at the optimal level for the experiment.  

 To further determine the threshold for the LAL assay, we investigated the 

sensitivity ranging from 3.125-50 EU/ml. The weaker gel-clot formation at 6.25 EU/ml 

and lack of clot formation at 3.125 EU/ml does correlate with our previous experiment 

(Figure 3.12). 100 µl of LAL was used in this experiment, unlike the previous, but results 

were similar.  The positive control of 50 EU/ml in EFW (Figure 3.13) showed the same 

results as in previous experiments, thus strengthening the idea that hemoglobin enhances 

LPS activity.  

3.4.4. LAL Assay with E. coli 

Isolation and washing of RBCs in NaCl solution resulted in clear supernatant, 

once again suggesting that there was no hemolysis in these steps. The sample with broth 

only in blood did not clot (Figure 3.14). This shows that the broth was adequately washed 

away in the protocol, therefore not causing a false positive on the LAL assay. Certain 

samples did not form firm clots as expected. Unlike previous experiments, blood samples 

were frozen after the isolation and washing procedure but prior to the LAL assay. 

Freezing and the subsequent thawing of RBC samples would cause hemolysis. While 

lysis may aid in the release of endotoxin and clot formation, it also ruins the integrity and 

morphology of the RBCs (70). RBCs can be frozen and thawed safely through 

cryopreservation, using a protectant, such as glycerol (72). However, RBC morphology 

can still be significantly altered after using glycerol (72).  It has also been shown that 

cryostorage can affect the amount of hemoglobin in the sample (72). The loss of 
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hemoglobin would greatly affect the clot formation in the LAL assay as seen in samples 

run in EFW at the same high concentration of their blood counterparts. For this protocol, 

blood samples were rapidly frozen, which has been shown to deteriorate blood samples 

(70). Proper freezing of blood samples requires a much more controlled rate of freezing 

than was given to our blood samples. A future study could either perform the LAL assay 

directly following the isolation procedure, or use a different cryopreservation method as 

described by Pallotta et al (72).   

While results were not consistent, the formation of firm gel-clots in most samples 

show the possibility of detecting bacterial infections at an earlier stage. While freezing 

samples is possible for this method, a different approach would need to be used. Fresh 

blood samples yield more consistent results and would need to be used for a repetition of 

this experiment.  

3.5. Conclusion and Future Perspectives 

 This set of experiments has provided evidence that it is possible to detect bacterial 

LPS in human blood samples. These findings are consistent with other studies (38,39,49–

51,55), but they also highlight the difficulty of obtaining consistent results. Quantifying 

clots with the use of a chromogenic LAL assay would allow for more detailed results as 

well. The protocol used in these experiments can be used in further studies to better 

determine the amount of LPS that remains bound to RBCs. Future research can also 

investigate whether this same method can be used to detect 1-3β-D-glucan from fungi. 

These studies can be used to lead to a diagnostic device that would more rapidly detect 

bacterial infections and minimize the use of broad-spectrum antibiotics.
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CHAPTER IV 

THERAPEUTIC CAPABILITIES OF HORSESHOE CRAB BLOOD AGAINST 

STAPHYLOCOCCUS AUREUS 

 
4.1. Introduction 

 With the growing spread of AMR, natural products have been investigated for 

their antimicrobial properties. HSC blood contains antimicrobial peptides and 

hemocyanin which have been studied as a potential source for new therapeutics 

(30,57,64,65,73). HSC plasma was tested against a gram-positive bacterium using the 

broth microdilution method. The next step was to test different portions of HSC blood to 

see what specifically might impart antibacterial activity. The last assay tested whether 

detergent induced phenoloxidase activity in hemocyanin or killed the bacteria itself. The 

final part of this aim focused on the concentration of copper in HSC plasma samples to 

see if there was a correlation between copper concentration and antibacterial activity.  

4.2. Methods 

4.2.1. Antimicrobial Assays 

 The following protocol was used for all antimicrobial assays conducted, sample 

preparation of the material to be tested varied and can be found in following sections. The 

first step for the assays was to prepare a bacteria inoculum. For all experiments, a 

laboratory strain of Staphylococcus aureus (SA1199), and methicillin-resistant S. aureus 

(AH1263) were used. Bacterial strains were provided by Dr. Nadja Cech. One colony of
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each strain was grown in Mueller Hinton broth (MHB) and incubated overnight at 37° 

and 250 rpm for 18-24 hours.  

 The following day, bacteria were revived by pouring the inoculum into a fresh 

tube and adding fresh MHB. Bacteria were once again incubated at 37° and 250 rpm for 2 

hours. Following the incubation, the OD was read at 600 nm and used to calculate the 

concentration of bacteria added to reach a final dilution of 5 mg/ml. Samples were added 

to a 96-well plate in triplicate and under sterile conditions. Plates were then secured with 

tape and incubated at 37° and 250 rpm for 18-24 hours. 

 On the final day, plates were removed from incubation and OD was read at 600 

nm using a Synergy H1 microplate reader (BioTek). The OD600 values were used to 

determine the inhibition of growth. The average OD600 from each treatment was used for 

evaluation and statistical analysis, which was performed in Prism.   

 Dimethyl sulfoxide (DMSO) was used as a negative control, as it will not inhibit 

the growth of S. aureus. Levofloxacin, an antibiotic, was used as a positive control for all 

experiments. Broth was also plated alone to ensure there was no contamination of the 

media. For all treatments, there were test wells which included the sample, bacteria and 

broth. There were also blank wells which included the sample and broth alone, which 

would allow a direct comparison of growth between treatment and no treatment. Figure 

4.1 shows a sample 96-well plate layout for all bioassays.  All wells contained the same 

total volume of 250 µl. DMSO was at 100 µg/ml final concentration while levofloxacin 

was at 10 µg/ml final concentration.  
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Figure 4.1. Sample 96-Well Plate Layout for Bioassay Screening of HSC Blood and 
Components Against S. Aureus Strains, SA1199 and AH1263. Created with 
BioRender.com 
 
 
4.2.2. HSC Plasma  

 All HSC blood samples were donated by Kepley Biosystems Incorporated. The 

first step was to investigate HSC plasma against SA1199 and AH1263. Samples from 

four different HSCs were diluted in DMSO to bring the concentration of hemocyanin to 5 

mg/ml in the plasma. Dilution calculations were based on the hemocyanin concentration 

provided by KBI. All samples were tested at 100 µg/ml and 10 µg/ml final concentration 

of hemocyanin in the wells. Controls were tested as previously described in the section 

above. The experiment was repeated a second time with the same HSC plasma samples. 

A copper sulfate stock was also tested to determine if the copper would have bioactivity 

against S. aureus at the same concentration as the plasma samples.  
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4.2.3. Antimicrobial Activity of HSC Blood Components 

 For this experiment, blood was collected from one HSC and the blood was 

separated into different components: hemolymph, plasma, and amoebocytes. These 

different components were then tested for bioactivity using the same antimicrobial assays 

as previously described. 

 The first treatment was whole hemolymph, the blood was collected and used 

untreated. The second treatment was whole hemolymph with 1% detergent, Triton x-100, 

added. The third condition was HSC plasma only, the blood was centrifuged to isolate the 

plasma for testing. The fourth treatment was intact amoebocytes that were separated from 

plasma through centrifugation and then resuspended in 0.5 ml of 3% NaCl. The final two 

treatments were amoebocytes that were lysed in different conditions. The first condition 

was amoebocytes lysed in 0.5 ml of EFW. In the second condition, amoebocytes were 

physically agitated until they lysed. After preparation, all samples were maintained on ice 

until plating. These treatments were tested at undiluted and then at a 100-fold dilution of 

the sample.  

4.2.4 Effect of Detergent on Antimicrobial Properties of HSC Blood 

 This experiment focused solely on the effect of the detergent, Triton x-100, on the 

bioactivity of HSC blood against bacteria. Four samples of 1 ml of blood were collected 

from four different HSCs. To each sample, 10 µl of detergent were added to bring the 

concentration of detergent to 1% in solution. Samples were maintained on ice until 

plating. For this experiment, another control was added of just the detergent with bacteria 



44 
 

and MHB. Treatments were once against treated undiluted and at a 100-fold dilution of 

the sample in broth.  

4.2.5 Inductive Coupled Plasma Analysis of HSC Plasma 

 To determine the quantity of copper found in the plasma of HSC blood, inductive 

coupled plasma optical emission spectroscopy (ICP-OES) was conducted. The same 

plasma that was used for the initial bioassays was used in the ICP analysis to see if there 

was any correlation between the amount of copper and bioactivity. For ICP analysis, the 

samples must be digested in an acid, typically nitric acid, hydrochloric acid or a 

combination of the two, known as aqua regia. Standards are made from a stock solution 

of the element under investigation. These standards are then run first to create a 

calibration curve, which is then used to determine the intensity. All standards and 

samples are run in triplicate and the average is used for calculations.  

 To digest the HSC plasma, samples were diluted 100-fold in EFW and gently 

mixed. To each sample, 70% nitric acid was added to bring the final concentration of acid 

in the solution to 2%. Samples were incubated overnight at room temperature. The 

following day, samples were filtered using a 0.22 µm membrane. All samples were clear 

with no particulates. Copper standards were made using a stock copper solution. 

Standards ranged from 0-5 ppm based on the expected copper concentration provided by 

KBI. Standards were also run in 2% nitric acid.  

 A scatterplot was made from the standard values to find a best fit equation. This 

equation was then used to calculate copper concentration in samples. All scatterplots and 

mathematical analysis were completed in Excel.  
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4.3. Results 

4.3.1 HSC Plasma 

 To be considered bioactive against a bacterial strain, the percent growth of 

bacteria needs to be less than that of the negative control, in this case, DMSO. The 

second criterion is that the sample needed to inhibit more than 50% bacterial growth (74). 

The first bioassay was performed with HSC plasma (n = 4). None of the HSC plasma 

samples were considered bioactive against SA1199 at either 100 µg/ml or 10 µg/ml. 

Results were also analyzed using a one-way ANOVA, comparing all HSC plasma 

samples at 100 µg/ml against one another. There was no statistically significant 

difference between HSC samples. The average from each HSC was then used to run an 

unpaired t-test against DMSO at a p-value of 0.05 (Figure 4.2a). HSC plasma, although 

not considered bioactive, is significantly different from DMSO values (p=0.0002). HSC 

plasma #27 met criteria to be considered bioactive against strain AH1263 at 100 µg/ml 

only. None of the other samples inhibited growth enough to be bioactive. The same 

statistical analysis was used for the results from testing against AH1263 (Figure 4.2b). 

HSC plasma was again significantly different from DMSO (p=0.0276).  
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Figure 4.2. Bacterial Growth of SA1199 and AH1263 in HSC Plasma. A) SA1199 and 
B) AH1263 tested in HSC plasma (n=4) were compared to growth in DMSO. Optical 
density was measured at 600 nm after 24 hours 37°C and 250 rpm. An unpaired t-test was 
performed, ***p = 0.0002, *p = 0.0276.  
 
 

 
 
Figure 4.3. Bacterial Growth of SA1199 and AH1263 in HSC Plasma and Copper 
Standard. A) SA1199 and B) AH1263 tested in HSC plasma (n=4), and CuS were 
compared to growth in DMSO. Optical density was measured at 600 nm after 24 hours 
37°C and 250 rpm. One-way ANOVA with multiple comparisons (post hoc Tukey test) 
was performed. Treatments that do not share a letter significantly differ from one another.  
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The second repetition of this experiment yielded similar results. The outlier, HSC 

plasma #27, did not show bioactivity in either strain at either dosage this time around. 

The sample with CuS alone did not show any bioactivity against either strain of S. 

aureus. No significant difference was found among the HSC plasma samples (n = 4) from 

one another using a one-way ANOVA. HSC plasma samples were then combined and 

used in a one-way ANOVA against CuS and DMSO, and there was a significant 

difference in treatments (p=0.0027) (Figure 4.3a). Post hoc testing was conducted using 

the Tukey test at a significance level of 0.05. The HSC plasma and CuS were not 

significantly different from one another. However, DMSO was significantly higher than 

the other two treatments (p <0.01). The one-way ANOVA for results against AH1263 

were significant (p <0.0001) (Figure 4.3b). Using the same post hoc testing, all 

treatments were significantly different from one another (p<0.0001).  

4.3.2. Antimicrobial Activity of HSC Blood Components  

 In the experiment investigating different fractions of HSC blood, samples were 

tested undiluted and at 100-fold dilution in MHB. DMSO was used as a negative control 

at 100 µg/ml again. Levofloxacin continued to be the positive control at a concentration 

of 10 µg/ml. Undiluted hemolymph samples, with the addition of 1% Triton x-100, 

showed bioactivity against both strains of S. aureus. It also exhibited bioactivity against 

SA1199 at the 100-fold dilution in MHB. 

 The one-way ANOVA from SA1199 testing yielded a p-value of <0.0001 (Figure 

4.4a). Post hoc testing, using the Tukey test, found that hemolymph treated with 1% 

Triton x-100 was significantly different from all of the other conditions, including the 
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negative control of DMSO. DMSO was found to be significantly different from all of the 

treatments. The p-value for these treatments was <0.01. Other than hemolymph with 

Triton x-100, none of the other conditions significantly varied from one another. 

 For the bioassay against AH1263, the one-way ANOVA came back with a p-

value of <0.0001 (Figure 4.4b). For the post hoc testing, the p-value for significance was 

<0.05. Untreated hemolymph was significantly different from hemolymph with 1% 

Triton x-100 added and from DMSO, but not other treatment. Hemolymph with Triton x-

100 was significantly different from DMSO. Plasma alone and amoebocytes lysed in 

EFW were significantly different from DMSO as well.  

 

 
 
Figure 4.4. Bacterial Growth of SA1199 and AH1263 in Different Fractions of HSC 
Blood. A) SA1199 and B) AH1263 tested in different fractions of HSC blood were 
compared to growth in DMSO. Optical density was measured at 600 nm after 24 hours 
37°C and 250 rpm. One-way ANOVA with multiple comparisons (post hoc Tukey test) 
was performed. Treatments that do not share a letter significantly differ from one another.  
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4.3.3. Effect of Detergent on Antimicrobial Properties of HSC Blood 

 Since detergent has been found to induce phenoloxidase activity in hemocyanin, 

the addition of detergent to hemolymph was investigated further. Undiluted, all four HSC 

samples showed bioactivity against SA1199 and AH1263. There was no bioactivity seen 

at the 100-fold dilution in either strain. A detergent control was also used at the same 

concentrations to determine if the activity was solely due to the detergent. The detergent 

showed bioactivity against both strains when undiluted as well, but not at the 100-fold 

dilution.  

 

 
 
Figure 4.5. Bacterial Growth of SA1199 and AH1263 in HSC Plasma and Triton x-100. 
A) SA1199 and B) AH1263 tested in HSC plasma and Triton x-100 were compared to 
growth in DMSO. Optical density was measured at 600 nm after 24 hours 37°C and 250 
rpm. One-way ANOVA with multiple comparisons (post hoc Tukey test) was performed. 
Treatments that do not share a letter significantly differ from one another.  
  
 

HSC plasma samples were not found significantly different from one another. The 

average from each HSC was then used in a one-way ANOVA against Triton x-100 and 

DMSO using the 100-fold dilutions. The treatments were significantly different from one 
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another (p = 0.0082) (Figure 4.5a). Post hoc testing was conducted using the Tukey test 

and found Triton x-100 to be significantly different from HSC plasma and DMSO 

(p<0.05). HSC plasma and DMSO did not vary significantly from one another. The same 

method was used to test results from AH1263, but treatments were not found to be 

significantly different in either the one-way ANOVA or in post hoc testing (Figure 4.5b).  

4.3.4. Inductive Coupled Plasma Analysis of HSC Plasma 

 Copper standards were run to create a standard curve for the unknown samples 

(Figure 4.6). Standards were at: 0, 0.15625, 0.3125, 0.625, 1.25, 2.5, and 5 ppm. A best 

fit line was determined (R2 = 0.9998). This equation was then used to calculate the copper 

concentration in each sample at the 100-fold dilution. The four samples ranged from 309 

ppm to 977 ppm (Table 4.1).  

 

 
 

Figure 4.6. Standard Concentration Curve for Copper by ICP.  

  



51 
 

Table 4.1. Copper Concentration of HSC Plasma Samples Analyzed by ICP. 
 

HSC plasma Copper Concentration (ppm) 
#8 926.32 
#19 977.66 
#25 737.44 
#27 309.82 

 
 
4.4. Discussion 

4.4.1 HSC Plasma 

  The broth microdilution method is the most accurate to determine the minimum 

inhibitory concentration (MIC) (75). The Clinical and Laboratory Standard Institute 

(CLSI) outlines a standard protocol for this method (76). The MIC is the lowest 

concentration of the agent being tested that inhibits visible growth of the bacteria (75). 

Bacterial growth amongst the HSC plasma samples did not vary significantly (p>0.05) 

another in the one-way ANOVA, showing that there is no difference between HSC 

subjects. The HSC plasma did show inhibition significantly lower (SA1199: p=0.0002, 

AH1263: p=0.0276) than the negative control in both strains of both experiments. 

Samples were diluted to have the hemocyanin concentration at 100 µg/ml, but this may 

not be what imparts the antimicrobial activity that has been observed in HSC blood. 

Copper at the same concentration was significantly lower than DMSO in both strains 

(p<0.01), but only significantly different from HSC plasma when tested against AH1263 

(p<0.0001). The copper, may not be the contributing factor to the antimicrobial activity. 

Although copper is used as an antimicrobial agent, there are many factors that affect its 

efficacy. The copper is more effective at higher copper concentrations and when it comes 

into direct contact with the bacteria (60). The two copper ions located in the hemocyanin 
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domain may not have the contact or concentration necessary to induce antimicrobial 

activity against bacteria.  

4.4.2. Antimicrobial Activity of HSC Blood Components  

 The next step was to determine whether a different fraction of HSC blood 

contained antimicrobial properties. Detergent, such as Triton x-100, has been shown to 

induce phenoloxidase activity of hemocyanin (30). Amoebocytes contain large and small 

granules, with the small granules containing the antimicrobial peptide, polyphemusin, 

inside (65,66). All treatments, with the exception of hemolymph with detergent added, 

were not significantly different from one another, but significantly higher bacterial 

growth compared to the negative control (SA1199: p <0.0001). These treatments actually 

increased bacterial growth, leading to a suspected contamination. However, the blank 

wells with only the sample treatment and broth did not exhibit bacterial growth. All other 

controls (DMSO, levofloxacin, and broth) had expected OD readings as seen in previous 

experiments, once again ruling out possible contamination.  

 Hemolymph with detergent was significantly lower than DMSO (p<0.01), as well 

as meeting criteria for bioactivity against SA1199. Triton x-100 has also been shown to 

lyse cells (77), so the lack of bacterial growth may not have been inhibited, but killed in 

that treatment.  

4.4.3. Effect of Detergent on Antimicrobial Properties of HSC Blood 

 Based on the previous findings, we wanted to determine whether the lack of 

bacterial growth was due to detergent enhancing antimicrobial activity of HSC plasma or 

due to cell death by detergent. Four different HSCs were used for statistical analysis only 
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after determining that there was no significant difference in HSC samples. Against 

SA1199, Triton x-100 showed significantly lower bacterial growth compared to the other 

treatments (p<0.05), while HSC plasma did not vary from the negative control. It appears 

that the bacteria are being killed by the detergent through lysis rather. Such as seen by 

Tanihara et al. in human fibroblasts (77), the antimicrobial peptides may be preventing 

cell lysis by Triton x-100, hence the higher bacterial growth. 

4.4.4. Inductive Coupled Plasma Analysis of HSC Plasma 

 Values for copper concentration came back higher than expected values and were 

thus determined using a standard curve. Copper concentration does not appear to 

correlate to bioactivity as there was no significant difference amongst HSC samples in 

the bioassays (p>0.05) despite a large variance in copper concentration. Higher copper 

concentration did not correlate to a lower bacterial growth, as may be expected. This data 

further supports the idea that the copper is either not in the right form or does not have 

great enough access to bacteria to impart antibacterial properties to hemocyanin. For 

example, studies have  shown that copper has a greater antimicrobial efficacy at 

concentrations greater than or equal to 55% (60). Although 90% of the total plasma 

protein consists of hemocyanin (78), total plasma protein concentration can vary amongst 

horseshoe crabs (78). One study found that mean protein concentration among their wild-

type horseshoe crabs and caught horseshoe crabs varied from 3.2-9.7 gdL-1 (78). 

Additionally, the form of copper can also heavily impact its efficacy as an antimicrobial. 

Copper nanoparticles have shown greater antimicrobial activity compared to insoluble 

copper at the same concentration (60). Hemocyanin contains deoxygenated copper atoms, 
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but it has been found that greater antimicrobial activity is found in higher oxidation states 

of copper (60). This would suggest that oxygenated hemocyanin would have greater 

antimicrobial activity than deoxygenated hemocyanin due to the greater oxidation state of 

copper. Other studies suggest that the direct contact of copper with bacteria can cause 

membrane damage (60). With copper ions located within the subdomains of hemocyanin, 

it is unlikely that the copper would have the access to bacteria necessary for contact 

killing. These experiments also only investigated the potential of HSC blood on S. 

aureus, a gram-positive bacterium. Future studies are needed to investigate these effects 

on gram-negative bacteria and fungi as the immune system of HSCs is set off by these 

microbes. LPS and 1-3β-D-glucan cause degranulation of amoebocytes (36), which in 

turn releases the antimicrobial peptides found in the granules. This degranulation, while 

causes clotting to prevent spread of bacteria, may also be inhibiting bacterial growth 

through the polyphemusins.  

4.5. Conclusion and Future Perspectives 

 In these studies, we have demonstrated that the copper in hemocyanin had no 

significant effect on the antimicrobial properties of the HSC blood. The antimicrobial 

assays conducted in these sets of experiments show the difficulty in determining 

antimicrobial activity of a compound. With the copper and antimicrobial peptides in the 

HSC blood, the potential for bioactivity is there, however, it is easily interfered with. The 

antimicrobial activity of isolated polyphemusins would be the next step in evaluation of 

HSC blood. For example, polyphemusins could be isolated to test their impact on 

bacterial growth. A synthetic version of the peptide could be engineered, testing in 
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isolation would better indicate antimicrobial activity. Another avenue to explore would 

be the phenoloxidase-like activity of hemocyanin. This would require finding the best 

reagent to stimulate the phenoloxidase-like activity that does not kill or inhibit bacterial 

growth itself. Isolation of hemocyanin would also allow for more accurate testing. Some 

suggest that the antimicrobial peptides activate the hemocyanin and others that the 

hemocyanin is the source of antimicrobial peptides (30). Studying both polyphemusin 

and hemocyanin individually and in conjunction with one another may provide a clearer 

picture into the mechanism of action and the source of antimicrobial activity contained in 

HSC blood.  



56 
 

REFERENCES 

 
1.  Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, et al. 

Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 
2009-2014. JAMA. 2017 Oct 3;318(13):1241–9.  

2.  Torio CM, Moore BJ. National Inpatient Hospital Costs: The Most Expensive 
Conditions by Payer, 2013 - Healthcare Cost and Utilization Project (HCUP) 
Statistical Briefs - NCBI Bookshelf [Internet]. 2016 [cited 2019 Sep 27]. Available 
from: https://www.ncbi.nlm.nih.gov/books/NBK368492/ 

3.  Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, et 
al. Empiric Antibiotic Treatment Reduces Mortality in Severe Sepsis and Septic 
Shock From the First Hour: Results From a Guideline-Based Performance 
Improvement Program*. Crit Care Med. 2014 Aug;42(8):1749.  

4.  Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of 
hypotension before initiation of effective antimicrobial therapy is the critical 
determinant of survival in human septic shock*: Crit Care Med. 2006 
Jun;34(6):1589–96.  

5.  Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et 
al. The Third International Consensus Definitions for Sepsis and Septic Shock 
(Sepsis-3). JAMA. 2016 Feb 23;315(8):801.  

6.  Novak-Weekley DSM. Blood Culture A key investigation for diagnosis of 
bloodstream infections.  

7.  Hardy DJ, Hulbert BB, Migneault PC. Time to Detection of Positive BacT/Alert 
Blood Cultures and Lack of Need for Routine Subculture of 5- to 7-Day Negative 
Cultures. :3.  

8.  Bourbeau PP, Foltzer M. Routine Incubation of BacT/ALERT FA and FN Blood 
Culture Bottles for More than 3 Days May Not Be Necessary. J Clin Microbiol. 
2005 May 1;43(5):2506–9.  

9.  Liang T, Leung LM, Opene B, Fondrie WE, Lee YI, Chandler CE, et al. Rapid 
Microbial Identification and Antibiotic Resistance Detection by Mass Spectrometric 
Analysis of Membrane Lipids. Anal Chem. 2019 Jan 15;91(2):1286–94.  

10.  Hemmert A, Garrone N. Rapid methods for pathogen detection in bloodstream 
infections. Med Lab Obs MLO Nokomis. 2013 Jun;45(6):38–9. 



57 
 

11.  Antibiotic Resistance Threats in the United States, 2019. 2019;148.  

12.  Abushaheen MA, Muzaheed, Fatani AJ, Alosaimi M, Mansy W, George M, et al. 
Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon. 2020 
Jun;66(6):100971.  

13.  Hugo WB, Russell AD. Pharmaceutical Microbiology [Internet]. Vol. 6th ed. 
Oxford: John Wiley and Sons, Inc; 1998. Available from: 
https://login.libproxy.uncg.edu/login?url=http://search.ebscohost.com/login.aspx?dir
ect=true&db=nlebk&AN=51429&site=ehost-live 

14.  CDC. Antibiotic Use in the United States, 2018 Update: Progress and Opportunities. 
US Department of Health and Human Services; 2019.  

15.  O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report And 
Recommendations. 2016 May;84.  

16.  Zhang X, Lü X, Zong Z. Enterobacteriaceae producing the KPC-2 carbapenemase 
from hospital sewage. Diagn Microbiol Infect Dis. 2012 Jun 1;73(2):204–6.  

17.  Lamba M, Graham DW, Ahammad SZ. Hospital Wastewater Releases of 
Carbapenem-Resistance Pathogens and Genes in Urban India. Environ Sci Technol. 
2017 Dec 5;51(23):13906–12.  

18.  Zurfluh K, Bagutti C, Brodmann P, Alt M, Schulze J, Fanning S, et al. Wastewater 
is a reservoir for clinically relevant carbapenemase- and 16s rRNA methylase-
producing Enterobacteriaceae. Int J Antimicrob Agents. 2017 Sep 1;50(3):436–40.  

19.  Ku TSN, Walraven CJ, Lee SA. Candida auris: Disinfectants and Implications for 
Infection Control. Front Microbiol [Internet]. 2018 [cited 2019 Nov 27];9. Available 
from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00726/full 

20.  Gieraltowski L, Higa J, Peralta V, Green A, Schwensohn C, Rosen H, et al. National 
Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a 
Single Poultry Company. PLOS ONE. 2016 Sep 15;11(9):e0162369.  

21.  Antony L, Behr M, Sockett D, Miskimins D, Aulik N, Christopher-Hennings J, et al. 
Genome divergence and increased virulence of outbreak associated Salmonella 
enterica subspecies enterica serovar Heidelberg. Gut Pathog. 2018 Dec 24;10(1):53.  

22.  Multistate Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections 
Linked to Contact with Dairy Calves | November 28 | Salmonella | CDC [Internet]. 
2019 [cited 2019 Dec 11]. Available from: 
https://www.cdc.gov/salmonella/heidelberg-11-16/index.html 



58 
 

23.  Wiederhold NP, Gil VG, Gutierrez F, Lindner JR, Albataineh MT, McCarthy DI, et 
al. First Detection of TR34 L98H and TR46 Y121F T289A Cyp51 Mutations in 
Aspergillus fumigatus Isolates in the United States. Warnock DW, editor. J Clin 
Microbiol. 2016 Jan;54(1):168–71.  

24.  Hurst SF, Berkow EL, Stevenson KL, Litvintseva AP, Lockhart SR. Isolation of 
azole-resistant Aspergillus fumigatus from the environment in the south-eastern 
USA. J Antimicrob Chemother. 2017 Sep 1;72(9):2443–6.  

25.  Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of 
marine natural products. Pharmacol Res. 2019 Sep;147:104373.  

26.  Gatadi S, Gour J, Nanduri S. Natural product derived promising anti-MRSA drug 
leads: A review. Bioorg Med Chem. 2019 Sep;27(17):3760–74.  

27.  Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, et al. Antimicrobial activity of clove 
and rosemary essential oils alone and in combination. Phytother Res. 2007 
Oct;21(10):989–94.  

28.  Hsieh P-C, Mau J-L, Huang S-H. Antimicrobial effect of various combinations of 
plant extracts. Food Microbiol. 2001 Feb;18(1):35–43.  

29.  Ning Asih EN, Kawaroe M, Bengen DG. Biomaterial compounds and bioactivity of 
horseshoe crab Carsinoscorpius rotundicauda biomass harvested from the Madura 
Strait. IOP Conf Ser Earth Environ Sci. 2018 Mar;141:012004.  

30.  Decker H, Jaenicke, E. Recent findings on phenoloxidase activity and antimicrobial 
activity of hemocyanins. Dev Comp Immunol. 2004 Jun;28(7–8):673–87.  

31.  Pistole TG, Furman’ RM. Serum Bactericidal Activity in the Horseshoe Crab, 
Limulus polyphemus. INFECT IMMUN. 1976;14:6.  

32.  Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. [Internet]. 8th ed. 
Elsevier Health Sciences; 2015. Available from: 
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4187423 

33.  Wang X, Quinn PJ, editors. Endotoxins: Structure, Function and Recognition 
[Internet]. Springer Netherlands; 2010 [cited 2019 Jan 14]. (Subcellular 
Biochemistry). Available from: //www.springer.com/us/book/9789048190775 

34.  Brade H. Endotoxin in Health and Disease [Internet]. New York: Marcel Dekker; 
1999. Available from: 
https://login.libproxy.uncg.edu/login?url=http://search.ebscohost.com/login.aspx?dir
ect=true&db=nlebk&AN=12775&site=ehost-live 



59 
 

35.  Oliveira J, Reygaert WC. Gram Negative Bacteria. In: StatPearls [Internet]. 
Treasure Island (FL): StatPearls Publishing; 2020 [cited 2020 Feb 24]. Available 
from: http://www.ncbi.nlm.nih.gov/books/NBK538213/ 

36.  Iwanaga S. Biochemical principle of Limulus test for detecting bacterial endotoxins. 
Proc Jpn Acad Ser B Phys Biol Sci. 2007 May;83(4):110–9.  

37.  Ding JL, Ho B. Endotoxin Detection – from Limulus Amebocyte Lysate to 
Recombinant Factor C. In: Wang X, Quinn PJ, editors. Endotoxins: Structure, 
Function and Recognition [Internet]. Dordrecht: Springer Netherlands; 2010 [cited 
2018 Nov 13]. p. 187–208. (Subcellular Biochemistry). Available from: 
https://doi.org/10.1007/978-90-481-9078-2_9 

38.  Romaschin AD, Klein DJ, Marshall JC. Bench-to-bedside review: Clinical 
experience with the endotoxin activity assay. Crit Care. 2012;16(6):248.  

39.  Pearson FC, Dubczak J, Weary M, Bruszer G, Donohue G. Detection of endotoxin 
in the plasma of patients with gram-negative bacterial sepsis by the Limulus 
amoebocyte lysate assay. J Clin Microbiol. 1985 Jun;21(6):865–8.  

40.  Reich J, Weyer FA, Tamura H, Nagaoka I, Motschmann H. Low Endotoxin 
Recovery—Masking of Naturally Occurring Endotoxin. Int J Mol Sci. 2019 Feb 
15;20(4):838.  

41.  Krisfalusi-Gannon J, Ali W, Dellinger K, Robertson L, Brady TE, Goddard MKM, 
et al. The Role of Horseshoe Crabs in the Biomedical Industry and Recent Trends 
Impacting Species Sustainability. Front Mar Sci [Internet]. 2018 [cited 2019 Jul 
17];5. Available from: 
https://www.frontiersin.org/articles/10.3389/fmars.2018.00185/full 

42.  Mizumura H, Ogura N, Aketagawa J, Aizawa M, Kobayashi Y, Kawabata S, et al. 
Genetic engineering approach to develop next-generation reagents for endotoxin 
quantification. Innate Immun. 2017 Feb 1;23(2):136–46.  

43.  Maloney T, Phelan R, Simmons N. Saving the horseshoe crab: A synthetic 
alternative to horseshoe crab blood for endotoxin detection. PLoS Biol. 2018 Oct 
12;16(10):1–10.  

44.  Advancing sustainable-endotoxin testing methods as an alternative to those derived 
from horseshoe crab blood [Internet]. [cited 2020 Jul 14]. Available from: 
https://www.usp.org/biologics/rfc-testing-statement 

45.  ASMFC species profile.pdf.  

46.  ASMFC fishery management plan.pdf.  



60 
 

47.  Battelle B-A. Simple Eyes, Extraocular Photoreceptors and Opsins in the American 
Horseshoe Crab. Integr Comp Biol. 2016 Nov;56(5):809–19.  

48.  Smith SA. Horseshoe Crabs. In: Lewbart GA, editor. Invertebrate Medicine 
[Internet]. Oxford, UK: Wiley-Blackwell; 2011 [cited 2019 Dec 6]. p. 173–85. 
Available from: http://doi.wiley.com/10.1002/9780470960806.ch10 

49.  Marcum JA, Levin J. Heparin inhibition of endotoxin-dependent Limulus 
amebocyte lysate coagulation. Thromb Haemost. 1989 Apr 25;61(2):294–7.  

50.  Lawrence LM, Gilmour A, Pearce J. The influence of calcium on the chromogenic 
Limulus Amoebocyte Lysate assay of lipopolysaccharide endotoxins in liquid milk. 
Int J Food Sci Technol. 2007 Jul 1;28(1):103–9.  

51.  Tsuji K, Steindler KA. Use of Magnesium To Increase Sensitivity of Limulus 
Amoebocyte Lysate for Detection of Endotoxin. APPL Env MICROBIOL. 
1983;45:9.  

52.  Linhardt RJ. Heparin and anticoagulation. Front Biosci. 2016;21(7):1372–92.  

53.  Scaravilli V, Di Girolamo L, Scotti E, Busana M, Biancolilli O, Leonardi P, et al. 
Effects of sodium citrate, citric acid and lactic acid on human blood coagulation. 
Perfusion. 2018 Oct 1;33(7):577–83.  

54.  Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 
2014;58(5):515.  

55.  Solaimanian R, Mahboubi A, Sadjady SK, Naghdi N. Evaluation of the Suitability 
of Kinetic Chromogenic LAL Assay for Determination of Endotoxin Levels in 
Heparin Sodium Injection. Trends Pept Protein Sci. 2017 Jan 17;1(2):73–82.  

56.  Sullivan B, Bonaventura J, Bonaventura C. Functional Differences in the Multiple 
Hemocyanins of the Horseshoe Crab, Limulus polyphemus L. Proc Natl Acad Sci U 
S A. 1974;71(6):2558–62.  

57.  Coates CJ, Nairn J. Diverse immune functions of hemocyanins. Dev Comp 
Immunol. 2014 Jul;45(1):43–55.  

58.  Brenowitz M, Bonaventura C, Bonaventura J, Gianazza E. Subunit composition of a 
high molecular weight oligomer: Limulus polyphemus hemocyanin. Arch Biochem 
Biophys. 1981 Sep;210(2):748–61.  

59.  Vincent M, Duval RE, Hartemann P, Engels‐Deutsch M. Contact killing and 
antimicrobial properties of copper. J Appl Microbiol. 2018;124(5):1032–46.  



61 
 

60.  Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. 
Int J Hyg Environ Health. 2016 Oct;219(7):585–91.  

61.  Nagai T, Osaki T, Kawabata S. Functional Conversion of Hemocyanin to 
Phenoloxidase by Horseshoe Crab Antimicrobial Peptides. J Biol Chem. 2001 Jul 
20;276(29):27166–70.  

62.  Baird S, Kelly SM, Price NC, Jaenicke E, Meesters C, Nillius D, et al. Hemocyanin 
conformational changes associated with SDS-induced phenol oxidase activation. 
Biochim Biophys Acta BBA - Proteins Proteomics. 2007 Nov;1774(11):1380–94.  

63.  Nellaiappan K, Sugumaran M. On the presence of prophenoloxidase in the 
hemolymph of the horseshoe crab, Limulus. Comp Biochem Physiol B Biochem 
Mol Biol. 1996 Jan;113(1):163–8.  

64.  Powers J-PS, Martin MM, Goosney DL, Hancock REW. The Antimicrobial Peptide 
Polyphemusin Localizes to the Cytoplasm of Escherichia coli following Treatment. 
Antimicrob Agents Chemother. 2006 Apr;50(4):1522–4.  

65.  Marggraf M, Panteleev P, Emelianova A, Sorokin M, Bolosov I, Buzdin A, et al. 
Cytotoxic Potential of the Novel Horseshoe Crab Peptide Polyphemusin III. Mar 
Drugs. 2018 Nov 26;16(12):466.  

66.  Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, et al. 
Antimicrobial Peptides, Isolated from Horseshoe Crab Hemocytes, Tachyplesin II, 
and Polyphemusins I and II: Chemical Structures and Biological Activity1. J 
Biochem (Tokyo). 1989 Oct;106(4):663–8.  

67.  Zapotoczna M, Forde É, Hogan S, Humphreys H, O’Gara JP, Fitzgerald-Hughes D, 
et al. Eradication of Staphylococcus aureus Biofilm Infections Using Synthetic 
Antimicrobial Peptides. J Infect Dis. 2017 Mar 15;215(6):975–83.  

68.  Paredes-Gamero EJ, Martins MNC, Cappabianco FAM, Ide JS, Miranda A. 
Characterization of dual effects induced by antimicrobial peptides: Regulated cell 
death or membrane disruption. Biochim Biophys Acta BBA - Gen Subj. 2012 
Jul;1820(7):1062–72.  

69.  Senthilkumar K, Kim S-K. Marine Invertebrate Natural Products for Anti-
Inflammatory and Chronic Diseases. Evid Based Complement Alternat Med. 
2013;2013:1–10.  

70.  McNamara C. 1 - Collection and Handling of Blood. In: Bain BJ, Bates I, Laffan 
MA, editors. Dacie and Lewis Practical Haematology (Twelfth Edition) [Internet]. 
Elsevier; 2017. p. 1–7. Available from: 
http://www.sciencedirect.com/science/article/pii/B9780702066962000011 



62 
 

71.  Brauckmann S, Effenberger-Neidnicht K, de Groot H, Nagel M, Mayer C, Peters J, 
et al. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane 
interactions. Sci Rep [Internet]. 2016 Dec [cited 2020 Aug 4];6(1). Available from: 
http://www.nature.com/articles/srep35508 

72.  Pallotta V, D’Amici GM, D’Alessandro A, Rossetti R, Zolla L. Red blood cell 
processing for cryopreservation: from fresh blood to deglycerolization. Blood Cells 
Mol Dis. 2012 Apr;48(4):226–32.  

73.  Ohta M, Ito H, Masuda K, Tanaka S, Arakawa Y, Wacharotayankun R, et al. 
Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of 
antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob Agents 
Chemother. 1992 Jul;36(7):1460–5.  

74.  Khin M, Jones AM, Cech NB, Caesar LK. Phytochemical Analysis and 
Antimicrobial Efficacy of Macleaya cordata against Extensively Drug-Resistant 
Staphylococcus aureus. Nat Prod Commun. 2018 Nov 
1;13(11):1934578X1801301117.  

75.  Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial 
activity: A review. J Pharm Anal. 2016 Apr;6(2):71–9.  

76.  Wikler MA, Cockerill FR, Clinical and Laboratory Standards Institute. Performance 
standards for antimicrobial susceptibility testing : twentieth informational 
supplement. Wayne, Pa.: Clinical and Laboratory Standards Institute; 2010. 
(Clinical and laboratory standards institute, 0273-3099 ; M100-S20=v. 30, no. 1).  

77.  Tanihara M, Yamasaki Y, Shibasaki Y, Ida K, Hirohara S, Terada K, et al. 
Antimicrobial Activity and Protection from Triton X-100-Induced Mammalian Cell 
Membrane Lysis by Artificial Amphiphilic Peptides. In: Jobbágy Á, editor. 5th 
European Conference of the International Federation for Medical and Biological 
Engineering [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011 [cited 
2019 Oct 18]. p. 1078–81. Available from: http://link.springer.com/10.1007/978-3-
642-23508-5_280 

78.  James-Pirri M-J, Veillette PA, Leschen AS. Selected hemolymph constituents of 
captive, biomedically bled, and wild caught adult female American horseshoe crabs 
( Limulus polyphemus ). Mar Freshw Behav Physiol. 2012 Jul;45(4):281–9.  

 


