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The goal of our scattering experiments is to derive the distribution the differential

cross-section and elucidate the dynamics of a bimolecular collision via pure rotational

spectroscopy. We have explored the use of a data reduction model to directly trans-

form rotational line shapes into the differential cross section and speed distribution of

a reactive bimolecular collision. This inversion technique, known as Fourier Transform

Doppler Spectroscopy (FTDS), initially developed by James Kinsey [1], deconvolves

the velocity information contained in one-dimensional Doppler Profiles to construct

the non-thermal, state-selective three-dimensional velocity distribution. By employ-

ing an expansion in classical orthogonal polynomials, the integral transform in FTDS

can be simplified into a set of purely algebraic expressions technique; i.e. the Taatjes

method [2]. In this investigation, we extend the Taatjes method for general use in

recovering asymmetric velocity distributions. We have also constructed a hypothet-

ical asymmetric distribution from adiabatic scattering in Argon–Argon to test the

general method. The angle- and speed-components of the sample distribution were

derived classically from a Lennard-Jones 6-12 potential, with collisions at 60meV,

and mapped onto Radon space to generate a set of discrete Doppler profiles. The

sample distribution was reconstructed from these profiles using FTDS. Both distri-

butions were compared along with derived total cross sections for the Argon–Argon

system. This study serves as a template for constructing velocity distributions from

bimolecular scattering experiments using the FTDS inversion technique.
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CHAPTER I

OVERVIEW

Molecular reaction dynamics is the study of individual chemical reactions on the

atomic length and time scales [3]. Tools in mathematical and experimental physics are

used to probe and characterize the collision dynamics associated in a chemical trans-

formation. This information is used to predict and control how energy is distributed

among translation, rotation, and vibration of the reaction products. In the Duffy

lab at the University of North Carolina at Greensboro, we explore the use of a data

reduction model called Fourier Transform Doppler Spectroscopy, FTDS, to extract

vector information from state-specific reaction products for use in cross-molecular

beam experiments. In this chapter, an outline of the thesis is provided with a brief

overview of each of the subsequent chapters.

1.1 Thesis Outline

Chapter II provides a brief survey into Molecular reaction dynamics. Common ex-

perimental tools are discussed in detail and include time-resolved laser spectroscopy

and a variety of crossed-molecular beam experiments that differ in detection. Ex-

traction of dynamical information from these methods are briefly explained. The

Duffy lab crossed-molecular beam machine is discussed along with its unique detec-

tion scheme and data interpretation. In this chapter, we introduce FTDS as our

method to construct product angular and speed distributions from Doppler line-
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shapes of state-selective reaction product(s). In chapter 3.3 a background into FTDS

explains the motivation for the technique along with a detailed explanation of the

Doppler technique. A derivation of FTDS is provided along with a general method

for reconstructing cylindrically symmetric distributions analytically. A symmetric

velocity distribution from a parallel-type transition in photodissociation is modeled

and reconstructed using the general method. FTDS has been used to construct many

photodissociative processes due to the simplicity and symmetry of these systems. In

chapter IV, we explore the use of FTDS on asymmetry velocity distributions acquired

from crossed-molecular beam experiments. We model an adiabatic Argon–Argon in-

teraction and construct an asymmetric sample distribution classically from a spheri-

cally symmetric intermolecular potential. The mechanics of the problem are detailed

and the differential cross section of the Argon–Argon collision system is computed

from empirically derived parameters and compared for accuracy. In this exercise, we

attempt to simulate lineshapes from a velocity distribution we could observe using

our crossed-molecular beam apparatus. The profiles are fit with Hermite and Leg-

endre polynomials and used to reconstruct the initial forward problem. A procedure

for reconstructing distributions using our experimental set-up is discussed including

limitations to the technique. Chapter V includes a summary and concluding remarks.

An explicit derivation of the FTDS inversion technique and the general method are

provided in Appendices A and B, respectively.
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CHAPTER II

INTRODUCTION

2.1 Molecular Scattering

Molecular beam scattering studies have been used for decades to characterize the

intermolecular forces and dynamics that govern chemical reactivity [3–9]. Considered

the low energy (i.e. interaction energies <10 eV) antithesis of scattering experiments

conducted at CERN’s Large Hadron Collider, molecular beam scattering studies pro-

vide an account of the underlying forces involved in an observable chemical reaction.

The typical experiment consists of crossing two gas beams under single collision con-

ditions and observing the nascent scattering products, Figure 1.

Figure 1. Crossed molecular beam apparatus. Detection of reaction products is a
function of laboratory angle Θ.

3



Single collision conditions translate into an experimental set-up under high vacuum

(<10−6 torr) with highly collimated, differentially pumped beam sources. This ar-

rangement ensures a.) the likelihood of a single interaction between molecular com-

ponents of the intersecting beams (i.e. two-body interaction) and b.) the observation

of its unaltered products.

The interacting bodies exert a force on one another that can alter the direction,

motion, and composition of its participants. In terms of chemistry, the interaction

(referred hereinafter as a “collision”) results in the energy, mass, or charge exchange

between the reactants. The reaction can be pictured as an inertial frame with two

bodies approaching a collision point along a straight line, Figure 2.

Figure 2. Two-body collision of AB + C → A+BC reaction.

The collision prompts the chemical transformation and potentially redirects the prod-

uct(s) from the reactant trajectories. The angle formed between the initial and final
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trajectories, i.e. the deflection angle χ, is characteristic of the force and impact pa-

rameter, b; the perpendicular distance from the target-body to the initial trajectory

of the incident-body.

The forces that constitute an observable chemical transformation can be deter-

mined by tracing the trajectories of the scattering products about the collision point.

These “chemical” forces, typically weak electrostatic interactions, are assumed to be

central (spherically symmetric) and conservative (explicitly do not depend on time

or velocity). As a consequence of such a force field, the total mechanical energy and

angular momentum of the system are constants of motion and have a unique effect

on the observed scattering [10]; see Section 4.1 for further discussion.

Observing the motion of individual atoms as their parent molecules collide would

provide a complete picture of the forces and dynamics involved in a chemical reaction.

This information can be available using femtosecond pump-probe spectroscopy, i.e.

the “molecular microscope”. The technique involves splitting a laser beam in two,

utilizing one beam to initiate the interaction (i.e. the “pump” laser), and probing

the time evolving change with the other beam, Figure 3. A series of laser probe de-

lays can obtain plot the time-progression, for example, of a bond-breaking or forming

in a chemical reaction. But an inherent difficulty exists in examining bimolecular

collisions using this real-time clocking technique [3; 11–13]. If reactive bimolecular

collisions occur on a nano- to microsecond timescale, the probability a femtosecond

pump pulse interacts with the reactants at the very moment they collide is very low;

about one in 10,000. This makes it virtually impossible to accurately determine the
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“zero-of-time” in a crossed-molecular beam experiment, since there are no synchro-

nized reactive collisions between the “pumped” (state-selected) reactants. Conversely,

a crossed-molecular beam set-up using a rotatable time-of-flight mass spectrometer

(TOF-MS) provides a means to “visualize” the details of a chemical reaction [5].

Figure 3. Time-resolved pump-probe spectroscopy set-up.

2.2 Crossed Molecular Beam Machine

In a crossed-molecular beam experiment, the two beam sources are stationary and

crossed at 90o. The beams are produced when a high-pressure gas traverses a short-

converging nozzle into an evacuated chamber, Figure 4. As the gas particles exit

the nozzle, they undergo an adiabatic expansion which converts the random thermal

motion of a hot static gas into the forward directed flow of a cold, supersonic beam

of molecules [14–16]. The molecular beams are collimated and differentially pumped
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in order to remove the highly divergent and rotationally hot parts of the free jet ex-

pansion, allowing only the coldest part of the beam to enter the interaction chamber,

Figure 1.

Figure 4. Free jet expansion in short-converging nozzles. Reprinted with permission
from Atomic and molecular beam methods, vol. 1, Copyright 1988, Oxford University
Press. [14]

Detection of nascent scattering products is obtained via mass spectrometry. Briefly,

neutral molecules enter a rotatable mass spectrometer at a well-defined solid angle,

∆Ω(Θ,Φ). Ions are produced via electron impact (at ∼100 eV) and extracted into a

quadrupole mass filter. Time-of-flight (TOF) spectra are obtained by synchronizing

a chopper wheel at the entrance of the detector with the signal acquisition from the

ion counter. Nicknamed the “universal” machine for its ability to detect ionizable

species, the time- and angle-resolved measurements of this set-up trace the nascent

product trajectories (relative to the collision center) and resolves the translational

energy release of the reaction. Construction of a Newton (or velocity vector) dia-

gram, Figure 5, from the crossed-beam geometry provides for a kinematic analysis of
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the reaction. In Figure 5, the velocity vectors in the laboratory and center-of-mass

frames are denoted v and u, respectively.

Figure 5. Newton diagram of the F + H2 → HF + H reaction.

Since the measurements are acquired in the laboratory frame, a transformation of

coordinates (or Jacobian) is necessary to view the scattering products from the col-

lision point (i.e. the center-of-mass frame); Figure 6. In the center-of-mass frame,

the product scattering distribution contains cylindrical symmetry about the relative

velocity vector, vrel = uH2
− uF, i.e. the line joining the centers of the reactants.
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Figure 6. Jacobian of the transformation from LAB to COM frame. In this schematic,
a hypothetical velocity distribution in the LAB frame is transformed into the COM
via Jacobian matrix.

By virtue of energy conservation, the accessible quantum ro-vibrational states (E ′int)

are determined by 1.) the observed recoil velocity of the collision products(E ′trans),

2.) the internal energy of the reactants (Eint) and their relative translational motion

in the center-of-mass frame (Etrans), and 3.) the standard reaction energy change

(i.e. the difference in bond dissociation energies, ∆E0); equation II.1.

Etotal = E ′int + E ′trans = Eint + Etrans −∆E0 (II.1)

The possible spectrum of recoil velocity vectors form a discrete set of expanding

concentric spheres, known as Newton spheres (Figure 7), which expand along the
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center-of-mass velocity. These spheres each correspond to a unique partitioning of

the total energy, Etotal, between translational and internal states, relating the radius

of the sphere to a particular internal mode of motion.

Figure 7. Reaction coordinate for the F + H2 → HF + H reaction.
a) Feshbach resonance-mediated reaction mechanism for F + H2 with two resonance
states trapped in the HF(v’ = 3)–H’ vibrational adiabatic potential well; one dimen-
sional wave functions are provided for (003) and (103). Republished with permission
of Annual Reviews, from Annu. Rev. Phys. Chem. 2007, 58: 433-59 ; permission
conveyed through Copyright Clearance Center, Inc. [6]
b) Center-of-mass frame velocity-flux contour map for the F + D2 reaction at 1.82
kcal/mol. Adapted from J. Chem. Phys. 1985, 82: (7), 3067-77. Copyright 1985,
American Institute of Physics with permission from author. [5]

In Figure 7, the outlined spheres (vibrational states at maximum recoil velocity)

map internal states on the product contour map to those on the one-dimensional po-

tential energy profile. The contours between adjacent spheres represent the remaining

energy disposal between translational and rotational states and the probability they
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appear at specific angles and speeds. Together the translational energy and angular

distributions of the scattering products reveal details of the reaction’s potential en-

ergy surface; e.g. its shape, barriers, the role and geometry of short-lived molecular

states during scattering, etc.

A major goal in molecular beam scattering studies is to understand how electronic

and nuclear motions are coupled in elementary inelastic and reactive collisions. This

information is derived from the observed distribution in deflection angles (referred

to as the differential cross section) that arises in, for example, reactive molecular

collisions, molecular photodissociation, weakly-bound complexes, etc. Ideally, the

empirical data is directly inverted or transformed into its associated potential energy

function (the so-called inverse quantum scattering problem). But such a procedure

is ill-posed, i.e. conditions do not satisfy either existence, uniqueness, or continuity

with respect to the data and the experimental error [17; 18]. Instead, the empirical

data is used to ameliorate ab initio quantum calculations of the reaction’s potential

energy surface, also known as the forward convolution technique. In addition to its

fundamental importance, gas phase chemical dynamics enable the interpretation of

many important macroscopic phenomena. These include applications in practical

disciplines such as combustion, atmospheric chemistry, astrophysics, plasmas, laser

physics, etc. [9].

2.3 An Alternative Method for Obtaining the Differential Cross Section

In Prof. Liam Duffy’s lab at UNCG, we have designed and built a new crossed-

molecular beam machine and are currently in the testing stages. Instead of stationary
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crossed-molecular beam sources, as in the universal machine (Figure 1), we have con-

structed a rotatable, differentially pumped molecular beam set-up, Figure 8a. The

new set-up permits each arm (i.e. aluminum housing that suspends a pulsed beam

source and its skimmer about the center of the chamber) to rotate independently

from one another. This provides the ability to adjust the relative collision energy of

the reactants without altering the internal state distribution of the colliding species

[19]. The scattering products are detected using a direct absorption scheme, con-

sisting of passing linearly polarized microwave radiation through polar molecules. A

liquid-Helium cooled InSb hot-electron bolometer chip detects the evolving transient

absorption signals, which are used to generate rotational line-shapes in frequency

space, referred to as Doppler profiles [20].

The immediate goal of our scattering experiments is to obtain the velocity dis-

tribution, and hence the differential cross section, from elementary reactive collisions

using our direct absorption set-up. In order to do so, we must explore the use of

a mathematical model to transform the acquired data, i.e. our Doppler profiles,

into the velocity distribution of a reaction. Fourier Transform Doppler Spectroscopy

(FTDS) is an inversion technique that allows the construction of a state-selective

three-dimensional velocity distribution from discrete one-dimensional Doppler pro-

files [1]. In our crossed-molecular beam set-up, fixing the collision energy of the

reaction and rotating the arms synchronously (relative to the millimeter wave probe)

can achieve this (see insert in Figure 8a).
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(a) Doppler Machine layout. Insert: Sample Newton Diagram

(b) Cut-through of set-up [19]

Figure 8. Illustration of the Duffy Lab Doppler Machine. The rotatable arms each
house a collimated and differentially pumped molecular beam source.

The FTDS inversion technique and our experimental set-up would enable us to ob-

serve angle-resolved rotational line-shapes and construct the three-dimensional veloc-

ity distribution of an individual product rotational state.
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In order to confirm the utility of the FTDS inversion technique with distributions

arising from bimolecular scattering experiments, we intend to construct the forward

scattering problem. We opt for a well-studied scattering system with known collision

cross-sections and angular distributions at well-defined collision energies. Our intent

is to construct the angular distribution of elastic Argon–Argon scattering from an

intermolecular potential with laboratory-like system constraints. We will derive the

total cross section and compare our theoretical results to experimental studies. From

these constraints, we will build a non-thermal product velocity distribution from speed

and angle-dependent components. A set of Doppler profiles will be extracted from

the forward constructed velocity distribution and an expansion in classical orthogo-

nal polynomials will be used to fit the profiles. The polynomial expansion enables

the integral transform in FTDS to be solved analytically, a procedure developed by

Taatjes et al. [2], and makes the procedure computationally robust. We extend

this method to incorporate both odd and even Hermite and Legendre terms in our

polynomial expansion, resulting in a modified analytical expression for the inversion

procedure. In this investigation, we attempt to fit Doppler profiles with our expan-

sion scheme using the coefficients to recover the simulated velocity distribution in in

Argon–Argon elastic scattering. This study will serve as a template for constructing

velocity distributions for future bimolecular scattering experiments in the Duffy lab.
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CHAPTER III

FOURIER TRANSFORM DOPPLER SPECTROSCOPY

3.1 Background

Fourier Transform Doppler Spectroscopy (FTDS) is an inversion technique that re-

covers the three-dimensional velocity distribution from a collection of one-dimensional

Doppler profiles. In 1977, Prof. James Kinsey at MIT developed the technique as an

alternative to resolving speed distributions of the scattering products via time-of-flight

mass spectrometric (TOF-MS) analysis [1; 7]; see Section 2.2 for a brief summary.

Obstacles related to TOF-MS lie in compiling and interpreting the scattering data.

Data acquisition can be a lengthy process involving multiple TOF scans for each ac-

cessible angle in the laboratory frame (which can span a 120o range). Angle-resolved

speed distributions are derived from the TOF scans, but a Jacobian is necessary to

transform the laboratory frame data into the reaction’s center of mass frame. This

operation enables the construction of a product velocity-flux contour map (e.g. Fig-

ure 6). Another shortcoming of this detection scheme is its inability to resolve internal

state information directly from the detected species. This quantum state informa-

tion is inferred from the speed distribution and its implied energy disposal about the

center-of-mass, Figure 7. In contrast, FTDS provides a framework to transform a

set of quantum state resolved measurements into the full velocity distribution of a

scattering experiment in the center-of-mass frame [1; 2; 21; 22].
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3.2 The Doppler Technique

FTDS involves the use of the Doppler technique to observe resonance absorption

or emission of electromagnetic radiation by the scattered product(s). The process

is best described in a spherical frame with products emanating from the origin (i.e.

collision/center-of-mass point) with a variety of recoil velocities, v(v, θ, φ), Figure 9.

Figure 9. Space-fixed coordinate system for a bimolecular collision.

The state specific collision products are interrogated along the probe source direction,

denoted k̂probe, defined by a coordinate transformation from the (xyz) system to a

new (x’y’z’) where the z’-axis points along k̂probe. Such a transformation maps the

velocity information in the (xyz) system onto the new (x’y’z’) sytem in the form of a

scalar projection, equation III.1.

v · k̂probe = ‖v‖ cos θ′′ = w (III.1)
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Probe beam attenuation is observed when the orientation of the transition dipole

moment within the molecule µ and the polarization of the probing radiation Eprobe

are aligned [23; 24]. For the simplest case, the reaction products are considered

structureless particles with an isotropic distribution of µ. Therefore, probing these

scattering products at a fixed direction with different linearly polarized beams would

produce the same spatial anisotropy; we will consider this case in the discussion be-

low. The relation in equation III.1 is further complicated when considering molecular

polarization and vector coupling between v, µ, Eprobe, and the angular momentum

vector J of the scattering product.

The geometric argument in equation III.1 also has a corresponding spectroscopic

one. Interaction of the wave/probe with the particle depends on its relative motion

with respect to the wave source. For example, if the particle has no velocity com-

ponent relative to the direction of the wave source, the particle will absorb or emit

radiation at the prescribed “rest” transition frequency, ν0, Figure 10. Any velocity

component along the direction of the source will correspond to a “shift” in the reso-

nance rest frequency, known as the Doppler shift, ∆ν; equation III.2.

ν = ν0(1− w

c
) =⇒ w = −∆ν

ν0

c (III.2)
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Figure 10. Doppler shifts of two velocities probed on the same plane.

Using a tunable frequency source to interrogate state specific collision products,

the Doppler technique can directly probe a distribution of recoil velocities (or New-

ton sphere) arising from elementary chemical reactions. These inner product mea-

surements or tomographic “slices” are projections that approximate the cumulative

measurement of the product velocity distribution. The standard spectroscopic prob-

ing techniques are laser-induced fluorescence (LIF) and resonance-enhanced multi-

photon ionization (REMPI) detection. Both consist of pumping a state-selective col-

lision product with a tunable frequency source (e.g. a laser), but differ in detection

scheme. In LIF, pumping a state-selected collision product takes the inner product

measurement of the velocity vector field by observing the fluorescence of the probed

molecules with the use of a photomultiplier tube (PMT) [1; 23]. REMPI further

ionizes the pumped/state-selected products with a second laser and accelerates the

resulting product ions into a multichannel plate (MCP) for spatial and TOF analysis;

much like the universal machine, but with rotational resolution [25].
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3.3 Tomographic Reconstruction of the Velocity Distribution

Tomographic determination of the state selective product recoil distribution is

achieved by a discrete set of inner product measurements or Doppler profiles. The

Radon transform provides the appropriate mathematical formalism for this tomo-

graphic reconstruction, equation III.3.

D(w; θ′, φ′) =

∫
d3vF (v) δ[w − v · k̂probe] (III.3)

Here the Radon transform of the three-dimensional velocity vector field, F (v), corre-

sponds to the measured Doppler profile, D(w; θ′, φ′), at specific polar and azimuthal

angles (θ′ and φ′, respectively) about the collision center, Figure 9.

The inverse Radon transform would directly recover the desired velocity vector

field from acquired Doppler profiles, but this method is difficult to derive and imple-

ment [26]. Instead, Kinsey applied the so-called Fourier synthesis method [27]. This

inversion technique relates the Radon space R projection of F (v), taken along θ′ and

φ′, to a “slice” of F (v) in Fourier space F−1
1D at the same angles; a result known as the

central-slice theorem. Therefore, recovery of the velocity vector field can be obtained

by taking the three-dimensional inverse Fourier transform F−1
3D of a collection of slices

in Fourier space, equation III.4. This procedure is illustrated in Figure 11.

F (v) =

∫
d3kG(k) e2πi(k·v) (III.4)
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Figure 11. Flow-chart of FTDS inversion procedure.

A complete derivation of Kinsey’s FTDS inversion procedure can be found in Ap-

pendix A. For brevity, only key expressions will be discussed in this section.

If a vector field is known to be either irrotational or solenoidal, then fewer inner

product measurements are required to recover the vector field [27]. In our scatter-

ing problem (depicted in Figure 2), we introduced an a priori assumption regarding

the angular distribution function. If we assume our colliding particles experience a

central conservative force, the resulting recoil velocity distribution will exhibit cylin-

drical/axial symmetry along the relative velocity vector. The symmetry afforded by

this problem can simplify the three-dimensional Fourier transform in equation III.4,

into the product of a one-dimensional Fourier transform and a radially symmetric

two-dimensional Fourier Transform in the traverse plane [28]. The latter is also re-

ferred to as a Hankel Transform, which contains a zeroth order Bessel function of the

first kind, J0(z); encompassing the axial symmetry of the collision, equation III.5.

F (v, θ) = 2π

∫ ∞
0

dk k2

∫ 2π

0

dθ′ sin θ′J0(2πkv sin θ′ sin θ) gcyl(k; θ′) e2πi(kv) cos θ′ cos θ

(III.5)
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Aside from the increased versatility, sensitivity, and specificity afforded by the

Doppler technique, the main advantage of FTDS over TOF-MS detection is its gain

in signal to noise from the so-called Fellgett’s advantage [1]. In TOF-MS detection,

the signal intensity of a TOF spectrum is proportional to the number of molecules

detected in a small solid angle, ∆Ω, subtended from the detector opening. Compara-

tively, the multiplexed signal from a Doppler profile is attributed to the total number

of resonant molecules traversing the probe. This phenomenon is irrespective of the

molecule’s direction, since the resonant particles all have a velocity component par-

allel to the radiation probe; see equation III.1. Since FTDS maps data onto Fourier

space, digital filtering and image-enhancement techniques can readily remove un-

wanted convolutions [29]. Artifacts, such as broadening effects due to laser linewidth,

shot noise, etc., can be removed by dividing their frequency response function from

the acquired signal. Characteristics of the unwanted convolution must be understood

with great accuracy and precision, since their removal can prompt drastic alterations

to the signal.

3.4 A General Method for Reconstructing Cylindrically Symmetric Dis-

tributions

Due to the discrete nature of the Doppler profiles, the Fourier transform in equa-

tion III.5 can be evaluated numerically. But random noise in the experimental data

(corresponding to high-frequency harmonics) can lead to excessive loss of informa-

tion and/or numeric instability of the inverse transform [22; 27]. Alternatively, a

functional form for the Doppler profiles enable the inverse Fourier transform to be
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solved analytically. Using Gaussians for their Doppler profile fitting function, Kinsey

and coworkers were the first to document a quantum state-resolved product velocity

distribution via the FTDS inversion procedure [22; 30]. They examined the H +

NO2 reactive collision and derived a product velocity distribution in good agreement

with TOF-MS constructed distributions. But much of the literature on FTDS is re-

lated to photo-induced half-collision processes (molecular photodissociation) [31–37].

The dynamics associated with full (i.e. bimolecular) collisions and half-collisions are

identical, but differ slightly in the experimental set-up and its interpretation in the

space-fixed inertial frame. Full bimolecular collisions contain a cylindrically symmet-

ric scattering distribution about the relative velocity vector; i.e. the velocity along

the line joining the scattering partner’s centers (z-axis in Figure 9). In half-collision

experiments, a molecular beam source is crossed with a dissociation laser. Fragmenta-

tion occurs when the electric vector of the photolysis light Ediss, the transition dipole

moment µ, and the dissociation bond axis of the molecule are aligned in a particular

manner [23; 24]. Therefore, the direction of fragment departure, which defines the

recoil velocity vector v, bears a fixed angular relationship with the parent molecule’s

transition dipole moment µ. For example, in a parallel-type transitions, the electric

vector and transition dipole are aligned parallel to the dissociation bond axis, giving

rise to a cylindrically symmetric scattering distribution about the electric vector; i.e.

the z-axis in Figure 12.
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Figure 12. Space-fixed coordinate system for a parallel-type transition.

State specific photofragments are interrogated with a probe laser, k̂probe, whose di-

rection is defined by Euler angles θ′ and φ′ relative to the dissociation laser’s electric

vector, Ediss.

In recovering product velocity distributions from half-collision processes using

FTDS, implementation of a fitting function is common practice. Since Doppler profiles

are typically symmetric in half-collision processes, the fitting function must be even

and have a limit of zero outside the data range. In general, Gaussian or Gaussian-like

functions can accurately represent the data and carry out the entire problem ana-

lytically [30; 33; 36]. Another fitting scheme assumes a specific functional form for

F (v) [31; 37]. If the product velocity distribution is separable into speed and angle

components, it is convenient to express the angular distribution or differential cross

section as a multipole expansion, provided the recoil energy separating the fragments

is much larger than the rotational energy of the parent molecule [23; 24]. Cylindrical
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symmetry reduces the expansion exclusively in terms of the Legendre polynomials,

equation III.6, and in simple half-collision reactions reduces into the well-known dipo-

lar form, equation III.7.

dσ

dΩ
≡ I(θ) =

∞∑
l=0

alPl(cos θ) (III.6)

I(θ) ≈ 1

4π

[
P0(cos θ) + β P2(cos θ)

]
(III.7)

In this form, the second term expansion coefficient in equation III.7, referred to as the

asymmetry parameter β, determines the relationship between the transition dipole

moment µ of the parent molecule and the electric vector of the photolysis light Ediss

in a half-collision process, Figure 13. For example, a dissociative system with a β = 2

corresponds to a parallel-type transition, β = −1 for a perpendicular-type transition,

and β = 0 for an isotropic distribution of photofragments.

Figure 13. Angular distribution for different photofragmentation processes.
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In 1990, Taatjes et al. developed a general method for determining cylindrically

symmetric velocity distributions using Kinsey’s FTDS inversion technique [2]. By

employing an expansion in classical orthogonal polynomials (equation III.8), the in-

tegral transform in equation III.5 was reduced to a set of purely algebraic relations.

Dcyl(w; θ′) =
∑
l

Pl(cos θ′)
∑
n

al,nHn(w) e−w
2

(III.8)

Hermite and Legendre polynomials are arbitrarily elected for integrability, existence,

and for their known transform properties [38].

Taatjes et al. examined the Doppler profiles of simple molecules undergoing a

half-collision process. These profiles exhibit a reflection symmetry about the rest

transition frequency, ν0, reducing the expansion in equation III.8 exclusively to even

term polynomials. This argument can be extended to Legendre polynomials, since

1.) the multipole expansion of the product angular distribution can be truncated to

its dipolar form, equation III.7, and 2.) the linearity of the integral operator enables

an analogous expansion for the Doppler profile in terms of w as a function of θ′;

see equation III.9. The Taatjes method makes the FTDS inversion computationally

robust, simplifying the integral transform into an expression, equation III.10, consist-

ing of expansion coefficients and known functions – i.e. a confluent hypergeometric

function and series of gamma functions (Euler integral of the second kind) [2]. Just

as in FTDS, a detailed derivation of the Taatjes method, including its expansion co-

efficients al,n, is provided in Appendix B; note that no derivation of equation III.9 is
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provided in either of the referenced articles, in particular [2; 37], nor in Craig Taatjes’

PhD dissertation.

F (v, θ) = 2π

∫ ∞
0

dk k2

∫ 2π

0

dθ′ sin θ′J0(2πkv sin θ′ sin θ) e2πi(kv) cos θ′ cos θ

·
∑
l

Pl(cos θ′)
∑
n

al,n

[√
π

2
in e−π

2k2(2πk)n

] (III.9)

Fl(v, θ) =
vl e−v

2
Pl(cos θ)

2π Γ
(
l + 3

2

) ∑
n

al,n i
n+l 2n Γ

(
3 + n+ l

2

)
1F1

(
l − n

2
; l +

3

2
; v2

)
(III.10)

3.5 Sample Reconstruction

To test the Taatjes method, equation III.10, we construct a hypothetical velocity

distribution from a one-photon dissociative process that is expressed as the product

of speed- and angle-dependent components, equation III.11.

F (v, θ) = f(v) · I(θ) (III.11)

=
1√

2πs2
e−

(v−u)2

2s2
1

4π
[1 + β P2(cos θ)]

We plot a parallel-type transition (β = 2) with an arbitrary Maxwellian speed dis-

tribution in Figure 14, using Mathsoft MathCAD (version 11.1) software. Using the

MathCAD software, the state-selected velocity contour maps are graphed as surface

plots with the x- and y-axes representing indices of an arbitrary range of speed; e.g.
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center of the x-y plane on Figure 14 serves as the origin of the polar coordinates v and

θ, while the z-axis conveys the likelihood of a particular velocity (i.e. the scattering

intensity). The speed distribution in Figure 14 is gaussian with a relative mean speed

u = 2.0 (equivalent to 761 m/s) and standard deviation s = 0.2. The indices in

this and subsequent surface plots correspond to a speed range −vmax to vmax, where

vmax = 2u = 1522 m/s.

Figure 14. Simulated parallel-type transition using equation III.11. Insert: top view
of velocity contour map.

Accounting for the intrinsic symmetry and simplification of the photodissociative

process, discussed in Section 3.4, theoretical curves can be derived by means of the

Radon transform, equation III.12. A coordinate transformation from (xyz) to (x’y’z’)

and integration over φ′′ and θ′′ results in the Doppler profile averaged over the dis-

tribution v2f(v), equation III.13; derived by Schmiedl et al. [31]. Doppler profiles of

the sample distribution are generated using equation III.13 and fitted with classical
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orthogonal polynomials (equation III.8); Figure 15. Fitting the Doppler profiles with

the classical orthogonal polynomials in equation III.8 permits reconstruction of the

sample distribution from Doppler profiles in Figure 16.

Dcyl(w; θ′) =

∫
d3vF (v, θ) δ[w − v · k̂probe]

Dcyl(w; θ′) =

∫ ∞
v=0

dv v2

∫ π

θ=0

dθ sin θ

∫ 2π

φ=0

dφ f(v)

· 1

4π
[1 + β P2(cos θ)] δ[w − v cos θ′′]

(III.12)

Dcyl(w; θ′) =

∫ ∞
|w|

dv v2 f(v)
1

2v

[
1 + β P2(cos θ′)P2

(w
v

)]
(III.13)

Figure 15. Simulated Doppler profiles using equation III.13. Note: the residual
between profile and fit, shown in green, is amplified by 100 fold
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Figure 16. Velocity distribution recovery using Taatjes method, equation III.10. In-
sert: top view of velocity contour map.

With successful recovery of the simulated velocity distribution using the Taatjes

method, we wanted to test this procedure on asymmetric distributions; e.g. those

stemming from full bimolecular collisions. Equation III.10 considers only an even-

term expansion in Hermite and Legendre polynomials and results in the symmetry

observed about w = 0, i.e. the rest transition frequency ν0; Figure 15. In our bi-

molecular scattering experiments, we cannot assume the spectral symmetry afforded

by half-collision processes; the dynamics from one chemical transformation to an-

other can be very different and can give rise to a distinct anisotropy. Therefore, the

incorporation of odd Hermite and Legendre terms of the expansion is necessary to

account for the potential asymmetry in the Doppler profiles of asymmetric velocity

distributions. Therefore, the derivation from equation III.8 through equation III.10

needed adjustment for our general use with no presumptions of symmetry regarding

the profiles. We find a new expression, equation III.15, which incorporates both odd
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and even Hermite and Legendre terms and accounts for potential asymmetries in

Doppler profiles.

F (v, θ) = 2π

∫ ∞
0

dk k2

∫ 2π

0

dθ′ sin θ′J0(2πkv sin θ′ sin θ) e2πi(kv) cos θ′ cos θ

·
∑
l

Pl(cos θ′)
∑
n

al,n

[
√
π (−i)n e−π2k2(2πk)n

] (III.14)

Fl(v, θ) =
il vl e−v

2
Pl(cos θ)

π Γ
(
l + 3

2

) ∑
n

al,n (−i)n 2n Γ

(
3 + n+ l

2

)
1F1

(
l − n

2
; l +

3

2
; v2

)
(III.15)

The differences between equations III.10 and III.15 are subtle and include a factor of

2 and (−i)n; our derivation of the general method can be found in Appendix B. With

these adjustments we were able to recover the same simulated velocity distribution

constructed using equation III.11, Figure 17.
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Figure 17. Simulated velocity contour maps parallel-type transitions. a.) the sim-
ulated velocity distribution and b.) the velocity distribtution recovered using equa-
tion III.15.
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CHAPTER IV

RECONSTRUCTION OF THE ASYMMETRIC DISTRIBUTION

The same mechanism formulated in Section 3.5 was necessary in order to test

the utility of the general method, equation III.15, for asymmetric velocity distri-

butions. This procedure involved constructing a sample distribution, mapping the

distribution into Radon space, fitting the generated Doppler profiles with even and

odd termed Hermite and Legendre polynomials, and recovering the distribution via

equation III.15. We chose to simulate the elastic scattering in Argon–Argon collisions

primarily for its simplicity and wealth of available data (i.e. cross sections, angular

distributions, etc.) at well-defined energies [39–44]. The initial goal of this exercise

was to construct the angular distribution from the elastic Argon–Argon interaction

(i.e. a forward-scattered distribution) and compute its integral cross section for com-

parison with an empirically derived cross section.

4.1 The Forward Problem in Scattering: Direct Calculation of the Dif-

ferential Cross Section

Consider an adiabatic collision between two structureless particles, i and j with

mass mi and mj, each exerting a force which depends solely on the distance between

them, i.e. a conservative system. Provided no external forces or additional energy,

the system’s Hamiltonian can be expressed as a function of kinetic energy, T , and

potential energy, V . If the kinetic energy of the system is a homogeneous quadratic
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function of velocity, the Hamiltonian is equivalent to the total mechanical energy of

the system, Etotal, equation IV.1.

H = T (|ṙ|) + V (r) = Etotal (IV.1)

T (ṙ, ψ̇, φ̇) =
1

2
µ
(
ṙ2 + r2ψ̇2 + r2 sin2 ψ φ̇

)

The scattering produced between two colliding bodies is constrained by the total

mechanical energy of the system, a constant of motion. This constrain defines the

collision border on the reaction’s Newton (velocity) sphere; a spherical frame with

spherical frame with one body fixed at the center (the so-called “target”) and another

approaching in a straight line, Figure 18.

For structureless particles the collision products are constrained to lie on a “plane”

formed by the impact parameter b and the velocity of the incident-body v; a direct

result of angular momentum conservation. Furthermore, rotation of the impact pa-

rameter about the target-body axis, i.e. the incident trajectory at b = 0, traces a set

of incident-body trajectories that give rise to an isotropy about the azimuthal angle

φ, referred to as cylindrical symmetry; the bullseye or dartboard picture in Figure 18.

As the impact parameter between two colliding bodies increases, the probability of

observing the reaction generally decreases. This probability is conveyed by the area

swept out by the largest impact parameter bmax (that still causes an observable reac-

tion) and is referred to as the effective cross section, σ(b, Etotal).
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Figure 18. Classical scattering process.

Scattering trajectories are unique to the velocity v and impact parameter b in an

adiabatic/elastic collision. To discern the underlying dynamics of of a reaction, we

observe the scattering product trajectories in the form of a deflection angle distribu-

tion, better known as the differential cross section. The differential cross section one

would observe for an adiabatic collision between two closed-shell Argon atoms can be

constructed from a spherically symmetric intermolecular potential; the so-called for-

ward problem in scattering. The functional form of this central potential is arbitrary

and examples can be found in Hirschfelder et al. [45]. We opt for the Lennard-Jones

6-12 potential function, equation IV.2, for its simplicity and its extensive use in de-
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scribing the Ar + Ar system [39; 41; 44].

V (r) = 4ε

[(
σ

r

)12

−

(
σ

r

)6]
(IV.2)

Deflection via a Repulsive Barrier

The Lennard-Jones 6-12 potential function gives a fairly simple and realistic rep-

resentation for spherical non-polar molecules. The potential is non-monotonic, Fig-

ure 19, with the −r−6 representing the induced-dipole-induced-dipole interaction at

long range (i.e. the attractive term) and r−12 approximating the repulsive contribu-

tion; whose index is a result of mathematical convenience and is by no means unique.

The parameters ε and σ correspond to the maximum energy of attraction (i.e. depth

of potential well) and the value of r for which V (r) = 0, respectively. Figure 19 is

an example plot of the LJ 6-12 potential, along with its components, for an Argon–

Argon interaction with parameters σ and ε equal to 3.40 Å and 141.3 K, respectively.

These values were obtained from Kalos et al. for a 369.0 Å2 collision cross section at

60 meV [39].
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Figure 19. Lennard-Jones 6-12 potential function and its components.

Deflection of the incident-body as it approaches the target is caused by the repul-

sive nature of the potential and the centrifugal barrier; the perceived repulsive force

derived from the angular motion of the system. Together, these repulsive components

of the interaction are known as the effective potential, Ueff (r, b), equation IV.3.

Ueff (r, b) =
1

2
µ r2ψ̇2 + V (r)

= Etotal
b2

r2
+ V (r) (IV.3)

Considering the symmetry of the collision and grouping centrifugal and potential en-

ergy terms into an “effective potential” simplifies equation IV.1 from three coordinates

into one, equation IV.4. Figure 20 is a plot of the effective potential at b = 0, 1
2
rm,
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rm, and 3
2
from an Argon–Argon collision from a collision with a Etotal = 5 ε; equiva-

lent to a relative velocity ṙ = 761 m/s.

Etotal =
1

2
µ
(
ṙ2 + r2ψ̇2

)
+V (r)

=
1

2
µṙ2 + ETotal

b2

r2
+ V (r) (IV.4)

= Trel(ṙ) + Ueff (r, b)

Figure 20. Effective potential at Etotal = 5 ε with varying impact parameter.

By expressing the change in ψ in terms of the change in r, we can obtain the apsi-

dal angle ψ0, the angular span between the direction where a minimum and maximum

r are obtained, equation IV.5. The trajectory of the incident-body is hyperbolic (i.e.

an open orbit) with apsides at rmin = r0 and rmax =∞, where r0 corresponds to the
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distance of closest approach. The trajectory of the incident-body is hyperbolic (i.e.

an open orbit) with apsides at rmin = r0 and rmax =∞, where r0 corresponds to the

distance of closest approach.

ψ0 =

∫ ∞
r0

dr
ψ̇

ṙ

= b

∫ ∞
r0

dr
1

r2

√
1− Ueff (r,b)

Etotal

(IV.5)

ψ0 defines a line of symmetry for the trajectory with impact parameter b, Fig-

ure 18. From this symmetry, the deflection angle χ can be obtained, equation IV.6.

χ(b) = π − 2 b ψ0 (IV.6)

= π − 2b

∫ ∞
r0

dr
1

r2

√
1− Ueff (r,b)

Etotal

Due to the inherent symmetry observed in collisions between structureless particles,

i.e. the cylindrical symmetry about b = 0, the sign of the deflection angle χ is not

experimentally meaningful; some deflection angles within a range b to b+db are indis-

tinguishable from its negative counterpart -[b to b + db]. Therefore, the “observable”

deflection angle θ corresponds to the absolute value of the computed deflection an-

gle χ, i.e. θ(b) = |χ(b)|; Figure 21. Computing the apsidal angle and subsequent

deflection angles χ and θ are Etotal-dependent calculations, as seen in equations IV.5

and IV.6. Figure 21 was computed for a Etotal = 5 ε equivalent to a relative velocity
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ṙ = 761 m/s.

Figure 21. Deflection angles χ and θ at Etotal = 5 ε.

The Differential and Integral Cross Sections

The differential cross section of a reaction is the flux of products undergoing a

deflection into a range θ to θ + dθ; i.e. the change in reaction cross section with

change in solid angle, dΩ. The differential cross section of a cylindrically symmetric

collision can be computed using equation IV.7 and is a Etotal-dependent calculation.

dσ

dΩ
≡ I(θ) =

2π b db

2π sin θ dθ
=

b

sin θ
(

dθ
db

)
=

b

sin θ
∣∣∣dχdb ∣∣∣ (IV.7)
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Figure 22 provides a plot of the scattering intensity (logarithmic scale) with varying

deflection angle θ at Etotal = 5 ε.

Figure 22. Angular distribution at Etotal = 5 ε for elastic scattering in Ar–Ar.

From Figure 21 it is evident a one-to-one correspondence does not exist between

impact parameter b and the deflection angle θ. This phenomenon gives rise to the

three curves present in the angular distribution plot, Figure 22; each corresponding

to range of impact parameters defined by the singularities at θ = 0 and the rainbow

angle θrb ≡ dθ
db

= 0. To obtain a one-to-one correspondence, between the scattering

intensity I(θ) and θ, the three curves must be summed for all θ ≤ θrb, equation IV.8.

I(θ) =
3∑
i=1

bi

sin θ
∣∣∣dχdb ∣∣∣

b=bi

(IV.8)
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In addition to this summation, we choose to ignore the singularities at θ = 0 and

θrb by rounding their scattering intensities. This was done (initially) by selecting an

arbitrary ∆b that effectively steps over these values and fitting that distribution via

a cubic spline fit, Figure 23.

Figure 23. Cubic spline fit of angular distribution at Etotal = 5 ε.

Integration of the differential cross section over the entire solid angle yields the inte-

gral/total cross section of the reaction, equation IV.9.

σ(θ, Etotal) =

∫
Ω

dΩ
dσ

dΩ
= 2π

∫ π

θmin

dθ I(θ, Etotal) sin θ (IV.9)

=⇒ θmin =

(
4 ε σ6

)
(bmax)

6 Trel

σ(b, Etotal) = 2π

∫ bmax

0

db b (IV.10)
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Initial attempts to compute the integral cross section resulted in a larger than ex-

pected value. We attributed this result to the large ∆b used to construct the angular

distribution, which lead to an inadequate spline fit about I(θmin). We implemented

an arbitrary rounding scheme, equation IV.11 that produced a smooth curve about

I(θmin) resulting in a finite value for I(θ = 0); c is the index number used in our

spline fit, where the total number of points used was 3000.

I(θc ≤ θ4) = I(θ4)
[7− c

2

] 1
2 (IV.11)

With these modifications to equation IV.8, we calculated a σ = 367.6 Å2, in close

agreement with σ = 369.0 Å2 Kalos et al..

4.2 Mapping the Distribution in Radon Space

The simulated velocity distribution was separable into speed- and angle-components.

The choice of speed distribution is arbitrary and we choose a Maxwellian distribu-

tion about the relative speed of our collision; i.e. ṙ = 761 m/s with a relative

standard deviation s = 0.2. Using equation III.11 and our calculated angular dis-

tribution we obtain Figure 24. In order to map the distribution in Radon space, we

applied equation III.13 to our hypothetical velocity distribution in photodissociation.

Equation III.13 provides an N to N correspondence between F (v, θ) and D(w; θ′),

but specifically for an angular distribution with two moments (monopole and dipole

terms). For our general reconstruction efforts, equation III.15 requires a multipole

expansion of the angular distribution. We modified equation III.13 for a general ex-
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pansion in Legendre polynomials; equation IV.12.

Dcyl(w; θ′) =

∫ ∞
|w|

dv v2 f(v)
1

2v

[
∞∑
l=0

al Pl(cos θ′)Pl

(w
v

)]
(IV.12)

Figure 24. Velocity contour map of Ar–Ar elastic scattering at Etotal = 5 ε. Insert:
top view of velocity contour map.

Our initial fits of the angular distribution were unsatisfactory resulting in the large

oscillations observed in Figure 25a, even with an expansion of 500 Legendre terms.

Attributed to the high-order Legendre terms, these high-frequency oscillations are

necessary to mimic the sharp features present in our angular distribution about θ = 0

and θrb. In order to fit the distribution properly, further modification or smoothing of

these sharp features are required unless a significant number of additional Legendre

terms are used for the polynomial fit, as in Figure 25b; the later is computationally
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expensive and time consuming for a single computer processor running MathCAD.

(a) Fit of angular distribution with 500 Legendre terms

(b) Fit of angular distribution with 1000 Legendre terms

Figure 25. Multipole expansion of the angular distribution.
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To compute the large number of expansion terms necessary to properly fit the

acquired Doppler profiles, multiple processors are needed to run the calculation. We

recognize the sharp features in this simulated angular distribution are not observed

experimentally, but are artifacts of a classical formulation in scattering. What is ob-

served at θ = 0 and θrb are finite-smooth features due to quantum resonances [3]. The

sharp features in the distribution in our classically derived distribution was smoothed

via an expansion in Jacobi polynomials, equation IV.13, providing a smooth curve

(parameters at α = 3.5 and β = 0) that crudely mimicked the shape of the original

distribution with 30 expansion terms.

Orthogonality of Jacobi Polynomials∫ ∞
0

dθ P (α, β)
m (cos θ)P (α, β)

n (cos θ) (1− cos θ)α(1− cos θ)β

=
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1) Γ(n+ β + 1)

n! Γ(n+ α + β + 1)
δm,n

(IV.13)

This fit allowed for another expansion in Legendre polynomials, Figure 26, and for

the generation of Doppler profiles via equation IV.12.
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Figure 26. Angular distribution fit with Jacobi and Legendre polynomials. The blue
line represents the Jacobi fit, while the green linerepresents the Legendre fit.

The crude fit with 30 Legendre polynomials, in Figure 26, resulted in an integral

cross section σ = 152.5 Å2. An incorrect integral cross section was expected from

this crude fit due to the low intensities near θ = 0, but the behavior/shape of the

curve was much like those observed in Kalos et al., Cavallini et al., and Lee et al.;

[39; 41; 43]. Using our arbitrary Maxwellian speed distribution, we can generate a

contour map of our separable velocity distribution, Figure 27a.
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(a) Velocity contour map of simulated velocity distribution.

(b) Doppler profiles of the simulated velocity distribution.

Figure 27. Velocity contour map and Doppler profiles of Jacobi fit curve.
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4.3 Reconstruction of the Distribution via FTDS

Mapping the distribution in Figure 27a into Radon space using equation IV.12

produces the Doppler profiles generated in Figure 27b. We generated 100 discrete

Doppler profiles at unique angles in an attempt to reconstruct the simulated distri-

bution in Figure 27a. The resolution of each Doppler profile consisted of 100 data

points, equivalent to our data collection scheme; detuning our microwave source in

increments of 0.02 MHz over a range of 2.00 MHz. The generated lineshapes are fit-

ted with 50 Hermite and 50 Legendre terms (includes even and odd expansion terms)

with simulated profiles, fits, and residuals plotted in Figure 28a. It is evident from

residuals plots in Figure 28a that the fit was inadequate.
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(a) Fit of simulated Doppler profile with Hermite and Legendre polynomials.

(b) Velocity contour map of distribution recovered from Doppler profiles in Figure 28a.

Figure 28. Fit of Doppler profiles and FTDS recovered velocity contour map.

In an effort to demonstrate the caution and detail necessary to properly construct

a velocity distribution using the FTDS inversion procedure, we attempted to recon-

struct the distribution from these Doppler fits. The expansion coefficients, derived

from the fit above, and our analytical expression for FTDS, equation III.15, produce
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the velocity distribution in Figure 28b.

The inability of the method to recover the exact distribution in Figure 27a is

attributed to the resolution of the simulated Doppler profiles. Again, 100 discrete

Doppler profiles were generated with a ∆θ′ = π
30

between each one. These large steps

in θ′ do not provide enough points to properly fit the higher order expansion terms,

as seen in by the high frequency oscillations in Figure 28a. A smaller ∆θ′ and ∆w

would provide more data points to properly fit the higher order polynomial terms.

This observation confirms a suspicion we had regarding our experimental set-up; in

order to properly reconstruct an observable distribution, we would need high angular

resolution for θ′. Our current set-up at best provides a one degree resolution assuming

little to no angular divergence from our molecular beam(s). The high resolution scans

would require Doppler scans with smaller frequency steps (e.g. 200 steps spanning 2

MHz) at each accessible angle. Fitting the Doppler profiles with more Hermite and

Legendre polynomials would also produce better fits of the velocity distribution and

eliminate the unwanted contributions from higher order terms.
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CHAPTER V

CONCLUSION

In this investigation, we report an extension of the Taatjes et al. general method

for reconstructing cylindrically symmetric velocity distributions. The modifications

allow for the tomographic reconstruction of asymmetric velocity distributions found

in crossed-molecular beam experiments. To test the method, we chose to construct a

sample asymmetric distribution from classical elastic scattering in the Argon–Argon

collision system. The choice of the well-studied Argon–Argon was arbitrary and pri-

marily considered for its simplicity. Doppler profiles were generated using a method

developed by Schmiedl et al. and fit using classical orthogonal polynomials. Recov-

ering the exact distribution in this collision system was of limited success due the

sharp features in the calculated distribution, the angular resolution used in our re-

construction procedure, and the insufficient number of expansion terms used to fit

the generated Doppler profiles.

In hindsight, a quantum constructed angular distribution from elastic Argon–

Argon collisions would have produced a smoother curve for reconstruction, via the

FTDS inversion procedure, than the idealized curve we calculated classically. A

reactive scattering potential with broader features should be investigated before ap-

plying FTDS and our general method of recovery to laboratory acquired data. A

prime system to investigate would be the well-studied H2 + F reaction. An expan-
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sion in Legendre polynomials for the center-of-mass angular distribution data in this

reaction, e.g. in Neumark et al., should be obtained to properly fit the generated

profiles with equation IV.12. This scheme provides the appropriate number of terms

in equation IV.12 and the Doppler fits in equation III.8. Such a study would test the

feasibility of FTDS and our general method in reconstructing velocity distributions

from acquired Doppler profiles.
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APPENDIX A

FTDS DERIVATION

1.1 The Radon Transform of the Velocity Vector Field

As discussed in Section 3.2, the inner product of the velocity vector v and probe

direction k̂probe results in the scalar projection w, equation A.1.

v · k̂probe = ‖v‖ cos θ′′ = w

=⇒ 0 = w − v · k̂probe

(A.1)

Each vector is defined by a particular set of coordinates, illustrated in Figure 29,

about the principle axis of symmetry (the z-axis in our space-fixed coordinate sys-

tem).

Figure 29. Space-fixed coordinate system for a parallel-type transition.
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If a vector field F (v) exists, such that a line impulse results from equation A.1,

then the one-dimensional projection of the vector field, D(w; θ′, φ′), is obtained by

integrating F (v) on a plane, whose orientation is described by k̂probe, the unit vector

normal to the plane; Figure 30.

Figure 30. 3D projection geometry.

The projection D(w; θ′, φ′) is also known as the Radon transform of F (v), equa-

tion A.2.

D(w; θ′, φ′) =

∫
d3vF (v) δ

[
w − v · k̂probe

]
(A.2)
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...where δ is the Dirac delta function defined by:

δ[x] = 0 ⇐⇒ x 6= 0

=⇒
∫ ∞
−∞

dx δ[x] = 1

(A.3)

This transformation maps the domain (vx, vy, vz) to (w; k̂probe). The projection can

be better seen and understood when mapping a two-dimensional object onto a line,

Figures 31a and 31b.
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(a) Projection of F (v, θ) at θ′ = 0.

(b) Projection of F (v, θ) at θ′ = π
2 .

Figure 31. Radon space projections of F (v, θ) at a.) θ′ = 0 and b.) θ′ = π
2
.
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1.2 Inverse Radon Transform: The Fourier Synthesis method

Figures 31a and 31b are simulated Doppler profiles of a parallel-type transition

in photodissociation. The intent of FTDS is to invert Doppler profiles to acquire the

velocity distribution of a two-body interaction. Since direct inversion of the Radon

transform is difficult to derive and implement, an alternative method of inversion is

through Fourier space [26]. Known as the Fourier synthesis method, this inversion is

illustrated in Figure 32 and is based on the central-slice theorem.

Figure 32. Central Slice Theorem.

The central-slice theorem states that the Fourier transform in w of a Radon pro-

jection, i.e. D(w; θ′, φ′), at given angles is equal to the central line at the same angles

of the Fourier transform of the original vector field, i.e. F (v). For the FTDS deriva-

tion, we must assume D(w; θ′, φ′) exists as a Fourier pair, equation A.4; where k is

the conjugate variable of w.

g(k; θ′, φ′) =

∫
dwD(w; θ′, φ′) e−2πi(kw) (A.4)
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Insertion of equation A.2, the Radon transform of F (v), into equation A.4, yields

an expression that, in conjunction with the Fourier transform shift theorem, can be

evaluated with respect to w.

g(k; θ′, φ′) =

∫
dw

[∫
d3vF (v) δ

[
w − v · k̂probe

]]
e−2πi(kw) (A.5)

Fourier Transform Shift Theorem

(A.6)

g(k; θ′, φ′) =

∫
d3vF (v)

[∫
dw δ

[
w − v · k̂probe

]
e−2πi(kw)

]

g(k; θ′, φ′) =

∫
d3vF (v)

[
e−2πi(k)v·k̂probe

]
(A.7)

For a collection of unique central lines in Fourier space, the vector field can be recon-

structed, where 3D Fourier transform of F (v).

=⇒ g(k; θ′, φ′) = G(k sin θ′ cosφ′, k sin θ′ sinφ′, k cos θ′)

G(k) =

∫
d3vF (v) e−2πik·v (A.8)

The inverse 3D Fourier transform of equation A.8 recovers the space variant F (v).

F (v) =

∫
d3kG(k) e2πik·v (A.9)
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1.3 Symmetric Distributions

The task of inverting a discrete set of angle-dependent Doppler profiles into its

three-dimensional velocity distribution can be drastically simplified by considering

the symmetry of the system.

Cylindrical Symmetry

In the case of collisions from crossed-molecular beams of well-defined velocities or

photodissociation, cylindrical symmetry of the velocity distribution holds. The ap-

proximate axis of symmetry will pertain to the relative velocity direction in crossed-

molecular beam studies and the electric vector of the dissociation laser in photodis-

sociation, see Figure 12.

It is convenient to express the vectors v and k into their scalar components in

spherical coordinates, see equation A.1:

F (vx, vy, vz) =

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz G(kx, ky, kz) e
2πi (kxvx+kyvy+kzvz)

F (v, θ, φ) =

∫ ∞
0

dk k2

∫ π

0

dθ′ sin θ′
∫ 2π

0

dφ′ g(k; θ′, φ′)

e2πi(k sin θ′ cosφ′)(v sin θ cosφ) e2πi(k sin θ′ sinφ′)(v sin θ sinφ) e2πi(k cos θ′)(v cos θ)

(A.10)

We can resolve the 3D Fourier transform in equation A.10 into a product of a 1D

Fourier transform with respect to the axial direction, i.e. our “axis of symmetry,” and

a 2D Fourier transform in the “transverse plane.” A radially symmetric 2D Fourier
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transform is known as a Hankel transform of the zeroth order, also known as the

Fourier-Bessel transform. This operation ostensibly allows us to ignore the φ′ and φ

in our problem.

Dcyl(w; θ′, φ′) = Dcyl(w; θ′)

gcyl(k; θ′, φ′) = gcyl(k; θ′)

Hankel transform of the zeroth order :

F (v, θ) =

∫ ∞
0

dk k2

∫ π

0

dθ′ sin θ′ gcyl(k; θ′) e2πi(kv) cos θ′ cos θ (A.11)

·

[∫ 2π

0

dφ′ e2πi(kv) sin θ′ sin θ cosφ′ cosφ e2πi(kv) sin θ′ sin θ sinφ′ sinφ

]
∫ 2π

0

dφ′ e2πi(kv) sin θ′ sin θ(cosφ′ cosφ+sinφ′ sinφ)

Applying the trigonometric identity below results in the following operations:

cosφ′ cosφ+ sinφ′ sinφ = cos(φ′ − φ)∫ 2π

0

dφ′ e2πi(kv) sin θ′ sin θ cos(φ′−φ)

The variable φ can be removed by regarding it as a simple phase shift :

∫ 2π−φ

0−φ
dφ′ e2πi(kv) sin θ′ sin θ cosφ′
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The integral in equation A.11 is reduced to the zeroth order Bessel function of the

first kind, J0(z), which sums the motion of the scattering products along the φ′-axis,

reducing our 3D problem to 2D.

2π

[
1

2π

∫ 2π

0

dφ′ e2πi(kv) sin θ′ sin θ cosφ′

]
= 2π

[
J0(2πkv sin θ′ sin θ)

]
(A.12)

We can take the expression in equation A.12 and replace it with its counterpart in

equation A.11 to obtain Kinsey’s expression for a three-dimensional velocity distri-

bution with cylindrical symmetry, equation A.13.

F (v, θ) = 2π

∫ ∞
0

dk k2

∫ π

0

dθ′ sin θ′ J0(2πkv sin θ′ sin θ) gcyl(k; θ′) e2πi(kv) cos θ′ cos θ

(A.13)

Spherical Symmetry

In some cases, e.g. bulk gas phase samples, the collisions produce an isotropic

distribution of scattering products. This translates into an apparent likelihood that

all components of the velocity vector have the same frequency of occurrence and are

weighted the same in each direction; i.e. vx = vy = vz. Therefore, the spherically sym-

metric scattering system is a one-dimensional problem, equation A.14. Considering
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the illustration in Figure 12 and if vz = v cos θ′′ = w, where cos θ′′ = 1, then:

D(w) =

∫
d3vF (v) δ

[
w − v · k̂probe

]
=

1

4π

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
−∞

dvz f
(√

v2
x + v2

y + v2
z

)
δ
[
w − vz

]
(A.14)

vz = w

=
1

4π

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy f
(√

v2
x + v2

y + w2
) ∫ ∞
−∞

dvzδ
[
w − vz

]

Consider the polar coordinates in the vx–vy plane

vx = u cosφ

vy = u sinφ

v2 = u2 + w2

=
1

4π

∫ ∞
u=0

duu

∫ 2π

φ=0

dφ f
(√

u2 + w2
)

=
2π

4π

∫ ∞
u=0

duu f
(√

u2 + w2
)

(A.15)

If... u =
√
v2 − w2 =⇒ du =

1
2√

v2−w2 (2v) dv

udu = vdv

...then, as u→ 0 =⇒ v = (w2)
1
2 and...

D(w) =
1

2

∫ ∞
v=|w|

dv v f(v) ...wherew > 0 (A.16)
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Equation A.16 suggests:

[
dD(w)

dw

]
w= v

= − 1

2v
v2f(v) (A.17)
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APPENDIX B

DERIVATION OF GENERAL METHOD

2.1 An Analytical Form for the Doppler Profile

Taatjes et al. in 1990 developed a method to recover cylindrically symmetric ve-

locity distributions by solving Kinsey’s Fourier transform analytically. This method

utilizes an expansion for the Doppler profile in classical orthogonal polynomials, equa-

tion B.1. The use of classical orthogonal polynomials is intentional due to their known

transform properties, equation B.2.

Dcyl(w; θ′) =
∑
l

Pl(cos θ′)
∑
n

al,nHn(w) e−w
2

(B.1)

gcyl(k; θ′) =

∫ ∞
−∞

dwDcyl(w; θ′) e−2πi(kw)

=
∑
l

Pl(cos θ′)
∑
n

al,n

∫ ∞
−∞

dwHn(w) e−w
2

e−2πi(kw) (B.2)

Equation B.3 is the evaluated integral in equation B.2, obtained from Gradshteyn et

al. [46].

∫ ∞
−∞

dxHn(x) e−(x−y)2 =
√
π(y)n2n

∫ ∞
−∞

dwHn(w) e−w
2

e−2πi(kw) =
√
π(−i)n(2πk)n e−π

2k2
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=⇒ x = w and y = −iπk

gcyl(k; θ′) =
∑
l

Pl(cos θ′)
∑
n

al,n

[√
π(−i)n(2πk)n e−π

2k2
]

(B.3)

In photodissociation, the Doppler profiles are symmetric about ν0, and therefore, re-

quire only an expansion in even Hermite terms, however, odd terms can easily be

incorporated for asymmetric profiles; generalized in equation B.3. Equation B.4 is

obtained by replacing the gcyl(k; θ′) in Kinsey’s 3D Fourier transform, equation A.13,

with the expression derived in equation B.3.

F (v, θ) = 2π

∫ ∞
0

dk k2

∫ π

0

dθ′ sin θ′ J0(2πkv sin θ′ sin θ) e2πi(kv) cos θ′ cos θ

·
∑
l

Pl(cos θ′)
∑
n

al,n

[√
π(−i)n(2πk)n e−π

2k2
] (B.4)

Due to the linearity of the integral operator, a one-to-one correspondence exists be-

tween the Doppler profile and its velocity distribution. Therefore, an expansion in

Legendre terms for the Doppler profile corresponds to the same Legendre terms in

our velocity distribution. As a result of this property, we can evaluate each Legendre

term on a term by term basis, equation B.5.

F (v, θ) =
∑
l

Fl(v, θ)
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Fl(v, θ) = 2π

∫ ∞
0

dk k2

∫ π

0

dθ′ sin θ′ J0(2πkv sin θ′ sin θ) e2πi(kv) cos θ′ cos θ

· Pl(cos θ′)
∑
n

al,n

[√
π(−i)n(2πk)n e−π

2k2
] (B.5)

Evaluating with respect to θ′ results in equation B.6; obtained from the Gegenbauer’s

finite integral [47].

∫ π

0

ei(z) cos θ cosφJv− 1
2
(z sin θ sinφ) · Cv

r (cos θ) sinv+ 1
2 θ dθ

=
(2π

z

) 1
2
ir sinv−

1
2 φ · Cv

r (cosφ) Jv+r(z) (B.6)

v − 1

2
= 0 =⇒ v =

1

2
, r = l, z = 2πikv

We use a special case of Gegenbauer’s finite integral, where the Gegenbauer polyno-

mial Cv
r (cos θ) reduces to the Legendre polynomial, Pl(cos θ); equation B.7

∫ π

0

e2πi(kv) cos θ′ cos θJ0(2πi sin θ′ sin θ) · Pl(cos θ′) sin θ′ dθ′

=
( 1

kv

) 1
2
il · Pl(cos θ) J 1

2
+l(2πkv) (B.7)

The resultant expression in equation B.7 can be placed into equation B.5 and simpli-

fied; see equation B.8.

Fl(v, θ) = 2π

∫ ∞
0

dk k2

[( 1

kv

) 1
2
il ·Pl(cos θ) J 1

2
+l(2πkv)

]∑
n

al,n
√
π(−i)n(2πk)n e−π

2k2
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Fl(v, θ) = 2(π)
3
2 v−

1
2 il · Pl(cos θ)

∑
n

al,n (−i)n(2π)n
∫ ∞

0

dk kn+ 3
2 e−π

2k2J 1
2

+l(2πkv)

(B.8)

Obtained from Bessel functions, exponentials and powers in Gradshteyn et al. [46],

evaluating dk in equation B.8 produces equation B.9:

∫ ∞
0

dx xµ e−αx
2

Jv(βx) =
Γ
(
v
2

+ µ
2

+ 1
2

)
β α

µ
2 Γ(v + 1)

e

(
−β

2

8α

)
·Mµ

2
, v
2

(β2

4α

)
Whittaker’s Function

Mµ
2
, v
2

(β2

4α

)
= e−

(
β2

8α

) (β2

4α

) 1
2

(v+ 1)

1F1

(1 + v − µ
2

; 1 + v;
β2

4α

)
=⇒ µ = n+

3

2
, α = π2, v =

1

2
+ l, β = 2πv, x = k∫ ∞

0

dk kn+ 3
2 e−π

2k2 J 1
2

+l(2πvk)

=
Γ
(

3+n+l
2

)
(2πv) π

(
n+ 3

2

)
Γ(3

2
+ l)

e−v
2

v
3
2

+l
1F1

( l − n
2

;
3

2
+ l; v2

) (B.9)

The resultant expression in equation B.9can be placed back into equation B.8 and

simplified; equation B.10. Equation B.10 is our analytical expression for recovering a

cylindrically symmetric three-dimensional velocity distribution via FTDS.

Fl(v, θ) = 2π
3
2 v−

1
2 il · Pl(cos θ)

∑
n

al,n (−i)n(2π)n

Γ
(

3+n+l
2

)
(2πv) π

(
n+ 3

2

)
Γ(3

2
+ l)

e−v
2

v
3
2

+l
1F1

( l − n
2

;
3

2
+ l; v2

)
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Fl(v, θ) =
il vl e−v

2
Pl(cos θ)

π Γ
(

3
2

+ l
) ∑

n

al,n (−i)n 2n Γ

(
3 + n+ l

2

)
1F1

(
l − n

2
; l +

3

2
; v2

)
(B.10)

2.2 Solving for the Expansion Coefficients

Taatjes’ method for solving the integral transform analytically utilizes the coeffi-

cients of the Doppler profile expansion in terms of Hermite and Legendre polynomi-

als, which directly gives the coefficients of the velocity distribution in terms of other

known functions. Below are the normalized classical orthogonal polynomials used in

this expansion:

Orthogonality of Legendre Polynomials∫ 1

−1

dxPk(x)Pl(x) =
2

2l + 1
δk,l∫ 0

π

d(cos θ′)Pk(cos θ′)Pl(cos θ′) =
2

2l + 1
δk,l∫ π

0

dθ′ sin θ′ Pk(cos θ′)Pl(cos θ′) =
2

2l + 1
δk,l

Orthogonality of Hermite Polynomials∫ ∞
−∞

dwHm(w)Hn(w) e−w
2

=
√
π 2n n! δm,n

Equation B.11 is the product of normalized Legendre and Hermite polynomials:

1√
π 2n n!

2l + 2

2

∫ ∞
−∞

dw

∫ π

0

dθ′ sin θ′Hm(w)Hn(w) e−w
2

Pk(cos θ′)Pl(cos θ′) = δk,l δm,n

(B.11)
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In solving for the coefficients, we must assume Dcyl(w; θ′) is gaussian in nature over

the interval of interest, only then can the coefficients for the expansion be obtained

using equation B.1; see equation B.12.

1√
π 2n n!

2l + 2

2

∫ ∞
−∞

dw

∫ π

0

dθ′ sin θ′Dcyl(w; θ′)Hn(w)Pl(cos θ′) = al,n δk,l δm,n

(B.12)

1√
π 2n n!

2l + 2

2

∫ ∞
−∞

dw

∫ π

0

dθ′ sin θ′
[∑

l

Pl(cos θ′)
∑
n

al,nHn(w) e−w
2
]

Hn(w)Pl(cos θ′) = al,n

al,n√
π 2n n!

2l + 2

2

∫ ∞
−∞

dw

∫ π

0

dθ′ sin θ′ Pl(cos θ′)Hn(w) e−w
2

Hn(w)Pl(cos θ′) = al,n
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