
MILSTEAD, JONATHAN, Ph.D. Computing Galois Groups of Eisenstein Polynomials
Over P-adic Fields. (2017)
Directed by Dr. Sebastian Pauli. 190 pp.

The most efficient algorithms for computing Galois groups of polynomials over

global fields are based on Stauduhar’s relative resolvent method. These methods are

not directly generalizable to the local field case, since they require a field that contains

the global field in which all roots of the polynomial can be approximated. We present

splitting field-independent methods for computing the Galois group of an Eisenstein

polynomial over a p-adic field. Our approach is to combine information from different

disciplines. We primarily, make use of the ramification polygon of the polynomial,

which is the Newton polygon of a related polynomial. This allows us to quickly

calculate several invariants that serve to reduce the number of possible Galois groups.

Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials

where the ramification polygon consists of one segment as well as information about

the subfields of the stem field. Second, we look at the factorization of linear absolute

resolvents to further narrow the pool of possible groups.
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CHAPTER I

INTRODUCTION

For a given rational prime p, the field of p-adic numbers Qp is a completion of

the rational numbers in which two elements are considered “close” if their difference

is divisible by a large power of p. This field was introduced in 1897 by Kurt Hensel

[41]. Hensel created this number system in an effort to apply some of the tools from

complex analysis to solving problems in number theory. Central to his motivation

was the keen observation that the expansion of a complex number as a Laurent series

is analogous to the p-adic expansion of a rational number, that is the representation

of t 2 Q as a linear combination of powers of p. In the years since, p-adic numbers

have been applied to numerous disciplines including elliptic curves and Diophantine

equations. They, notably, play a role in Andrew Wiles’s proof of Fermat’s Last

Theorem [31].

Much of the current research into p-adic numbers centers around the classi-

fication of p-adic fields, finite extensions of Qp. As the following theorem indicates,

this can theoretically be done for all extensions of any finite degree.

Theorem 1.1 ([52, Section 2.5]). Let K be a finite extension of Qp, and let n be any

positive integer. There exist only finitely many extensions of K of degree n.

Principally, research on this topic has focused on classifying degree n > 0

extensions of a p-adic field by computing a generating polynomial for each extension

as well as the polynomial’s Galois group. Whereas efficient, general algorithms exist

for determining generating polynomials for p-adic extensions of a given degree (see
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[67], [68]), the same cannot be said for computing the Galois groups of these generating

polynomials. Although explicit methods have been developed for degree n extensions

with p - n (see for example [39]) or n = p (see for example [73]), no general algorithms

are known for determining Galois groups of polynomials over p-adic fields.

The importance of developing more general algorithms for computing Galois

groups in this context can be reinforced by two observations: the sheer difficulty in

performing this task and the fact that it will allow others to greatly increase the pool

of knowledge of p-adic fields through the classification efforts mentioned above.

Previous algorithms for computing Galois groups of p-adic fields were restricted

either to extensions of low degree (up to 15) or to polynomials of special form. Al-

gorithms for degrees up to 11 were given by Jones and Roberts [46][47][45] and were

followed by methods for polynomials of degree 12, 14, and 15 by Awtrey and others

[3][4][5][6][9]. All of these use a variety of criteria for narrowing down the possible

Galois groups, including information about the ramification filtration and absolute

resolvents. The algorithms for computing Galois groups of Eisenstein polynomials

make use of the information contained in the ramification polygon, that is the New-

ton polygon of the ramification polynomial, to obtain information about the splitting

field of '. Romano [73] describes Gal(') for Eisenstein polynomials ' where the ram-

ification polygon of ' has one segment and the only points on the segment are the

endpoints. The algorithm by Greve and Pauli [33] very efficiently returns the Galois

group of polynomials where the ramification polygon of ' consists of one segment.

In his thesis [32] Greve builds on this approach to give an algorithm for Eisenstein

polynomials whose ramification polygon consists of two segments.
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We combine ideas from all the above approaches in an algorithm that deter-

mines the Galois group Gal(') of an Eisenstein polynomial ' 2 Zp[x], where Zp

denotes the ring of integers of Qp. For many previously-solved cases such as Greve

and Pauli’s one-segment method, our algorithm is competitive if not noticeably faster.

For Eisenstein polynomials whose ramification polygons consist of two or more seg-

ments, our algorithm has been successfully applied to numerous examples with degree

as high as 27, a number of which correspond to the three segment case. Recently,

our method has been successfully applied to polynomials whose ramification polygons

have four segments. This is a clear improvement on previous algorithms that utilized

ramification polygons, since those methods didn’t deal with ramification polygons

that had three or more segments.

Many of the results we utilize are applicable to Eisenstein polynomials over

any p-adic field. Because of this, we discuss these results in more general terms. It is

our hope that these results will serve as building blocks for future work in this field.

1.1 Summary of Content

The primary purpose of Chapter II is to provide the reader with the local

field theory that is pertinent to the material in the later chapters of this thesis. We

begin by defining local fields and the associated concepts of valuation and absolute

value. From there, we convey the core definitions and facts regarding extensions of

local fields. Following a brief discussion of Hensel lifting and Newton polygons, we

delve further into the topic of totally ramified extensions with special attention given

to tamely ramified extensions and their Galois groups. Finally, we conclude this

chapter’s background information with an examination of ramification groups.
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We close the second chapter with a presentation of our new method for finding

the compositum of tamely ramified extensions over a common field. This constructive

method quickly determines concrete generating polynomials, for the additional exten-

sions needed, without relying on expensive factoring and/or root finding routines.

It is in the third chapter that we begin discussing Eisenstein polynomials

in earnest. In particular, we principally examine two invariants of the extension

generated by an Eisenstein polynomial: the ramification polygon and the (related)

residual polynomial classes. The first two sections of this chapter define and convey

basic facts about the two invariants. After that, the bulk of the chapter is dedicated

to explaining some of the results of Christian Greve’s doctoral research [32][33]. The

third section describes how the ramification polygon of an Eisenstein polynomial '

gives way to a collection of blocks that can be used to construct a chain of subfields of

the extension generated by '. In the following section, we examine how invariants of

these subfields relate to the invariants of the extension that ' generates. Next, over

the course of two sections, we address how Greve was able to compute the splitting

field and the Galois group for an Eisenstein polynomial whose ramification polygon

is comprised of a single segment. In the seventh section, we consider splitting field

information that can be determined for an Eisenstein polynomial whose ramification

polygon has more than one segment.

We close the third chapter with a section that details how we have expanded

upon the collection of blocks mentioned above. While Greve considered blocks defined

solely by the slopes of the ramification polygon, we have found that additional blocks

may be found by also using the residual polynomial classes. Additionally, we find
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that for normal, totally ramified extensions we can refine the ramification filtration

of the extension’s Galois group.

Our fourth chapter focuses exclusively on resolvent polynomials. Following a

brief section that establishes basic definitions and concepts, we begin our discussion

of resolvents with a review of Stauduhar’s classic method [82]. Once this method has

been explained, we hone in on a couple of the approach’s computational shortcomings.

These are used to motivate our examination of aspects of more recent approaches

[24,29] to computing Galois groups with relative resolvents. Of particular interest to

us is the possible use of a wreath product as the starting point.

Finally, we conclude Chapter IV with an implementation-centric sampling

of the work of Leonard Soicher [80]. After providing background information on

resultants, we focus on two topics that are utilized in Chapter V of this thesis: how

the degrees of the irreducible factors of a resolvent aid in the determination of Galois

groups, and how five specific absolute resolvents can be computed with resultants.

We present our algorithm for computing Galois groups of Eisenstein polyno-

mials over Qp in Chapter V. Our algorithm is made up of a series of iterative stages in

each of which we compute the Galois group of a tower of two extensions. An outline

of the algorithm, depicting this iterative behavior, is provided at the outset of the

chapter. The exact steps taken in each iterative stage are given in the sections that

follow.

We have also included three appendices that cover topics from Group theory

that the reader must be familiar with when reading the main chapters of this thesis.

The first appendix provides a list of key definitions and results concerning Galois

groups over an arbitrary field. The second appendix covers the fundamentals of direct
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and semidirect products while providing examples that are referenced in Chapters II

and III. Finally, the third appendix briefly introduces the wreath product, a specific

example of a semidirect product.

6



CHAPTER II

LOCAL FIELDS

The first five sections of this chapter provide the reader with an introduction to

the rich subject of local fields. The topics include extensions of local fields, factoring

techniques like Hensel Lifting, and ramification groups. Most of the information can

be found in [78], [23], and [13].

The final section of this chapter is centered around a new and original method

for computing composites of local field extensions of a certain type. The method we

present is constructive and computationally inexpensive.

2.1 Local Fields

Definition 2.1. A map k·k from a field K to the non-negative real numbers is said

to be an ultrametric or non-archimedian absolute value on K if the following hold:

kxk > 0 if x 6= 0, with k0k = 0,

kxyk = kxk · kyk,

kx+ yk  max{kxk, kyk}.

The third property is called the ultrametric inequality. It is stronger than the

better known triangle inequality of norms: kx+ yk  kxk + kyk. Absolute values

that fail to satisfy the ultrametric inequality are classified as archimedian absolute

values.
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Definition 2.2. An (exponential) valuation on the field K is a map v : K! Q[{1}
such that for a, b 2 K,

v(a) =1() a = 0,

v(ab) = v(a) + v(b),

v(a+ b) � min{v(a), v(b)}.

A valuation is discrete if v(K⇥
) is isomorphic to Z.

Lemma 2.3. Let v be a discrete valuation on the field K, and let a, b 2 K with

v(a) 6= v(b). Then v(a+ b) = min{v(a), v(b)}.

Proof. Without loss of generality, we assume that v(a) > v(b). If we rewrite b as

b+ a� a, then we find that

v(b) = v(a+ b� a) � min{v(a+ b), v(a)}.

In light of our opening assumption, the only way that the above inequality

could be true would be for v(a+b) < v(a) to hold. Thus we know that v(b) � v(a+b).

If we apply this to the final part of the last definition, we obtain

v(a+ b) � min{v(a), v(b)} = v(b) � v(a+ b).

Therefore v(a+ b) = v(b).

Definition 2.4. Let p be a rational prime. Every rational number r can be uniquely

written in the form r = pk(a/b) where a and b are relatively prime, and neither are

divisible by p. In this context, we have the following terminology:
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• The p-adic absolute value on Q is the non-archimedian absolute value given by

krkp = p�k.

• The p-adic valuation on Q is the discrete valuation given by vp(r) = k.

• The field Qp of p-adic numbers is the completion of the rational numbers by

k·kp.

Definition 2.5. A local field is a field complete with respect to a discrete non-

archimedian absolute value.

Let K be a local field that is complete with respect to some non-archimedian

absolute value k·k. The valuation ring of K is the local ring

OK = {↵ 2 K : k↵k  1}

whose unique, maximal ideal

p = {↵ 2 K : k↵k < 1}

is principal. Every element of K that generates p is called a prime element or uni-

formizer. We write vK for the valuation of K that is normalized such that vK(⇡K) = 1

where ⇡ = ⇡K is a uniformizing element in OK. We define the residue class field of K

to be the quotient

K = OK/p.

For � 2 OK we denote by � the class �+(⇡) in K = OK/(⇡), by RK a complete

set of representatives of K in OK, and by R⇥
K the set RK without the representative

designated for 0 2 K.
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Every element � 2 K can be expressed as a linear combination of powers of

⇡K:

� =

1X

i=vK(�)

ai⇡
i
K where ai 2 K.

This sum is called the ⇡K-adic expansion of the element �.

Example 2.6. If p is a prime number, then Qp is a local field. The p-adic integers,

denoted by Zp, is the set of elements of Qp that have nonnegative p-adic valuation:

Zp = {↵ 2 Qp : vp(↵) � 0}.

Since vp(↵) � 0 implies that k↵kp  1, Zp is the valuation ring of Qp. The sole

maximal ideal of Zp is generated by p which makes p a uniformizer of Qp. Furthermore,

we have that Fp
⇠
=

Zp/(p) is the residue class field of Qp.

2.2 Extensions of Local Fields

Let K be a local field, and let ' be a monic and separable polynomial of

degree n that is irreducible over K. We construct the algebraic extension L = K(↵)

by adjoining to K a single root ↵ of '. As such, L ⇠
=

K[x]/(') and L/K has degree n.

Definition 2.7. Let K be an algebraic closure of K. Denote the roots of ' in K by

↵(1),↵(2), . . . ,↵(n) where ↵(1)
= ↵. We say that ↵(i) is the i-th conjugate of ↵.

By definition, our extension L/K is a dimension n vector space over K with

basis {1,↵, . . . ,↵n�1}. Every � 2 L can be uniquely written as a linear combination

of basis elements:

� =

n�1X

i=0

gi↵
i, where gi 2 K for 0  i  n� 1.
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For 1  j  n we can write the j-th conjugate of � as �(j) =
Pn�1

i=0 gi
�
↵(j)

�i.

In this context, we define the norm of � to be the product NL/K(�) =
Qn

j=1 �
(j).

Theorem 2.8. Let K be a local field with valuation vK, and let L/K be a finite algebraic

extension of degree n. Then there exists a unique extension of the valuation vK to a

valuation vL : L ! Q [ {1} with the restriction of vL to K coinciding with vK. The

local field L is complete with respect to vL. Finally, vL(�) = vK(NL/K(�))/n for � 2 L.

To ease notation, this unique extension of v = vK to a valuation on an algebraic

closure K of K (or to any intermediate field) is also denoted v. Below is an equivalence

relation on K that reflects our choice of notation.

Definition 2.9. For � 2 K
⇥ and � 2 K

⇥ we write � ⇠ � if

v(� � �) > v(�),

and impose the supplementary condition 0 ⇠ 0. For '(x) =

Pn
i=0 cix

i and  (x) =

Pn
i=0 bix

i in K[x] we write ' ⇠  if

min 0in v(ci � bi) > min 0in v(ci).

It follows immediately that the relation ⇠ is symmetric, transitive, and reflex-

ive. Let L be a finite extension of K with uniformizing element ⇡L. Then vL denotes

the valuation that is normalized such that vL(⇡L) = 1. Two elements � = �0⇡
u
L 2 L

and � = �0⇡
w
L 2 L with v(�0) = v(�0) = 0 are equivalent with respect to ⇠ if and only

if u = w and �0 ⌘ �0 mod (⇡L).

Definition 2.10. A local field that is a finite extension of Qp is called a p-adic field.
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Definition 2.11. If L/K is an algebraic extension of degree n, then OL is a free OK-

module of degree n, and we say that a basis for OL over OK is an integral basis of

L/K.

Definition 2.12. Let ' 2 K[x] be a monic polynomial of degree n with factorization

'(x) =
Qn

i=1(x� ↵(i)
) in K. We define the discriminant of ' to be

disc (') =
Y

i<j

�
↵(i) � ↵(j)

�2
=

Y

i 6=j

(�1)(n2�n)/2
�
↵(i) � ↵(j)

�

If ' is an irreducible polynomial and ↵ is a root of ', then disc (') = NK/K('
0
(↵)).

Definition 2.13. Let L/K be an algebraic extension of degree n with integral basis

(�1, . . . , �n). Then we define the discriminant of L/K to be disc (L/K) =
⇣
det(�

(i)
j )

⌘2

.

Definition 2.14. Let L be an algebraic extension of K. If [L : K] = [L : K], then L/K

is unramified. If [L : K] = 1, then L/K is totally ramified.

For all f 2 N there is, up to isomorphism, a unique unramified extension of K

of degree f . Such an extension can be generated by any monic polynomial of degree f

that is irreducible over K. All one would have to do is find some irreducible ⌧ 2 K[x]

of the desired degree and then take some monic lift of ⌧ to K[x] as the generating

polynomial. This, however, is often unnecessary since a Conway polynomial [43] or

cyclotomic polynomial with the correct degree would be adequate. If a cyclotomic

polynomial is chosen to generate an unramified extension then every primitive element

of the extension is a primitive root of unity.

If L/K is an unramified extension, then L and K have the same uniformizer ⇡L

= ⇡K and Gal(L/K) = Gal(L/K). Furthermore, if [L : K] = m then Gal(L/K) is a

cyclic group of order m, generated by the Frobenius automorphism.
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For any finite extension L/K, one can construct an intermediate, unramified

extension of degree [L : K]. We will refer to this, possibly trivial, extension as Lur/K.

Constructing Lur yields a decomposition of the initial extension into a tower of ex-

tensions L/Lur/K where the top relative extension L/Lur is totally ramified.

Definition 2.15. Let L be a finite algebraic extension of K. We say that the inertia

degree of L/K is fL/K = [L : K] and that the ramification index of L/K is eL/K = [L :

Lur]. The degree of the extension L/K is n = eL/K · fL/K.

Proposition 2.16. Let K be a local field and let ⌧ 2 K[x]. If ⌧ 2 K[x] is squarefree,

then the unramified extension of K of degree

lcm{deg(a) | a is an irreducible factor of ⌧ }

is the splitting field of ⌧ .

2.3 Hensel Lifting and Newton Polygons

Hensel lifting yields factorizations of polynomials over local fields in certain

cases, and Newton polygons give valuable information about the roots of polynomials.

We show how these two tools can be used to obtain proper factorizations in more

general cases.

Theorem 2.17 (Hensel’s Lemma). Let � 2 OK[x] be monic. If � ⌘ '1'2 mod (⇡)

where '1 and '2 are coprime modulo ⇡, then there is a factorization � = �1�2 with

�1 ⌘ '1 mod (⇡) and �2 ⌘ '2 mod (⇡).

For an example of an efficient Hensel lifting algorithm that lifts a factorization

modulo (⇡) to a factorization modulo (⇡)s for any given s, see [85]. We can also
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obtain an approximation to a factorization of � if Hensel lifting can be applied to the

characteristic polynomial of an element '+ (�) in OK[x]/(�).

Definition 2.18. Let �(x) =
QN

j=1(x� ✓j) 2 OK[x]. For ' 2 K[x] we define

�'(y) :=

NY

i=1

(y � '(✓i)) = resx(�(x), y � '(x)) 2 K[y].

Proposition 2.19. Let � 2 K[x] with �� 2 OK[y]. If �
�

has at least two distinct

irreducible factors, then �(x) is reducible in OK[x].

Proof. Suppose �
�

has at least two irreducible factors. Then, Hensel’s Lemma gives

relatively prime monic polynomials �1 2 OK[y] and �2 2 OK[y] with �1�2 = ��.

Reordering the roots ✓1, . . . , ✓N of � if necessary, we may write

�1(y) = (y � �(✓1)) · · · (y � �(✓r)) and �2(y) = (y � �(✓r+1)) · · · (y � �(✓N)),

where 1  r < N . It follows that

� = gcd(�,�1(�)) · gcd(�,�2(�))

is a proper factorization of �.

Definition 2.20 (Newton Polygon). Let �(x) =
PN

i=0 cix
i. The lower convex hull of

{(i, v(ci)) | 0  i  N} is the Newton polygon of �.

The negatives of the slopes of the segments of the Newton polygon of � are the

valuations of the roots of �. The length of the segment (in x-direction) is the number

of roots with this valuation. The negatives of the slopes of the Newton polygon of

the characteristic polynomial �' of ' + (�) are the valuations v('(✓)) for the roots
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✓ of �. Proposition 2.19 yields a constructive method for finding a factorization of �

if �' has more than one segment.

Corollary 2.21. Let ' 2 K[x] with �' 2 OK[y]. If there are roots ✓ and ✓0 of � such

that v('(✓)) 6= v('(✓0)), then we can find two proper factors of �(x) over OK[x].

Proof. Let ⇥ be the set of roots of �, and let h/e = min{v('(✓)) | ✓ 2 ⇥}. Setting

� := 'e/⇡h we get

max{v(�(✓)) | ✓ 2 ⇥ and �(✓) = 0} > min{v(�(✓)) | ✓ 2 ⇥ and �(✓) = 0} = 0.

Thus Proposition 2.19 yields a factorization of �.

Another widely used method for factoring polynomials over local fields is New-

ton lifting, a method based on the following lemma. For more information, including

a constructive proof, see [13].

Lemma 2.22 (Newton Lifting). Let K be a field complete with respect to a non-ar-

chimedian absolute value | · |, with OK its valuation ring and p its prime ideal. Let

�(x) 2 OK[x] and assume there exists ↵ 2 OK satisfying |�(↵)| < |�0
(↵)|2. Then �

has a root in OK congruent to ↵ modulo p.

2.4 Totally Ramified Extensions

Definition 2.23. We call a monic polynomial ' 2 OK[x] with '(x) =

P
'ix

i an

Eisenstein polynomial if vK('0) = 1 and vK('i) � 1 for 1  i  n� 1.

The Newton polygon of an Eisenstein polynomial has a particular shape that

depends entirely on the polynomial’s degree.
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Proposition 2.24. Let ' 2 OK[x] be an Eisenstein polynomial with deg' = n. Then

the Newton polygon of ' is a line with slope �1/n.

Every Eisenstein polynomial is irreducible and thus can be used to generate

a local field extension. To determine the type of extension, we consider another

important, well-known result regarding Newton polygons.

Proposition 2.25. Let N denote the Newton polygon for some ⇢(x) 2 OK[x]. If the

slopes of the segments of N are in lowest terms, then their denominators divide the

ramification indices of the extensions defined by the irreducible factors of ⇢.

Taking the last two propositions together, we conclude that every Eisenstein

polynomial generates a totally ramified extension. The converse is also true. If L/K

is totally ramified and finite then any prime element of the extension is the root of an

Eisenstein polynomial. Such a polynomial would generate L/K. On a related note, it

can be shown that for a local field element ↵ 2 K and m 2 N, vK(↵) = 1/m implies

that the minimal polynomial of ↵ generates a totally ramified extension of K of degree

m.

Let K be a local field whose residue class field K has characteristic p. We define

an extension L/K to be tamely ramified if p - eL/K and wildly ramified otherwise. In

certain cases we can obtain a generating polynomial of a tamely ramified subextension

from a polynomial generating a totally ramified extension.

Proposition 2.26. Let n = e0p
m with p - e0, and let

'(x) = xn
+

n�1X

i=1

'ix
i
+ '0 2 OK[x]
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be a polynomial whose Newton polygon is a line of slope �h/n, where gcd(h, n) = 1.

Let ↵ be a root of '(x). The maximum tamely ramified subextension M of L = K(↵)

of degree e0 can be generated by the Eisenstein polynomial xe0 � (� 0)
b⇡e0a with

 0 ⌘ '0 mod (⇡h+1
) and where a and b are integers such that ae0 + bh = 1.

We have included the proof of this result from [33, Proposition 2.1] with some

additional details that have been added to aide the reader.

Proof. As the Newton polygon of '(x) is a line, all roots ↵ of '(x) have the same

valuation, namely v(↵) = h/n. Because gcd(h, n) = 1, for each root ↵ of '(x), n is

a factor of the ramification index of K(↵)/K. Thus each extension K(↵)/K is totally

ramified and has degree n, which implies that '(x) is irreducible. Since n = e0p
m

with gcd(e0, p) = 1, the maximum tamely ramified subextension M over K has degree

[M : K] = e0.

We first show that  0 can be written as the product of a principal unit and

'0. Because v('0) = h, we know that ⇡h divides '0. So 9� 2 K so that '0 = �⇡h.

We are given that  0 ⌘ '0 mod (⇡h+1
), implying that ⇡h+1 divides  0�'0. So there

exists µ 2 OK so that:

 0 � '0 = µ⇡h+1

= µ⇡ · '0

�

=

µ

�
· ⇡'0.

Let " = µ
�
. Then there is a principal unit 1+⇡" 2 OK such that  0 = (1+⇡")'0.

Next, we will show that ↵n can be written as a similar product in L. Since ↵ is a root
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of ', we have that

0 = ↵n
+

n�1X

i=1

'i↵
i
+ '0.

Subtracting ↵n from both sides and then multiplying through by�1 we obtain:

↵n
= �'0 �

n�1X

i=1

'i↵
i.

We want to determine v
�Pn�1

i=1 'i↵
i
�
, using the equation of the segment (line).

The slope is �h/n and it contains the point (0, v('0)). So our line is y = v('0)� h
n
x.

As our polygon is comprised of a single segment and gcd(h, n) = 1, we know that

for 1  i  n � 1, v('i) must exceed the y-coordinate of i on the line. In short,

v('i) > v('0)� h
n
· i. This leads us to

v('i↵
i
) = v('i) + iv(↵)

= v('i) +
h

n
· i

> v('0)� h

n
· i+ h

n
· i

= v('0)

for 1  i  n� 1. We conclude that

v

 
n�1X

i=1

'i↵
i

!
� min{v('1↵), v('2↵

2
), . . . , v('n�1↵

n�1
)}

> v('0).
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Thus there exists � 2 OL such that ⇡L�'0 =

Pn�1
i=1 'i↵

i, where ⇡L is a uni-

formizer of the valuation ring OL of L. This, in turn, implies that

↵n
= �'0 �

n�1X

i=1

'i↵
i

= �'0 � ⇡L� '0

= �(1 + ⇡L�)'0

for some principal unit 1 + ⇡L� 2 OL.

The polynomial xe0
+  0 has a root over L if and only if (↵pmx)e0 +  0 has a

root over L. Dividing the latter polynomial by ↵n yields

xe0
+

 0

↵n
= xe0 � (1 + ⇡")'0

(1 + ⇡L�)'0
.

Since ⇡L divides ⇡, there exists k 2 OL such that

xe0
+

 0

↵n
= xe0 � (1 + ⇡Lk")

(1 + ⇡L�)
.

It can be proven that both 1 + (⇡) and 1 + (⇡L) are multiplicative groups.

Thus, the above simplifies to

xe0
+

 0

↵n
⌘ xe0 � 1 mod ⇡LOL[x].

Obviously ⇢(x) = xe0 � 1 2 L[x] is square free and ⇢(1) = 0. With Newton

lifting (and by reversing the transformations above), we obtain a root of xe0
+  0 in
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L. Let � be this root of xe0
+  0. Then

v(�b⇡a
) = v(�b

) + v(⇡a
)

= bv(�) + av(⇡)

= bv(�) + a.

Since � is a root of xe0
+  0, we have that �e0

= � 0. In fact, we obtain

e0v(�) = v(�e0
)

= v( 0)

= v((1 + ⇡")'0)

= v('0 + ⇡" · '0)

= min{v('0), v(⇡" · '0)}

= v('0)

= h

since v(⇡" · '0) � h+ 1. Therefore v(�) = h
e0

and

v(�b⇡a
) = bv(�) + a

=

bh

e0
+ a

=

ae0 + bh

e0

=

1

e0
.
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So, K(�) = K(�b⇡a
) is a tamely ramified extension of degree e0. Thus M =

K(�b⇡a
). Furthermore,

�e0b⇡e0a
= (�e0

)

b⇡e0a
= (� 0)

b⇡e0a.

So we have �b⇡a is a root of xe0 � (� 0)
b⇡e0a 2 OK[x].

This proposition informs us that each totally and tamely ramified extension

of degree e can be generated by a polynomial of the form xe � �⇡K where v(�) = 0.

Corollary 2.27. Let '(x) =

Pe
i=0 'ix

i 2 OK[x] be an Eisenstein polynomial and

assume p - e. If  (x) = xe
+ 0 with  0 ⌘ '0 mod (⇡2

), then the extensions generated

by '(x) and  (x) are isomorphic.

Proof. Since ' is Eisenstein, its Newton Polygon has slope �h/e = �1/e. Thus the

proof follows from setting a = 0, b = 1 in Proposition 2.26.

Let ' 2 OK[x] be the degree e Eisenstein polynomial in Corollary 2.27. If ⇣e

denotes a primitive e-th root of unity, then Corollary 2.27 tells us that the splitting

field of ' is N = K(⇣e, e
p�'0). The structure of Gal(N/K) is well known (see [39,

Chapter 16] for more).

Theorem 2.28. Let K be a local field, and let q be the number of elements of its

residue class field. Let N/K be a normal, tamely ramified extension with ramification

index e and inertia degree f . There exists an integer r with r(q � 1) ⌘ 0 mod e such

that N = K(⇣, e
p
⇣r⇡), where ⇣ is a (qf � 1)-st root of unity and qf � 1 ⌘ 0 mod e. Let

k =

r(q�1)
e

. The generators of the Galois group are the automorphisms

s : ⇣ 7! ⇣, e
p
⇣r⇡ 7! ⇣(q

f�1)/e e
p
⇣r⇡ and t : ⇣ 7! ⇣q, e

p
⇣r⇡ 7! ⇣k e

p
⇣r⇡.
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The Galois group of N/K as a finitely presented group is

Gal(N/K) ⇠
=

hs, t | se = 1, tf = sr, st = tsqi.

Remark. Let ⇣ be a primitive (qf �1)-st root of unity and let q = #K. The extension

K(⇣, e
p
⇣r⇡K) is Galois if and only if e divides both qf � 1 and r(q � 1). For more

information, see part (c) of [32, Satz 3.2].

In the event that a tamely ramified extension L/K is not normal, we can

compute its normal closure by increasing the inertia degree. This gives us a Galois

group with a similar presentation. Compare to [32, Satz 3.6] and [46, Proposition

3.5.1].

Theorem 2.29. Let ⇣ denote a primitive (qf � 1)-st root of unity and let L =

K(⇣, e
p
⇣r⇡) be tamely ramified. Let g = gcd(qf � 1, r(q � 1)), and let u 2 N be

minimal such that

qfu � 1 ⌘ 0 mod (e(qf � 1)/g).

Let ⇠ be a primitive (qfu � 1)-st root of unity, and let s = r(qfu � 1)/(qf � 1). Then

N = K(⇠, e
p
⇠s⇡)

is the normal closure of L/K, and the Galois group of L/K is

Gal(L/K) ⇠
=

hx, y | xe
= 1, yfu = xs, xy = yxqi.

In Theorems 2.28 and 2.29, the third relation in the Galois group is equivalent

to one group generator acting on the other through conjugation. This action is the

same as raising one of the generators to a power q that is coprime to its order e.
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This is remarkably similar to Example B.15. It is tempting to believe that the Galois

group of a tamely ramified extension is the semidirect product of nontrivial, cyclic

groups. As our next example demonstrates, this is not always true.

Example 2.30. Let ⇣ be a primitive eighth root of unity. We consider the local field

L = Q3(⇣,
4
p
⇣2 · 3). The extension L/Q3 has ramification index e = 4 and inertia

degree f = 2. Futhermore, the exponent of ⇣ in the radicand of 4
p
⇣2 · 3 is r = 2 and

the number of elements in the residue class field of Q3 is q = 3.

In order to compute the Galois group of L/Q3 we must first determine if the

extension is normal. We can quickly verify that L/Q3 is normal since e divides both

qf � 1 and r(q � 1). Thus Theorem 2.28 tells us that

Gal(L/Q3)
⇠
=

hs, t | s4 = 1, t2 = s2, st = ts3i.

The quaternion group of 8 elements has multiple presentations. One of them

is

Q8
⇠
=

hx, y | x4
= 1, x2

= y2, y�1xy = x�1i.

In the above presentation for Q8 we have that x�1
= x3. Thus it is clear

that Gal(L/Q3)
⇠
=

Q8. According to Proposition B.20, this group is not a semidirect

product of cyclic groups.

Remark. The extension Q3(⇣,
4
p
⇣2 · 3) in the preceding example can be generated by

x8
+ 9x4

+ 36 2 Z3[x].
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2.5 Ramification Groups

The ramification groups define a sequence of decreasing normal subgroups

which are eventually trivial and which give structural information about the Galois

group of a p-adic field. For the duration of this section, we assume that L/K is a Galois

extension for local fields L and K and that G is the Galois group of this extension.

Definition 2.31. Let L/K be a Galois extension with Galois group G. Let vL be the

discrete valuation on L. For an integer i � �1, the i-th ramification group of G is

Gi = {� 2 G | vL(�(�)� �) � i+ 1 for all � 2 OL} (i � �1).

It is clear that G�1 = G. By convention, G0 is called the inertia subgroup of

G and G1 is referred to as the ramification subgroup of G. Furthermore, G0 = {id} if

and only if L/K is unramified and G1 = {id} if and only if L/K is tamely ramified.

For i > 1, the subgroups Gi are known as the higher ramification groups of

L/K. Each group Gi satisfies Gi E Gj whenever i > j. For large enough values of i,

the group Gi has order 1.

Proposition 2.32. Let L/K be Galois. Denote by G the Galois group of L/K and by

Gi the i-th ramification group of G. Let ⇡ be a uniformizer of L. Let U0 = OL
⇥, and

let Ui = h1 + (⇡i
)i for i � 1. Then

(1) For i � 0, the group Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1 and thus

is abelian.

(2) The quotient G0/G1 is cyclic with order coprime to the characteristic p of L.

(3) For i � 0, the group Gi/Gi+1 is a direct product of cyclic groups of order p.

The group G1 is a p-group.
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(4) The inertia subgroup G0 is the semi-direct product of a cyclic group of order

coprime to p and a normal subgroup which is a p-group.

(5) Both G and G0 are solvable.

(6) The quotient U0/U1 is isomorphic to the multiplicative group of L.

(7) If OL = OK[↵] then Gi = {� 2 G | vL(�(↵)� ↵) � i+ 1}.

If K = Qp, then the order of G0/G1 divides p[G:G0] � 1. This is a direct result

from parts (1) and (6) of Proposition 2.32.

Proposition 2.33. Let L/K be Galois. Let ⇡ be a uniformizer of L, and let Ui for

i � 0 be defined as they are in Proposition 2.32. Then, for i � 1, the group Ui/Ui+1

is canonically isomorphic to the group (⇡i
)/(⇡i+1

), which is itself isomorphic (non-

canonically) to the additive group of the residue class field L.

The ramification groups of G form the sequence

GDG0 DG1 D . . .DGk = 1.

Such a sequence of subobjects is called a filtration of G. An important aspect of this

sequence is when it is strictly decreasing, i.e., when consecutive groups are not equal.

As such, a great deal of attention has been spent to determining the values of the

index i for which Gi 6= Gi+1.

Definition 2.34. Integers i such that Gi 6= Gi+1 are called the (lower) ramification

breaks of L/K.

Proposition 2.35. If G is abelian, then every ramification break must be divisible by

the order of G0/G1.
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Proposition 2.36. Let p be the characteristic of L, and let i and j be any two

ramification breaks of L/K. Then i ⌘ j mod p.

Because the ramification groups are subgroups of Gal(L/K), we know that they

must correspond to subfields of L/K. In the cases of G0 and G1 these subfields are

well known.

Proposition 2.37. Let L/K be Galois. Denote by Gi the i-th ramification group of

Gal(L/K).

(1) The maximal unramified subfield Lur of L/K is the fixed field of the inertia group

G0. So G0 = Gal(L/Lur). Also, G0 is a normal subgroup of order eL/K with cyclic

quotient of order fL/K.

(2) The maximal tamely ramified subfield T of L/K is the fixed field of the first

ramification subgroup G1. So G1 = Gal(L/T).

2.6 Composites of Tamely Ramified Extensions

Let K be a local field with uniformizing element ⇡, and assume that the char-

acteristic of K is p. In this section we will introduce a method for computing the

composite of tamely, totally ramified extensions of a common and possibly trivial

unramified extension of K. In later sections, this particular type of calculation will

be used to compute a subextension of an Eisenstein polynomial’s splitting field. The

advantage of this method is that we are able to quickly write down explicit gener-

ating polynomials for the necessary extensions avoiding expensive factoring and/or

root finding algorithms.

Before we can introduce our method, we need to recall some well-known results

regarding composites of extensions of different types and norms of polynomials.
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Proposition 2.38. Let T/K be totally ramified with T = K(↵) and let U/K be un-

ramified with U = K(�). Also let TU denote the composite of T and U. Then

(a) TU ⇠
=

U(↵),

(b) TU ⇠
=

T(�).

Proof. Let '(x) denote an Eisenstein polynomial that generates T/K. Because the

uniformizers of U and K are the same, '(x) is Eisenstein over U as well. Thus, (a)

follows from the fact that all Eisenstein polynomials are irreducible.

Let  (x) be the generating polynomial of U/K. Then we have that  (x) is

irreducible over the residue class field K. Furthermore, since T/K is totally ramified,

we have that T = K. It follows that  (x) generates an unramified extension of T of

degree [U : K]. Part (b) has been proven.

Proposition 2.39. Let T/K be totally and tamely ramified with T = K(↵), and

let L/K be a wildly, totally ramified p-extension with L = K(�). Let TL denote the

composite of T and L. Then

(a) TL ⇠
=

L(↵),

(b) TL ⇠
=

T(�).

Proof. Suppose '(x) is an Eisenstein polynomial that generates T/K, and let ✓ be a

root of '(x). Then we know that vK(✓) = 1/e for some natural number e satisfying

p - e. Because e and p are coprime, vL(✓) has a denominator of e as well. Thus,

we have that '(x) generates a degree e extension of L. This proves (a). A similar

argument proves (b).
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Definition 2.40. Let L/K be an algebraic extension, and let '(x) =
Pn

i=0 cix
i 2 L[x].

Then we define the norm of '(x) to be

NL/K('(x)) =

[L:K]Y

j=1

 
nX

i=0

c
(j)
i xi

!

where c
(j)
i is the j-th conjugate of ci.

As NL/K('(x)) is invariant under conjugation, its coefficients are in K.

Proposition 2.41. Let M ◆ L ◆ K be a tower of totally ramified extensions where

M ⇠
=

L[x]/('(x)). Then NL/K('(x)) generates M/K.

Remark.

(a) If '(x) 2 L[x] is Eisenstein, then NL/K('(x)) is Eisenstein.

(b) If xe � �⇡L is Eisenstein for p - e, then

K[x]/
�
NL/K(x

e � �⇡L)
�
= K[x]/

�
(xe

)

[L:K]
+ . . .+NL/K(��⇡L)

�

⇠
=

K[x]/
�
(xe

)

[L:K]
+NL/K(��⇡L)

�

by Corollary 2.27.

We will now begin to discuss our method by establishing some notation. For

our purposes, tamely, totally ramified extensions will be generated by binomial Eisen-

stein polynomials of the form xe � �⇡ where v(�) = 0, a convention permitted by

Corollary 2.27. We have adopted this convention for three reasons. First, since

the degree is often obvious in the context of the problem, this reduces the task of

determining generating polynomials to determining the polynomial’s constant term.

Second, in our future applications of composites of tamely, totally ramified extensions
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all of the generating polynomials will be binomials. Finally, it allows us to make use

of Remark 2.6 and the following result.

Remark. T = K[x]/(xn � a) contains the subfields K[x]/(xm � a) where m | n.

Our current, primary focus is determining the composite of two tamely, totally

ramified extensions. We generalize this to composites of three or more extensions

later. We start with the simple cases where the degrees of the extensions are equal

or coprime.

Proposition 2.42. Let '1(x) = xe��1⇡ 2 OK[x] and '2(x) = xe��2⇡ 2 OK[x] with

p - e and v(�1) = v(�2) = 0. Let ✓1 and ✓2 be roots of '1 and '2 respectively. Then the

composite of K(✓1) and K(✓2) is the unramified extension of K(✓1) whose degree is the

least common multiple f of the degrees of the irreducible factors of ze �
⇣
�2
�1

⌘
2 K[z].

Proof. Since all of the roots for both '1 and '2 have the same valuation, there exists

a unit � 2 K(✓1, ✓2) so that ✓1� is a root of '2(x). We have

0 = (✓1�)
e � �2⇡

= ✓e1�
e � �2⇡

= (�1⇡)�
e � �2⇡.

Dividing by �1⇡ yields �e� �2
�1

= 0. So the composite of K(✓1) and K(✓2) is the

extension of K(✓1) that contains the roots of ⌧(x) = xe � �2
�1

. Since

gcd

✓
xe � �2

�1
,
d

dx

✓
xe � �2

�1

◆◆
= gcd

✓
xe � �2

�1
, exe�1

◆
= 1

the polynomial ⌧(z) = ze� �2
�1
2 K(✓1)[z] is squarefree. Denote by f the least common

multiple of the degrees of the irreducible factors of ⌧ . Then Proposition 2.16 tells us

29



that ⌧ splits into linear factors in the unramified extension of K(✓1) of degree f , which

is the composite of K(✓1) and K(✓2).

Proposition 2.43. Let '1(x) = xn � d⇡ 2 OK[x], and let '2(x) = xm � c⇡ 2 OK[x]

where v(c) = v(d) = 0 and m, n are coprime to p and one another. Let ✓1 and ✓2 be

roots of '1 and '2 respectively. Then the composite of K(✓1) and K(✓2) is the totally

ramified extension of K(✓1) generated by the polynomial xm � (

c
d
)

b✓1 where a, b are

integers such that am+ bn = 1.

Proof. If we evaluate '1 and '2 at their given roots we obtain ✓n1 � d⇡ = 0 and

✓m2 � c⇡ = 0. Solving the former equation for ⇡ we find that ⇡ =

✓n1
d

. Substituting

this into the second equation yields ✓m2 � c
d
✓n1 = 0. So the composite of K(✓1) and

K(✓2) is the extension of K(✓1) that contains the roots of ⌧(x) = xm � c
d
✓n1 .

The Newton Polygon of ⌧ is a line connecting the points (m, 0) and (0, n). In

lowest terms, this line has slope � n
m

. Observing that ✓1 is a uniformizer for K(✓1), it

follows from Proposition 2.26 that the composite K(✓1)(✓2) can be generated by the

Eisenstein polynomial xm
+ (�1)b+1

�� c
d
✓n1
�b
✓ma
1 . Furthermore:

xm
+ (�1)b+1

⇣
� c

d
✓n1

⌘b

✓ma
1 = xm

+ (�1)b+1
⇣
� c

d

⌘b

✓am+bn
1

= xm
+ (�1)b+1

⇣
� c

d

⌘b

✓1

= xm �
⇣ c
d

⌘b

✓1.

Let K0 be an unramified extension of K with uniformizer ⇡K0
= ⇡, and let T1

and T2 be tamely, totally ramified extensions of K0. If T1/K0 and T2/K0 have the same

degree or coprime degrees, we have seen that computing the composite T1T2 involves
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constructing a single unramified extension or a single totally ramified extension. In

the event that [T1 : K0
] and [T2 : K0

] are distinct and have a nontrivial divisor, we

must construct extensions of both types in order to compute the composite. The

proposition below describes this approach as a mixture of the ideas presented earlier

in this section.

Proposition 2.44. For an unramified extension K0/K, let '1(x) = xe1 � �1⇡ 2 K0
[x],

and let '2(x) = xe2 � �2⇡ 2 K0
[x], where p - e1, p - e2, v(�1) = v(�2) = 0, and

m := gcd(e1, e2) > 1. Let T1 = K0
[x]/('1), and let T2 = K0

[x]/('2).

For i 2 {1, 2}

(a) Ti/K0 has a subfield Si = K0
[x]/(xm � �i⇡).

(b) Ti
⇠
=

Si[x]/(x
ei/m � �0i⇡Si) where �0i 2 K0 is a lift of a root of xm � (�1)m+1�i⇡

NSi/K
0 (⇡Si )

in

K0.

The composite S1S2 of S1 and S2 can be constructed as an extension of S1 using

Proposition 2.42.

(c) S1S2T1
⇠
=

S1S2[x]/(x
e1/m � �01⇡S1).

(d) S1S2T2
⇠
=

S1S2[x]/(x
e2/m � �02⇡s) where ⇡s is a root of xm � �2⇡ in S1S2.

The composite of T1/K0 and T2/K0 is the composite of S1S2T1 and S1S2T2.

Proof. We begin by observing that (a) follows from Remark 2.6. For (b), we will

prove the i = 2 case. Specifically, we wish to find the generating polynomial for the

top extension in the tower T2/K0 below

T2 ◆ S2 ◆ K0.
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We know that [T2 : S2] must be e2/m, so the extension can be generated by

a polynomial of the form xe2/m � �02⇡S2 where the uniformizer of S2, ⇡S2 , is a root of

xm � �2⇡. According to Proposition 2.41 NS2/K0
(xe2/m � �02⇡S2) generates T2/K0. As

T2/K0 is also generated by xe2 � �2⇡, part (b) of Remark 2.6 informs us that we can

choose �02 such that N(��02⇡S2) = ��2⇡ for N = NS2/K0 . From this we obtain:

��2⇡ = N(��02⇡S2)

= N(��02)N(⇡S2)

= (��02)[S2:K
0]
N(⇡S2)

= (��02)mN(⇡S2)

= (�1)m(�02)mN(⇡S2).

Solving this for (�02)
m we get

(�02)
m
=

(�1)m+1�2⇡

N(⇡S2)
.

A similar result holds for i = 1. Thus (b) has been proven. All that remains is to

prove the formulations of the composites of S1S2 with T1 and T2.

Since S1S2/S1 is unramified, we have that ⇡S1S2 = ⇡S1 . Thus, by Proposition

2.38, the composite of S1S2/S1 with T1/S1 is the extension of S1S2 generated by the

polynomial that generates T1/S1. This proves (c).

Because S1S2 was computed as an unramified extension of S1 instead of S2,

demonstrating (d) requires more work. In order to use the same argument that we

utilized for (c), we must find a way to write ⇡S2 in terms of elements in S1S2. To this

end, we look at the minimal polynomial of ⇡S2 which is xm � �2⇡. Specifically, we
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find a root of this polynomial in S1S2 and call it ⇡s. The result follows from replacing

⇡S2 in xe2/m � �02⇡S2 by ⇡s.

Remark. Because gcd([S1S2T1 : S1S2], [S1S2T2 : S1S2]) = 1, the composite of S1S2T1

and S1S2T2 can be constructed as an extension of S1S2T1 using Proposition 2.43.

As mentioned in Section 2.2, we can write the composite in any of the above

cases as a tower of extensions T/U/K where T/U is totally ramified and U/K is

unramified. This restructuring can be accomplished through the use of norms and

embeddings. To find the composite of the towers T/U/K and T0/U0/K one forms the

unramified extension UU0/K of degree lcm([U : K], [U0
: K]) and finds the composite of

T and T0 as extensions of UU0.

Suppose that L1, L2, . . . , Lm are tamely, totally ramified extensions of K0 and

that we need to compute their composite. We begin by computing the composite

L1L2 and restructuring it in the form described in the preceding paragraph. Next,

we take this extension of K and find its composite with L3. Once this extension is

restructured, we find its composite with L4, and the process would continue in this

way until we include Lm. In short, the composite of the m extensions is computed by

recursively computing the composite of two extensions.
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CHAPTER III

RAMIFICATION POLYGONS AND RESIDUAL POLYNOMIALS

In this chapter, we examine two invariants of a totally ramified extension: the

ramification polygon and the residual polynomial classes of the extension. Particular

attention is given to subfields of the extension and how they relate to splitting fields

and Galois groups. Most of this material will be used, in a later chapter, in a new

algorithm for computing Galois groups of Eisenstein polynomials.

The material in the first seven sections can be found in prior publications by

Christian Greve [32][33] and Brian Sinclair [68] [79]. In the final section, we improve

on one of Greve’s results and give a new refinement of the ramification filtration from

Section 2.5. Throughout, we let K be a local field whose residue class field K has

characteristic p.

3.1 Residual Polynomials

Residual (or associated) polynomials were first introduced by Ore [61, 65].

They yield information about the unramified part of the extension generated by the

zeros of a polynomial. They have proven to be helpful in the factorization of polyno-

mials [38, 70] over an assortment of local fields as well as in computing both integral

bases and ideal decompositions [35, 60,61]. Recently they have been utilized in com-

puting splitting fields for polynomials over local fields [57]. In later sections, we will

use them to compute Galois groups and, in special cases, splitting fields for Eisenstein

polynomials. For now we will focus on the derivation and basic properties of residual

polynomials.
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For the remainder of this section, ⇢(x) =
Pn

i=0 ⇢ix
i is a monic polynomial in

OK[x]. We will assume that the Newton polygon N⇢ of ⇢ is made up by ` segments:

(a0, b0)$ (a1, b1)$ . . .$ (a`�1, b`�1)$ (a`, b`)

with slopes:

�m1 < �m2 < · · · < �m`�1 < �m`.

For each of these segments, there is a corresponding residual polynomial that is the

result of transformations of ⇢ that shift the particular segment to the x-axis. For now

we will focus on one particular segment. Let r be some positive integer between 1

and ` (inclusive). Then the r-th segment of N⇢ has slope �hr/er with gcd(hr, er) = 1

and has endpoints (ar�1, br�1) and (ar, br). There exists a root � of ⇢(x) which has

valuation hr/er. If we set L = K(�) then we have established enough notation to

derive the equation of the residual polynomial that corresponds to the r-th segment

of N⇢.

We apply a series of transformations to ⇢ so that the r-th segment of N⇢ will

lie on the x-axis. We begin by replacing x by �x. This causes the r-th segment of

N⇢ to become horizontal and rise up v(�ar�1
) units. We next divide by �ar�1 . This

results in the segment being lowered to its original height. Finally, dividing by ⇡br�1 ,

where ⇡ is the uniformizer for K, drops the segment to the x-axis. Thus the r-th

segment of the Newton polygon for ⇢(�x)

⇡br�1�ar�1
is horizontal and lies on the x-axis. We

have

⇢(�x)

⇡br�1�ar�1
=

nX

i=0

⇢i�
ixi

⇡br�1�ar�1
.
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The other segments of ⇢(�x)

⇡br�1�ar�1
are off of the x-axis and thus disappear if we mod

by ⇡L. The x-coordinates of our original segment can be parameterized as ar�1 + jer

where j takes on the integral values 0 through (ar � ar�1)/er. We obtain

⇢(�x)

⇡br�1�ar�1
⌘

arX

i=ar�1

⇢i�
ixi

⇡br�1�ar�1
mod ⇡LOL[x]

⌘
dr/erX

j=0

⇢jer+ar�1�
jer+ar�1xjer+ar�1

⇡br�1�ar�1
mod ⇡LOL[x]

where dr = ar� ar�1. In an effort to reduce the amount of clutter in this relation, we

cancel the common factor of �ar�1 on the right hand side and then divide both sides

by xar�1 to find that

⇢(�x)

⇡br�1�ar�1xar�1
⌘

dr/erX

j=0

⇢jer+ar�1�
jerxjer

⇡br�1
mod ⇡LOL[x].

If we set � = �er/⇡hr then v(�) = erv(�) � hrv(⇡) = 0. If we replace �er with �⇡hr

we get

⇢(�x)

⇡br�1�ar�1xar�1
⌘

dr/erX

j=0

⇢jer+ar�1⇡
jhr

(�xer
)

j

⇡br�1
mod ⇡LOL[x].

Our last step is a change of variable. If we substitute y for �xer in the right hand

side of the preceding relation then we can define

Ar(y) :=

dr/erX

j=0

⇢jer+ar�1⇡
jhr�br�1yj 2 K[y].

to be the residual polynomial of ⇢(x) that corresponds to the r-th segment of N⇢.

From our derivation we know the form of the roots of our residual polynomials.
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Lemma 3.1 ([33, Lemma 3.1]). Let �1, . . . , �n be the roots of ⇢(x). The roots of

A(y) 2 K[y] are of the form

✓
�
ej
i

⇡hj

◆

for some 1  i  n and some 1  j  `.

Proof. Without Loss of Generality, assume A(y) is the residual polynomial of the

j-th segment of the Newton Polygon of ⇢. For 1  i  n let xi :=

�i
�
. Then

⇢(�xi) = ⇢(� · �i
�
) = ⇢(�i) = 0. Thus �xi is a root of ⇢(x) for 1  i  n. Therefore,

xi is a root of ⇢(�x) for 1  i  n.

Since we have a congruence relation (mod⇡LOL[x]) between ⇢(�x) and A(y),

it stands to reason that if ⇢(�x) is zero then A(y) is as well. Thus it just remains to

determine which values of y correspond to x = xi.

The following substitutions were made in deriving A: �ej
= �⇡hj and y = �xej .

So y = �xej
=

�ej

⇡hj
xej . Our roots correspond to x = xi. So the roots of A(y) are

y =

�ej

⇡hj
· xej

i =

�ej

⇡hj
·
✓
�i
�

◆ej

=

✓
�
ej
i

⇡hj

◆

Definition 3.2. Let A(y) 2 K[y] be the residual polynomial of a segment S of N⇢

and � a root of A(y). We call the degree of the splitting field of Ar(y) 2 K[y] over K

the segmental inertia degree of S.

3.2 Ramification Polygons

We obtain the ramification data of a totally ramified extension from its ram-

ification polygon. In the past, ramification polygons have been utilized to explain
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maximal abelian extensions [54], study reciprocity and ramification groups [75], com-

pute Galois groups [33], and classify extensions [59][68].

Definition 3.3. Assume that the Eisenstein polynomial ' defines the extension L/K.

The ramification polygon R' of ' is the Newton polygon N of the ramification poly-

nomial ⇢(x) = '(↵x+ ↵)/(↵n
) 2 K(↵)[x] of ', where ↵ is a root of '.

It is clear from construction that the constant term of the ramification poly-

nomial is 0. This implies that the ramification polygon has no y-intercept. Its first,

leftmost point is (1, J0) where n + J0 � 1 is the valuation of disc (') (see [79]). The

other basic properties of the ramification polygon’s shape can be attributed to the

information in the following lemma.

Lemma 3.4 ([75, Lemma 1]). Let '(x) =

Pn
i=0 'ix

i 2 K[x] be an Eisenstein poly-

nomial and n = e0p
m with p - e0. Denote by ↵ a root of '(x) and set L = K(↵).

Then the following hold for the coefficients of the polynomial  (x) =

Pn
i=0  ix

i
:=

'(↵x+ ↵) 2 L[x]:

(a) vL( i) � n for all i.

(b) vL( pm) = vL( n) = n.

(c) vL( i) � vL( ps) for ps  i < ps+1 and s < m.

The general shape of a ramification polygon is given in Figure 1. For the

purpose of general discussions, the polygon will consist of ` non-horizontal segments

when n = pvp(n). Otherwise, the polygon will have `+1 segments with the right most

segment being horizontal.

As the next proposition shows, the ramification polygon R' of an Eisenstein

polynomial ' is an invariant of the extension generated by '.
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i

vL(⇢i)

1 ps1 ps2 ps`�1 ps` = pvp(n) n

�m1

(1, J0)

�m2

�m`

Figure 1. General shape of the ramification polygon of an Eisenstein polynomial of

degree n with discriminant (⇡)n+J0�1. Consists of `+ 1 segments.

Proposition 3.5 ([33, Proposition 4.4]). Let L/K be totally ramified and ↵ a prime

element of L and '(x) the minimal polynomial of ↵. Then R' and the segmental iner-

tia degree of its segments are invariants of L/K. We call RL/K := R' the ramification

polygon of L/K.

We have included the original proof of this result with additional details that

have been added to aide the reader.

Proof. To prove that the ramification polygon is an invariant of L/K, we must demon-

strate that it is not dependent on the choice of the uniformizing element of L. To this

end, we will take two prime elements of L and show that their minimal polynomials

have the same ramification polygon. Since we are given ↵ as a prime element, we

need only to consider one additional element. We will let � denote this second prime

element. By definition, this means that ↵ and � generate the same ideal. Therefore,
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there must exist � 2 OL = OK[↵] with vL(�) = 0 so that � = �↵. In short, � is the

product of ↵ and a unit.

Let ↵ = ↵1, . . . ,↵n denote the roots of '(x) in some algebraic closure of K.

We can write � = �(↵) = �0 + �1↵ + �2↵
2
+ . . . with �i 2 OK. Let � = �1, . . . , �n be

the conjugates of � and let e'(x) be the minimal polynomial of �. We compare the

roots of the ramification polynomials (⇢ and e⇢ respectively) of '(x) and e'(x)

⇢(x) = x

nY

i=2

✓
x� ↵i � ↵

↵

◆
= x

nY

i=2

⇣
x�

⇣
�1 + ↵i

↵

⌘⌘

and

e⇢(x) = x
nY

i=2

✓
x� �i � �

�

◆
= x

nY

i=2

✓
x�

✓
�1 + �i

�

◆◆
.

For 1  i  n long division yields

�i
�

=

�(↵i) · ↵i

�(↵) · ↵ =

�0↵i + �1↵
2
i + . . .

�0↵ + �1↵2
+ . . .

=

↵i

↵
+

�1(↵i � ↵)↵i + . . .

�0↵ + �1↵2
+ . . .

.

Since adding 1 and negating gives us an equivalent equation, we have that

1� �i
�

= 1� ↵i

↵
� �1(↵i � ↵)↵i + . . .

�0↵ + �1↵2
+ . . .

. (3.1)

Since �1 + ↵i
↵

is a root of ⇢, vL(�1 + ↵i/↵) = m where �m 2 Q [ {1} is the

slope of a segment of the Newton Polygon of ⇢ (i.e. R'). We have that

vL((↵i � ↵)↵i) = vL

⇣
↵↵i

⇣
�1 + ↵i

↵

⌘⌘

= vL(↵↵i) + vL

⇣
�1 + ↵i

↵

⌘

= vL(↵) + vL(↵i) +m

= m+ 2.
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As a result, �1(↵i � ↵)↵i has valuation m + 2 and �1(↵i�↵)↵i+...
�0↵+�1↵2+...

has valuation

m+ 1. So

vL

⇣
1� ↵i

↵

⌘
= vL

⇣
�1 + ↵i

↵

⌘

= m

< m+ 1

= vL

✓
��1(↵i � ↵)↵i + . . .

�0↵ + �1↵2
+ . . .

◆

= vL

✓
1� �i

�
�
⇣
1� ↵i

↵

⌘◆
by (3.1).

Hence, we have that 1 � �i/� ⇠ 1 � ↵i/↵. As we noted in our comments

following Definition 2.9 this implies that vL(1� �i/�) = vL(1� ↵i/↵) = m. Because

�1 + �i/� is a root of e⇢, we know that Re' has a segment of slope �m. Thus, the

segments of Re' have the same slopes as those of R'. Furthermore, since vL(�1 +

�i/�) = vL(�1 + ↵i/↵) for 1  i  n, the segments have the same length and

endpoints.

It follows that the slopes of the ramification polygon are independent of the

choice of the uniformizing (prime) element of L and therefore invariants of L.

To prove that the segmental inertia degree is an invariant of L/K we consider

the segment with slope �m = �h/e of the Newton polygons of ⇢(x) and e⇢(x).

According to Lemma 3.1, the roots of the corresponding residual polynomials

A(y) 2 L[y] and eA(y) 2 L[y] with respect to the segment with slope �m are of the

form:

✓
(�1 + ↵i/↵)

e

↵h

◆
and

✓
(�1 + �i/�)

e

�h

◆
.
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Because �1 + �i/� ⇠ �1 + ↵i/↵ we have

(�1 + �i/�)
e

�h
⇠ (�1 + ↵i/↵)

e

�h
=

1

�h
(�1 + ↵i/↵)

e

↵h
.

This tells us that the roots of the residual polynomial can change by a factor of

��h if we change the uniformizer by a factor of �. Therefore the roots of A(y) and

eA(y) differ only by the factor ��h 2 L = K. So, if A(y) =

Qd
i=1(y � �i) then

eA(y) =

Qd
i=1(y � �i�

�h
). Clearly the polynomials A(y) and eA(y) have the same

splitting fields which implies that the segmental inertia degrees are the same.

Thus the zeros of the residual polynomials of the ramification polygon change

by powers of the same element � when transitioning from a uniformizer ↵ to a uni-

formizer �↵. By [68, Theorem 4.8] this yields an invariant of L/K.

Definition 3.6. Let S1, . . . ,S` be the segments of the ramification polygon R of

an Eisenstein polynomial ' 2 OK[x]. For 1  i  ` let �hi/ei be the slope of Si

and Ai(x) its residual polynomial. The residual polynomial classes of the extension

K[x]/(') are

A =

��
��,1A1(�

h1x), . . . , ��,`A`(�
h`x)

�
: � 2 K⇥ (3.2)

where ��,` = ��h` degA` , and ��,i = ��,i+1�
�hi degAi for 1  i  `� 1.

The segmental inertia degree of a segment can be computed as the least com-

mon multiple of the degrees of the irreducible factors of the corresponding entry in

a representative of A. So using the residual polynomial classes results in a refine-

ment of the segmental inertia degrees. See [68] for an algorithm that enumerates

representatives of A1, . . . , A` for possible residual polynomial classes A.
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In future sections, we will be interested in ramification polygons for composites

of wildly and tamely ramified extensions. The following result and its proof will be

essential to future discussions.

Lemma 3.7 ([33, Lemma 4.5]). Let L/K be totally ramified of degree pm and let

�m1, . . . ,�m` be the slopes of RL/K. Let T/K be tamely ramified with ramification

index e0 and N = TL. Then the slopes of RN/T are �e0 ·m1, . . . ,�e0 ·m`.

Proof. Let ↵ and � denote prime elements of L and T respectively. Also, let '(x) be

the minimal polynomial of ↵ and ↵ = ↵1, . . . ,↵pm its roots in some algebraic closure

of K. Then according to Proposition 2.38 and Proposition 2.39 the extension N/K

has the subfield diagram shown in Figure 2.

Because gcd(e0, pm) = 1, there exist integers a and b that satisfy ae0�bpm = 1.

Using these cofactors we have that

vT(↵
a/�b

) = e0 · vK(↵a/�b
)

= e0
⇥
vK(↵

a
)� vK(�

b
)

⇤

= e0 [a · vK(↵)� b · vK(�)]

= e0


a · 1

pm
� b · 1

e0

�

= e0


ae0 � bpm

e0pm

�

=

ae0 � bpm

pm
=

1

pm
.

Thus if we let  (x) denote the minimal polynomial of ↵a/�b we find that N ⇠
=

T[x]/( (x)). Furthermore, the roots of  are ↵a
i /�

b for 1  i  pm.
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The ramification polynomial of  (x) is an element of ON[x] of the form

e⇢(x) : = x

pmY

i=2

✓
x�

✓
�1 + ↵a

i

�b
÷ ↵a

�b

◆◆

= x

pmY

i=2

✓
x�

✓
�1 + ↵a

i

�b
· �

b

↵a

◆◆

= x

pmY

i=2

✓
x+ 1� ↵a

i

↵a

◆
.

For each 1  i  pm, vL(�1 + ↵i/↵) = mq for some 1  q  `. Thus, there

exists a unit �i such that ↵i/↵ = 1 + �i↵
mq . Because 1 = e0a + (�bpm�1

)p we have

that a and p are coprime. This implies that (1 + �i↵
mq

)

a ⇠ 1 + a�i↵
mq .

The slopes of the segments of RN/T are the negatives of the valuations of the

roots of e⇢(x) 2 ON[x]:

vN

✓
�1 + ↵a

i

↵a

◆
= vN(�1 + (1 + a�i↵

mq
))

= vN(a�i↵
mq

)

= e0 · vL(a�i↵mq
)

= e0 [vL(a�i) + vL(↵
mq

)]

= e0 ·mq · vL(↵)

= e0 ·mq

for some 1  q  `. The result follows from the fact that there is a one to one

correspondence between the roots of the ramification polynomial of '(x) of valuation

mq and the roots of e⇢(x) of valuation e0 ·mq.
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N = TL = K(↵, �)

T = K(�)
L ⇠
=

K(↵)

pm

e0fT/K

K

e0fT/K pm

Figure 2. Composite of a wildly ramified extension L/K of degree pm and a tamely

ramified extension T/K with ramification index e0.

3.3 Blocks and Subfields

Let '(x) 2 OK[x] be Eisenstein, ↵ a root of ' and L = K(↵). In this section, we

discuss the connection between the ramification polygon R' of ' and a corresponding

collection of blocks of the Galois group G = Gal(') = Gal(L/K). These blocks, in

turn, will be used to compute a chain of subfields of the extension L/K.

Let ⌦ = {↵1, . . . ,↵n} be the set of roots of ' in some algebraic closure of K.

Since ' is irreducible, G acts transitively on ⌦.

Definition 3.8. A non-empty subset � of ⌦ is called a block, if �(�) \� 2 {;,�}
for all � 2 G. The group G� := {� 2 G | �(�) = �} is called the stabilizer of �.

The set {� = �

(1), . . . ,�(k)} := {�(�) | � 2 G} is the block system with respect to

�. It constitutes a partition of ⌦, thus n = k · |�|.

Before we can introduce the aforementioned blocks, some notation must be

established. We denote by ⇢(x) =
Pn

j=0 ⇢jx
j the ramification polynomial of ' where
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the degree of ' is n = e0p
m with p - e0. We will also assume that R' has ` + 1

segments and the last segment (pm, 0)$ (n, 0) is horizontal. Astute readers will note

that for every result in this section there is an analogous result for the case where R'

consists of ` non-horizontal segments.

From Lemma 3.4 we know that the x-coordinates of the endpoints of the

segments in R' are of the form ps where s is a whole number. We will set 0 = s0 <

s1 < . . . < s` = m so that for 1  i  `+ 1 the i-th segment of R' is

(psi�1 , ⌫L(⇢psi�1 ))$ (psi , ⌫L(⇢psi )).

In addition, the slopes of R' will be denoted by �m1 < �m2 < . . . < �m`+1 = 0.

In the last section, we saw that each root ↵i of ' corresponds to a root ↵i�↵1

↵1

of ⇢(x) when we set ↵1 = ↵. We will use this to renumber the roots in ⌦ so that the

roots ↵i satisfying vL(
↵i�↵1

↵1
) = mj will precede those satisfying vL(

↵i�↵1

↵1
) = mj+1 for

1  j  `. In other words, for the i-th segment of R' we get

vL

✓
↵psi�1+1 � ↵1

↵1

◆
= . . . = vL

✓
↵psi � ↵1

↵1

◆
= mi.

In the lemma below, we define a collection of blocks of G whose block systems

refine the prescribed root ordering above.

Lemma 3.9 ([32, Lemma 4.16]). The Galois group of '(x) has the blocks

�i = {↵1, . . . ,↵psi} = {↵02 K | '(↵0
) = 0 and vL(↵

0 � ↵1) � mi + 1} (1  i  `).

We can order the roots ↵1, . . . ,↵n such that �

(r)
i =

�
↵(r�1)psi+1, . . . ,↵rpsi

 
for 1 

r  k and k = n/psi.

46



Proof. Assume � 2 Gal('). We have that ↵1 2 �i regardless of the value of i, so we

are interested in ↵1 and �(↵1). There are 2 cases to consider.

Case 1: �(↵1) 2 �i.

Then we have vL(�(↵1)� ↵1) � mi + 1. Let ↵k 2 �i be arbitrary. Then

vL(�(↵k)� ↵1) = vL(�(↵k)� �(↵1) + �(↵1)� ↵1)

= vL(�(↵k � ↵1) + (�(↵1)� ↵1)) since � is a homomorphism.

Since ↵k 2 �i we know that vL(↵k � ↵1) � mi + 1. Because � is an au-

tomorphism, �(↵k � ↵1) and ↵k � ↵1 have the same minimal polynomial and the

negative of the slope of its Newton Polygon gives its valuation, thus vL(�(↵k�↵1)) =

vL(↵k � ↵1) � mi + 1. Hence we find that:

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

� min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

� mi + 1

which implies that �(↵k) 2 �i. Since ↵k was selected arbitrarily, we conclude

that �(↵k) 2 �i for all ↵k 2 �i. Therefore, �(�i) \�i = �i.

Case 2: �(↵1) /2 �i.
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Then we have vL(�(↵1)� ↵1) < mi +1. If we choose ↵k 2 �i arbitrarily, then

vL(�(↵k � ↵1)) � mi + 1 and

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

= min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= vL(�(↵1)� ↵1)

< mi + 1.

As a result, we have that �(↵k) /2 �i. Because ↵k was chosen arbitrarily, we

conclude that �(↵k) /2 �i for all ↵k 2 �i. Therefore, �(�i) \�i = ;.

In all cases, �(�i) \�i 2 {;,�i}.

From Galois Theory, we know that there exists a correspondence between

blocks of Gal(') and the fixed fields of the stabilizers of the blocks. Since Gal(') =

Gal(L/K), these fixed fields are subfields of L/K. If H  Gal(') then Fix(H) will be

used to denote the fixed field under H. We summarize this correspondence in the

theorem below. Its proof can be located in [48].

Theorem 3.10. Let '(x) 2 K[x] be irreducible of degree n, '(↵) = 0, L = K(↵), and

G the Galois group of L/K.

(a) The correspondence � 7! Fix(G�) is a bijection between the set of blocks con-

taining ↵ and the set of subfields of L/K.

(b) For two blocks �1,�2 with corresponding subfields L1, L2 we have L1 ✓ L2 if and

only if �2 ✓ �1.
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L = K(↵1) = L0 �0 = {↵1}
ps1 [ \

L1 = K(↵1 · · ·↵ps1 ) �1 = {↵1, . . . ,↵ps1}
ps2�s1 [ \

...
...

ps`�1�s`�2 [ \
L`�1 = K(↵1 · · ·↵ps`�1 ) �`�1 = {↵1, . . . ,↵ps`�1}

ps`�s`�1 [ \
L` = K(↵1 · · ·↵ps` ) �` = {↵1, . . . ,↵ps`}

e0 [ \
K = L`+1 �`+1 = {↵1, . . . ,↵n}

Figure 3. Subfields of L = K(↵1) and the corresponding blocks, where the roots of

↵1, . . . ,↵n of '(x) 2 OK[x] are ordered as in Lemma 3.9 and n = e0p
s` with p - e0.

(c) If � is a block and the characteristic polynomial of � =

Q
�2� � is square free

then Fix(G�) = K(�).

In the next theorem, we elaborate further on the form of the aforementioned

subfields of L/K. Consult Figure 3.

Theorem 3.11 ([32, Satz 4.17]). Let the roots ↵1, . . . ,↵n of '(x) be ordered as in

Lemma 3.9. Let L = K(↵) and for 0  i  ` let Li = K(�i) with �i = ↵1 · . . . · ↵psi .

Then L = L0 � L1 � . . . � L` � K with [Li : Li+1] = psi+1�si for i  ` � 1 and

[L` : K] = e0.

Proof. We will demonstrate that Li = Fix(G�i) for �i = {↵1, . . . ,↵psi}. Since �(�i) =

�i for all � 2 G�i , and Li = K(�i), we have Li ✓ Fix(G�i) ✓ L. It remains now to
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show that [Fix(G�i) : Li] = 1. We begin by finding the valuation of �i. We have that

vK(�i) = vK(↵1 · . . . · ↵psi )

=

psiX

j=1

vK(↵j)

=

psiX

j=1

1

n
since ' is Eisenstein.

= psi/n

= 1/w for some w 2 N.

Since L/K is totally ramified, all of its subfields are totally ramified. Thus

vK(�i) = 1/w implies that Li = K(�i) is totally ramified with degree [Li : K] = w =

n/psi . Furthermore, since Li ✓ Fix(G�i) we have that [Li : K] divides [Fix(G�i) : K].

Thus there exists c1 2 N so that [Fix(G�i) : K] = c1[Li : K] = c1 · (n/psi).
Let  (x) =

Q
↵k2�i

(x�↵k) and let � 2 G�i . Then
Q

↵k2�i
(x��(↵k)) =  (x).

In short,  (x) 2 Fix(G�i)[x]. Because deg( ) = psi and  divides ', we have that

 is the minimal polynomial of ↵1. Thus, because L contains a root of  , psi divides

[L : Fix(G�i)]. Therefore, there exists c2 2 N so that [L : Fix(G�i)] = c2p
si . Putting

these results together we have that

n = [L : K] = [L : Fix(G�i)] · [Fix(G�i) : K]

= c2p
sic1 · (n/psi)

= c2c1 · n.
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Therefore c2c1 = 1 meaning c1 = c2 = 1. Hence, [Fix(G�i) : K] = c1[Li : K] =

[Li : K] which tells us that

[Fix(G�i) : Li] =
[Fix(G�i) : K]

[Li : K]
= 1.

So, Li = Fix(G�i) and [L : Fix(G�i)] = c2p
si

= psi . The rest of the proof

follows from Theorem 3.10.

Next we describe how to compute the tower of extensions L0 � L1 � · · · �
Lm = K where m = ` or m = ` + 1. Since the ramification polygon R' of ' is the

Newton polygon of the ramification polynomial ⇢(x) = '(↵x + ↵)/↵n 2 K(↵)[x] it

yields a factorization ⇢ = ⇢1 · ·⇢m of ⇢ over K(↵) where for 1  i  m the factor

⇢i corresponds to the i-th segment of R'. Over K(↵) we obtain the factorization

' = '1 · · · · · 'm where

'1(x) = (x� ↵)⇢1
✓
x� ↵
↵

◆
· ↵deg ⇢1

and

'i(x) = ↵deg ⇢i⇢i

✓
x� ↵
↵

◆
for 2  i  m.

Now let  =

Qm�1
i=1 'i. The minimal polynomial µ 2 OK[x] of the constant coefficient

↵1 · · · · · ↵psm�1 . of  generates L` = K(↵1 · · · · · ↵psm�1 ) over K. We continue this

process with  2 Lm�1[x] whose ramification polynomial has m�1 segments until we

have reached L0 = K(↵1).

Algorithm 3.12 (RamificationPolygonFactors [32, Algorithmus 4.3]).

Input: An Eisenstein polynomial ' 2 K[x].
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Output: Factors of ' corresponding to the segments of the ramification polygon of

'.

(1) L K(↵) where ↵ is a root '.

(2) Determine the ramification polynomial ⇢ of '.

(3) Determine the ramification polygon R' of '.

(4) ⇢ ⇢/x.

(5) Let ⇢1(x), . . . , ⇢`+1(x) be the factors of ⇢ corresponding to the segments S1, . . . , S`+1

of R'.

(6) Let '1(x) = (x� ↵)⇢1(x�↵↵ ) · ↵deg ⇢1 .

(7) For 2  i  `+ 1:

• 'i  ↵deg ⇢i⇢i(
x�↵
↵

).

(8) Return '1, . . . ,'`+1 2 L[x].

Algorithm 3.13 (RamificationPolygonTower [32, Algorithmus 4.5]).

Input: An Eisenstein polynomial ' 2 K[x].

Output: The set {Li, . . . , L1} such that the extension L = K[x]/(') is the tower of

extensions L � L1 � · · · � Li � K.

(1) L K(↵) where ↵ is a root '.

(2) '1, . . . ,'i+1  RamificationPolygonFactors(').

(3) If i = 0: Return L.

(4)   '1 · · · · · 'i.
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(5) Denote by  0 the constant coefficient of  .

(6) Compute the minimal polynomial µ 2 K[x] of  0 over K.

(7) E K[x]/(µ).

(8) Return [E] cat RamificationPolygonTower( 2 E[x]).

For the remainder of this section, assume L/K is Galois. Then ' splits into

linear factors over L. Furthermore, since the ramification polynomial ⇢ is a transfor-

mation of ', ⇢ also splits into linear factors over L. Thus the roots of ⇢ lie in L which,

in turn, implies that the valuation (vL) of the nonzero roots ↵i�↵
↵

of ⇢ are integral.

Therefore, RL/K must have integral slopes.

As the following remark illustrates, the negatives of the slopes of RL/K are

the ramification breaks of L/K. Put another way, the ramification polygon yields a

ramification subgroup for each of its segments.

Remark ([33, Remark 4.1]). If the extension L/K generated by '(x) is Galois with

Galois group G the segments of the ramification polygon R' correspond to the ram-

ification subgroups of G:

Gj := {� 2 G | vL(�(↵)� ↵) � j + 1} for j � �1.

Because vL(
↵i�↵
↵

) = vL(↵i � ↵) � 1 the ramification polygon describes the filtration

G D G0 D G1 D . . . D Gk = 1 of the Galois group, that is, a segment of slope �m
yields a jump at m in the filtration, which means Gm 6= Gm+1. If the extension L/K

is not Galois, there is a similar interpretation for a filtration of the set of embeddings

of L/K in K in the context of non-Galois ramification theory (see [40]).
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Before continuing on we will prove the following part of the remark: if a

segment of R' has a slope of �m then Gm 6= Gm+1.

Proof. For m 2 N [ {0} we have that Gm = {� 2 G | vL(�(↵)� ↵) � m+ 1} and

that Gm+1 = {� 2 G | vL(�(↵)� ↵) � m+ 2}. In other words,

Gm =

⇢
� 2 G | vL

✓
�(↵)� ↵

↵

◆
� m

�

and

Gm+1 =

⇢
� 2 G | vL

✓
�(↵)� ↵

↵

◆
� m+ 1

�
.

Suppose a segment of the ramification polygon has slope �m. Then at least

one root of ⇢ has valuation m. Since m is finite, that root is not 0. So there exists

j 2 {2, . . . n} so that the valuation of ↵j�↵
↵

is m. By definition, there exists � 2 G

so that �(↵) = ↵j. So vL

⇣
�(↵)�↵

↵

⌘
= m. Thus � 2 Gm and � /2 Gm+1. Therefore,

Gm 6= Gm+1.

It follows from the ideas in the above proof that the subfields Li from Theorem

3.10 are the ramification subfields of our extension L/K. In other words, the subfields

Li are precisely the fixed fields for the ramification subgroups of Gal(L/K).

3.4 Ramification Polygons and Subfields

Much of Section 3.3 revolved around taking an Eisenstein polynomial ' and

using information from its ramification polygon to compute generating polynomials

for a chain of subfields of the field generated by '. As we saw in the aforementioned

section, the relative extensions in this chain were totally ramified and their generating

polynomials were related to factors of '. This implies the existence of a relationship
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between R' and the ramification polygons of the relative extensions. It is the extent

of this relationship that we discuss now.

Maintaining the notation from the previous section, we begin by describing

the relationship between R' = RL/K and RL1/K (see Figure 3). Specifically, we are

interested in what the segments and residual polynomials of R' tell us about the

segments and residual polynomials of RL1/K. The following lemma and its proof

thoroughly elaborate on what can be determined about RL1/K.

Lemma 3.14 ([33, Lemma 6.1]). Assume the ramification polygon R' = RL/K con-

sists of the segments S1, . . . , S`+1 of lengths ps1 � 1, ps2 � ps1 , . . . , n� ps` with slopes

�m1 < · · · < �m`+1 = 0. Then

(a) the ramification polygon RL1/K has exactly ` segments T1, . . . , T` of lengths ps2/ps1�
1, (ps3 � ps2)/ps1 , . . . , (n� ps`)/ps1 with slopes �m2, . . . ,�m`+1 = 0,

(b) the segmental inertia degree of Ti is equal to the segmental inertia degree of Si+1,

and

(c) for each root � of Ai+1(y) the element �p
s1 is a root of the residual polynomial

of Ti.

We have included the original proof of this result with additional details that

have been added to aide the reader.

Proof. We assume that the roots of '(x) are ordered as in Lemma 3.9. Let �1 =

�

(1)
1 , . . . ,�

(k)
1 be the block system for the smallest block �1. If ↵ 2 �

(r)
1 with 2  r 

k, then vL(↵�↵1) = m�+1 < m1+1 for some � 2 {2, . . . , `+1}. Recall that by our

ordering of the roots of '(x) we have ↵i 2 �

(1)
1 and ↵(r�1)ps1+i 2 �

(r)
1 for 1  i  ps1
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and 2  r  k. Thus, for some � 2 {2, . . . , ` + 1} and some units ", � 2 K, we have

↵(r�1)ps1+i = ↵1 + "↵m�+1
1 and ↵i = ↵1 + �↵m1+1

1 . Furthermore,

vL

✓
"↵m�

1 �
✓
�1 + ↵(r�1)ps1+i

↵i

◆◆
= vL

✓
"↵m�

1 + 1� ↵(r�1)ps1+i

↵i

◆

= vL

✓
"↵m�

1 ↵i + ↵i � ↵(r�1)ps1+i

↵i

◆

= vL("↵
m�
1 ↵i + ↵i � ↵(r�1)ps1+i)� 1

= vL("↵
m�
1 ↵i + ↵1 + �↵m1+1

1 � (↵1 + "↵m�+1
1 ))� 1

= vL("↵
m�
1 (↵i � ↵1) + �↵m1+1

1 )� 1

= vL("↵
m�
1 (↵1 + �↵m1+1

1 � ↵1) + �↵m1+1
1 )� 1

= vL("↵
m�
1 · �↵m1+1

1 + �↵m1+1
1 )� 1

= vL(�) + vL("↵
m�
1 ↵m1+1

1 + ↵m1+1
1 )� 1

= vL("↵
m�+m1+1
1 + ↵m1+1

1 )� 1

� min{vL("↵m�+m1+1
1 ), vL(↵

m1+1
1 )}� 1

= min{m� +m1 + 1,m1 + 1}� 1

= m1

> m�

= vL("↵
m�
1 ).

So we have that

� 1 +

↵(r�1)ps1+i

↵i

⇠ "↵m�
1 . (3.3)
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For 1  r  k let �r =
Q

↵2�(r)
1
↵, so that L1 = K(�1). Then  (x) =

Qk
r=1 x��r

is the minimal polynomial of �1 over K. The ramification polynomial of  (x) is:

 (�1x+ �1)

�k
1

= x

kY

r=2

✓
x�

✓
�1 + �r

�1

◆◆

= x
kY

r=2

 
x�

 
�1 +

Q
↵2�(r)

1
↵

Q
↵2�(1)

1
↵

!!

= x
kY

r=2

✓
x�

✓
�1 + ↵(r�1)ps1+1 · . . . · ↵rps1

↵1 · . . . · ↵ps1

◆◆

= x
kY

r=2

 
x�

 
�1 +

ps1Y

i=1

↵(r�1)ps1+i

↵i

!!
.

By relation (3.3) there are "r 2 K with v("r) = 0 and � 2 {2, . . . , ` + 1} so

that

�1 + �r
�1
⇠ �1 + (1 + "r↵

m�
1 )

ps1

= �1 +
ps1X

i=0

✓
ps1

i

◆
("r↵

m�
1 )

i

= �1 +
✓
ps1

0

◆
("r↵

m�
1 )

0
+

ps1X

i=1

✓
ps1

i

◆
("r↵

m�
1 )

i

= �1 + 1 +

ps1�1X

i=1

✓
ps1

i

◆
("r↵

m�
1 )

i
+

✓
ps1

ps1

◆
("r↵

m�
1 )

ps1

= "p
s1

r ↵m�p
s1

1 +

ps1�1X

i=1

✓
ps1

i

◆
"ir↵

m�·i
1 .

If we show that

� 1 +

�r
�1
⇠ "p

s1↵m�p
s1

1 , (3.4)
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then (a) is proven. For now we assume that relation (3.4) holds and prove (b) and

(c) for S2 and T1. The results for the other segments follow analogously.

The roots of the ramification polynomial of ' with valuation m2 are �1 +

↵i/↵1 ⇠ "i↵
m2
1 for some "i 2 K with v("i) = 0 and ps1 + 1  i  ps2 . By Lemma 3.1

this gives the roots

✓
("i↵

m2
1 )

e2

↵h2
1

◆
= "e2i

of the residual polynomial A2(y) 2 L[y] of S2, where m2 = h2/e2 with gcd(h2, e2) = 1.

For each "e2i of A2(y) there is a root, by (3.4), of the ramification polynomial of  (x)

with �1 + �r/�1 ⇠ "p
s1

i ↵m2·ps1
1 . With this we obtain the corresponding roots of the

residual polynomial B1(y) 2 L[y] of T1:
 
("p

s1

i ↵m2ps1
1 )

e2

�h2
1

!
=

 
("e2p

s1

i ↵h2ps1
1 )

(↵1 · . . . · ↵ps1 )
h2

!
=

�
"i

e2
�ps1

.

In short, if "ie2 is a root of A2(y) then ("i
e2
)

ps1 is a root of the residual poly-

nomial of T1. We have proven (c). As " 7! "p is an automorphism of L the splitting

fields of A2(y) and B1(y) are isomorphic, which implies (b).

To prove relation (3.4) we need to show that

vL

 
ps1�1X

i=1

✓
ps1

i

◆
"i↵m�i

1

!
> m�p

s1 .

By the ultrametric inequality, it is sufficient to show that each term in the sum has

valuation greater than m�p
s1 . In other words, we just need to demonstrate that

vL

✓✓
ps1

i

◆
"i↵m�i

1

◆
> m�p

s1 for 1  i  ps1 � 1.
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As vp
��

ps1

i

��
= s1 � vp(i) this simplifies to

m�p
s1 < vL

✓✓
ps1

i

◆
"i↵m�i

1

◆

= vL

✓✓
ps1

i

◆◆
+ vL("

i↵m�i
1 )

= vL(p)vp

✓✓
ps1

i

◆◆
+ vL("

i
) + vL(↵

m�i
1 )

= vL(p)(s1 � vp(i)) +m�i.

Subtracting m�i from both sides and then dividing by ps1 � i we find that

vL(p)(s1 � vp(i))

ps1 � i
> m�. (3.5)

Furthermore, our knowledge of Ramification Polygons informs us that

m1 =
vL(p)� vL(p

s1
)

ps1 � 1

 vL(p)

ps1 � 1

 vL(p)

ps1 � ps1�1

This implies that vL(p)
ps1�1(p�1) > m�. Replacing m� in (3.5) by this new upper

bound we conclude that in order to prove (3.4) it is sufficient to show that

vL(p)(s1 � vp(i))

ps1 � i
� vL(p)

ps1�1
(p� 1)

,

which, upon rearrangement, is equivalent to

p(ps1 � i)

ps1(p� 1)(s1 � vp(i))
 1.
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We write i = apv with p - a and v < s1 and obtain

p(ps1 � i)

ps1(p� 1)(s1 � vp(i))
 p(ps1 � pv)

ps1(p� 1)(s1 � v)
=

p

p� 1

· ps1�v � 1

ps1�v
(s1 � v)

=

p

p� 1

· 1� (1/p)s1�v

s1 � v
=

1� (1/p)s1�v

1� (1/p)
· 1

s1 � v

=

✓
1 +

1

p
+ · · ·+ 1

ps1�v�1

◆
1

s1 � v
 1.

This proves (3.4). Relation (3.4) and Figure 3 tell us that the valuation of the

roots of the ramification polynomial of  (x) are

vL1

✓
�1 + �r

�1

◆
= vL1("

ps1↵m�p
s1

1 )

=

1

ps1
· vL("ps1↵m�p

s1

1 )

=

1

ps1
[ps1vL(") + ps1vL(↵

m�
1 )]

= vL(") + vL(↵
m�
1 )

= m�vL(↵1) = m� for 2  �  `+ 1.

Therefore, the slopes of RL1/K = R are �m2, . . . ,�m`+1. The segment

lengths follow from Figure 3 and the related fact that vL1 and vL differ by a fac-

tor of 1/ps1 .

One of the consequences of Lemma 3.14 is that we can compute the ramifica-

tion polygon of L1/K without looking at its generating polynomial. The slopes and

segment lengths given by the lemma provide us with enough information to system-

atically determine the endpoints of the segments. First, we know that RL1/K has an

x-intercept ([L1 : K], 0) = (n/ps1 , 0) which is the rightmost point on the polygon. The
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remaining endpoints are the left endpoints of the segments. We will describe how to

determine them in order up and to the left from the x-intercept.

We would start with the final, rightmost segment of RL1/K. From Lemma

3.14 we know that the segment’s length is (n � ps`)/ps1 . Since this is the length in

the x-direction, we subtract it from [L1 : K] to get the x-coordinate of the segment’s

left endpoint. Next we plug the following information into the slope formula: the

segment’s slope, the coordinates for the right endpoint (n/ps1 , 0), and the x-coordinate

of the left endpoint. This gives us an equation where the only unknown quantity is

the y-coordinate of the left endpoint. Solving for this coordinate is straightforward.

We would then repeat the process for the next segment using the most recently

found point as the right endpoint of the segment. This would continue until all of the

endpoints are determined.

Remark. The leftmost point of RL1/K is (1, J) where

J =

X̀

i=2

mi

✓
psi � psi�1

ps1

◆
.

Furthermore, if L1 ⇠= K[x]/( (x)) where  is Eisenstein, then the valuation of disc ( )

is n
ps1
� 1 + J .

Repeated use of Lemma 3.14 yields similar information for RL2/K,RL3/K, . . .,and

RL`/K. From this we can infer analogous information about the ramification polygons

of the relative extensions Li�1/Li in our chain of subfields of L/K. This information

is summarized in the following theorem.

Theorem 3.15 ([32, Satz 5.7]). For 1  i  ` + 1 the ramification polygon RLi�1/Li

consists of exactly one segment, which corresponds to the segment Si of RL/K as

follows:
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(a) The slope of RLi�1/Li is equal to the slope of Si.

(b) The segmental inertia degrees of RLi�1/Li and Si are equal.

(c) For each root � of the residual polynomial Ai(y) of Si the element �p
si�1 is a

root of the residual polynomial of RLi�1/Li.

The proof of this theorem follows from induction on i by Lemma 3.14.

3.5 One Segment Splitting Fields

When the ramification polygon of an Eisenstein polynomial '(x) 2 OK[x]

is comprised of exactly one segment, we can quickly determine its splitting field.

According to Lemma 3.4 the only way R' can be a solitary line is if p - deg(') or

deg(') is a positive power of p. The former case was addressed in a prior chapter, so

we will exclusively focus on the case where there exists m 2 N such that deg(') is

n = pm.

The splitting field of '(x) can be determined from the splitting field of its

ramification polynomial ⇢(x) 2 K(↵)[x]. More specifically, the splitting field of ⇢(x)

is a subfield of the splitting field of '(x). We find this subfield first.

Lemma 3.16 ([33, Lemma 7.1]). Assume that the Newton polygon of ⇢(x) 2 OL[x]

consists of one segment of slope �h/e with gcd(h, e) = 1 = ae + bh for a, b 2 Z and

gcd(e, p) = 1. Assume that its residual polynomial A(y) 2 L[y] is square free and

let f be its segmental inertia degree. Let I/L be the unramified extension of degree

lcm(f, [L(⇣e) : L]) and let " 2 OI with A(") = 0. Then

N = I
⇣

e
p
"b⇡L

⌘

is the splitting field of ⇢(x).
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We have included the original proof of this result with additional details that

have been added to aide the reader.

Proof. Denote by A(x) 2 OL[x] a lift of A(y). Let M/L be the minimal unramified

extension over which A(y) splits into linear factors, say A(y) = (y��1) · . . . ·(y��n�1
e
)

over M. Let N = M(�, ⇣e) where � is a root of ⇢(x) and ⇣e is an e-th root of unity.

Let � = �e/⇡h
L . Then A(�) = 0 by Lemma 3.1. The field N is the splitting field of

⇢(x) if ⇢(x), or equivalently ⇢(�x)
�x(�⇡h

L )
(n�1)/e , splits into linear factors over N.

In Section 3.1 we found that for the r-th segment (ar�1, br�1)$ (ar, br) of the

Newton polygon N⇢ we had the following equivalence:

⇢(�x)

⇡
br�1

L �ar�1xar�1
⌘

dr/erX

j=0

⇢jer+ar�1⇡
jhr

L (�xer
)

j

⇡
br�1

L

mod ⇡NON[x]

where dr = ar � ar�1 and ⇡N denotes a prime element in ON. We then established

our definition of Ar(y) by making the substitution y = �xer .

In this particular example, we only have one segment so the notation is less

cumbersome: er = e, hr = h, (ar, br) = (n, 0) and ar�1 = 1. Taking this into

consideration we have that

A(y) = (y � �1) · . . . · (y � �n�1
e
)

= (�xe � �1) · . . . · (�xe � �n�1
e
)

=

n�1
eX

j=0

⇢je+1⇡
jh
L (�xe

)

j

⇡
br�1

L

⌘ ⇢(�x)

⇡
br�1

L �1x1
mod ⇡NON[x].
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To determine the value of br�1, we look at the slope:

�h

e
=

0� br�1

n� 1

.

Cross multiplying, we discover that br�1 =

h(n�1)
e

. This allows us to update

our above relation:

⇢(�x)

⇡
h(n�1)

e
L �x

⌘ (�xe � �1) · . . . · (�xe � �n�1
e
) mod ⇡NON[x].

If we then divide both sides by � n�1
e we determine that

⇢(�x)

⇡
h(n�1)

e
L · �x · � n�1

e

⌘
✓
xe � �1

�

◆
· . . . ·

✓
xe � �(n�1)/e

�

◆
mod ⇡NON[x],

or, equivalently,

⇢(�x)

�x(�⇡h
L)

(n�1)/e
⌘
✓
xe � �1

�

◆
· . . . ·

✓
xe � �(n�1)/e

�

◆
mod ⇡NON[x],

As gcd(e, p) = 1 for 1  i  (n� 1)/e the polynomials xe � �i
�

are square free

over N. Because ⇣e 2 N, they split into linear factors over N. Hensel lifting yields a

decomposition of ⇢(�x)
�x(�⇡h

L )
(n�1)/e into linear factors. It follows that ⇢(x) splits into linear

factors over N, thus N is the splitting field of ⇢(x).

Over M the polynomial ⇢(x)
x

splits into irreducible factors ✓i(x) =
Pe

j=0 ✓i,jx
j

(1  i  (n � 1)/e). Each ✓i generates a tamely ramified extension. Because such

extensions can be generated by binomials, we can explicitly determine the extensions

by looking at the constant coefficients ✓i,0.

Making the substitution z = �x in the last equivalence relation we obtain

⇢(z)

z(�⇡h
L)

(n�1)/e
⌘
✓✓

z

�

◆e

� �1
�

◆
· . . . ·

✓✓
z

�

◆e

� �(n�1)/e

�

◆
mod ⇡NON[x].
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Since �e
= �⇡h

L , this simplifies to

⇢(z)

z(�e
)

(n�1)/e
⌘
✓✓

z

�

◆e

� �1
�

◆
· . . . ·

✓✓
z

�

◆e

� �(n�1)/e

�

◆
mod ⇡NON[x].

Multiplying through by �n�1
= (�e

)

(n�1)/e gives us that

⇢(z)

z
⌘
✓
ze � �1

�
�e

◆
· . . . ·

✓
ze � �(n�1)/e

�
�e

◆
mod ⇡NON[x].

So, for 1  i  n�1
e

, we can set

✓i(x) ⌘ xe � �i
�
�e

mod ⇡NON[x]

= xe � �i
�
· �⇡h

L

= xe � �i⇡h
L .

As ✓i is a factor of ⇢(x)/x and the slope of the polygon of ⇢(x) is�h/e, the slope

of the polygon of ✓i is also �h/e. Since the leading term of ⇢ has valuation 0, so do

the leading terms of the ✓i. This implies that the valuation of the constant term of ✓i

(which has degree e) must be h. Therefore, for 1  i  n�1
e

, ✓i,0 ⌘ ��i⇡h
L mod (⇡h+1

L ).

By Proposition 2.26 the extensions generated by the ✓i(x) are isomorphic to the

extensions generated by the polynomials xe�(�i⇡
h
L)

b⇡ea
L = xe��bi⇡L with ae+bh = 1.

From Proposition 2.42, we find that the composite of the extensions generated

by xe � �bi⇡L would at most yield an additional unramified extension. Adjoining ⇣e

takes care of this. In short, if we set I := M(⇣e) then we only need one of the

polynomials xe � �bi⇡L to find the splitting field as an extension of I. Therefore,

N = I( e
p
�bi⇡L) for some 1  i  n�1

e
.
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In order to construct the splitting field of '(x) we need some information

regarding additive polynomials.

Lemma 3.17 ([33, Lemma 7.2]). Let u be a power of p. Let F (x) =

Pr
i=0 aix

pi 2
Fu[x] be an additive polynomial and assume e 2 N is a divisor of u�1 and of all pi�1
for all 1  i  r with ai 6= 0. If 1 2 Fu is a root of G(x) =

Pr
i=0 aix

(pi�1)/e, then

F (x) splits into linear factors over Fu, if and only if G(x) splits into linear factors

over Fu.

Theorem 3.18 ([33, Theorem 7.3]). Let '(x) 2 OK[x] be an Eisenstein polynomial

of degree n = pm and assume that its ramification polygon R' consists of one segment

of slope �h/e where gcd(h, e) = 1 = ae + bh for a, b 2 Z. Let ↵ be a root of '(x),

L = K(↵) and let A(y) 2 L[y] be the residual polynomial of R' with segmental inertia

degree f . Let I/L be the unramified extension of degree lcm(f, [L(⇣e) : L]) and choose

an " 2 K with A(") = 0. Then

N = I
⇣

e
p
"b↵

⌘

is the splitting field of '(x).

We have included the original proof of this result with additional details that

have been added to aide the reader.

Proof. By the construction of the ramification polynomial ⇢(x), the splitting field of

⇢(x) over L is the splitting field of '(x) over K. To be able to use Lemma 3.16 to find

the splitting field of ⇢(x), we need to show that A(y) is square free.
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Let ⇢(x) =
Pn

i=0 ⇢ix
i 2 OL[x] be the ramification polynomial of '(x). Then

the residual polynomial of R' is

A(y) =

(n�1)/eX

j=0

Ajy
j
=

(n�1)/eX

j=0

⇢je+1↵
h(j�(n�1)/e)yj 2 L[y].

We consider the polynomial B(x) =
Pn

i=0 Bix
i
= xA(�xe

) for a root � of A(y).

We find that

B(x) = x

(n�1)/eX

j=0

⇢je+1↵
h(j�(n�1)/e)�j xje

=

(n�1)/eX

j=0

Aj�
j xje+1.

We consider a nonzero coefficient Bi. Then i 2 {1, e + 1, 2e + 1, . . . , n}. So

there exists j 2 {0, . . . , n�1
e
} so that i = je+ 1. Thus

0 6= Bix
i
= Bje+1 xje+1

= Aj�
j xje+1.

So Aj 6= 0. It follows from the construction of A(y) that Aj 6= 0 if the

corresponding coefficient ⇢je+1 of ⇢(x) yields a vertex of R'. By Lemma 3.4, this

occurs when je+ 1 = ps for some s 2 {0, . . . ,m}. Therefore i = ps. Since our choice

of coefficient was arbitrary, we conclude that if a term Bix
i of B(x) is nonzero then

i is a power of p.

Thus B(x) is an additive polynomial. Furthermore B0
(x) = B1 = A0 since

nontrivial powers of p vanish over the residue class field. So, gcd(B(x), B0
(x)) = 1

and therefore B(x) and A(x) are square free.

It remains to be shown that eF = [I : L] = lcm(f, [L(⇣e) : L]) is the degree of

the splitting field of A(�xe
) over Fq

⇠
=

L. We have that e | (q eF � 1). Let u := q
eF ,

F (x) := B(x) and G(x) := A(�x). Then F (x) =
P(n�1)/e

j=0 Aj�
j xje+1. Let aj = Aj�

j.
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Then

F (x) =

(n�1)/eX

j=0

ajx
je+1 and G(x) =

(n�1)/eX

j=0

ajx
j
=

(n�1)/eX

j=0

ajx
(je+1)�1

e .

As shown earlier, if aj 6= 0 then je+ 1 is a power of p. Through renumbering

our coefficients we get F (x) =

Pr
i=0 aix

pi , G(x) =

Pr
i=0 aix

(pi�1)/e and, as shown

earlier, F is additive. Furthermore, G(1) = A(�) = 0.

As A(y) is squarefree and Fqf is the splitting field of A, we have that G(x) =

A(�x) splits into (distinct) linear factors over Fu. Hence, Lemma 3.17 tells us that

F (x) splits over Fu. Therefore, A(�xe
) =

B(x)
x

splits over Fu.

Remark. In the above Theorem, as p - e and L/K is totally ramified we have that

[L(⇣e) : L] = [K(⇣e) : K].

3.6 One Segment Galois Groups

When the ramification polygon of an Eisenstein polynomial consists of one

segment, we can explicitly give its Galois group. If the segment is horizontal then the

polynomial generates a tamely ramified extension and its Galois group can computed

using either Theorem 2.28 or Theorem 2.29. If, on the other hand, the segment isn’t

horizontal then we can use the results from Sections 3.5 and 2.4 to compute the Galois

group. The purpose of this section is to elaborate on how this can be done.

Let '(x) 2 OK[x] be Eisenstein of degree pm, ↵ a root of ' and L = K(↵). We

will assume that R' is a solitary line segment S with residual polynomial A(y) 2 L[y]

and slope �h/e in lowest terms. In this context, we can compute the splitting field N

of '(x) using Theorem 3.18. If we let T denote the maximal tamely ramified subfield

of N/K then Theorem 3.18 tells us that T/K has ramification index e and inertia
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degree f = lcm(f1, [L(⇣e) : L]) where f1 is the segmental inertia degree of S and ⇣e is

an e-th root of unity.

We will denote by G the group Gal(') = Gal(N/K) and by {Gi}i��1 the

ramification filtration of G. Then, by Proposition 2.37 we have that G1 = Gal(N/T).

We also set H = Gal(N/L).

It is clear from construction that N = TL (see Figure 2) and T\L = K. Hence,

by Theorem A.17 we have that G1\H = {id} and G1H = G. Therefore G = G1oH.

This gives us a theoretical structure of G but more detail is needed. We begin by

determining G1.

Lemma 3.19 ([33, Lemma 8.1]). The ramification filtration of G = Gal(') is

G � G0 � G1 = G2 = . . . = Gh > Gh+1 = {id}

The group G1 = Gal(N/T) is isomorphic to the additive group of Fpm.

Proof. It follows from Proposition 2.37 that |G/G0| = f and |G0/G1| = e. We have

confirmed the left part of the filtration: G � G0 � G1. In order to verify that

G1 = Gh, we examine the ramification polygon for N/T.

Since RN/T is not dependent on the choice of the uniformizing element of N,

we will choose ⇡N to satisfy N = T(⇡N). We will additionally let  (x) denote the

minimal polynomial of ⇡N over T. Then the roots of the ramification polynomial of

 are �(⇡N)�⇡N
⇡N

where � 2 Gal(N/T) = G1.

According to Lemma 3.7, RN/T is comprised of a single line with slope �e · h
e
=

�h. This means that the roots of the ramification polynomial of  all have valuation

69



h. From this we conclude that for all � 2 G1 we have

vN(�(⇡N)� ⇡N) = vN

✓
�(⇡N)� ⇡N

⇡N
· ⇡N

◆

= vN

✓
�(⇡N)� ⇡N

⇡N

◆
+ vN(⇡N)

= h+ 1.

In other words, � 2 Gh for all � 2 G1. Hence G1  Gh which implies that G1 = Gh.

Finally, from the construction of N it is clear that we can’t have another ramification

break. So Gh+1 = {id} and G1 = Gh = Gh/Gh+1.

According to Proposition 2.33 and Proposition 2.32, Gh/Gh+1 is isomorphic to

a subgroup of (⇡h
N)/(⇡

h+1
N ) which, as an additive group, is isomorphic to the additive

group of N. The characteristic of N is p so we have G1 = Gh/Gh+1 is isomorphic to

the additive group of Fpr for some r 2 N. To determine r we must find the order of

G1.

Since N is the splitting field of ' we know that N/K is Galois. Furthermore,

by Theorem A.17 we have that N/T is Galois. This implies that |Gal(N/T)| = [N :

T] = pm. Therefore, G1 is isomorphic to the additive group of Fpm .

The additive group of a finite field Fpr is isomorphic to a Fp-vector space. This

implies that G1 is elementary abelian.

In order to make our description of G = G1 o H more explicit we have to

determine the action of the elements of H on the elements of G1. We know that

once the group G has been found this action will be conjugation: for � 2 G1 and

⌧ 2 H we say �⌧ = ⌧�⌧�1. Unfortunately, simply stating that amounts to working

backward from a point we haven’t reached. Instead, we will determine the action in a
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roundabout fashion. More specifically, we will determine the action of H on a group

isomorphic to G1 and, in time, show that H must act the same way on both.

Before we delve into these details we need some notation and definitions. The

unique maximal ideal of ON will be represented by } = (⇡N). With this in mind,

Proposition 2.32 and Proposition 2.33 tell us that for i � 1 the quotients Gi/Gi+1

embed into the additive groups (}i/}i+1,+) which are isomorphic to the additive

group of N. We will define the embedding maps by

⇥i : Gi/Gi+1 ! (}i/}i+1,+) : �Gi+1 7!
✓
�(⇡N)

⇡N
� 1

◆
+ }i+1.

Some essential properties of the homomorphisms ⇥i for i � 1 are given in the lemma

below.

Lemma 3.20 ([32, Lemma 6.2]). The maps ⇥i for i � 1 are:

(a) Independent of the choice of the prime element.

(b) In agreement with the operation of G on Gi/Gi+1. That is, for all � 2 Gi and

for all ⌧ 2 G

⌧(⇥i(�Gi+1)) = ⇥i(�
⌧Gi+1)

where �⌧ = ⌧�⌧�1.

Proof. (a) Let � 2 Gi. Then ⇥i sends � to
⇣
�(⇡N)
⇡N
� 1

⌘
2 }i. If we identify this

element of }i by d we have �(⇡N) = ⇡N(1 + d).

Let ⇡0
N be another prime element of N. If we defined ⇥i in terms of ⇡0

N we

would find that � is mapped to
⇣
�(⇡0

N)

⇡0
N
� 1

⌘
2 }i. If we identify this element of }i by

d0 we have �(⇡0
N) = ⇡0

N(1 + d0).
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In order to prove that replacing ⇡N by ⇡0
N doesn’t change the homomorphism

⇥i we have to demonstrate that � is sent to the same coset in }i/}i+1. We start

by establishing how the two uniformizers ⇡N and ⇡0
N are related. Since ⇡N and ⇡0

N

generate the same ideal of ON there exists " 2 ON
⇥ such that ⇡0

N = "⇡N. Furthermore,

since � 2 Gi we have that �(") ⌘ " mod}i+1. Putting this all together we have

⇡0
N(1 + d0) = �(⇡0

N)

= �("⇡N)

= �(")�(⇡N)

= �(")⇡N(1 + d)

⌘ "⇡N(1 + d) mod }i+1

⌘ ⇡0
N(1 + d) mod }i+1.

This implies that d ⌘ d0 mod }i+1. Thus � is sent to the same coset.

(b) Let � 2 Gi and ⌧ 2 G. As we saw earlier, there exists an element d 2 }i

so that �(⇡N) = ⇡N(1 + d) and ⇥i(�Gi+1) = d mod }i+1. This directly implies that

⌧(⇥i(�Gi+1)) = ⌧(d) mod }i+1.

Because ⌧�1 is an automorphism, ⌧�1
(⇡N) and ⇡N have the same minimal

polynomial. The slope of this polynomial’s Newton polygon gives its valuation. This

implies that ⌧�1
(⇡N) and ⇡N have the same valuation. Thus, there exists " 2 ON

⇥

such that ⌧�1
(⇡N) = "⇡N. Utilizing this to compute �⌧ (⇡N) we find that

�⌧ (⇡N) = ⌧(�(⌧�1
(⇡N))) = ⌧(�("⇡N)).
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As before, � 2 Gi implies that �(") ⌘ " mod }i+1. This, in turn, implies that

�⌧ (⇡N) = ⌧(�("⇡N))

= ⌧(�(")�(⇡N))

= ⌧(�(")⇡N(1 + d))

⌘ ⌧("⇡N(1 + d)) mod }i+1.

If we apply ⌧ to both sides of ⌧�1
(⇡N) = "⇡N we obtain ⇡N = ⌧("⇡N). This informs

us that �⌧ (⇡N) is modulo }i+1 congruent to

⌧("⇡N(1 + d)) = ⌧("⇡N)⌧(1 + d)

= ⇡N⌧(1 + d)

= ⇡N(1 + ⌧(d)).

Now that we have an equivalence relation for �⌧ (⇡N), we can find the image

of �⌧ under ⇥i:

⇥i(�
⌧Gi+1) =

✓
�⌧ (⇡N)

⇡N
� 1

◆
mod }i+1

⌘
✓
⇡N(1 + ⌧(d))

⇡N
� 1

◆
mod }i+1

= ⌧(d) mod }i+1

= ⌧(⇥i(�Gi+1)).
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As we established in Lemma 3.19, G1 = Gh/Gh+1. This allows us to restate

⇥h as

⇥h : G1 ! }h/}h+1
: � 7!

✓
�(⇡N)

⇡N
� 1

◆
mod }h+1.

Since H acts naturally on }h/}h+1, we can investigate the action of H on ⇥h(G1) 
}h/}h+1. Later, we will relate this action to the action of H on G1.

First, we recall that H = Gal(N/L) where N/L is normal and tamely ramified

with ramification index e and inertia degree f (see again Figure 2). From our discus-

sion in Section 2.4 we can explicitly give the splitting field N. For q = |K| = |L|, we

have N = L(⇣, ⇡N) = K(↵)(⇣, ⇡N) where ⇣ is a (qf�1)-st root of unity and ⇡N =

e
p
⇣r↵.

To see how the generators s and t of H act on ⇣ and ⇡N, see Theorem 2.28.

Second, we compute ⇥h(G1) in a form that can be easily acted upon by H =

hs, ti. If we let ef represent the inertia degree of K/Qp then

N = Fqf = F

pf ef = Fp(⇣). (3.6)

Thus, Proposition 2.33 tells us that (}h/}h+1,+) is isomorphic to F

+

pf ef , an additive

group that contains an isomorphic copy of ⇥h(G1). Since ⇥h is injective, ⇥h(G1) has

order pm. This implies that ⇥h(G1)
⇠
=

F

+
pm .

As H acts on }h/}h+1 we must compute the submodule ⇥h(G1) of (}h/}h+1,+)

⇠
=

F

+
qf

. The proposition below explains how ⇥h(G1) can be computed using the roots of

A(y), our residual polynomial. The proposition also details how the automorphisms

s, t 2 H act on ⇥h(G1).
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Proposition 3.21 ([33, Proposition 8.3]). Let d =

pm�1
e

be the degree of the residual

polynomial A(y). Also let u1, . . . , ud be the zeros of A(y) in N and a, b 2 N with

ae� bpm = 1. Then:

(a) For 1  i  d the residue class field N contains the e-th roots of ui
⇣rh

which we

denote by ui,1, . . . , ui,e.

(b) The images of G1 under ⇥h are

{0 + }h+1, aui,j⇡
h
N + }h+1|1  i  d, 1  j  e},

where ui,j denotes a lift of ui,j 2 N to ON.

(c) The operations of the automorphisms s and t (see Theorem 2.28) on ⇥h(G1) are

given by s(⇣ i⇡h
N+}h+1

) = ⇣`h+i⇡h
N+}h+1 and t(⇣ i⇡h

N+}h+1
) = ⇣hk+qi⇡h

N+}h+1

with k =

r(q�1)
e

and ` = qf�1
e

.

Proof. (a) Let ⇢(x) 2 OL[x] denote the ramification polynomial of '. If the roots

of ', in some algebraic closure, are ↵ = ↵1, . . . ,↵pm then the nonzero roots of ⇢ are

�1 + ↵i
↵

for 2  i  pm. The N-valuation of these roots is

vN

⇣
�1 + ↵i

↵

⌘
= evL

⇣
�1 + ↵i

↵

⌘
= h.

Hence the roots of ⇢ have the form �⇡h
N for some � 2 ON

⇥.
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According to Lemma 3.1 the roots of A(y) must have the form

✓
(�⇡h

N)
e

↵h

◆
=

 
(� e
p
⇣r↵

h
)

e

↵h

!

=

✓
�e(⇣r↵)h

↵h

◆

= �e⇣rh.

As each �e has up to e e-th roots, we have up to e possibilities for �⇡h
N. Since ⇢

has pm � 1 nonzero roots, the only way to distribute these roots is for e of them to

correspond to each of the d =

pm�1
e

roots of A.

(b) According to part (a) of Lemma 3.20, ⇥h is independent of the uniformizer

used. So, we are going to use the prime element from the proof of Lemma 3.7:

⇡0
N = ↵a/�b where � is a prime element of T. In addition, we further mimic the

aforementioned proof by representing each quotient ↵i/↵ by 1+�i↵
h/e where v(�i) = 0.

Let � 2 G1 be such that �(↵) = ↵i for some 2  i  pm. Since a and p are

coprime, we have that

�(⇡0
N)

⇡0
N

� 1 =

(�(↵))a

(�(�))b
· �

b

↵a
� 1

=

↵a
i

�b

�b

↵a
� 1 since �(�) = �

=

⇣↵i

↵

⌘a

� 1

= a�i↵
h/e

+ . . . .

This informs us that ⇥h(�) is a�i↵
h/e

+ . . . mod }h+1.

Unfortunately, �i and ↵h/e are not generally in N. So we have to do some work

to represent ⇥h(�) in N. Since �i↵h/e and �⇡h
N both represent a root of ⇢, we equate
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them. What we get is an equation equivalent to �i = �( e
p
⇣r)h. This permits us to

update our formulation of ⇥h(�):

�(⇡0
N)

⇡0
N

� 1 = a� e
p
⇣r

h e
p
↵h

+ . . .

= a� e
p
⇣r↵

h
+ . . .

= a�⇡h
N + . . .

⌘ a�⇡h
N mod }h+1

since � 2 ON
⇥.

As we stated earlier, the roots of A(y) give pm � 1 values of �. Thus, ⇥h(G1)

is 0 + }h+1 along with the elements a�⇡h
N + }h+1.

(c) This follows directly from Theorem 2.28.

According to Proposition A.18, every finite field Fpr is a Galois extension of

Fp with [Fpr : Fp] = r. From basic field theory, we then know that Fpr is a vector

space over Fp with dimension r. Furthermore, if we denote by (Fp)
r the set of r ⇥ 1

column matrices with entries in Fp, we have that (Fp)
r ⇠
=

Fpr .

In light of this, our next step in finding G = Gal(') is to find an Fp-basis of

⇥h(G1). Because ⇥h(G1)  F

+
qf

, equation (3.6) implies that this basis B can be a set

of powers of ⇣.

Similarly, we will utilize the representation of H which has dimension f ef over

Fp. From Proposition 3.21, we know how the elements of H = hs, ti act on elements

of the form ⇣ i:

s : ⇣ i 7! ⇣`h+i and t : ⇣ i 7! ⇣hk+qi.
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This allows us to represent H as a subgroup H 0 of GL(m, p). If a 2 H then the action

of a on each element of B yields a linear combination of the elements of B. This

gives way to a corresponding m⇥m matrix A 2 H 0 where the jth row of A is made

up of the coefficients of the linear combination from a acting on the jth element of

B. It follows that H 0 will be computed as hS, T i  GL(m, p) where S and T are the

matrices corresponding to s and t respectively.

The above considerations provide us with a framework within which we can

compute Gal('). In the theorem below, we describe Gal(') as a subgroup of AGL(m, p)

(see Example B.16).

Theorem 3.22 ([33, Theorem 8.2]). Let '(x) 2 OK[x] be an Eisenstein polynomial

of degree pm, whose ramification polygon consists of one single segment of slope �h
e

with gcd(h, e) = 1. Then Gal(') = G1 oH, where G1 is the first ramification group

and H corresponds to the maximal tamely ramified subfield of the splitting field of

'(x) (see Proposition 3.18). Moreover, Gal(') is isomorphic to the group

eG = {tA,v : (Fp)
m ! (Fp)

m
: x 7! Ax+ v | A 2 H 0  GL(m, p), v 2 (Fp)

m}

of permutations of the vector space (Fp)
m, where H 0 describes the action of H on

⇥h(Gh/Gh+1)  }h/}h+1.

Proof. Let eG1 = {sv : (Fp)
m ! (Fp)

m
: x 7! x + v | v 2 (Fp)

m} be the set of

maps on (Fp)
m defined by addition by a vector. Then, by Lemma 3.19 we have that

G1
⇠
=

F

+
pm
⇠
=

eG1.

The next step is to establish how H acts on G1. According to part (b) of

Lemma 3.20 we have that ⌧(⇥h(�)) = ⇥h(�
⌧
) for � 2 G1 and ⌧ 2 H. This implies

78



that H acts in the same way on both G1 and ⇥h(G1). Furthermore, the action of H

on G1
⇠
=

⇥h(G1) is faithful.

Let H 0  GL(m, p) denote the group of matrices that describe how the el-

ements of H act on the submodule ⇥h(G1). Then H ⇠
=

H 0. Also, set eH = {uA :

(Fp)
m ! (Fp)

m
: x 7! Ax | A 2 H 0}. It follows immediately that H 0 ⇠

=

eH. Thus,

Gal(') ⇠
=

fG1 o
eH =

eG.

We conclude this proof by describing how eH acts on fG1. For sv 2 eG1, uA 2 eH

and x 2 (Fp)
m we obtain

suA
v (x) = uA(sv(uA�1

(x)))

= uA(sv(A
�1x))

= uA(A
�1x+ v)

= A(A�1x+ v)

= x+ Av.

In general, we have suA
v : (Fp)

m ! (Fp)
m
: x 7! x+ Av.

The results and discussions above are summarized in the following algorithm.

The reader should note that steps (11) and (12) of the algorithm detail how the

submodule M = ⇥h(G1) of F

+
qf

is computed. To date, this algorithm has been

applied to polynomials of degree as high as 3481.

Algorithm 3.23 (GaloisGroupOne [32, Algorithm 6.1]).

Input: ' 2 OK[x] Eisenstein of degree pm such that R' has one segment

Output: Gal(') as a subgroup of AGL(m, p)
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(1) Let �h/e be the slope of the segment S of R'.

(2) Let A 2 L[x] = Fq[x] be the residual polynomial of S.

(3) Let f1 = lcm{deg ⇢ | ⇢|A and ⇢ is irreducible} be the segmental inertia degree

of S.

(4) Let f = lcm(f1, [K(⇣e) : K]).

(5) Find a,ea, b,eb 2 N such that ae� eapm = 1 and bh�ebe = 1

(6) Let Fq(⇣) ⇠= Fqf .

(7) Let u1, . . . , ud 2 Fq(⇣) be the roots of A.

(8) Find r0 2 N such that ⇣r0 = ub
1.

(9) Find r 2 {0, . . . , e� 1} such that r ⌘ r0 mod e.

(10) Initialize M  h1i  F

+
qf

, i 1.

(11) Repeat until #M = pm:

(a) Compute the e-th roots ui,1, . . . , ui,e of ui/⇣
rh.

(b) M  hM,aui,1, . . . , aui,ei  F

+
qf

.

(c) i i+ 1.

(12) Let B be an Fp-basis of M .

(13) ` (qf � 1)/e, k  r(q � 1)/e.

(14) Find the automorphism s of M induced by ⇣j 7! ⇣`h+j where ⇣j is a generator

of M .

(15) Find the matrix S 2 GL(m, p) representing s with respect to B.

(16) Find the automorphism t of M induced by ⇣j 7! ⇣hk+qj where ⇣j is a generator

of M .
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(17) Find the matrix T 2 GL(m, p) representing t with respect to B.

(18) Return G = {tA,v : (Fp)
m ! (Fp)

m
: x 7! Ax+ v | A 2 hS, T i, v 2 (Fp)

m}.

As the above algorithm illustrates, the only information required to compute

Gal(') is: the base field K, the residual polynomial A(y) and the ramification polygon

of '. Every computational step in the algorithm can be performed using data based

on those three things.

Example 3.24. We compute the Galois group of '(x) = x25
+5x6

+5 2 Q5[x]. Let ↵

denote a root of '(x) and set L := Q5(↵). The ramification polygon R' is comprised

of a single line segment with endpoints at (1, 6) and (25, 0). The slope of this line is

�h
e
= �1

4 . The residual polynomial for this segment is

A(y) = y6 + 4 = (y + 1)(y + 4)(y2 + y + 1)(y2 + 4y + 1) 2 L[y]

It follows that the segmental inertia degree is 2. Because [Q5(⇣4) : Q5] = 1, the inertia

degree of the splitting field is f = lcm(2, 1) = 2.

Let ⇣ be a primitive (5

2 � 1) -st root of unity. Since ⇣0 = 1 is a root of

A(y), Theorem 3.18 tells us that the splitting field of '(x) over Q5 is N = L(⇣, 4
p
↵).

Because N/L is normal and tamely ramified we can use Theorem 2.28 to determine

H = Gal(N/L). Using e = 4, f = 2, and r = 0 we find that H ⇠
=

C4 ⇥ C2 and is

generated by

s : ⇣ 7! ⇣, 4
p
↵ 7! ⇣6 4

p
↵ and t : ⇣ 7! ⇣5, 4

p
↵ 7! 4

p
↵.

From part (c) of Proposition 3.21 we obtain the representation matrix S 2 GL(2, 5)

for the automorphism on F

+
52 defined by ⇣ i 7! ⇣6+i. In addition, Proposition 3.21
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gives us the representation matrix T 2 GL(2, 5) for the automorphism ⇣ i 7! ⇣5i. For

the basis 1, ⇣ of }/}2 ⇠
=

(F52 ,+) we have that

S =

0

B@
2 0

0 2

1

CA and T =

0

B@
1 0

1 4

1

CA

describe the action of the automorphisms s and t on G1
⇠
=

C2
5 . Thus, Theorem 3.22

gives us that Gal(') is isomorphic to

G =

�
tA,v : (F5)

2 ! (F5)
2
: x 7! Ax+ v

�� A 2 hS, T i, v 2 (F5)
2
 

⇠
=

C2
5 o (C4 ⇥ C2).

3.7 The Maximum Tamely Ramified Subextension

When the ramification polygon of an Eisenstein polynomial '(x) 2 OK[x] has

more than one segment, we do not have a closed form description of the splitting field

of ' or of Gal('). We can, however, use R' and its residual polynomials to obtain

information about the structure of the splitting field of '. Using the concepts and

results of the last three sections, we can compute a subfield T of the splitting field

N of '(x). The extension T is the maximum tamely ramified subextension of N/K.

That is, N is a p-extension of T.

Theorem 3.25 ([32, Satz 5.8]). Let '(x) = xn
+

Pn�1
i=0 'ix

i 2 OK[x] be Eisenstein of

degree n = e0p
m with p - e0 and m > 0. Assume the ramification polygon R' of '(x)

consists of `+ 1 segments S1, . . . , S`+1. For 1  i  ` let

• mi = �hi/ei be the slope of Si with gcd(hi, ei) = 1 = diei + bihi for di, bi 2 Z,
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• Ai(y) 2 OL[y] be the residual polynomial and fi the segmental inertia degree of

Si,

• �i 2 K such that Ai(�i) = 0, and

• vi = e0 · pm�si�1
+ n+ 1.

Moreover we denote by I the unramified extension of K of degree

f = lcm(f1, . . . , f`, [K(⇣e1e0) : K], . . . , [K(⇣e`e0) : K]) (3.7)

and by N the splitting field of '(x). Let ↵ be a root of '(x) and K(↵) = L0 �
L1 � · · · � L` � K as in Theorem 3.15 be the tower of subfields corresponding to R'.

Then:

(a) The field

T = I

✓
e1e0

q
(�1)v1�b1n1 '0, . . . ,

e`e0

q
(�1)v`�b`n` '0

◆

is a subfield of N/K, such that N/T is a p-extension.

(b) For 1  i  `� 1 the extensions TLi�1/TLi are elementary abelian.

(c) The extension T/K is Galois and tamely ramified with ramification index e0 ·
lcm(e1, . . . , e`). Furthermore [T : K] < n2.

We have included the original proof of this result with additional details that

have been added to aide the reader.

Proof. Assume that the roots ↵ = ↵1, . . . ,↵n of '(x) are ordered as in Lemma 3.9.

For 1  i  ` we have Li = K(�i) with �i = ↵1 · · ·↵psi . The conjugates of �i, under

this ordering, are of the form �
(j)
i = ↵(j�1)psi+1 · . . . · ↵jpsi for 1  j  n/psi .
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For 1  i  ` let Ni denote the normal closure of Li�1/Li. According to

Theorem 3.15, RLi�1/Li consists of exactly one segment of slope mi = �hi/ei with

gcd(hi, ei) = 1 = diei + bihi for di, bi 2 Z. Furthermore, the segmental inertia degree

of RLi�1/Li is fi. If "i is a root of Ai(y) then part (c) of Theorem 3.15 tells us that "p
si�1

i

is a root of the residual polynomial of RLi�1/Li . Since �i�1 generates the extension

Li�1/Li, Theorem 3.18 yields

Ni = Ii

 
ei

r⇣
"p

si�1

i

⌘bi
�i�1

!

with Ii/Li�1 unramified of degree lcm(fi, [Li�1(⇣ei) : Li�1]) = lcm(fi, [Ki�1(⇣ei) : Ki�1]).

By Lemma 3.19 the first ramification group and therefore the wildly ramified part of

Ni/Li is elementary abelian. For the tamely ramified extension L`/K we set N`+1 =

I`+1 = L`(⇣e0).

We now collect all unramified extensions over K and consider the tower of

extensions

IL � IL1 � · · · � IL` � I � K. (3.8)

By the definition of I, the extensions INi/ILi are Galois and totally ramified.

Their tamely ramified part INi/ILi�1 is generated by xei � "bipsi�1

i �i�1.

Similarly to the unramified parts we now consider the tamely ramified parts

over I. We will determine the tamely ramified part of INi/I for 1  i  `. This will

be accomplished by finding a generating polynomial for INi/I and using Proposition

2.26 to find the tamely ramified part.

For a particular choice of i we have the tower of extensions

INi � ILi�1 � ILi � I
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where the top extension INi/ILi�1 is generated by xei � "bipsi�1

i �i�1. Hence, by Propo-

sition 2.41, we can use the norm NILi�1/I(x
ei � "bipsi�1

i �i�1) to generate INi/I.

The resulting polynomial, ⌧ , is Eisenstein and has degree ei · [ILi�1 : I]. Its

constant term is
⇣
�"bipsi�1

i

⌘[ILi�1:I]
(�1)n'0 since the product of the conjugates of

�i�1 is up to sign equal to
Qn

i=1 ↵i = ±'0. All that remains to determine ⌧ is

to find [ILi�1 : I]. Since I/K is unramified, IK = I and Figure 3 gives way to the

following indices in (3.8): [IL : IL1] = ps1 , [IL1 : IL2] = ps2�s1 , . . . [IL`�2 : IL`�1] =

ps`�1�s`�2 , [IL`�1 : IL`] = ps`�s`�1 , [IL` : I] = e0, [I : K] = f .

As a result

[ILi�1 : I] = [ILi�1 : ILi] · [ILi : ILi+1] · · · [IL`�1 : IL`] · [IL` : I]

= psi�si�1 · psi+1�si · · · ps`�s`�1 · e0
= ps`�si�1 · e0
= e0 · pm�si�1 .

Thus, the constant term of ⌧ is

⇣
�"bipsi�1

i

⌘[ILi�1:I]
(�1)n'0 =

⇣
(�1)"bipsi�1

i

⌘e0·pm�si�1

(�1)n'0

= (�1)e0·pm�si�1
"p

si�1bie0·pm�si�1

i (�1)n'0

= (�1)e0·pm�si�1+n "bie0p
m

i '0

= (�1)e0·pm�si�1+n "bini '0

and ⌧ has degree ei · [ILi�1 : I] = ei · e0 · pm�si�1 .

By Proposition 2.26 and Corollary 2.27 we have that the tamely ramified part

of INi/I is generated by xeie0
+(�1)e0·pm�si�1+n "bini '0. If we let vi := e0·pm�si�1

+n+1,
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then this polynomial is xeie0
+ (�1)vi�1"bini '0. So

Ti = I

✓
eie0

q
(�1)vi"bini '0

◆

is Galois and the tamely ramified part of INi/I (1  i  `). Each of these extensions

contains IL`/I of degree e0. The field T is the compositum of the Ti and can thus be

computed using the approach described in Section 2.6. If we let �i = "i for 1  i  `

we have that

T = I

✓
e1e0

q
(�1)v1�b1n1 '0, . . . ,

e`e0

q
(�1)v`�b`n` '0

◆
.

The extension T/K is Galois, because it is the compositum of Galois extensions.

From Proposition 2.39 we get the new tower of extensions

TL = TL0 � TL1 � · · · � TL`�1 � T � I � K. (3.9)

Each relative extension TLi�1/TLi is wildly and totally ramified and has a ramification

polygon that consists of a single line segment with integral slope. Since

[TLi�1 : TLi] = [Li�1 : Li] = psi�si�1

it can be easily shown (compare to Lemma 3.19) that Gal(TLi�1/TLi) ⇠= C
si�si�1
p .

Thus TLi�1/TLi is an elementary abelian p-extension which proves (b). It follows by

induction that N/T is a p-extension. Therefore, (a) has been proven.

The stated ramification index for T/K can be attributed to the calculation

of the compositum of the extensions Ti/K (see again, Section 2.6). A first, obvious,

bound for [T : K] is e0 · [K(⇣e0) : K] ·
Q`

i=1 ni with ni = eifi · [K(⇣ei) : K]. By Theorem
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3.15 we can use the extension Li�1/Li to estimate ni for 1  i  `. We obtain

Ỳ

i=1

ni < (ps1ps2�s1 · . . . · ps`�s`�1
)

2
= (ps`)2 = (pm)2.

With e0 · [K(⇣e0) : K] < e20 we obtain (c).

We can use the tower of extensions in (3.9) to describe the normal closure N

and its relationship to T. This has been summarized in Figure 4.

N = K(↵1, . . . ,↵n)

[ p-extension
L = K(↵1) = L0 ⇢ TL0 = T(↵1)

ps1 [ [ elementary abelian
L1 = K(↵1 · · ·↵ps1 ) ⇢ TL1 = T(↵1 · · ·↵ps1 )

ps2�s1 [ [ elementary abelian
...

...
ps`�1�s`�2 [ [ elementary abelian

L`�1 = K(↵1 · · ·↵ps`�1 ) ⇢ TL`�1 = T(↵1 · · ·↵ps`�1 )

ps`�s`�1 [ [ elementary abelian
L` = K(↵1 · · ·↵ps` ) ⇢ T

e0 [ [ e0 · lcm(e1, . . . , e`) tamely ramified
K = L`+1 ⇢ I

f unramified

Figure 4. Subfields of a totally ramified extension L = K(↵1) and its normal closure

N in the notation of Theorem 3.25.
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Remark. If the ramification polygon R' consists of ` non-horizontal segments, then

the extension T/K in Theorem 3.25 would be calculated using e0 = 1. Further changes

would not be required.

3.8 New Blocks and a Refinement of Ramification Groups

Most of the subject matter in this chapter was predicated on the blocks �i

that were introduced in Section 3.3. This makes the prospect of refining these blocks

very appealing. Using this as motivation, we introduce a refinement of the blocks

by incorporating the roots of the residual polynomials of the ramification polygon.

Specifically, for a totally ramified extension L/K, we get additional blocks for each

non-horizontal segment of RL/K that satisfies two conditions: it has integral slope and

its residual polynomial has a root in L ⇠
=

K.

Lemma 3.26. Let ' 2 OK[x] be Eisenstein, ↵ a root of ', L = K(↵), and S a segment

of the ramification polygon R' of '. If S has integral slope � 6= 0 and the residual

polynomial A 2 K[x] has a root � 2 K then:

��,� =

8
>>>>><

>>>>>:

↵0
:

'(↵0
) = 0 and either

vL(↵
0 � ↵1) > �+ 1 or

vL(↵
0 � ↵1) = �+ 1 and

�1 + ↵0

↵1

↵�1
2 �Fp

9
>>>>>=

>>>>>;

is a block of Gal(').

Proof. Let � 2 Gal('). We have ↵1 2 ��,� regardless of the values of � and �. So we

are interested in ↵1 and �(↵1). There are 2 cases to consider.

Case 1: �(↵1) 2 ��,�.

There are 2 possibilities.
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Subcase 1a: vL(�(↵1)� ↵1) > �+ 1.

Let ↵k 2 ��,� be arbitrary. Then

vL(�(↵k)�↵1) = vL(�(↵k)��(↵1)+�(↵1)�↵1) = vL(�(↵k�↵1)+(�(↵1)�↵1)) (3.10)

since � is a homomorphism.

Because � is an automorphism, �(↵k�↵1) and ↵k�↵1 have the same minimal

polynomial and the slope of its Newton Polygon gives its valuation. Thus vL(�(↵k �
↵1)) = vL(↵k � ↵1). As ↵k 2 ��,� either vL(↵k � ↵1) > �+ 1 or vL(↵k � ↵1) = �+ 1

and
�1+

↵k
↵1

↵�
1
2 �Fp.

If vL(↵k � ↵1) > �+ 1 then by (3.10)

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

� min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= min{vL(↵k � ↵1), vL(�(↵1)� ↵1)}

> �+ 1.

This implies that �(↵k) 2 ��,�.

If, instead, vL(↵k � ↵1) = �+ 1 and
�1+

↵k
↵1

↵�
1
2 �Fp then by (3.10):

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

= min{vL(↵k � ↵1), vL(�(↵1)� ↵1)}

= vL(↵k � ↵1)

= �+ 1

since vL(�(↵k � ↵1)) = vL(↵k � ↵1) 6= vL(�(↵1)� ↵1).
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Since vL

✓
�1+

↵k
↵1

↵�
1

◆
= 0 and L/K is totally ramified, we have

�1 + ↵k
↵1

↵�1
⇠ �

✓�1 + ↵k
↵1

↵�1

◆
=

�1 + �(↵k)
�(↵1)

�(↵1)
�

.

Because vL(�(↵1)� ↵1) > �+ 1 we have that �(↵1) ⇠ ↵1 and

�1 + �(↵k)
�(↵1)

�(↵1)
�
⇠ �1 +

�(↵k)
↵1

↵�1
. (3.11)

Since vL

✓
�1+

�(↵k)
↵1

↵�
1

◆
= 0, with Equation (3.11) we obtain

�1 + �(↵k)
�(↵1)

�(↵1)
�

=

�1 + �(↵k)
↵1

↵�1

So
�1 + �(↵k)

↵1

↵�1
=

�1 + �(↵k)
�(↵1)

�(↵1)
�

=

�1 + ↵k
↵1

↵�1
2 �Fp .

Thus
�1+

�(↵k)
↵1

↵�
1

2 �Fp and vL(�(↵k) � ↵1) = � + 1. So, once again, �(↵k) 2
��,�. Since ↵k was chosen arbitrarily, we have that �(��,�) \��,� = ��,�.

Subcase 1b: vL(�(↵1)� ↵1) = �+ 1 and
�1+

�(↵1)
↵1

↵�
1

2 �Fp.

Let ↵k 2 ��,� be arbitrary. If vL(↵k � ↵1) > �+ 1, then (3.10) gives us that

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

= min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= min{vL(↵k � ↵1), vL(�(↵1)� ↵1)}

= vL(�(↵1)� ↵1)

= �+ 1.
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Then there exists �k 2 K with vL(�k) = 0 so that �(↵k) = ↵1 + �k↵
�+1
1 + · · · .

Because vL(↵k�↵1) > �+1, we have that vL(�(↵k)��(↵1)) = vL(�(↵k�↵1)) >

�+ 1. Thus, the expansions for �(↵k) and �(↵1) agree up to and including the ↵�+1
1

term. In other words, �(↵1) = ↵1 + �k↵
�+1
1 + · · · . So

�1 + �(↵1)
↵1

↵�1
⇠ �1 +

�(↵k)
↵1

↵�1
. (3.12)

Because vL

✓
�1+

�(↵k)
↵1

↵�
1

◆
= 0 we have that

�1 + �(↵1)
↵1

↵�1
=

�1 + �(↵k)
↵1

↵�1

So
�1 + �(↵k)

↵1

↵�1
=

�1 + �(↵1)
↵1

↵�1
2 �Fp. Thus �(↵k) 2 ��,�.

If, instead, vL(↵k � ↵1) = �+ 1 and
�1 + ↵k

↵1

↵�1
2 �Fp then (3.10) tells us that

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

� min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= min{�+ 1,�+ 1}

= �+ 1.

Thus either vL(�(↵k) � ↵1) > � + 1 or vL(�(↵k) � ↵1) = � + 1. In the

former case, it follows immediately that �(↵k) 2 ��,�. So we now assume that

vL(�(↵k)� ↵1) = �+ 1. It remains to show that
�1+

�(↵k)
↵1

↵�
1

2 �Fp.

Since vL(↵k � ↵1) = � + 1, there exists �k 2 K so that vL(�k) = 0 and ↵k ⇠
↵1+�k↵

�+1
1 . Similarly, there exists �1 2 K so that vL(�1) = 0 and �(↵1) ⇠ ↵1+�1↵

�+1
1 .
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Thus

�1 + ↵k
↵1

↵�1
=

�↵1 + ↵k

↵�+1
1

⇠ �↵1 + ↵1 + �k↵
�+1
1

↵�+1
1

= �k

and

�1 + �(↵1)
↵1

↵�1
=

�↵1 + �(↵1)

↵�+1
1

⇠ �↵1 + ↵1 + �1↵
�+1
1

↵�+1
1

= �1.

Since vL(�1) = vL(�k) = 0, we have that

�1 =
�1 + �(↵1)

↵1

↵�1
2 �Fp and �k =

�1 + ↵k
↵1

↵�1
2 �Fp.

By assumption, vL(�k) = 0 and L/K is totally ramified, we know that �k ⇠
�(�k). Therefore �(�k) 2 �Fp. Furthermore, since � is an automorphism

�(↵k) = �(↵1 + �k↵
�+1
1 )

= �(↵1) + �(�k)�(↵
�+1
1 )

⇠ ↵1 + �1↵
�+1
1 + �(�k) · [�(↵1)]

�+1

⇠ ↵1 + �1↵
�+1
1 + �(�k) · (↵1 + �1↵

�+1
1 )

�+1

⇠ ↵1 + �1↵
�+1
1 + �(�k) · ↵�+1

1 .
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Thus

�1 + �(↵k)
↵1

↵�1
=

�↵1 + �(↵k)

↵�+1
1

⇠ �↵1 + ↵1 + �1↵
�+1
1 + �(�k)↵

�+1
1

↵�+1
1

=

(�1 + �(�k))↵
�+1
1

↵�+1
1

= �1 + �(�k).

Since vL

✓
�1+

�(↵k)
↵1

↵�
1

◆
= 0, we have that

�1 + �(↵k)
↵1

↵�1
= �1 + �(�k).

Furthermore, �1, �(�k) 2 �Fp implies that (�1 + �(�k)) 2 �Fp. Therefore
�1+

�(↵k)
↵1

↵�
1

2 �Fp.

Now we, again, find that �(↵k) 2 ��,�. Since ↵k was chosen arbitrarily, we

have that �(��,�) \��,� = ��,�.

Case 2: �(↵1) /2 ��,�.

Through negating the definition of ��,� it can be shown that there are 2

possibilities for �(↵1).

Subcase 2a: vL(�(↵1)� ↵1) < �+ 1.
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If we choose ↵k 2 ��,� arbitrarily then vL(�(↵k �↵1)) = vL(↵k �↵1) � �+1.

Thus, by (3.10), we have that

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

= min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= vL(�(↵1)� ↵1)

< �+ 1

telling us that �(↵k) /2 ��,�. Because ↵k was chosen arbitrarily, we conclude that

�(↵k) /2 ��,� for all ↵k 2 ��,�. Therefore, �(��,�) \��,� = ;.

Subcase 2b: vL(�(↵1)� ↵1) = �+ 1 and
�1+

�(↵1)
↵1

↵�
1

/2 �Fp.

Let ↵k 2 ��,� be arbitrary. If vL(↵k�↵1) > �+1, then vL(�(↵k�↵1)) > �+1

and (3.10) tells us that

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

= min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= vL(�(↵1)� ↵1)

= �+ 1.

Because vL(↵k�↵1) > �+1, (3.12) holds again and, since vL

✓
�1+

�(↵k)
↵1

↵�
1

◆
= 0,

we have

�1 + �(↵k)
↵1

↵�1
=

�1 + �(↵1)
↵1

↵�1
/2 �Fp.

Thus, �(↵k) /2 ��,�.
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If, instead, vL(↵k � ↵1) = �+ 1 and
�1+

↵k
↵1

↵�
1
2 �Fp then (3.10) tells us that

vL(�(↵k)� ↵1) = vL(�(↵k � ↵1) + (�(↵1)� ↵1))

� min{vL(�(↵k � ↵1)), vL(�(↵1)� ↵1)}

= min{vL(↵k � ↵1), vL(�(↵1)� ↵1)}

= min{�+ 1,�+ 1}

= �+ 1.

Let us assume that vL(�(↵k)�↵1) > �+1. Because vL(↵k�↵1) = �+1, there

exists �k 2 K so that vL(�k) = 0 and ↵k = ↵1 + �k↵
�+1
1 + · · · . So ↵k ⇠ ↵1 + �k↵

�+1
1 .

Similarly, vL(�(↵1)� ↵1) = �+ 1 implies that there exists �1 2 K so that vL(�1) = 0

and �(↵1) ⇠ ↵1 + �1↵
�+1
1 . We will now strive to use �1 and �k to contradict the

assumption made at the outset of this paragraph: vL(�(↵k)� ↵1) > �+ 1.

As we saw in Subcase 1b, this gives us that

�1 =
�1 + �(↵1)

↵1

↵�1
and �k =

�1 + ↵k
↵1

↵�1
.

So �k 2 �Fp and �1 /2 �Fp. Furthermore, since vL(�k) = 0 and L/K is totally

ramified, we know that �(�k) ⇠ �k. Therefore, �(�k) 2 �Fp.

We now consider �(↵k � ↵1). Since � is an automorphism

�(↵k � ↵1) ⇠ �(↵1 + �k↵
�+1
1 � ↵1) = �(�k)�(↵

�+1
1 ) ⇠ �(�k)↵

�+1
1 .
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So

�(↵k)� ↵1 = �(↵k � ↵1) + (�(↵1)� ↵1) by (3.10)

=

⇥
�(�k)↵

�+1
1 + · · · ⇤+ ⇥

�1↵
�+1
1 + · · · ⇤

= (�(�k) + �1)↵
�+1
1 + · · · .

Since vL(�(↵k)�↵1) > �+1 we must have that �(�k)+�1 = 0. So �(�k) = ��1
which means that ��1 2 �Fp. This, however, contradicts the fact that �1 /2 �Fp. So

we must have that vL(�(↵k)� ↵1) = �+ 1.

As we saw in Subcase 1b, we have that

�1 + �(↵k)
↵1

↵�1
= �1 + �(�k).

Since �(�k) 2 �Fp and �1 /2 �Fp we have that (�1 + �(�k)) /2 �Fp.

Therefore
�1+

�(↵k)
↵1

↵�
1

/2 �Fp and vL(�(↵k)� ↵1) = �+ 1.

In other words, �(↵k) /2 ��,�. Because ↵k was chosen arbitrarily, we conclude

that �(↵k) /2 ��,� for all ↵k 2 ��,�. Therefore, �(��,�) \��,� = ;.
So we have that �(↵1) 2 ��,� implies that �(��,�) \ ��,� = ��,� and that

�(↵1) /2 ��,� implies that �(��,�) \ ��,� = ;. Since our choice of � 2 Gal(') was

arbitrary, we conclude that �(��,�) \��,� 2 {;,��,�} for all � 2 Gal('). Thus ��,�

is a block of Gal(').

For the remainder of this section, we assume that L/K is a normal, totally

ramified extension generated by the Eisenstein polynomial '. In this context, we

make the following claim: Gal(L/K) must have the blocks from Lemma 3.26. Since

we have already established that the slopes of R' are integral (Section 3.3), all that
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remains is to demonstrate that each segment satisfies the other criteria of our lemma.

In other words, we must have that each of the residual polynomials of R' has a root

in K.

To see why this last statement must be true, let’s assume for a moment that it

isn’t. If the residual polynomial of a segment didn’t have any roots then its segmental

inertia degree would be greater than 1. This would indicate that the splitting field

of ' would contain an unramified extension in addition to the extension L/K, a clear

contradiction to the fact that L/K is normal.

We conclude this section with an application. Because L/K is normal, Gal(L/K)

contains a decreasing sequence of ramification subgroups (Section 2.5) Gi (i � �1).
As we noted in section 3.3, the ramification polygon yields a ramification subgroup

for each of its segments. We refine this filtration by introducing an additional group

for each irreducible factor of the residual polynomial of each non-horizontal segment

of the ramification polygon.

Theorem 3.27. Let ' 2 K[x] be Eisenstein of degree n and ↵ a root of ' and

L = K(↵). Assume L/K is normal and let G = Gal(L/K). Let S be a segment of

nonzero slope �� 2 Z of the ramification polygon of '. Let � be a root of the residual

polynomial A 2 K[x] of S. Let

G�,� =

8
><

>:
� 2 G :

vL(�(↵)� ↵) > �+ 1 or

vL(�(↵)� ↵) = �+ 1 and �(↵)�↵
↵�+1 2 �Fp

9
>=

>;
.

(1) G�,� is a subgroup of Gal(L/K).

(2) G�,�  G�.

(3) If Gµ < G� then Gµ < G�,�.
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(4) G�/G�,� is isomorphic to a subgroup of (1 + ⇡�L)/(1 + ⇡�+1
L ).

(5) If A = �⌫ for some ⌫ 2 N then G�,� = G�.

Proof. (1) follows from Lemma 3.26.

(2) and (3) are direct consequences of the definitions of G� and G�,a.

(4) follows from (2) and part (1) of Proposition 2.32.

(5) Denote by ↵ = ↵1,↵2, . . . ,↵n the zeros of '. The zeros of A are
��1 + ↵i

↵

�e
/↵h

for 1  i  n. Thus if A = a⌫ these are also zeros of a and thus G�,a = G�.

Example 3.28. (By Brian Sinclair) Let K/Q2 be the unramified extension of degree

2 and K = F2(�). The polynomial ' = x8
+2x6

+4x3
+4x+2 2 OK[x] has ramification

polygon {(1, 9), (2, 6), (8, 0)} with a segment of slope �3 and length 1 and a segment

of slope �1 and length 6. The residual polynomials of the segments are z + 1 2 K[z]

and z6 + 1 = (z + 1)

2
(z + �)2(z + �2)2 2 K[z]. The extension L = K[x]/(') is normal

and Gal(L/K) has the subgroups G1, G1,z+1, G1,z+�, G1,z+�2 , and G3 with

{id} < G3 <

8
>>>><

>>>>:

G1,z+1

G1,z+�

G1,z+�2

9
>>>>=

>>>>;

< G1 = Gal(L/K).

This is the complete lattice of subgroups of Gal(L/K).

Example 3.29. (By Brian Sinclair) Let K/Q2 be the unramified extension of degree

2 and K = F2(�). The polynomial ' = x8
+ 4x5

+ 2x4
+ 2 2 OK[x] has ramification

polygon {(1, 13), (4, 4), (8, 0)} with a segment of slopes �3 and length 3 and a segment

of slope �1 and length 4. The residual polynomials of the segments are z3 + 1 =

(z+1)(z+�)(z+�2) 2 K[z] and z4+1 = (z+1)

4 2 K[z]. The extension L = K[x]/(')
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is normal and we obtain the subgroups G1, G3, G3,z+1, G3,z+�, and G3,z+�2 of Gal(L/K)

with

{id} <

8
>>>><

>>>>:

G3,z+1

G3,z+�

G3,z+�2

9
>>>>=

>>>>;

< G3 < G1 = Gal(L/K).

In this example we are missing two subgroups of Gal(L/K) of order 4.
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CHAPTER IV

RESOLVENTS

The most efficient algorithms for computing Galois groups over the rational

numbers are based on Richard Staudhuar’s relative resolvent method [82]. In his orig-

inal paper, Stauduhar introduced an algorithm that computed an irreducible polyno-

mial’s Galois group by transversing the subgroup lattice of Sn. His primary tool was

the computation of select resolvent polynomials, a class of specialized polynomials

whose simple roots dictate whether to and/or how to move along the aforementioned

subgroup lattice.

In this chapter, we examine the basic properties and typical usage of resol-

vents. Special attention is given to computational efficiency and the implementation

of particular examples. Throughout, we let Z denote an integral domain with multi-

plicative identity 1, and we let Q be the field of fractions of Z. We also assume that

the characteristic of Q is 0.

4.1 Basic Concepts and Notation

For the remainder of this chapter we assume that we have been provided with

a monic, irreducible polynomial f 2 Z[x] with deg(f) = n and that we wish to

compute Gal(f), the Galois group of f . We denote by ↵1, . . . ,↵n the roots of f in

some algebraic closure of Q. Since f is irreducible, its Galois group acts transitively on

the set {↵1, . . . ,↵n}. Naturally, this implies that Gal(f) can be represented/regarded

as a transitive permutation group acting on n elements.
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We denote by Sn the symmetric group on n elements. Every element � of Sn

acts on elements of the multivariate ring Z[x1, . . . , xn] by acting upon the subscripts

of the variables

xi 7! x�(i).

If F 2 Z[x1, . . . , xn] and � 2 Sn, then we denote by F � the image of F under the

action by �. When applying a sequence of permutation elements to F , we define the

action to be a right action. We illustrate this with a concrete example. If we acted

upon F by g 2 Sn and then acted upon the result by h 2 Sn then we would denote

this by

(F g
)

h
= F gh

where the product gh implies that g is applied first and then h is applied to the result.

In the event that F is fixed by every element of some H  Sn, we say that F

is H-invariant. In symbols, this means that F is H-invariant when F �
= F for all

� 2 H. For our purposes we are interested in the case where only the elements of H

fix F.

Definition 4.1. If H < G  Sn is a pair of subgroups then we call F 2 Z[x1, . . . , xn]

a G-relative H-invariant if H is StabGF := {� 2 G | F �
= F}, the stabilizer of F in

G.

It is clear that for H < G  Sn every Sn-relative H-invariant is also a G-

relative H-invariant. Therefore, the following lemma proves that a G-relative H-

invariant can always be found for such H and G.
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Lemma 4.2 ([24, Lemma 4.1]). F :=

X

�2H

 
n�1Y

i=1

xi
i

!�

is a Sn-relative H-invariant.

In total, #H(n � 2) multiplications are required to evaluate this invariant.

This typically makes the invariant too expensive to use. In practice, invariants of

small degree and a small number of terms are preferred. The most complete, current

method for computing efficient invariants for every possible group combination H < G

is given in [24]. Currently this method is implemented in the Computer algebra system

Magma and is considered to be accurate with high probability.

Once an invariant polynomial F has been found for a group pair H < G, we

can say a great deal about the relationship between F and it’s stabilizer H. The

following two theorems offer the reader a glimpse of this relationship while providing

information that will be vital to our discussion in the next section.

Theorem 4.3 ([82, Theorem 2]). For subgroups H < G  Sn, let F be a G-relative

H-invariant. If �1, �2 2 G then F �1
= F �2 if and only if �1, �2 lie in the same right

coset of G/H.

Proof. Suppose that F �1
= F �2 . If we act upon both sides by ��1

2 then we have

F �1�
�1
2

= F �2�
�1
2

= F . Since only the elements of H fix F , we have that �1��1
2 2 H.

This implies that H�1 = H�2. The forward direction has been proven.

Conversely, suppose that H�1 = H�2. Then �1�
�1
2 2 H which implies that

F �1�
�1
2

= F . Acting upon both sides by �2 we have that F �1�
�1
2 �2

= F �2 which is

equivalent to F �1
= F �2 .

Theorem 4.4 ([82, Theorem 3]). For subgroups H < G  Sn, let F be a G-relative

H-invariant. If � 2 G then F � is a G-relative ��1H�-invariant.
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Proof. Suppose that � 2 G and ⌧ 2 ��1H�. Then there exists h 2 H such that

⌧ = ��1h�. Acting upon F � by ⌧ yields

(F �
)

⌧
= F �⌧

= F ���1h�

= F h�

= (F h
)

�

= F �

since F is H-invariant. Because ⌧ was chosen arbitrarily, we conclude that every

element of ��1H� fixes F �. Thus ��1H�  StabGF
�.

Now assume that µ 2 StabGF
�. Then F �

= (F �
)

µ
= F �µ. Thus Theorem 4.3

tells us that �(�µ)�1 2 H. In other words, �µ�1��1
= h for some h 2 H. Multiplying

both sides on the left by ��1 and on the right by � we obtain

µ�1
= ��1h�.

Inversion of both sides leaves us with µ 2 ��1H�. Therefore, StabGF
�  ��1H�.

4.2 Stauduhar’s Method

Stauduhar originally formulated his method for polynomials over the integers.

When needed later in our work we state generalizations of his results. When discussing

some details of his method we do so for Z = Z.

Definition 4.5. Let f(x) be a monic, irreducible polynomial of degree n with coef-

ficients in Z. Let ↵1, . . . ,↵n be an ordering of the roots of f(x). Suppose H < G are

subgroups of Sn acting on {x1, . . . , xn} with Gal(f)  G under the given root ordering.
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Let G//H denote a set of representatives of right cosets of G/H. If F 2 Z[x1, . . . , xn]

satisfies H = StabGF then

RF (G, f) :=
Y

�2G//H

(x� F �
(↵1, . . . ,↵n))

is a polynomial in x called the resolvent polynomial corresponding to H < G.

• If G = Sn, we call the resolvent polynomial an absolute resolvent.

• If G < Sn, we call the resolvent polynomial a relative resolvent.

• The resolvent polynomial is called a linear resolvent if F (x1, . . . , xn) = a1x1 +

. . .+ anxn for some a1, . . . , an 2 Z.

One striking aspect of the immediately preceding definition is that G//H is

not specified beyond being a complete set of right coset representatives. The reason

for this is simple: it does not matter which element is selected from a right coset of

G/H. According to Theorem 4.3, if two elements lie in the same right coset then their

action on F is the same. This tells us that regardless of how the coset representatives

are chosen, the linear factors in the product

Y

�2G//H

(x� F �
(↵1, . . . ,↵n))

are the same. At most they are in a different order.

Theorem 4.6 ([82, Theorem 4]). Using the notation and assumptions of Definition

4.5, the coefficients of the resolvent polynomial RF (G, f) are elements of Z.

Proof. We begin by observing that every root of f is integral over Z. Since the set

of elements that are integral over Z is closed under addition and multiplication, we
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know that sums and products of the roots of f are integral over Z. By construction,

this implies that the coefficients of RF (G, f) are integral over Z.

Because every integral domain is a unique factorization domain, Z is inte-

grally closed in its field of fractions Q. Thus, it is sufficient to demonstrate that the

coefficients of RF (G, f) are elements of Q.

If we let �1, . . . , �m denote a set of representatives for the right cosets of H in

G, then we have that

RF (G, f) =
mY

i=1

(x� F �i
(↵1, . . . ,↵n)).

Suppose ⌧ 2 Gal(f). Then ⌧(RF (G, f)) has the form

⌧(RF (G, f)) =
mY

i=1

(x� (F �i
(↵1, . . . ,↵n))

⌧
)

=

mY

i=1

(x� F �i⌧
(↵1, . . . ,↵n)).

Because the set {�1⌧, . . . , �m⌧} is also a complete set of right coset represen-

tatives of G/H, we know from Theorem 4.3 that ⌧(RF (G, f)) = RF (G, f). Since ⌧

was selected arbitrarily, we conclude that the coefficients of RF (G, f) are unaffected

by the application of elements of Gal(f). Thus, by the definition of Gal(f), we must

have that the coefficients of the resolvent polynomial are elements of Q.

Theorem 4.7 ([82, Theorem 5]). Using the notation and assumptions of Definition

4.5, assume that F (↵1, . . . ,↵n) is a simple root of RF (G, f). Then Gal(f)  H if

and only if F (↵1, . . . ,↵n) is an element of Z.

Proof. According to Theorem 4.6, F (↵1, . . . ,↵n) is a root of a monic polynomial in

Z[x]. As such, F (↵1, . . . ,↵n) is integral over Z.
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Suppose Gal(f) is a subgroup of H. Then every element of Gal(f) is in the

stabilizer of F in G. This implies that F (↵1, . . . ,↵n) is unaffected by the application

of any element of Gal(f). As previously shown in the proof of Theorem 4.6, this is

enough to conclude that F (↵1, . . . ,↵n) 2 Z. The forward direction has been proven.

Conversely, suppose that F (↵1, . . . ,↵n) is in Z. Then every element of Gal(f)

fixes F (↵1, . . . ,↵n). Because F (↵1, . . . ,↵n) is a simple root, only the elements of one

right coset in G/H fix F (↵1, . . . ,↵n). Furthermore, by definition, the only elements

of G that fix F are those in H which is itself a coset of H in G. Taking all of this

together, we conclude that only the elements of H fix F (↵1, . . . ,↵n). Thus we have

that Gal(f)  H.

Corollary 4.8. Assume that F �
(↵1, . . . ,↵n) is a simple root of RF (G, f). Then

Gal(f)  ��1H� if and only if F �
(↵1, . . . ,↵n) is an element of Z

The proof follows from Theorem 4.4.

Corollary 4.9. Suppose F �
(↵1, . . . ,↵n) is an element of Z and a simple root of

RF (G, f) so that Gal(f)  ��1H�. If the roots of f(x) are reordered according to

the rule ↵0
i = ↵�(i), then F (↵0

1, . . . ,↵
0
n) is in Z, and with respect to this new ordering,

Gal(f)  H.

In practice, we check to see if a resolvent polynomial RF (G, f) is squarefree

before we determine whether or not it has a root in Z. Since RF (G, f) is monic and

Q has characteristic 0, RF (G, f) is squarefree if and only if

gcd(RF (G, f), R0
F (G, f)) = 1

where R0
F (G, f) is the formal derivative of RF (G, f). If RF (G, f) fails to be squarefree

we can use a Tschirnhausen transformation to proceed one of two ways.
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The first option is to replace our polynomial f with a new polynomial that has

the same Galois group ([14, Algorithm 6.3.4]). The resolvent RF (G, f) would then be

recalculated with respect to the new polynomial. If additional resolvents are needed

to find Gal(f), the roots of the new polynomial would be used. In short, f would be

permanently replaced.

The second option is to create t 2 Z[x] that is at least quadratic and recompute

RF (G, f) as

RF,t(G, f) :=
Y

�2G//H

(x� F �
(t(↵1), . . . , t(↵n))).

It has been proven ([30]) that such a polynomial t can be found so that RF,t(G, f) is

squarefree. Also, as in the case of the first option, the use of t would still lead to the

correct Galois group.

Since a Tschirnhausen transformation can always be applied, we will assume

for the remainder of this chapter that every resolvent polynomial is squarefree.

A well-known resolvent that is always applicable for polynomials over Z can

be found in the following example.

Example 4.10. Let An denote the alternating group on n elements. It can be shown

that

F (x1, . . . , xn) =

Y

i<j

(xi � xj)

is an An-invariant. If � 2 Sn is an odd permutation, then F �
= �F . Thus, F is a

Sn-relative An-invariant and its corresponding resolvent is

RF (Sn, f) = x2 � disc (f) 2 Z[x].
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As f is irreducible, disc (f) is nonzero. Thus RF (Sn, f) is squarefree and a Tschirn-

hausen transformation is unnecessary.

It follows that RF (Sn, f) has a linear factor over Z if and only if disc (f) is a

perfect square. Since An is the only subgroup of Sn that has index 2, we have that

Gal(f)  An ()
p

disc (f) 2 Z

by Theorem 4.7 and its first corollary.

We conclude this section with an overview of Stauduhar’s classic method for

determining the Galois group of a monic, irreducible polynomial f 2 Z[x]. For more

detailed descriptions of this method, we suggest the following sources: [28], [29], and

[24].

Stauduhar’s first step was to compute high-precision, complex approximations

to the roots of f . He then put the roots in an arbitrary order ↵1, . . . ,↵n and set G :=

Sn. Since Sn contains every permutation on n elements, this gave him Gal(f)  G

regardless of the ordering of the roots of f .

The next phase of his method entailed either replacing G with a smaller group

or verifying that G = Gal(f). To this end, he considered the maximal subgroups of

G. For a given maximal subgroup H < G he would find a G-relative H-invariant

F (x1, . . . , xn) and compute the corresponding resolvent polynomial RF (G, f). Then

he would use Corollary 4.8 to determine whether Gal(f)  ��1H� for some right

coset representative �.

If Stauduhar determined that Gal(f) was not contained in a maximal subgroup

of G, then he concluded that Gal(f) = G. Otherwise, if Gal(f)  ��1H� for H < G

maximal and H� 2 G/H, he would reorder the roots of f (see Corollary 4.9) so that
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Gal(f)  H and repeat the above procedure with G = H. This would continue until

Gal(f) was identified.

4.3 Improvements to Stauduhar’s Method

In recent years, key aspects of Stauduhar’s resolvent method have been im-

proved upon. In this section, we focus on two such aspects: the approximations

of polynomial roots and the selection of a starting group. For the latter, we focus

exclusively on the case where the stem field Q[x]/(f(x)) has a non-trivial subfield.

4.3.1 Root Approximations

An important consideration when working with resolvents is how one can guar-

antee accuracy in the computation and testing of each resolvent polynomial. Typi-

cally, this translates to an analysis of how one goes about approximating the roots

↵1, . . . ,↵n of f(x) and the corresponding roots F �
(↵1, . . . ,↵n) for a particular resol-

vent.

Stauduhar, for his part, used high-precison, complex approximations through-

out. Since every resolvent polynomial he used had integer coefficients, he computed

the roots F �
(↵1, . . . ,↵n) to a precision high enough to guarantee that, once the prod-

uct in Definition 4.5 was formed, the coefficients of the resolvent would be off by

at most ±1
2 . Using the approximations to ↵1, . . . ,↵n, he accomplished this task by

performing (potentially) a multitude of complex, floating-point arithmetic operations.

Unfortunately, this approach often requires the use of approximations with

precision so high that they lead to very long run times.

Another school of thought favors the use of p-adic approximations to the roots

of f(x) 2 Z[x]. This approach was first suggested in [84] and has since been adopted
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and expanded upon by [29] and [24] among others. We summarize this idea in the

lemma below (compare to [29, Lemma 2.16]).

Lemma 4.11. Let f 2 Z[x] be irreducible. Let p be a rational prime that doesn’t

divide the discriminant disc (f), and let f =

Qk
i=1 fi be the factorization of f over Fp

where fi is irreducible for 1  i  k. If m = lcm{deg(fi) | 1  i  k}, then f splits

into linear factors over the unramified extension of Qp of degree m.

Proof. Since p does not divide disc (f), we know that disc (f) is nonzero over Fp. It is

clear from Definition 2.12 that this implies that f(x) mod p has deg(f) distinct roots.

Put another way, f(z) 2 Qp[z] ⇠= Fp[z] is squarefree. The result follows from

Proposition 2.16.

In practice, root approximations in p-adic fields tend to require less precision

and lead to lower run times than complex approximations. For additional details, see

[29, Theorem 2.17].

4.3.2 Starting Groups

As we discussed in Section 4.2, Stauduhar’s method begins with G = Sn

and, if Gal(f) 6= Sn, replaces G with smaller and smaller groups until it reaches the

Galois group. In short, this method picks the top group in the subgroup lattice of

permutation groups on n elements and works its way down to the Galois group.

The primary issue with this approach is the work required to move from Sn

to one of its maximal subgroups. As n gets larger, Sn has maximal subgroups with

increasingly large indices. For example, five of the six transitive maximal subgroups

of S18 have index greater than or equal to 24310:

• [S18 : 18T468] = 1307674368000
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• [S18 : 18T962] = 190590400

• [S18 : 18T968] = 34459425

• [S18 : 18T977] = 2858856

• [S18 : 18T981] = 24310.

Since the index |Sn/H| of a maximal subgroup H < Sn is the degree of the

corresponding resolvent, this leads to massive resolvents that require a lot of time

to construct and test for roots. Because of this, modern relative resolvent methods

aim to avoid computing resolvents for group pairs H < Sn. Normally, these efforts

culminate in either: confirming Gal(f) = Sn by examining the factorization of f over

various finite fields Fp (see [29, Remark 2.4]) or choosing a smaller group G as the

starting point on the subgroup lattice. In the event, that Q[x]/(f) has a nontrivial

subfield, the latter is achievable.

For the remainder of this section, we assume that M := Q[x]/(f) has a non-

trivial subfield L = Q(�). In time, we will show that, under the correct root ordering,

Gal(f)  Gal(M/L) oGal(L/Q). However, before we can delve into a full explanation,

we first need to establish the block system of Gal(f) that we get from our subfield L.

If we let ↵ denote a root of f so that M = Q(↵), then we can (see [48])

describe the precise embedding of the primitive element � into M with a polynomial

h 2 Q[t] that satisfies h(↵) = �. As the theorem below demonstrates, the embedding

polynomial allows us to compute a block system B = {B1, . . . , Bm} of Gal(f) where

m = [L : Q].

Theorem 4.12 ([29, Theorem 3.1]). Let L = Q(�), M = Q(↵) be algebraic extensions

of Q with Q ✓ L ✓ M, and let g, f 2 Z[x] be the minimal polynomials of � and ↵,
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respectively. Let h 2 Q[x] be the embedding polynomial with h(↵) = �. Denote

the conjugates of ↵ and � in some algebraic closure with ↵1, . . . ,↵n and �1, . . . , �m,

respectively. Defining Bi = {↵j | h(↵j) = �i} it follows that:

(1) B1, . . . , Bm form a block system of Gal(f). Furthermore, n = |Bi|m.

(2) Gal(g) is isomorphic to the permutation representation of Gal(f) with respect

to B1, . . . , Bm under the mapping ✓ : �i 7! Bi.

Proof. (1) Let � 2 Gal(f), and let i satisfy 1  i  m. Since � 2 Q(↵) is algebraic

over Q, �(�i) is a conjugate of �. We claim that �(�i) = �k if and only if �(Bi) = Bk.

Suppose �(�i) = �k and let � 2 Bi. Since � is an automorphism and h is a

polynomial, we have that �(h(a)) = h(�(a)) for all a in the domain of h. This directly

leads to

h(�(�)) = �(h(�))

= �(�i)

= �k

which implies that �(�) 2 Bk. Because � was selected arbitrarily, we conclude that

�(Bi) ✓ Bk. Furthermore, by a similar argument, �i = ��1
(�k) leads us to ��1

(Bk) ✓
Bi. This is equivalent to Bk ✓ �(Bi) since � is bijective. Therefore, the forward

direction has been proven.

Conversely, suppose that �(Bi) = Bk. Let ⌧ 2 �(Bi). Then there exists � 2 Bi

such that ⌧ = �(�). Furthermore, we have that � = ��1
(⌧) and h(�) = �i. Putting
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all of this together we can determine �(�i):

�(�i) = �(h(�))

= h(�(�))

= h(⌧)

= �k.

Hence the assertion has been proven. This implies that �(Bi) is either Bi or another

set Bj. Since the sets B1, . . . , Bm must be disjoint we have �(Bi) \ Bi = {Bi, ;} for

� 2 Gal(f). The cardinality condition on Bi follows from the fact that Gal(f) is

transitive.

(2) We have shown that �(�i) = �i if and only if �(Bi) = Bi. This implies

that StabGal(f)(Bi) is exactly the set of elements in Gal(f) that fix �i and hence fix all

of Q(�i). Thus StabGal(f)(Bi) corresponds to Q(�i) under the Galois correspondence

of Theorem A.17. Under this correspondence, a subgroup of Gal(f) corresponds to

its fixed field. Therefore,

Q(�i) = Fix(StabGal(f)(Bi)).

It follows directly from this equality that Gal(g) is isomorphic to the permutation rep-

resentation of Gal(f) with respect to the block system under the suggested mapping

✓.

Let g 2 Z[x] be the minimal polynomial of �. According to the second part

of Theorem 4.12, the action of Gal(f) on the blocks B1, . . . , Bm is equivalent to the

action of Gal(g) on the roots of g. It follows, from this equivalence, that Gal(f) can
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be embedded as a permutation group into the wreath product Gal(M/L) oGal(L/Q).

The theorem below is a variant of the Krasner-Kaloujnine Theorem.

Theorem 4.13 ([51]). Let (G,W ) be a transitive, imprimitive permutation group

with block system B = {B1, . . . , Bm} where each block is size l. Let X and Y be finite

sets such that |X| = l and |Y | = m. Then G acts transitively on Y and there is

H  G that acts on X such that (G,W ) can be embedded in (H o (G, Y ), X ⇥ Y ).

The proof of this theorem and the subsequent corollary are modelled after the

approachs in [27] and [18].

Proof. (By Sandi Rudzinski) Let Y = {y1, . . . , ym} and X = {x1, . . . , xl}. Let ✓ :

W ! X ⇥ Y be a bijection such that ✓(w) = (xi, yj) =) w 2 Bj for all w 2 W .

Using ✓, we can view G as a transitive, imprimitive permutation group on

X ⇥ Y with blocks Bj = X ⇥ {yj} for 1  j  m. We will write (x, y)g instead of

✓�1
((x, y))g.

Let  : G ! Sm be the permutation representation of G with respect to the

action of G on B. Let g 2 G with  (g) = � 2 Sm. Then G acts on Y by

(yi)g = (yi) (g) = (yi)� = y�(i).

Since the action of G on W is transitive, the action of G on Y is also transitive.

Fix y1 2 Y and let H = StabG(y1). Since B1 = X ⇥ {y1}. This implies that

H permutes the elements of X. Since |X| = l, we have that ' : H ! Sl is the

permutation representation of H. Let h 2 H with '(h) = ⌧ 2 Sl. So again H acts

transitively on X by

xih = xi'(h) = (xi)⌧ = x⌧(i).
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Fix (x1, y1) 2 X ⇥ Y and let g 2 G such that (x1, y1)g = (x2, y2) for some

(x2, y2) 2 X ⇥ Y .

With respect to g as above, define f 2 Map(Y,H) = HY and h 2 (G, Y ) by

(y1)h = y2 and (x1)f
h
(y1) = (x1)f(y1h

�1
) = x2. Since G acts transitively on X ⇥ Y

and H acts transitively on X, it is clear that we can define such a pair, (f, h) for each

g 2 G given by the action of g on (x1, y1).

Define the map � : G ! H o (G, Y ) by g 7! (f, h) defined as above by the

action of g on the fixed point (x1, y1). Let g 2 G with (x1, y1)g = (x2, y2) for some

(x2, y2) 2 X ⇥ Y .

(x1, y1)�(g) = (x1, y1)(f, h)

= (x1f
h
(y1), (y1)h)

= (x2, y2)

= (x1, y1)g

This shows that �(g) acts on X ⇥ Y as G does. We will use this to show that � is a

homomorphism. Let g1, g2 2 G be arbitrary.

(x, y)�(g1g2) = (x, y)g1g2

= ((x, y)g1)�(g2)

= ((x, y)�(g1))(�(g2)

= (x, y)(�(g1)�(g2))
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To prove that � is injective, we will show ker(�) is trivial. Let g 2 G with

g 2 ker(�). Then we have that

(x, y) = (x, y)�(g) = (x, y)g

for all (x, y) 2 X ⇥ Y . So we must have that g is the identity element of G and the

kernel is trivial as desired.

Corollary 4.14 ([51]). Let Q ⇢ L ⇢ M be finite separable field extensions. Then the

Galois group Gal(M/Q) of M over Q can be embedded as a permutation group into

the wreath product Gal(M/L) oGal(L/Q).

Proof. (By Sandi Rudzinski) Let L = Q(�), and let M = Q(↵) with h(↵) = � for

h 2 Q[t]. Fix a normal closure N of M over Q that contains L. Let G = Gal(N/Q).

Define W to be the Q-embeddings of M into N, Y to be the Q-embeddings of L into N,

and X to be the L-embeddings of M into N. Then Gal(M/Q) = (G,W ) is a transitive

imprimitive permutation group with block system B = {By | y 2 Y } with each block

By = {w 2 W | h(w) = y} by Theorem 4.12. Fix y 2 Y , and set H = StabG(y). The

statement follows since Gal(M/L) ⇠
=

(H,X) and Gal(L/Q) = (G, Y ).

As we saw in the proof of Corollary 4.14, when we embed Gal(f) into the

wreath product P := Gal(M/L) o Gal(L/Q) as a permutation group it has the block

system B = {B1, . . . , Bm} defined by the embedding polynomial h. This indicates

that the ordering of the roots of f must align with this block system in order for

Gal(f)  P to hold. To this end, we determine the block system of the wreath

product P and find the permutation � 2 Sn that maps the block system of P to B.

Reordering the roots of f by ↵i 7! ↵�(i) guarantees that Gal(f)  P as desired. For

more information, see [29, Algorithm 3.2].
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4.4 Resultants and Orbit Length Partitions

In his 1981 thesis [80], Leonard Soicher presented a method that computed

linear resolvents without resorting to the expensive root approximations that plagued

Stauduhar’s work. By using resultants, Soicher was able to exactly determine linear

resolvents while avoiding polynomial roots altogether.

In a later chapter, we make use of five specific absolute resolvents that can

be computed from Soicher’s method. Since many of the finer details are beyond the

scope of this thesis, we omit them and refer the reader to Soicher’s thesis. Instead,

we focus on providing the reader with enough tools to compute the aforementioned

resolvents themselves.

This section has been split into three subsections. In the first subsection,

we define the resultant of two polynomials and describe some of the ways it can be

computed. The initial definition we provide is based on the roots of the inputted

polynomials. This is done to demonstrate how the resultant relates to the inputted

polynomials. After this, we discuss how the resultant can be computed without

polynomial roots. In the second subsection, we begin by presenting some auxiliary

functions, from Soicher’s thesis, that we use to compute the five absolute resolvents

mentioned above. Then we give, as examples, the absolute resolvents in terms of these

auxiliary functions. Finally, in the third subsection, we discuss how the factorization

of resolvent polynomials can be used to determine Galois groups.

4.4.1 Resultants

Definition 4.15. Let f(x) and g(x) be polynomials defined over Z. If f(x) = a(x�
a1)(x� a2) · · · (x� an) and g(x) = b(x� b1)(x� b2) · · · (x� bm) are the factorizations

of f and g in some algebraic closure of Q, then the resultant res(f, g) of f and g is
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given by one of the equivalent formulations:

res(f, g) = amg(a1) · · · g(an)

= (�1)mnbnf(b1) · · · f(bm)

= ambn
Y

1in,1jm

(ai � bj).

Remark. Let f and g be as they are in Definition 4.15.

(1) Because res(f, g) is a symmetric function of the roots of f and g, it must be an

element of Z.

(2) The discriminant disc (f) of f can be computed with a resultant:

disc (f) =
(�1)n(n�1)/2

res(f, f 0
)

a

where f 0 is the formal derivative of f .

In the event that f is a polynomial in more than one variable, computing the

resultant of f and g requires choosing the variable in f that will be replaced with the

roots of g. By convention, this choice of variable is made known through a subscript.

For example, in the resultant

resy(f(x, y), g(y))

we use a subscript of y to indicate that the roots of g will be substituted into f for

y. This yields a univariate polynomial in x.

Example 4.16. Let f(x) and g(x) be monic polynomials defined over Z. Let f(x) =
Qn

i=1(x � ai), and let g(x) =
Qm

j=1(x � bj) be the factorizations of f and g in some
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algebraic closure of Q. If we evaluate g at x � y, we obtain a bivariate polynomial.

In this context, we consider the following resultant:

resy(f(y), g(x� y)) =
nY

i=1

g(x� ai)

=

mY

j=1

nY

i=1

(x� (ai + bj)).

We have that resy(f(y), g(x � y)) is a monic polynomial in x of degree mn =

deg(f) deg(g).

The resultant of two polynomials can also be computed by finding the deter-

minant of the corresponding Sylvester matrix. As the lemma below indicates, this

computation does not require any knowledge of the roots of the two polynomials.

Lemma 4.17 ([14, Lemma 3.3.4]). Let f, g 2 Z[x]. If f(x) =

nP
i=0

fix
i and g(x) =

mP
i=0

gix
i, then the resultant res(f, g) is equal to the determinant of the following (n +

m)⇥ (n+m) Sylvester matrix:
2

6666666666666666666666666664

fn fn�1 fn�2 . . . f1 f0 0 0 . . . 0

0 fn fn�1 fn�2 . . . f1 f0 0 . . . 0

0 0 fn fn�1 fn�2 . . . f1 f0 . . . 0

...
... . . . . . . . . . . . . . . . . . . . . . ...

0 0 . . . 0 fn fn�1 fn�2 . . . f1 f0

gm gm�1 . . . g2 g1 g0 0 0 . . . 0

0 gm gm�1 . . . g2 g1 g0 0 . . . 0

0 0 gm gm�1 . . . g2 g1 g0 . . . 0

...
... . . . . . . . . . . . . . . . . . . . . . ...

0 0 . . . 0 gm gm�1 . . . g2 g1 g0

3

7777777777777777777777777775
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where the coefficients of f are repeated on m = deg(g) rows and the coefficients of g

are repeated on n = deg(f) rows.

Remark. Let f and g be polynomials in Z[x, y]. If we regard f and g as polynomials

in y whose coefficients are in x, then resy(f, g) would be the determinant of the

corresponding Sylvester matrix. In this case, the entries of the matrix would be

polynomials in x.

The resultant resx(f, g) can be computed in a similar fashion.

A third, widely used method for computing the resultant of two polynomials

is the Sub-Resultant Algorithm. For more information, see [14, Algorithm 3.3.7].

4.4.2 Absolute Resolvents

We begin this subsection with three auxiliary functions that Soicher used in

his thesis. The first function is aptly named “Multiply Zeros ”. This function takes a

monic polynomial f(x) over Z and an element d 2 Z as input and returns a monic

polynomial whose roots are the roots of f multiplied by d. This new polynomial is

denoted by mz and is computed as follows:

mz(d, f) :=

8
><

>:

dnf(x/d), if d 6= 0

xn, if d = 0.

The second auxiliary function is named “Sum Zeros” and will be denoted by

sz. This function takes as input two monic polynomials f(x) and g(x) defined over Z,

and returns a monic polynomial of degree deg(f) deg(g). The roots of the outputted

polynomial sz(f, g) are the pairwise sums of the roots of f and g. As we saw in
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Example 4.16, this polynomial is equal to a resultant:

sz(f, g) := resy(f(y), g(x� y)).

Since a resultant can be computed as the determinant of the corresponding Sylvester

matrix, we can compute sz(f, g) without approximating roots of f and g.

The third auxiliary function is named “Poly Root” and will be denoted by pr.

Given k 2 N and a monic polynomial u 2 Z[x], this function computes a polynomial

r 2 Z[x] such that u = rk. In other words, pr reduces the multiplicities of the roots

of u by a factor of k. In Soicher’s work, this was used to ensure that the resolvent

would have the correct degree.

We determine the function values pr(k, u) using the following algorithm from

Soicher’s thesis.

Algorithm 4.18 (pr(k, u) [80]).

Input: u(x) 2 Z[x] monic and k 2 N, such that u(x) = r(x)k for some unknown

r(x) 2 Z[x].
Output: r(x) 2 Z[x].

(1) If k = 1, then return u(x).

(2) t(x) u(x)/ gcd(u(x), u0
(x))

(3) r(x) t(x)

s(x) u(x)

(4) Repeat until deg(r) < (deg(u))/k:

(a) s(x) s(x)/t(x)k
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(b) t(x) gcd(s, t)

(c) r(x) t(x)r(x)

(5) Return r(x).

In an effort to simplify the notation for our examples, we include a fourth

function that incorporates two of the above auxiliary functions:

lr2(f, a, b) :=
sz(mz(a, f),mz(b, f))

mz(a+ b, f)

where f 2 Z[x] is monic and a, b 2 Z with a 6= b.

Utilizing the four functions above, we now give, as examples, five absolute

resolvents that can be computed for any monic f 2 Z[x]. Since all of these resolvents

are computed with resultants, no mention is made of root approximations or root

ordering as it pertains to the roots of the inputted polynomial f(x).

Example 4.19. Let F (x1, . . . , xn) = x1 + x2. It follows that StabSnF = S2 ⇥ Sn�2.

The corresponding resolvent dp(f) has degree n(n� 1)/2 and is of the form

dp(f) := RF (Sn, f) =
Y

1i<jn

(x� ↵i � ↵j).

Using Soicher’s work, this resolvent can be computed as

dp(f) = pr(2, sz(f, f)/mz(2, f))

=

✓
resy(f(y), f(x� y))

2

nf(x/2)

◆1/2

.

Example 4.20. Let F (x1, . . . , xn) = x1 + 2x2. It follows that StabSnF = S1 ⇥ S1 ⇥
Sn�2. The corresponding resolvent rl(f) := RF (Sn, f) has degree n(n � 1). Using
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Soicher’s work, this resolvent can be computed as

rl(f) = lr2(f, 1, 2)

=

resy(f(y), 2
nf(x�y

2 ))

3

nf(x/3)
.

Example 4.21. Let F (x1, . . . xn) = x1+x2+x3. It follows that StabSnF = S3⇥Sn�3.

The corresponding resolvent tp(f) := RF (Sn, f) has degree n(n� 1)(n� 2)/6. Using

Soicher’s work, this resolvent can be computed as

tp(f) = pr

✓
3,

sz(dp(f), f)

lr2(f, 1, 2)

◆
.

Example 4.22. Let F (x1, . . . , xn) = x1+x2+2x3. It follows that StabSnF = S2⇥S1⇥
Sn�3. The corresponding resolvent LR(f) := RF (Sn, f) has degree n(n�1)(n�2)/2.

Using Soicher’s work, this resolvent can be computed as

LR(f) =
sz(dp(f),mz(2, f))

lr2(f, 1, 3)
.

Example 4.23. Let F (x1, . . . , xn) = x1 + x2 + x3 + x4. It follows that StabSnF =

S4 ⇥ Sn�4. The corresponding resolvent qp(f) := RF (Sn, f) has degree n(n� 1)(n�
2)(n� 3)/24. Using Soicher’s work, this resolvent can be computed as

qp(f) = pr

✓
4,

sz(tp(f), f)

LR(f)

◆
.

4.4.3 Orbit Length Partitions

As the theorem below indicates, the list of the degrees of the irreducible factors

of a resolvent polynomial RF (G, f) yields information about the Galois group Gal(f).
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Theorem 4.24 ([80, Chapter 2]). Let f 2 Z[x] be a monic, irreducible polynomial

of degree n, and let ↵1, . . . ,↵n be an ordering of the roots of f . Suppose H < G are

subgroups of Sn with r := [G : H] such that Gal(f)  G under the given root ordering.

Let F be a G-relative H-invariant, and let G//H denote a set of representatives of

right cosets of G/H. Let ⌧ : Gal(f)! Sr be the permutation representation of Gal(f)

with respect to the action of Gal(f) on the set G//H. If the resolvent RF (G, f) is

squarefree, then the Galois group of RF (G, f), as a subgroup of Sr, is isomorphic to

the group ⌧(Gal(f)). In particular, the list of the degrees of the irreducible factors of

RF (G, f) in Z[x] is the same as the list of the orbit lengths of the action of ⌧(Gal(f))

on the set {1, . . . , r}.

The proof below was translated from [28] by Sandi Rudzinski.

Proof. Let � = {H�1, . . . , H�r} be a set of right cosets of H in G with {�1, . . . , �r} =

G//H and set ⌦ = {F �1
(↵1, . . . ,↵n), . . . , F

�r
(↵1, . . . ,↵n)}. Define  : � ! ⌦ by

H�i 7! F �i
(↵1, . . . ,↵n). We want to show that  is a bijection of sets. To see that  

is well-defined and injective, consider the following equivalences:

H�i = H e�i () �i e�i�1 2 H

() F �i e�i�1
= F

() F �i
(↵1, . . . ,↵n) = F e�i

(↵1, . . . ,↵n).

The last line follows from RF (G, f) being squarefree.

Since |�| = |⌦|, we have that  is also surjective. Under this bijection, we

have an isomorphism of permutation groups S� and S⌦,  : S� ! S⌦ such that

 (!)((F �i
(↵1, . . . ,↵n)) =  (!(H�i)). Let � 2 Gal(f). Define the permutation rep-

resentation ⌧ 0 of Gal(f) to S� defined by ⌧ 0(�)(H�i)) = H�i� and let the homomor-
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phism ' be the restriction of � to Gal(RF (G, f)). We want to show that the following

diagram commutes:

Gal(f)

S� � ⌧ 0(Gal(f)) Gal(RF (G, f))  S⌦

⌧ 0

'

 

So

'(�)(F �i
(↵1, . . . ,↵n)) = F �i�

(↵1, . . . ,↵n) for 1  i  r

and we get

'(�)(F �i
(↵1, . . . ,↵n)) = F �i�

(↵1, . . . ,↵n)

=  (H�i�) =  (⌧ 0(�)(H�i))

=  (⌧ 0(�))(F �i
(↵1, . . . ,↵n)).

Since ' is surjective, it follows that Gal(RF (G, f)) = '(Gal(f)) =  (⌧ 0(Gal(f)).

Identifying � and ⌦ with {1, . . . , r} proves the theorem.

Suppose we have a list of possible Galois groups of f that includes the actual

group Gal(f). Then we can use Theorem 4.24 to rule out groups in the list. For a

given pair of subgroups H < G  Sn satisfying Gal(f)  G, we follow a very simple

procedure. First, for each possible Galois group we determine the list of orbit lengths

for the corresponding action on {1, . . . , [G : H]}. Second, we check to see if any of

these lists differ. If such a difference exists, we factor the resolvent corresponding to

H < G and rule out each possible Galois group whose list of orbit lengths is different

than the list of the degrees of the irreducible factors of the resolvent. If, on the other
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hand, each possible Galois group has the same list of orbit lengths, then we don’t

compute the resolvent since its factorization could not possibly lead to a group being

ruled out.

In the event that more possible Galois groups need to be ruled out, we can

pick a different subgroup H of G and repeat the process.
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CHAPTER V

COMPUTING GALOIS GROUPS

Let Qp be the field of p-adic numbers, K a finite extension of Qp, ' 2 K[x]

Eisenstein, and ↵ a root of '. In this chapter, we discuss methods for finding the

Galois group Gal(K(↵)/K) = Gal(') that is the automorphism group Aut(N/K) of

the normal closure N of K(↵)/K. In the case where K = Qp, we give a complete

algorithm for computing the Galois group of '. Many of the steps and considerations

in this algorithm hold when K 6= Qp and thus are presented over K.

Our algorithm is a blending of the material found in the last two chapters.

An essential ingredient is the tower of subfields that correspond to the ramification

polygon of ' (Section 3.3). In the remainder of this chapter we will fill in the details

of the following algorithm:

Algorithm 5.1 (GaloisGroup).

Input: ' 2 Zp[x] Eisenstein

Output: Gal(')

(1) G = {id}.

(2) Find the tower of subfields Qp = L`+1 ✓ L` ⇢ L`�1 ⇢ . . . L1 ⇢ L0 = Qp(↵) corre-

sponding to the ramification polygon of ' such that the ramification polygon of

Li/Li+1 (0  i  `) consists of one segment.

(3) For i from ` to 0 by �1:
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(a) Determine Gal(Li/Li+1) using Theorem 2.29 or Algorithm 3.23.

(b) Find a small set G of subgroups of Gal(Li/Li+1) oG that contains the Galois

group of Li/Qp.

(c) If #G 6= 1 use resolvents to determine the G 2 G that is the Galois group

of Li/Qp.

(4) Return G.

For each relative extension Li/Li+1 in the aforementioned tower, the ramifica-

tion polygon consists of one segment and the Galois group can be efficiently computed

using methods from earlier chapters. In Algorithm 5.1, we take advantage of this and

iteratively compute Galois groups of towers of extensions consisting of an extension

whose generating polynomial has a ramification polygon consisting of one segment

over an extension with a known Galois group. At each iterative stage, the Galois

group of the tower is contained in the wreath product of two Galois groups. In sec-

tion 5.1 we give criteria that a subgroup of the wreath product must satisfy in order

to possibly be the Galois group of the tower. In section 5.2, we introduce additional

criteria that the Galois group must satisfy and formulate the exact steps we take to

eliminate candidate groups. We will demonstrate that these steps narrow the number

of possible groups considerably. If more than one candidate group is left, we use

resolvents (section 5.4) to determine the Galois group.

5.1 Tower of Two Extensions

Let ↵ be an element in some algebraic closure of K such that the minimal

polynomial of ↵ generates a totally ramified extension of K. Let K ⇢ L1 ⇢ L0 = K(↵)

be a tower of field extensions. We assume that the groups Gal(L0/L1) and Gal(L1/K)
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are already known and RL0/L1 consists of one segment. See Figure 5 for relevant

values for this tower of extensions.

i

vL(⇢i)

1 ps1 ps` = pvp(n) n = e0p
s`

�m1

(1, J0)

(ps1 , J1)

Figure 5. Ramification polygon of an Eisenstein polynomial ' of degree n with

discriminant (⇡)n+J0�1 and ramification polynomial ⇢ =

'(⇡x+⇡)
⇡n =

Pn
i=0 ⇢ix

i. We

give the values relevant for considering the tower of extensions K ⇢ L1 ⇢ L0, such

that the ramification polygon of L0/L1 consists of one segment with slope �m1.

In the following, we describe several criteria that have to be met for a group

to be the Galois group of L0/K. From Corollary 4.14, it must be a subgroup of

Gal(L0/L1) o Gal(L1/K). Furthermore, since it is the Galois group of an irreducible

polynomial, it must be transitive. Other criteria can be obtained exploring the sub-

field structure of the normal closure of K(↵)/K.

Denote by N the normal closure of L0/K and by N1 the normal closure of

L1/K. The maximal tamely ramified subextension of N/K is T from Theorem 3.25.
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Similarly, let T1 be the maximal tamely ramified subextension of N1/K as determined

by Theorem 3.25. Finally, with Theorem 3.25, we find the maximal tamely ramified

subextension of the normal closure of L0/L1 and denote the tame part of this field over

K by T0. We can infer a great deal about the subfield structure of N by considering

composites of the extensions we have named thus far.

From Figure 4 we have that T1L1 is a wildly ramified extension of T1 of degree

[L1 : T1] = ps`�s1 . As T contains T1 and T/K is tamely ramified, the index of TL1/T

is also ps`�s1 . By construction, T0 contains the tamely ramified subfield of L1. Thus,

T0L1/T0 also has index ps`�s1 .

According to Theorem 3.25 the extension TL0/TL1 is elementary abelian with

degree ps1 and N1 is an extension of T1L1 of degree pw1 for some w1. Since N/T

is a p-extension and L1 ⇢ L0, the degree of the extension TN1L0/TL0 is pv where

v  w1. Similarly, because TN1L0/TL1 is a p-extension and its subextension TL0/TL1

is elementary abelian with degree ps1 , we have that TN1L0 is an elementary abelian

extension of TN1 with degree dividing ps1 .

Using the above considerations, we obtain the subfield structure depicted in

Figure 6. In this diagram, the fields TN1L00 are conjugates of TN1L0 over TN1. Fur-

thermore, fields displayed in rectangles are explicitly known and shaded fields are

normal over K. Finally, solid lines denote normal tamely ramified extensions and

dashed lines normal p-extensions.

An immediate consequence of this structure is that we can enumerate the

possibilities for the order of Gal(L0/K).
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Proposition 5.2. Let T, T1, N1, L0, and L1 be as they are in Figure 6 and W =

Gal(L0/L1)oGal(L1/K). If H  W is the Galois group of L0/K then #H = [TN1 : K]·pw

for some w satisfying vp([TN1L0 : TN1])  w  e0 · [N1 : T1] · vp([TN1L0 : TN1]).

Proof. Let '0 2 L1[x] be the generating polynomial of L0/L1. Since TN1/K is normal,

we obtain the normal closure of TN1L0/K as the composite of the conjugates of TN1L0

over TN1. If e0 = 1, then the polynomial '0 2 L1[x] is fixed by the automorphisms of

T/K. If e0 > 1, then conjugation by the automorphisms of T/K yield up to e0 distinct

conjugates of '0. In addition to the conjugation by the automorphisms of T/K we

need to consider the conjugation of '0 over N1/T1L1 and L1/K. As '0 2 L1[x], it

is invariant under Gal(T1/K). Thus there are at most [N1 : T1] conjugates of '0 by

elements of Gal(N1/(T1L1)) and elements of Gal(L1/K). Therefore, the total number

of conjugates of TN1L0 over TN1 is at least 1 and at most e0[N1 : T1].

From Galois Theory, we know that each subfield of N that contains K cor-

responds to a subgroup of Aut(N/K) = Gal(L0/K). In particular, the subfields in

Figure 6 are the fixed fields of subgroups of Gal(L0/K). We can, thus, use the subfield

structure of N that we know to predict part of the subgroup lattice of Gal(L0/K). The

first step is to name some of the subgroups.

We let B, B1, C, D0, and D1 be the subgroups of Gal(L0/K) that satisfy

T = Fix(B), T1 = Fix(B1), N1 = Fix(C), T0L0 = Fix(D0), and L1 = Fix(D1). Since

many of the subfields of N can be formed from composites of the fixed fields we just

mentioned, we can use part(2) of Theorem A.17 to determine which groups correspond

to these composites. For example, because T = Fix(B), and L1 = Fix(D1), we have

that TL1 = Fix(B \ D1). The subgroups identified are listed alongside their fixed

fields in Figure 6.
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elem.ab.ps1

ps1

pw1ps1

pw1

e0p
s`�s1

ps`�s1

p?

ps`�s1ps`�s1

pw1

elem.ab.ps1

TL1 = Fix(B \D1)

TL0 = Fix(B \D0)

T = Fix(B)

K = Fix(H)

TN1 = Fix(B \ C)

T0L0 = Fix(D0)

T0L1

T0 T1 = Fix(B1)

T1L1 = Fix(B1\D1)L0

L1 = Fix(D1)

N1 = Fix(C)

N = Fix({id})

TN1L0=Fix(B\C\D0) TN1L
0
0

. . .

Figure 6. (Incomplete) subfield lattice of the normal closure N of L0/K.
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In Figure 6, some of the attributes of the subextensions of N/K are identified.

These attributes include extension degree, normality, and/or whether an extension is

elementary abelian. By Theorem A.17, we can utilize many of these characteristics to

determine traits of the identified subgroups of Gal(L0/K) (see again Figure 6). This

additional subgroup information, in turn, enables us to define additional criteria that

the Galois group must satisfy.

Proposition 5.3. Let T, T0, T1, N1, L0, and L1 be as they are in Figure 6 and

G = Gal(L0/L1) o Gal(L1/K). If H  G is the Galois group of L0/K then then there

are subgroups B1, B, C,D1, D0 of H such that

(1) B1 EH with H/B1
⇠
=

Gal(T1/K),

(2) B EH with B E B1 and H/B ⇠
=

Gal(T/K),

(3) C EH with C  B1 and H/C ⇠
=

Gal(L1/K),

(4) C/(B \ C)

⇠
=

Gal(T/T1),

(5) D1 < H with [H : D1] = [L1 : K],

(6) D1/(B1 \D1)
⇠
=

Gal(T1/K) and (B1 \D1)/(B \D1)
⇠
=

Gal(T/T1),

(7) D0 ED1 with D1/D0
⇠
=

Gal(L0/L1) = Aut(T0L0/L1),

(8) (B \D1)/(B \D0)
⇠
=

(Z/pZ)s1,

(9) (B \ C)/(B \ C \D0) is an elementary abelian p-group of order at most ps1.

Proof. (1) to (7) and (9) follow from Figure 6 and Galois theory (Theorem A.17). (8)

is a consequence of Theorem 3.25(b).
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Remark. Since T/K and T1/K are normal, tamely ramified extensions by Theorem

3.25, the Galois groups Gal(T/K) and Gal(T1/K) can be computed using Theorem

2.28.

5.2 Candidates for Galois Groups

Let ' 2 OK[x] be irreducible with degree n, and let ↵ be a root of ' in some

algebraic closure of K. We can obtain criteria that the Galois group Gal(') must meet

by computing invariants of ' and the extension it generates. First, as the degree of

K(↵) is relatively small and root finding in local fields is efficient [66], we can efficiently

compute the automorphism group of K(↵)/K and use the following theorem.

Theorem 5.4 ([2, Theorem 3.6]). Let ' 2 OK[x] be irreducible of degree n and ↵

a root of ' in some algebraic closure of K. Let L = K(↵) and G = Gal('). Then

Aut(L/K) ⇠
=

CenSn(G), where CenSn(G) is the centralizer of G in Sn.

In Example 4.10, we saw that for an irreducible polynomial f with coefficients

in an integral domain Z the Galois group of f is a subgroup of the Alternating group

on deg(f) elements if and only if
p

disc (f) 2 Z. Since OK is an integral domain,

we can apply this result to irreducible polynomials with coefficients in OK. Thus we

have that

Gal(')  An ()
p
disc (') 2 OK. (5.1)

For subgroups G  Sn, we define the parity of G to be +1 if G  An and�1 otherwise.

Likewise, the parity of a polynomial defined over OK is +1 if its discriminant is a

square in OK and �1 otherwise. In this context, we can rephrase the statement (5.1):

the parity of Gal(') must be the same as the parity of '.
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Although Aut(K(↵)/K) and disc (') provide useful information about Gal('),

it is rare that they alone can be used to determine the Galois group. More informa-

tion is needed. With this in mind, we widen our scope by considering the subfield

structure of the stem field K[x]/('). As subfields corresponding to the segments of

the ramification polygon of an Eisenstein polynomial are easily obtained (see Sec-

tion 3.3), in the following we restrict ourselves to the case where ' is Eisenstein and

generates the tower of extensions K ⇢ L1 ⇢ L0 = K(↵) where RL0/L1 consists of one

segment. Again, the relevant values for this tower are provided in Figure 5. We also

assume that the groups Gal(L0/L1) and Gal(L1/K) are already known.

Under these circumstances, our approach to finding Gal(') is straightforward:

determine a collection of groups that must contain Gal(') and, then, systematically

rule out the other groups. To this end, we merge the critiera from the last section

with those that we have established in this section.

As previously discussed, the Galois group must be a transitive subgroup of

W := Gal(L0/L1) o Gal(L1/K). Thus, we begin by determining all of the transitive

subgroups of W , up to conjugation in W . These subgroups are then organized by

their conjugacy class in Sn. Next, we form our pool of candidate groups by taking

one subgroup from each Sn conjugacy class. All subgroup calculations are performed

using an algorithm in [11], which has been implemented in the Computer algebra

system Magma.

In order to rule out candidate groups that aren’t Gal('), we gradually apply

our list of criteria to each candidate. Once a candidate group fails to meet one of the

criteria, it is permanently disregarded. The order in which the criteria are applied has

been largely dictated by both how expensive the computations for a given criterion are
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and the perceived likelihood that several candidates will fail to satisfy the criterion.

The exact order is given in the algorithm below. In practice, each criterion is applied

to all of the remaining candidates at once.

Algorithm 5.5 (CheckGroup).

Input: ' 2 K[x] Eisenstein with K[x]/(') ⇠
=

L0 � L1 � K such that RL0/L1

consists of one segment and H  Sdeg(').
Output: “Yes” if H might be Gal('); “No” otherwise.

Let N1,T1, and T be as they are in Figure 6 and assume that Gal(L0/L1) and

Gal(L1/K) are known. Let n = deg(').

(1) Return “No” if H is not a transitive subgroup of Gal(L0/L1) oGal(L1/K).

(2) Return “No” if the order of H does not lie in the range indicated by Proposition

5.2.

(3) Return “No” if the parity of H differs from the parity of '.

(4) If Aut(L0/K) 6⇠= CenSn(H), then return “No”.

(5) Return “No” if there do not exist normal subgroups B and B1 of H satisfying

(a) H/B ⇠
=

Gal(T/K),

(b) H/B1
⇠
=

Gal(T1/K),

(c) B E B1,

(d) B is a p-group.

(6) Return “No” if for all B1 satisfying (5b) there does not exist a normal subgroup

C of H satisfying
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(a) C  B1,

(b) H/C ⇠
=

Gal(L1/K).

(7) Return “No” if for all possible combinations of B1, B, and C satisfying (5a),

(5b), (5c), (5d), (6a), and (6b) the following isn’t true: C/(B \ C)

⇠
=

B1/B ⇠=
Gal(T/T1),

(8) Return “No” if there do not exist subgroups D0 ED1 of H satisfying

(a) [H : D1] = [L1 : K],

(b) D1/D0
⇠
=

Gal(L0/L1).

(9) Return “No” if for all possible combinations of B, C, D1, and D0 satisfying (5a),

(5d), (6a), (6b), (7), (8a), and (8b) at least one of the following fails to hold:

(a) (B \D1)/(B \D0)
⇠
=

Cs1
p ,

(b) (B \ C)/(B \ C \D0) is elementary abelian with order at most ps1 .

Return “Yes”.

Remark. The correctness of Steps (5) through (9), in the preceding algorithm, follows

from Proposition 5.3.

To illustrate the effectiveness of our method in eliminating candidate groups,

we give some examples. In each example, we use a table to display the changes in

the total number of viable candidates. This table will be comprised of two rows. The

first row contains the step numbers in Algorithm 5.5 and the second row contains the

number of candidates that remain after each step. For instance, if the table contains

a column
(6)

31
then there are 31 candidates remaining after step (6).
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At the end of each example, we reveal the remaining candidate groups. Each

of these groups is named using the transitive group notation that was first developed

in [15] and is used in the Computer algebra systems GAP and Magma.

Example 5.6. Let ' = x18
+ 12x + 6 2 Q3[x]. The ramification polygon R' is

comprised of two segments with endpoints at (1, 1), (9, 0), and (18, 0). From left to

right the segments of R' have slopes �1/8, 0, and residual polynomials 2y+1, y9+2 2
F3[y]. Using Algorithm 3.13, we compute the tower of extensions corresponding to

the segments of R':

Q3 ⇢ L1 ⇢ L0 ⇠= Q3[x]/(')

where

L1 ⇠= Q3[x]/(x
2
+ 12x+ 6)

and

L0 ⇠= L1[x]/(x
9
+ 2�x5

+ 2�x4
+ 2�x3

+ �x2
+ �x+ �)

with �2
+12�+6 = 0. We next compute the Galois groups of the relative extensions

in the tower above. As L1/Q3 is quadratic, Gal(L1/Q3)
⇠
=

S2. Since RL0/L1 consists

of 1 non-horizontal segment, we use Algorithm 3.23 and obtain Gal(L0/L1) ⇠= 9T19.

By Corollary 4.14, Gal(') is a subgroup of the wreath product

Gal(L0/L1) oGal(L1/Q3)
⇠
=

(9T19) o S2.
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After computing an initial list of candidate subgroups, we apply the decisions steps

from Algorithm 5.5 to all of the candidate groups. We observe the following changes

in the total number of viable candidates:

Step (1) (2) (3) (4) (5)

Remaining Candidates 119 29 24 24 1

After 5 steps, we are left with Gal(') ⇠
=

18T476.

Example 5.7. Let ' = x16
+16x15

+6x14
+12x13

+8x11
+24x10

+8x8
+24x6

+16x5
+

8x4
+16x3

+20x2
+24x+10 2 Q2[x]. The ramification polygon R' is comprised of two

segments with endpoints at (1, 29), (2, 14), (16, 0). From left to right the segments

of R' have slopes �15, �1, and residual polynomials y + 1, y14 + 1 2 F2[y]. Using

Algorithm 3.13, we compute the tower of extensions corresponding to the segments

of R':

Q2 ⇢ L1 ⇢ L0 ⇠= Q2[x]/(')

where L1/Q2 is generated by

x8
+ 10x7

+ 8x6
+ 56x5

+ 8x4
+ 40x3

+ 40x2
+ 12x+ 10

and

L0 ⇠= L1[x]/(x
2
+ (6�7

+ 4� + 6)x+ �)

such that � satisfies L1 = Q2(�). It follows that Gal(L0/L1) ⇠= S2. Additionally, since

RL1/Q2 consists of one segment, we obtain from Algorithm 3.23 that Gal(L1/Q2)
⇠
=

8T13 ⇠
=

A4 ⇥ S2.

139



By Corollary 4.14, Gal(') is a subgroup of the wreath product

Gal(L0/L1) oGal(L1/Q2)
⇠
=

S2 o (A4 ⇥ S2).

After computing an initial list of candidate groups, we apply the decisions steps from

Algorithm 5.5 to all of the candidate groups. We observe the following changes in the

total number of viable candidates:

Step (1) (2) (3) (4) (5) (6) (7) (8) (9)

Remaining Candidates 60 23 21 5 5 5 5 5 5

After 9 steps, we are left with the following 5 candidate groups: 16T424,

16T427, 16T722, 16T58, 16T59.

In the case that K = Qp, we also determine the Galois group eH of ' over

Q. This is done with an algorithm devised by Claus Fieker and Jürgen Klüners (see,

[24]). This algorithm is a degree-independent, relative resolvent algorithm that builds

upon Stauduhar’s method [82] by incorporating subfield information and computing

the necessary invariant polynomials F 2 Z[x1, . . . , xn] on the fly. An implementation

of this algorithm can be found in current versions of the Computer algebra system

Magma.

Since H := Gal(Qp(↵)/Qp) is the decomposition group of eH at the prime p, it

follows that H  eH. Thus, for this case, we add the following step to Algorithm 5.5:

(10) Return “No” if H is not isomorphic to a subgroup of Gal(F/Q), where F := Q[x]/(').

Instead of checking all subgroups of eH for isomorphism, we check some basic

properties that would occur if such an isomorphism existed. To this end, we compute

some basic group-theoretic invariants. Specifically, we try to verify the following:
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• The order of H divides the order of eH.

• The exponent of H divides the exponent of eH.

• If eH is abelian, then H is abelian.

• If eH is cyclic, then H is cyclic.

All four of these checks, taken together, constitute the tenth step in Algorithm 5.5.

This choice of step numbering is reflected in the table for the following example.

Example 5.8. Let ' = x14
+ 2 2 Q2[x]. The ramification polygon R' is comprised

of two segments with endpoints (1, 14), (2, 0), and (14, 0). From left to right, the

segments of R' have slopes �14, 0, and residual polynomials y + 1, y12 + y10 + y8 +

y6 + y4 + y2 + 1 2 F2[y]. Using Algorithm 3.13, we compute the tower of extensions

corresponding to the segments of R':

Q2 ⇢ L1 ⇢ L0 ⇠= Q2[x]/(')

where L1 ⇠= Q2[x]/(x
7
+ 6) and L0 ⇠= L1[x]/(x2

+ 5�) for � satisfying �7
+ 6 = 0.

It follows that Gal(L0/L1) ⇠= S2. Additionally, since RL1/Q2 is comprised of a single

non-horizontal segment, we obtain from Algorithm 3.23 that Gal(L1/Q2)
⇠
=

7T3.

By Corollary 4.14, Gal(') is a subgroup of the wreath product

Gal(L0/L1) oGal(L1/Q2)
⇠
=

S2 o (7T3).

After computing an initial list of candidate subgroups, we apply the decision steps

from Algorithm 5.5 to all of the candidate groups. We observe the following changes

in the total number of viable candidates:
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Step (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Remaining Candidates 10 5 3 3 3 3 3 3 3 1

After 10 steps, we are left with Gal(') ⇠
=

14T5.

5.3 Invariants Approach

The methodology presented in the last two sections can be succinctly summa-

rized as taking an Eisenstein polynomial ' 2 OK[x] and computing enough invariants

to either determine Gal(') or find a small collection of groups containing Gal('). In

this section, we turn this process on its head. Instead of starting with an Eisenstein

polynomial, we assume that we are only given some of the invariants of the extension

generated by the polynomial. The purpose of this exercise is to explore the extent to

and effectiveness with which the aforementioned methodology can be used without

access to a concrete polynomial.

We begin this exploration by discussing/motivating the invariants we will be

given. Assume L/K is totally ramified and generated by an unknown polynomial '.

As we noted in Section 3.6, if L/K is wildly ramified and RL/K consists of one segment

then RL/K and its residual polynomial provide enough information to find Gal(L/K).

If, instead, RL/K consists of two or more segments, then we settle for finding the

maximal tamely ramified subextension T of the normal closure. From Theorem 3.25,

we find that T can be computed using the following information: the ramification

polygon RL/K, the residual polynomials, and the constant term '0 of the unknown

polynomial '. These will be the first three given invariants.

Remark. If L/K is tamely ramified then Gal(L/K) can be determined from the constant

term '0, the degree of the extension and Theorem 2.29.
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Recently, an algorithm was created to give generating polynomials for all of

the totally ramified extensions of a certain degree over some base field K [68]. This

was accomplished, in large part, by developing a means to compute all of the possible

ramification polygons for the given degree and then compute all possible sets of resid-

ual polynomials for each ramification polygon found. In our examples we use this

process to determine the possible combinations of ramification polygons and residual

polynomials that we can be given. For more information see [68] or [79].

5.3.1 Constant Terms

If the degree of the extension L/K is a power of p, then for any choice of '0

(mod ⇡2
K) we can find a generating polynomial ' of L/K. Otherwise, '0 (mod ⇡2

K)

specifies the maximal tamely ramified subextension of L (see Proposition 2.26). In

order to determine the values of '0 (mod ⇡2
K) that give us isomorphic extensions,

we investigate what is required for two Eisenstein polynomials of the same degree

to generate the same tamely ramified extension. Let  (x) = xe0 � �⇡K, and let

e (x) = xe0 � e�⇡K where v(�) = v(e�) = 0 and p - e0. Then K[x]/( ) is isomorphic to

K[x]/( e ) whenever � = �e0e� for some � satisfying v(�) = 0. In short,  (x) and e (x)

generate the same extension when their constant terms differ by the e0-th power of a

unit.

All elements of K⇥ that differ by the e0-th power of some element are in the

same class of (K⇥
)

e0 . We can, thus, avoid the repetition of elements of the form �⇡K

by requiring � to be a lift of a representative � of a class in K⇥/(K⇥
)

e0 . For more

information, see, for example, [68, Lemma 4.10]. In general, if ' has degree e0p
m,
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then each aforementioned � yields a possible value for '0 (mod⇡2
K):

'0 ⌘ �⇡K mod ⇡2
K.

Thus, �’s chosen from the same class in K⇥/(K⇥
)

e0 yield isomorphic extensions,

whereas �’s chosen from different classes yield non-isomorphic extensions.

5.3.2 Ramification Polygons and Residual Polynomials of Subfields

Assume that RL/K, the corresponding residual polynomials, and the constant

term '0 are given. If RL/K consists of one segment, then these invariants provide

us with enough information to compute Gal(L/K). Thus, for the remainder of this

section, we assume that RL/K has at least two segments. This implies that there

exists a subfield L1 of L such that K ⇢ L1 ⇢ L and RL/L1 consists of one segment.

As we noted in our comments following Lemma 3.14, we can determine the

ramification polygon RL1/K of L1/K from RL/K. In addition, Lemma 3.14 tells us the

following information about each residual polynomial corresponding to a segment of

RL1/K: the segmental inertia degree and a root for each root of the residual polynomial

for the corresponding segment of RL/K. This is enough information to compute, via

Theorem 3.25, the maximal tamely ramified subextension T1 of the normal closure of

L1/K.

By Theorem 3.15, we can determine the slope of RL/L1 and both the roots and

segmental inertia degree of the corresponding residual polynomial. This enables us

to compute Gal(L/L1).

Set L0 := L and assume that Gal(L1/K) is known. We can compute an initial

list of candidate groups containing Gal(L/K) = Gal(L0/K) by computing transitive

subgroups of Gal(L0/L1) oGal(L1/K) (see Section 5.2). Then our knowledge of T1, T,
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Gal(L0/L1), and Gal(L1/K) allow us to reduce the number of candidates by utilizing

steps (1), (2), and (5) through (9) of Algorithm 5.5.

When pruning a list of possible Galois groups for a concrete polynomial, we

also make use of the automorphism group Aut(L/K) and the parity of the polynomial.

In the next subsection, we investigate which values these invariants can have given

RL/K and the corresponding residual polynomials. Ultimately, we include Aut(L/K)

and the parity of ' in our list of given invariants.

5.3.3 Parity and Automorphism Group Orders

In some cases, the ramification polygon RL/K can be used to determine the

parity of our unknown polynomial '. Let (1, J0) denote the leftmost point on RL/K.

Then we have that

vK(disc (')) = J0 � 1 + [L : K].

If this number is odd, then it is impossible for disc (') to be a perfect square. As

such, the parity of ' would be �1. If, on the other hand, vK(disc (')) is even, then

we lack the ability to conclusively say what the parity of ' is since even valuation of

disc (') does not imply that disc (') is a perfect square in general.

In general, without a concrete polynomial ', we cannot say much about the

structure of the automorphism group Aut(L/K). The best we can do, with the infor-

mation given, is determine a few characteristics of the group. First, we observe that

Aut(L/K) acts transitively on those roots of ' that are contained in L, as any of those

roots can be mapped to any other of those roots. Second, since Aut(L/K)  Gal(L/K)

and Gal(L/K) is solvable by Proposition 2.32, we have that Aut(L/K) is solvable.
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Third, we can use RL/K and the residual polynomials to enumerate the possibilities

for the order of Aut(L/K).

Let ⇢ 2 OL[x] denote the ramification polynomial of '. By construction, the

number of roots of ⇢ that lie in L equals the number of roots of ' that lie in L. Since

this number is |Aut(L/K)|, we can reduce the task of enumerating the possible values

of |Aut(L/K)| to estimating how many roots of ⇢ can lie in L.

Since x is a factor of ⇢(x), by construction, we know that ⇢ has a root in L.

To investigate the other factors of ⇢, we look at the segments of RL/K.

Let S be a segment of RL/K with slope ��, and let g 2 L[x] denote the

corresponding factor of ⇢. If � /2 Z, then the roots of g have non-integer valuation

and, thus, cannot lie in L. If, on the other hand, � 2 Z, then it is possible that one

or more roots of g lie in L.

In the event that the slope of S is integral, we examine the residual polynomial

A 2 L[y] that corresponds to S. More specifically, since A gives the first coefficient in

the ⇡L-adic expansion of the roots of g, we look at the roots of A. If the multiplicity

of a root of A is 1, then we can lift to a root of ⇢ in L by Hensel’s Lemma. If, on the

other hand, a root of A has multiplicity m > 1, then we can only lift to a factor of

⇢ of degree m. In the latter case, the factor of ⇢ that we would obtain from lifting

could have anywhere between 0 and m (inclusive) roots in L.

By considering every segment of RL/K that has integral slope, we can obtain

a list of the possible values for the total number of roots of ⇢ that lie in L. This list

of possible values of |Aut(L/K)| can be further restricted by the fact that |Aut(L/K)|
must divide [L : K]. For a more succinct description of this approach, see the algorithm

below.
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Algorithm 5.9 (AutomorphismGroupOrders).

Input: The ramification polygon RL/K of L/K, and the list of residual polynomials

of RL/K.
Output: The possible orders of Aut(L/K).

Let S1,S2, . . . ,S`+1 be the segments of RL/K.

(1) count  {1}.

(2) For each segment Si with integral slope and residual polynomial Ai:

(a) Set T := {(r,m) | r is a root of Ai of multiplicity m}.

(b) For (r,m) in T :

(i) If m = 1, count  {a+ 1 | a in count}.

(ii) Otherwise, count  {a+ b | a in count, 0  b  m}.

(3) Return {c 2 count | c divides [L : K]}.

The fourth characteristic of Aut(L/K) that we can determine/state is that

Aut(L/K)  S|Aut(L/K)|. Putting all of this together, we can quickly determine a list

of possible values for Aut(L/K).

5.3.4 Examples

In order to test the effectiveness with which our given invariants of a totally

ramified extension can narrow the pool of candidates for the extension’s Galois group,

we have generated a number of tables that will appear on my personal website in the

near future. When constructing these tables, we began by picking a field of p-adic

number Qp and a degree n satisfying p | n. Then we used the methods and criteria
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described in the preceding subsections to determine every plausible combination of

invariants that could be given to describe a degree n totally ramified extension of Qp.

We have opted to display these tables online due to the number of rows required

to describe every combination of invariants that we determined.

5.4 Eliminating Candidate Groups with Resolvents

Let ' 2 OK[x] be Eisenstein with degree n, and let ↵ be a root of ' in

some algebraic closure of K. Assume that ' generates a tower of field extensions

K ⇢ L1 ⇢ L0 = K(↵) where RL0/L1 consists of one segment and both Gal(L0/L1) and

Gal(L1/K) are known. We also assume that we have a list of candidate groups that

includes Gal(') = Gal(L0/K).

We can eliminate candidate groups that aren’t Gal(') by using Theorem 4.24

with the five absolute resolvents from Examples 4.19 through 4.23. For a candidate

group H, we add the following steps to Algorithm 5.5:

(R1) Return “No” if the list of the degrees of the irreducible factors of dp(') from

Example 4.19 over OK[x] is not the same as the list of the orbit lengths of the

action of ⌧1(H) on {1, . . . , n(n�1)/2} where ⌧1 is the permutation representation

of H acting on the cosets Sn/(S2 ⇥ Sn�2).

(R2) Return “No” if the list of the degrees of the irreducible factors of rl(') from

Example 4.20 over OK[x] is not the same as the list of the orbit lengths of the

action of ⌧2(H) on {1, . . . , n(n� 1)} where ⌧2 is the permutation representation

of H acting on the cosets Sn/(S1 ⇥ S1 ⇥ Sn�2).

(R3) Return “No” if the list of the degrees of the irreducible factors of tp(') from

Example 4.21 over OK[x] is not the same as the list of the orbit lengths of
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the action of ⌧3(H) on {1, . . . , n(n� 1)(n� 2)/6} where ⌧3 is the permutation

representation of H acting on the cosets Sn/(S3 ⇥ Sn�3).

(R4) Return “No” if the list of the degrees of the irreducible factors of LR(') from

Example 4.22 over OK[x] is not the same as the list of the orbit lengths of

the action of ⌧4(H) on {1, . . . , n(n� 1)(n� 2)/2} where ⌧4 is the permutation

representation of H acting on the cosets Sn/(S2 ⇥ S1 ⇥ Sn�3).

(R5) Return “No” if the list of the degrees of the irreducible factors of qp(') from

Example 4.23 over OK[x] is not the same as the list of the orbit lengths of the

action of ⌧5(H) on {1, . . . , n(n�1)(n�2)(n�3)/24} where ⌧5 is the permutation

representation of H acting on the cosets Sn/(S4 ⇥ Sn�4).

As we stipulated in our comments following Theorem 4.24, we don’t compute

one of the aforementioned absolute resolvents unless we are certain that we will be able

to eliminate at least one candidate group. The reader may recall that this involves

first computing the orbit length list for each candidate, and then comparing these

lists in search of any discrepancies. Additionally, we decline to compute one of these

resolvents if we anticipate its degree being large. Thus, for large degree the latter

steps above may be skipped.

In the examples below, we continue the practice from Section 5.2 of using a

table to track the changes in the total number of viable candidates. The degrees of

the irreducible factors of each resolvent polynomial over OK[x] are efficiently obtained

with an OM-algorithm, see for example [36]. Since we do not need to derive a complete

factorization, the lifting step described in [38] is omitted. In the case where K = Qp,

we use the OM algorithm from the Ideals+ package for Magma [34].
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Example 5.10. Let ' = x9
+483 2 Q3[x]. The ramification polygon R' is comprised

of two segments with endpoints (1, 18), (3, 9), and (9, 0). From left to right, the

segments of R' have slopes �9/2, �3/2 and residual polynomials y + 1, y3 + 1 2
F3[y]. Using Algorithm 3.13, we compute the tower of extensions corresponding to

the segments of R':

Q3 ⇢ L1 ⇢ L0 ⇠= Q3[x]/(')

where L1 ⇠= Q3[x]/(x
3
+ 3) and L0 ⇠= L1[x]/(x3

+ �) for � satisfying �3
+ 3 = 0. It

follows from Algorithm 3.23 that Gal(L0/L1) ⇠= Gal(L1/Q3)
⇠
=

A3. By Corollary 4.14,

Gal(') is a subgroup of the wreath product

Gal(L0/L1) oGal(L1/Q3)
⇠
=

A3 o A3

After computing an initial list of candidate subgroups, we apply the decision steps

from Algorithm 5.5 to all of the candidate groups. We observe the following changes

in the total number of viable candidates:

Step(s) (1) (2) (3-9) (10) (R1) (R2) (R3)

Remaining Candidates 23 10 5 4 2 2 1

After applying step (R3), we are left with Gal(') ⇠
=

9T10.

Example 5.11. Let ' = x27
+3 2 Q3[x]. The ramification polygon R' is comprised

of three segments with endpoints (1, 81), (3, 54), (9, 27), (27, 0). The slopes of these

segments, from left to right, are �27/2, �9/2, �3/2. Using Algorithm 3.13, we

compute the tower of extensions corresponding to the segments of R':

Q3 ⇢ L2 ⇢ L1 ⇢ L0 ⇠= Q3[x]/(').
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It can be shown that L1 ⇠= Q3[x]/(x
9
+483). Since we determined the Galois group of

x9
+483 2 Q3[x] in Example 5.10, we now treat L1/Q3 as a single extension. Thus, we

consider the tower of extensions Q3 ⇢ L1 ⇢ L0 where Gal(L1/Q3)
⇠
=

9T10 by Example

5.10 and RL0/L1 is comprised of a single segment.

Next, we compute the Galois group of the top relative extension L0/L1 using

Algorithm 3.23. We find that Gal(L0/L1) ⇠= S3. This tells us, by Corollary 4.14, that

Gal(') is a subgroup of the wreath product

Gal(L0/L1) oGal(L1/Q3)
⇠
=

S3 o (9T10).

After computing an initial list of candidate subgroups, we apply the decision steps

from Algorithm 5.5 to all of the candidate groups. We observe the following changes

in the total number of viable candidates:

Step (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (R1)

Remaining Candidates 200 83 60 54 54 32 32 32 32 4 1

After applying step (R1), we are left with Gal(') ⇠
=

27T176.

Remark. With the exception of some redundant operations, Examples 5.10 and 5.11

constitute the two iterative stages of Algorithm 5.1 required to compute the Galois

group of x27
+3 2 Z3[x] which has a ramification polygon that consists of 3 segments.

For the remainder of this section, we will assume that K = Qp. We further

assume that the steps in Algorithm 5.5 have been applied to the candidate groups

and that we have failed to uniquely identify Gal('). At this stage of Algorithm 5.1,

we rule out the other candidate groups by using relative resolvents.

In general, computing relative resolvents in order to determine the Galois group

of a polynomial requires approximating the roots of that polynomial. This presents
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a problem since computing the polynomial’s splitting field is not always feasible. In

an effort to address this problem for our polynomial ', we adopt and expand upon

an approach from [45]. From this, we obtain a polynomial that generates a tower of

field extensions over the rational numbers. More specifically, we compute a tower of

global fields

Q ⇢ L01 ⇢ L00

that exhibits the same relationships between its relative extensions as our tower of

p-adic fields Qp ⇢ L1 ⇢ L0.

Before we delve into the details of this approach, we introduce some additional

notation. For a polynomial f 2 Zp, we will denote by Gal

Q

(f) its Galois group over

the rationals, and we let Gal

Qp(f) denote the Galois group over Qp. In terms of this

new notation, the ultimate goal of our algorithm is to compute Gal

Qp(').

Let '1(y) 2 Qp[y] be a degree m polynomial so that L1 = Qp[y]/('1) = Qp(�),

and let � = �1, . . . , �m be the roots of '1 in some algebraic closure of Qp. Additionally,

let '0(x) be a degree n/m polynomial that satisfies L0 = L1[x]/('0). The coefficients

of '0 are in terms of � and elements of Qp. This means that we can write the

generating polynomial of L0/L1 as '0(x, �).

According to Proposition 2.41, we can find a polynomial  that generates

L0/Qp by computing the norm NL1/Qp('0(x, �)). We find that

 (x) := NL1/Qp('0(x, �))

=

mY

i=1

'0(x, �i)

= resy('0(x, y),'1(y)).
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L0 = L1[x]/('0) = Qp[x]/(') L00 = Q[x]/( )
| |

L1 = Qp[x]/('1) L01 = Q[x]/('1)

| |
Qp Q

Figure 7. Subfield tower for the stem field of an Eisenstein Polynomial ' and the

corresponding tower of extensions for the polynomial  (x) = resy('0(x, y),'1(y)).

We note that since a resultant can be computed without approximating the roots of

the inputted polynomials, it is unnecessary to approximate �1, . . . , �m.

Since  and ' generate the same extension of Qp, we have that Gal

Qp( )
⇠
=

Gal

Qp('). Thus, we can restrict ourselves entirely to finding Gal

Qp( ). In other

words,  replaces our polynomial '.

We use  (x) to generate a global field extension L00/Q. It can be shown that

L00 has a subfield L01 such that L01/Q is generated by '1 (see Figure 7).

Treating  as a polynomial with integer coefficients, we approximate the roots

of  over an unramified extension of Qq for some rational prime q. To this end, we

apply Lemma 4.11 to several rational primes that don’t divide disc ( ), and choose

from among these a prime q for which the prescribed unramified extension of Qq has

minimal degree. By minimizing the degree of our unramified extension, we reduce

the precision needed to ensure accuracy in the future construction and analysis of

resolvent polynomials constructed from the roots of  .

The next step is to compute the Galois groups of L00/L
0
1 and L01/Q. Then,

using Theorem 4.12, we compute the partitioning of the roots of  with respect to

the block system B of Gal

Q

( ) that we get with our subfield L01. From there it is

straightforward to compute the block system of W 0
:= Gal(L00/L

0
1) o Gal(L01/Q) and
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find the permutation � 2 Sn that maps the block system of W 0 to B. Reordering the

roots of  by � we have that Gal

Q

( )  W 0.

If we let W denote the wreath product Gal(L0/L1) oGal(L1/Qp) from which we

obtained our initial list of candidate groups, then, by construction, W 0 is guaranteed

to contain a conjugate of W . In fact, it is not unusual for W  W 0 to hold. This

allows us to identify each of our candidates with subgroups of W 0. It is from this list

of subgroups of W 0 that we will find our Galois group.

In order to eliminate the extra candidate groups, we look at low index sub-

groups of W 0. Starting with k = 2, we compute the set W 0
k of representatives for each

conjugacy class of subgroups of W 0 of index k. For each group H 2 W 0
k, we employ the

procedure described in our comments following Theorem 4.24 to determine whether

or not to form the resolvent corresponding to the group pair H < W 0. Based upon

this, we either rule out one or more candidates using the list of the degrees of the

irreducible factors of the resolvent, or we move on to another group in W 0
k without

computing the resolvent. If we exhaust the groups in W 0
k and still have multiple can-

didate groups, then we increase k by 1 and repeat the above process until we identify

the Galois group.

5.5 Future Work: Relative Linear Resolvents

Let L/K be a finite extension, and let L ⇠
=

K[x]/(') for an irreducible, separable

polynomial ' 2 K[x]. Let M be a normal extension of K such that ' factors as
lQ

i=1
'i

over M[x], with deg('i) = m for 1  i  l. Let

F (x1, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn

be a linear multivariate polynomial with integer coefficients.
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N
|

L(i) ✓ ML(i)

| |
L(i) \M = L(i)1 ✓ M

|
K

Figure 8. Subfield diagram for the proof of Proposition 5.12.

In her thesis [74], Sandi Rudzinksi presents an algorithm that computes the

relative linear resolvent RF (Sm o Sl,') without approximating the roots of ' [74,

Algorithm 7 and Theorem 4.5]. She also expands her algorithm to find RF (Sm oG,')

where G  Sl is a transitive permutation group [74, Proposition 4.6].

The proposition below guarantees that the necessary conditions for Rudzinksi’s

method can be achieved.

Proposition 5.12. Let ' 2 K[x] be irreducible and separable with degree n. Let N

denote the splitting field of '. If M/K is a normal subextension of N/K, then ' factors

over M as a product of distinct irreducible polynomials of the same degree.

Proof. Let ↵(1), . . . ,↵(n) denote the roots of ' in some algebraic closure K of K. As '

is squarefree, all factors of ' are distinct. For each root ↵(i) of ' we denote by 'j(i)

the irreducible factor of ', over M, for which ↵(i) is a root.

Let L = K[x]/('), and let L1 = M \ L. For 1  i  n, the conjugates of L are

L(i) = K(↵(i)
) = L1(↵(i)

). Similarly, the conjugates of L1 are L(i)1 = L(i) \ M. Since

K(↵(i)
) is always the same up to isomorphism, we have the subfield diagram in Figure

8 for 1  i  n where both L(i)/L(i)1 and ML(i)/M have degree deg('j(i)). Thus, each

↵(i) is a root of an irreducible factor of ' over M of degree [L(i):K]
[L(i)\M:K]

.
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We now assume that ' is Eisenstein, and the ramification polygon R' consists

of two segments. We claim that, under these conditions, we can apply Rudzinksi’s

algorithm. To justify this assertion, we consider some of the material from the later

parts of Chapter III. Since R' consists of two segments, ' generates a tower of

extensions K ⇢ L1 ⇢ L0 = K[x]/(') where RL0/L1 and RL1/K each consist of one

segment. Let T1 be the maximal tamely ramified subextension of the normal closure

of L1/K, and let M = T1L1 be the compositum of T1 and L1. If L1/K is tamely ramified,

then L1 = T1 and M is a normal extension of K by Theorem 3.25. Otherwise, if L1/K

is wildly ramified, M is normal since it is the splitting field of the polynomial that

generates L1/K (see Theorem 3.18). In either case, M/K is normal and our assertion

follows from Proposition 5.12.

In light of the above considerations, our future work in computing Galois

groups will be largely driven by three questions regarding how we could incorporate

Rudzinski’s work into our algorithm:

(1) Do there exist cases where this method could be applied to determining the

Galois group of an Eisenstein polynomial whose ramification polygon consists

of three or more segments?

(2) With what frequency can the factorization of the resolvents, computed using

this method, identify the Galois group from a list of candidate groups?

(3) To what degree can the resolvents from this method be used to delay or make

unnecessary the use of the polynomial  from Section 5.4?
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APPENDIX A

GALOIS GROUPS

In this section we provide necessary background information about Galois

groups. What follows is a list, with minimal commentary, of definitions and properties

that were compiled primarily from [20].

Let K be a field. For an algebraic extension L = K[x]/('(x)) where ' 2 K[x]

is irreducible we call the smallest field over which ' splits into linear factors the

normal closure of L. An algebraic closure of K is an algebraic extension of K that is

algebraically closed.

Definition A.1. (1) An isomorphism � of K with itself is called an automorphism

of K. The collection of automorphisms of K is denoted Aut(K). If ↵ 2 K we

shall write �↵ for �(↵).

(2) An automorphism � 2 Aut(K) is said to fix an element ↵ 2 K if �↵ = ↵. If F

is a subset of K (for example, a subfield), then an automorphism � is said to fix

F if it fixes all the elements of F, i.e., �↵ = ↵ for all ↵ 2 F.

Definition A.2. Let K/F be an extension of fields. Let Aut(K/F) be the collection

of automorphisms of K which fix F.

Proposition A.3. The set Aut(K) is a group under composition and Aut(K/F) is a

subgroup.

Proposition A.4. Let K/F be a field extension and let ↵ 2 K be algebraic over F.

Then for any � 2 Aut(K/F), �↵ is a root of the minimal polynomial for ↵ over F i.e,

Aut(K/F) permutes the roots of irreducible polynomials. Equivalently, any polynomial

with coefficients in F having ↵ as a root also has �↵ as a root.
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Proposition A.5. Let H  Aut(K) be a subgroup of the group of automorphisms of

K. Then the collection F of elements of K fixed by all the elements of H is a subfield

of K.

Definition A.6. If H is a subgroup of the group of automorphisms of K, the subfield

of K fixed by all the elements of H is called the fixed field of H.

Proposition A.7. The association of groups to fields defined above is inclusion re-

versing, namely

(1) if F1 ✓ F2 ✓ K are two subfields of K then Aut(K/F2)  Aut(K/F1), and

(2) if H1  H2  Aut(K) are two subgroups of automorphisms with associated fixed

fields F1 and F2, respectively, then F2 ✓ F1.

Proposition A.8. Let E be the splitting field over F of the polynomial f(x) 2 F[x].

Then |Aut(E/F)|  [E : F] with equality if f(x) is separable over F.

Definition A.9. Let K/F be a finite extension. Then K is said to be Galois over F

and K/F is a Galois extension if |Aut(K/F)| = [K : F]. If K/F is Galois, the group of

automorphisms Aut(K/F) is called the Galois group of K/F, denoted Gal(K/F).

If K/F is not Galois, then we define the Galois group Gal(K/F) to be the

automorphism group Aut(N/F) of the normal closure N of K/F.

Definition A.10. If f(x) is a separable polynomial over F, then the Galois group

Gal(f) of f(x) over F is the Galois group of the splitting field of f(x) over F.

Theorem A.11. Let G = {�1 = 1, �2, . . . , �n} be a subgroup of automorphisms of a

field K and let F be the fixed field. Then

[K : F] = n = |G|.
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Corollary A.12. Let K/F be any finite extension. Then

|Aut(K/F)|  [K : F]

with equality if and only if F is the fixed field of Aut(K/F). Put another way, K/F is

Galois if and only if F is the fixed field of Aut(K/F).

Corollary A.13. Let G be a finite subgroup of automorphisms of a field K and let

F be the fixed field. Then every automorphism of K fixing F is contained in G, i.e.,

Aut(K/F) = G, so that K/F is Galois, with Galois group G.

Corollary A.14. If G1 6= G2 are distinct finite subgroups of automorphisms of a field

K then their fixed fields are also distinct.

Theorem A.15. The extension K/F is Galois if and only if K is the splitting field

of some separable polynomial over F. Furthermore, if this is the case then every

irreducible polynomial with coefficients in F which has a root in K is separable and

has all its roots in K (so in particular K/F is a separable extension).

Definition A.16. Let K/F be a Galois extension. If ↵ 2 K, the elements �↵ for � in

Gal(K/F) are called the conjugates of ↵ over F. If E is a subfield of K containing F,

the field �(E) is called the conjugate field of E over F.

Theorem A.17. (Fundamental Theorem of Galois Theory) Let K/F be a Galois

extension and set G = Gal(K/F). Then there is a bijection between the set of subfields

E of K containing F and the set of subgroups H of G. In particular, each subfield E

corresponds to the group of elements of G that fix E and each subgroup H corresponds

to its fixed field. Under this correspondence:

(1) If E1, E2 correspond to H1, H2, respectively, then E1 ✓ E2 if and only if H2  H1,
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(2) If E1, E2 correspond to H1, H2, respectively, then the intersection E1 \ E2 cor-

responds to the group hH1, H2i generated by H1 and H2 and the composite field

E1E2 corresponds to the intersection H1 \H2.

Assume a field E satisfying F ✓ E ✓ K corresponds to a subgroup H  G.

(3) [K : E] = |H| and [E : F] = |G : H|, the index of H in G.

(4) K/E is always Galois, with Galois group Gal(K/E) = H.

(5) E is Galois over F if and only if H is a normal subgroup in G. If this is the

case, then the Galois group is isomorphic to the quotient group

Gal(E/F) ⇠
=

G/H.

If the field K has cardinality |K| <1, we say that K is a finite field with order

|K|. The number of elements in a finite field is pn where p is a rational prime and n

is a natural number. Up to isomorphism, there is only one field of order pn and it is

denoted by Fpn .

A finite field Fpn is normal over Fp and its Galois group is cyclic with order n:

Gal(Fpn/Fp) = h�pi

where �p : Fpn ! Fpn with �p(↵) = ↵p is referred to as the Frobenius automorphism.

Proposition A.18. The field Fpn is the splitting field over Fp of the polynomial

xpn�x, with cyclic Galois group of order n generated by the Frobenius automorphism

�p. The subfields of Fpn are all Galois over Fp and are in one to one correspondence

with the divisors d of n. They are the fields Fpd, the fixed fields of �d
p.
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For natural numbers m, n and p with p prime we have that Gal(Fpm/Fpn) =

h� : x 7! xpni.
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APPENDIX B

DIRECT AND SEMIDIRECT PRODUCTS

When working with groups it can be desirable, if not beneficial, to construct

a new group from existing ones. Doing so increases the collection of group examples

at the mathematician’s disposal and aides in the classification of groups. Oftentimes,

such constructions can be obtained by taking so called “products” of groups. This

methodology has the additional benefit of allowing one to decompose a group into

smaller “factors”.

We begin this section with an examination of direct products of groups. It is

our expectation that much of this will be familiar to the reader. First, we will recall

the basic definitions and properties. These properties have been chosen and ordered

so that our discussion will naturally culminate to 2 major results: The Fundamental

Theorem of Finitely Generated Abelian groups and the Recognition Theorem. We

will follow this up with a brief discussion of inherent limitations of direct products.

This will allow us to pivot into a similar examination of semidirect products.

The bulk of the information we present has been gathered from [20] and [55].

Furthermore, the manner in which the information is motivated and organized mimics

the treatment of the material in Chapter 5 of [20].

B.0.1 Direct Products

The direct product operation on groups is a natural extension of the Cartesian

Product of sets.

Definition B.1. (1) If (A, ⇤) and (B, ⇧) are groups, we can form a new group

A ⇥ B, called their direct product, whose elements are those in the Cartesian
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product

A⇥ B = {(a, b) | a 2 A, b 2 B}

and whose operation is defined component-wise:

(a1, b1)(a2, b2) = (a1 ⇤ a2, b1 ⇧ b2).

(2) Similarly, the direct product G1 ⇥ G2 ⇥ · · · ⇥ Gn of the groups G1, G2, . . . , Gn

with operations ⇤1, ⇤2, . . . , ⇤n, respectively, is the set of n-tuples (g1, g2, . . . , gn)

where gi 2 Gi with operation defined component-wise:

(g1, g2, . . . , gn) ⇤ (h1, h2, . . . , hn) = (g1 ⇤1 h1, g2 ⇤2 h2, . . . , gn ⇤n hn).

Remark. (1) By convention, every abstract group is written multiplicatively. Thus,

we will write the above operation as

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

Nevertheless, the reader should bear in mind that the operation may be different

from one Gi to another.

(2) Rearranging the “factors” in a direct product gives us a group isomorphic to the

group with the previous ordering.

In the next few results we will, for the sake of brevity and simplicity, restrict

ourselves to the n = 2 case. It can, of course, be shown that analogous results hold

for all n 2 N.
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Proposition B.2. Let G1 and G2 be groups and let G = G1 ⇥ G2 be their direct

product. Let 1G1 and 1G2 be, respectively, the identity elements of G1 and G2.

(1) The sets H1 = {(g1, 1G2) | g1 2 G1} and H2 = {(1G1 , g2) | g2 2 G2} are

subgroups of G isomorphic to, respectively, G1 and G2.

(2) If we identify G1 and G2 with the subgroups in (1) then G1 E G and G2 E G.

Furthermore, G/G1
⇠
=

G2 and G/G2
⇠
=

G1.

Proof. (1) It is clear that H1 and H2 are nonempty because G1 and G2 are nonempty.

Let (x1, 1G2), (y1, 1G2) 2 H1. Then

(x1, 1G2)(y1, 1G2)
�1

= (x1, 1G2)(y
�1
1 , 1G2) since y1y

�1
1 = 1G1

= (x1y
�1
1 , 1G2)

which is in H1.

Since x1, y1 2 G1 were chosen arbitrarily, we conclude that this holds in gen-

eral. Thus H1  G by the Subgroup Criterion. Similarly, for (1G1 , x2), (1G1 , y2) 2 H2

we find that

(1G1 , x2)(1G1 , y2)
�1

= (1G1 , x2)(1G1 , y
�1
2 )

= (1G1 , x2y
�1
2 ) 2 H2

which leads us to conclude that H2  G.

To prove the remainder of (1), consider the maps

⇡1 : G1 ! H1 defined by ⇡1(g1) = (g1, 1G2)
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and

⇡2 : G2 ! H2 defined by ⇡2(g2) = (1G1 , g2).

It is clear, by construction, that ⇡1 and ⇡2 are bijections. Furthermore,

⇡1(g1h1) = (g1h1, 1G2)

= (g1, 1G2)(h1, 1G2)

= ⇡1(g1)⇡1(h1)

and

⇡2(g2h2) = (1G1 , g2h2)

= (1G1 , g2)(1G1 , h2)

= ⇡2(g2)⇡2(h2).

Therefore, ⇡1 and ⇡2 are isomorphisms.

(2) We will now identify G1 with H1 and G2 with H2. Consider the map

' : G! G2 defined by '(g1, g2) = g2. This map is a homomorphism because

'((g1, g2)(h1, h2)) = '(g1h1, g2h2)

= g2h2

= '(g1, g2) '(h1, h2).
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Since ' is a homomorphism, its kernel is a normal subgroup of G by the First

Isomorphism Theorem. In particular,

ker' = {(g1, g2) 2 G | '(g1, g2) = 1G2}

= {(g1, g2) 2 G | g2 = 1G2}

= {(g1, 1G2) | g1 2 G1}

= G1.

Thus, the First Isomorphism Theorem tells us that G1EG and G/G1
⇠
=

'(G).

Since ' is, clearly, surjective this becomes G/G1
⇠
=

G2. By a similar argument, the

map ⌧ : G! G1 defined by ⌧(g1, g2) = g1 is a surjective homomorphism with kernel

ker⌧ = G2. A second application of the First Isomorphism Theorem gives us that

G2 EG and G/G2
⇠
=

G1.

Proposition B.3. The direct product of 2 groups is abelian if and only if both of the

constituent groups are abelian.

Proof. Let G1 and G2 be groups and let G = G1⇥G2 be their direct product. Suppose

G is abelian. Because the operation on G is component-wise, we find that

(g1h1, g2h2) = (g1, g2)(h1, h2)

= (h1, h2)(g1, g2) since G is abelian

= (h1g1, h2g2).

Equality between elements of G is possible only if the corresponding compo-

nents are equal. In other words, the above gives us, g1h1 = h1g1 and g2h2 = h2g2.

Since g1, g2, h1, and h2 were chosen arbitrarily, we conclude that the last two equa-

172



tions hold for all elements of G1 and G2. In short, we conclude that G1 and G2 are

abelian.

Conversely, suppose that G1 and G2 are abelian. Then for g1, h1 2 G1 and

g2, h2 2 G2 we obtain

(g1, g2)(h1, h2) = (g1h1, g2h2)

= (h1g1, h2g2) since G1, G2 are abelian

= (h1, h2)(g1, g2).

Since these group elements are arbitrary, we conclude that G = G1⇥G2 is an

abelian group.

A straightforward, inductive argument can be used to conclude that the direct

product of groups is abelian if and only if each of the factors is abelian. In the case

of finitely generated abelian groups there is a bit more to be said.

Theorem B.4. (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then

(1) G ⇠
=

Cp
r1
1
⇥Cp

r2
2
⇥ · · ·⇥Cprnn ⇥Z⇥Z⇥ · · ·⇥Z where pi are rational primes that

might not be distinct and ri > 0 for each factor.

(2) The factorization in (1) is unique up to the rearrangement of the factors.

(3) If G has order n 2 N and the unique prime factorization (distinct primes) of n

is n = pm1
1 pm2

2 · · · pmt
t then G ⇠

=

G1 ⇥G2 ⇥ · · ·⇥Gt where |Gi| = pmi
i .

This result allows us to express any finitely generated abelian group as the

direct product of cyclic groups. In doing so, it provides algebraists with a powerful
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tool for classifying abelian groups. Sadly, there does not exist an analogous result for

non-abelian groups.

Example B.5. Let S3 denote the symmetric group of degree 3. We will show that

S3 is not a direct product of nontrivial groups. To see this, let’s assume the contrary.

Specifically, let us assume that S3
⇠
=

H ⇥K for groups H and K with order greater

than 1. According to Proposition B.2, H ⇥K has subgroups that are isomorphic to

H and K. Hence, by Lagrange’s Theorem, |H| and |K| must divide |S3| = 6. The

only groups that have order 2 or 3 are the cyclic groups of those orders. This means

that S3 is the direct product of cyclic groups. Because cyclic groups are abelian,

Proposition B.3 implies that S3 is abelian. This is false.

Proposition B.3 implies that some non-abelian groups can be expressed as di-

rect products of proper, nontrivial subgroups. What is less clear is how one determines

whether or not such a decomposition is possible.

B.0.2 Recognizing Direct Products

The purpose of this subsection is to introduce a well-known criterion by which

one can determine if a group can be described as the direct product of 2 of its proper

subgroups. We begin with some prerequisite information regarding products of group

subsets.

Definition B.6. Let H and K be subgroups of a group G and define

HK = {hk | h 2 H, k 2 K}.

Proposition B.7. If H and K are subgroups of a group G, then HK  G if and

only if HK = KH.
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It is worth pointing out that the relation HK = KH is not equivalent to

saying that every element of H commutes with every element of K.

Corollary B.8. If H and K are subgroups of G and H  NG(K), then HK is a

subgroup of G. In particular, if K EG then HK  G for any H  G.

We now address the task at hand. Let G denote an abstract, possibly infinite

group with identity element 1G. We want to establish rules by which one can deter-

mine whether or not G ⇠
=

H ⇥ K for nontrivial subgroups H and K. Put another

way, we need to specify characteristics that H  G and K  G must have in order

for G ⇠
=

H⇥K to be true. A good place to start is Proposition B.2, which states that

H ⇥K, and thus G if they’re isomorphic, has normal subgroups that are isomorphic

to H and K. So we will, first, require that H and K be normal subgroups of G.

The relation G ⇠
=

H ⇥K implies a well-defined correspondence between ele-

ments of G and pairs (h, k) for which h 2 H and k 2 K. This is where the construct

HK comes in. Since we have established that K E G, we know from Corollary B.8

that HK  G. This means that we can make the aforementioned correspondence

concrete by requiring that each element of G be a product of an element of H with

an element of K. In short, we will require that G = HK.

It is possible that some elements of HK can be written in more than one way.

For an element g 2 G there may exist h1, h2 2 H and k1, k2 2 K such that g = h1k1

and g = h2k2. In order to create an isomorphism between G = HK and H ⇥K we

must restrict H and K further so that this cannot occur. As the next proposition

shows, it is sufficient to require that H \K = 1G.
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Proposition B.9. Let H and K be subgroups of the group G. If H \K = 1G, then

each element of HK can be written uniquely as a product hk, for some h 2 H and

k 2 K.

Proof. Suppose an element of HK can be written as h1k1 and as h2k2. Then we have

h1k1 = h2k2. Multiplying both sides on the left by h�1
2 and on the right by k�1

1 yields

h�1
2 h1 = k2k

�1
1 . The quantity on the left side is an element of H and the product

on the right side is an element of K. Thus h�1
2 h1 and k2k

�1
1 are in H \ K. Since

H \K = 1G we have h�1
2 h1 = 1G and k2k

�1
1 = 1G. Respectively, these are equivalent

to h1 = h2 and k1 = k2. Therefore, h1k1 = h2k2 implies that h1 = h2 and k1 = k2.

We have proven uniqueness.

In an effort to simplify future terminology, we introduce another definition.

Definition B.10. Let H be a subgroup of the group G. A subgroup K of G is called

a complement for H in G if G = HK and H \K = 1G

Below, we consolidate our restrictions on H and K to formally state the sought

after criterion.

Theorem B.11 (Recognition Theorem). Suppose G is a group with subgroups H and

K such that

(1) K is a complement for H in G.

(2) H and K are normal in G.

Then G ⇠
=

H ⇥K.
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Proof. We will show that the map ' : G ! H ⇥K defined by '(hk) = (h, k) is an

isomorphism. By Proposition B.9, each element of G = HK can be uniquely written

as a product hk for some h 2 H and k 2 K. This tell us that ' is well-defined and

bijective. All that remains is to prove that ' is operation preserving.

Let h1, h2 2 H and k1, k2 2 K. Since H E G, k1h
�1
2 k�1

1 2 H. Thus

h2(k1h
�1
2 k�1

1 ) 2 H. By a similar argument, K E G implies that (h2k1h
�1
2 )k�1

1 2 K.

So, h2k1h
�1
2 k�1

1 2 H \K. It follows that h2k1h
�1
2 k�1

1 = 1G. Multiplying on the right

by k1h2 we obtain

h2k1 = k1h2. (2.1)

We now apply ' to our group elements to find that

'(h1k1h2k2) = '(h1h2k1k2) by (2.1)

= (h1h2, k1k2)

= (h1, k1)(h2, k2)

= '(h1k1)'(h2k2).

Because h1, h2, k1, k2 were chosen arbitrarily, we conclude that this argument

holds in general. Therefore, ' is a homomorphism.

B.0.3 The Inadequacy of Direct Products

We motivated our consideration of group products, in part, by underscoring

the fact that such products increase the number of group examples at our disposal.

Although direct products do serve this purpose, the effectiveness with which they do

so is limited. For example, Proposition B.3 informs us that if we have a collection of
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abelian groups then direct products do not provide us a means by which to construct

a non-abelian group. This fact alone seriously limits our pool of examples.

Further limitations are present in the Recognition Theorem. If we have 2

groups H and K, then any group G ⇠
=

H ⇥ K must have 2 normal subgroups that

are isomorphic to H and K and are complements. This is quite restrictive since it

dictates much of the new group’s subgroup structure. It does, however, provide us

with a blueprint for developing a more general, less limiting product.

B.0.4 Semidirect Products

For the purpose of motivation, let H and K be abstract groups. Suppose,

furthermore, that we want to create a group G that has subgroups that are isomorphic

copies of H and K in such a way that the copy of H is normal in G. We wish to

place no such restriction on the copy of K. Moving forward, we will identify H and

K with their copies and borrow several ideas from the previous subsections.

Like the direct product, the elements of G will be ordered pairs (h, k) for

h 2 H and k 2 K. All that remains is to define the binary operation on these

elements. We cannot define it componentwise in a natural sense because doing so

would just serve to reintroduce direct products. Instead, we will lean heavily on the

desired normality. Since H is a normal subgroup, Corollary B.8 tells us that HK will

be a subgroup of G . In time, just as we did with direct products, we would like to

establish a correspondence between products hk in HK and pairs (h, k). For now we

will assume it exists. Thus, in this environment, our search for a group operation can

be reduced to defining products of elements in HK.

Let h1, h2 2 H and k1, k2 2 K. We seek to define (h1k1)(h2k2). One approach

would be to switch the order of k1 and h2. This is appealing since it would allow
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us to define the operation for G in terms of a product in H and a product in K.

Furthermore, we have a precedent for such a thing. In our proof of the Recognition

Theorem we made this exact swap. Unfortunately, this was only permissible because

H and K were both normal. We don’t necessarily have that and we don’t want to

abandon our decision not to require that K be normal. A bit more ingenuity is called

for.

At the heart of our current dilemma is a need to describe how elements of

H interact with elements of K. For this, we make further use of our normality

requirement for H. Since H E G, we have that products of the form khk�1 are in

H for h 2 H and k 2 K. In other words, H is closed under left conjugation with

respect to elements of K. With this in mind, we seek to introduce a quantity khk�1

into (h1k1)(h2k2) in such a way that we get an element h0k0 for some h0 2 H, k0 2 K.

Fortunately, this is straightforward:

(h1k1)(h2k2) = (h1k1)h2(k
�1
1 k1)k2

= h1(k1h2k
�1
1 )k1k2

= h0k0

where h0
= h1(k1h2k

�1
1 ) 2 H and k0

= k1k2. We have defined our product in terms

of a product k1h2k
�1
1 . As stated previously, we know that k1h2k

�1
1 is an element of

H. What we don’t know for sure, from theory, is which element of H it is. In order

to define the operation on HK, we need a way to specify what the conjugate values

khk�1 would be.

For a given k 2 K, conjugating every element of H by k permutes the elements

of H: {khk�1
: h 2 H} = H. Coupling this with the fact that conjugation is
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an isomorphism, we have an automorphism on H defined by k. This tells us that

conjugation defines a mapping ' from K into Aut(H) where '(k) is the automorphism

defined by k. Therefore, specifying the conjugate values khk�1 is the same as choosing

a homomorphism ' from K into Aut(H). This choice of mapping is necessary and

completely defines our desired group operation.

Putting this all together, we define our operation on HK as:

(h1k1)(h2k2) = h1'(k1)(h2)k1k2.

We are now prepared to define G.

Theorem B.12. Let H and K be groups with identity elements 1H and 1K (respec-

tively) and let ' be a homomorphism from K into Aut(H). Let · denote the (left)

action of K on H defined by k · h = '(k)(h). Let G be the set of ordered pairs (h, k)

with h 2 H and k 2 K and define the following multiplication on G:

(h1, k1)(h2, k2) = (h1k1 · h2, k1k2).

(1) This multiplication makes G into a group of order |G| = |H| |K|.

(2) The sets eH = {(h, 1K) | h 2 H} and eK = {(1H , k) | k 2 K} are subgroups

of G and the maps h 7! (h, 1K) for h 2 H and k 7! (1H , k) for k 2 K are

isomorphisms of these subgroups with the groups H and K respectively:

H ⇠
=

{(h, 1K) | h 2 H} and K ⇠
=

{(1H , k) | k 2 K}.

Identifying H and K with their isomorphic copies in G described in (2) we have

(3) H EG
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(4) H \K = 1G.

Remark. Because H\K = 1G, Proposition B.9 implies that there exists a well-defined

correspondence between products hk and ordered pairs (h, k).

Observant readers will notice that the preceding theorem never mentions con-

jugaton and allows ' to be any homomorphism from K into Aut(H). No attempt

is even made to relate ' to conjugation. The reason for this is simple: every such '

ends up defining conjugation in G.

Corollary B.13. Let H and K be groups and let ' be a homomorphism from K into

Aut(H). Let G, eH and eK be defined as they are in Theorem B.12. If we identify H

and K (respectively) with eH and eK then '(k)(h) = khk�1 for all h 2 H and k 2 K.

Proof. We wish to examine the all too familiar quantity khk�1 in terms of corre-

sponding elements in eH and eK. By identifying h with (h, 1K) and k with (1H , k) we

have that khk�1 corresponds to

(1H , k)(h, 1K)(1H , k
�1
) = ((1H , k)(h, 1K)) (1H , k

�1
)

= (1Hk · h, k1K)(1H , k�1
)

= (k · h, k)(1H , k�1
)

=

�
(k · h)k · 1H , kk�1

�

= (k · (h1H), 1K) since ' is operation preserving

= (k · h, 1K).

We have shown that khk�1
= k · h = '(k)(h).

Definition B.14. The group G in Theorem B.12 is called the Semidirect product of

H and K with respect to '. Symbolically, it is written H o' K.
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The subscript of ' is needed since different choices of ' : K ! Aut(H)

correspond to different values of the quantities khk�1 which, in turn, define different

groups G. In cases where the choice of ' is clear, it is customary to write H oK.

Example B.15. Let H = Cn, the cyclic group that has order n and let K = Cm.

We will say that H = hai and K = hdi. We seek to form a semidirect product

G = H o' K for some ' : K ! Aut(H). The group G will consist of elements

(h, k) = (ai, dj) for 0  i < n and 0  j < m. All that remains is to choose our map

'.

If ` 2 Z and n are relatively prime then we have H = ha`i. Thus ⌧ : Cn ! Cn

with ⌧(ai) = a`i is an element of Aut(H). This means that we can define ' by

'(d) = ⌧ . To see how this works, we will identify H and K by their isomorphic

copies in G (see Theorem B.12 and compute da. In this context,

(1H , d)(a, 1K) = (1H'(d)(a), d1K)

= ('(d)(a), d)

= (⌧(a), d)

= (a`, d)

which is equivalent to da = a`d. If we multiply both sides of this relation on the right

by d�1 we obtain dad�1
= a`. It is clear by construction that this relation, in addition

to the cyclical nature of H and K, is enough to define the operation on G.

In conclusion, we have that G = Cn o' Cm has presentation

ha, d | an = 1, dm = 1, dad�1
= a`i.

When m = 2 and ` = �1, this group is isomorphic to the Dihedral group of order 2n.
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Example B.16. For some rational prime p and some m 2 N, let (Fp)
m denote the

vector space of m⇥ 1 column vectors with entries in Fp. We also denote by GL(m, p)

the group of invertible m⇥m matrices with entries in Fp. We seek to form a semidirect

product A = (Fp)
m
o'GL(m, p) for some map ' : GL(m, p)! Aut((Fp)

m
). The group

A will consist of elements (v,M) from the Cartesian Product (Fp)
m ⇥GL(m, p). All

that remains is to choose our map '.

The elements of GL(m, p) act naturally on (Fp)
m through matrix multiplication

on the left. Since linear transformations are automorphisms, each M 2 GL(m, p)

defines an element of Aut((Fp)
m
). In particular, each M corresponds to the map

uM : (Fp)
m ! (Fp)

m defined by x 7!Mx. This means we can define ' by '(M) = uM

for all M in GL(m, p).

From the definition of semidirect products,

(v,M)(w,N) = (v + '(M)(w),MN) = (v +Mw,MN).

is the operation of A.

Each v 2 (Fp)
m corresponds to a mapping on (Fp)

m defined by addition by

v. In other words, v corresponds to sv : (Fp)
m ! (Fp)

m defined by x 7! x + v.

Furthermore, each element (v,M) of A corresponds to the pair of maps (sv, uM).

Thus, it follows that each element of A corresponds to a map which involves both

matrix multiplication and vector addition. In short, A must be isomorphic to

AGL(m, p) = {tM,v : (Fp)
m ! (Fp)

m
: x 7!Mx+ v | M 2 GL(m, p), v 2 (Fp)

m},

the affine group of (Fp)
m.
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Up to this point, much has been made of how the semidirect product is less

limiting than the direct product. What we have not established is the concrete

relationship between the two constructs. As the following proposition illustrates,

the direct product is a particular type of semidirect product.

Proposition B.17. Let H and K be groups and let ' : K ! Aut(H) map every

element of K to the identity automorphism. Then H o' K ⇠= H ⇥K.

Proof. Let h1, h2 2 H and let k1, k2 2 K. Then the group operation of Ho'K yields

(h1, k1)(h2, k2) = (h1'(k1)(h2), k1k2)

= (h1h2, k1k2)

which is the result of the group operation of H ⇥K.

Given this relationship, it is not surprising that a few of the results for direct

products have semidirect product analogues. Among them is the Recognition Theo-

rem B.11. Below is a similarly formulated criteria by which one can determine when

a group can be expressed as the semidirect product of two smaller groups. Its proof

has been omitted due to its similarities to the proof of Theorem B.11.

Theorem B.18. Suppose G is a group with subgroups H and K such that

(1) K is a complement for H in G, and

(2) H EG.

Let ' : K ! Aut(H) be the homomorphism defined by mapping k 2 K to the

automorphism of left conjugation by k on H. Then G ⇠
=

H oK.
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One striking element of Theorem B.18 is its depiction of the map ' as unique.

At first glance, this appears to conflict with Theorem B.12 and the beginning of this

section when we emphasized that ' can take different forms. Fortunately, there is no

conflict. These two characterizations of ' are both true because we are approaching

things from two very different directions.

In Theorem B.12 and the buildup to it, we started with two groups H and K

and worked to define their semidirect product G. In time, we were able to reduce

the task of determining G’s operation to that of choosing a mapping ' which would

specify the values of products khk�1 where h and k came from (possibly isomorphic

copies of) H and K respectively. From different choices of ' came different definitions

of G. Thus, specifying the map when describing/establishing G was necessary.

In Theorem B.18, we start with the group G and thus know its operation the

entire time. Hence, we already know which elements of H equal the products khk�1.

There is no ambiguity. We know exactly what each product is so there is only one '.

In short, since we know the group operation we can reverse engineer the unique '.

The fact that ' can be determined retroactively is a compelling argument for

excluding ' from Theorem B.18. A more succinct restatement of Theorem B.18 is

that a group G is a semidirect product if one of its proper, normal subgroups has a

complement. With this simplified metric in hand, we can revisit our earlier example

of S3. Although the group S3 cannot be represented as a nontrivial direct product,

it can be factored as a semidirect product.

Example B.19. Let A3 denote the alternating group of degree 3 and let C2 denote

the cyclic group of order 2. We will show that S3 can be decomposed as A3 o C2.

Since A3 has index 2 in S3, we know that A3 E S3. This means that we just have
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to find a subgroup of S3 that is isomorphic to C2 and is a complement of A3. This

subgroup must be generated by an element of order 2 and S3 has three such elements:

(12), (13), and (23). It can be shown that h(12)i \ A3 = {1} and A3h(12)i = S3.

Hence, we have that S3
⇠
=

A3 o C2, with C2
⇠
=

h(12)i. To determine the map ', for

this product, one would simply let h(12)i act on A3 by conjugation.

By a similar argument, it can be proven that Sn
⇠
=

An o C2 for all n � 2. In

each case, C2 can be identified with h(12)i.

The symmetric group S3 is not an isolated example. There are many groups

that cannot be decomposed as a direct product of nontrivial groups but can be fac-

tored as a nontrivial semidirect product. This is not, however, all-inclusive. Not

every group can be expressed as a nontrivial semidirect product. Simple groups, for

instance, have no proper, normal subgroups and thus fail to satisfy the criteria in The-

orem B.18. Another group for which Theorem B.18 isn’t applicable is the quaternion

group Q8.

Proposition B.20. The quaternion group Q8 cannot be expressed as a semidirect

product of nontrivial groups.

Proof. We will assume the contrary. In other words, we will assume that Q8
⇠
=

HoK

where H and K have order greater than 1. By Theorem B.12, H either has order 4 or

order 2 while K has (respectively) order 2 or 4. The possibilities for such orders are

limited. Our two factors H and K must each be isomorphic to one of the following

groups: C2, C2 ⇥ C2, and C4. Since all three of these groups contain a subgroup

isomorphic to C2, we must conclude that H and K both contain an element with

order 2.
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According to Theorem B.12 there exist subgroups eH and eK of Q8 that are

isomorphic to H and K respectively and satisfy eH \ eK = {1}. Since H and K each

contain an element of order 2, eH and eK do as well. However, since the intersection

of the two groups is trivial, these elements must differ. This leads us to conclude

that Q8 has multiple elements of order 2. It does not. The only element of Q8 that

has order 2 is �1. We have arrived at a contradiction which implies that our initial

assumption was false.
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APPENDIX C

WREATH PRODUCTS

This section consists of a condensed discussion of the wreath product, a special

type of semidirect product. We begin by establishing some notation and defining

multiple group actions for permutation groups. From there we pivot to the definition

of the wreath product in the context of permutation groups. In order to better

illustrate the group operation and group action of the wreath product, we follow this

definition up with a proof concerning transitivity.

All of the content in this section can be found in either [58] or [18]. In keeping

with the conventions of the former, all of the group actions we use are right actions.

Every permutation group in this section will be expressed as a pair (A,X)

where A is a group acting on the set X. Let (A,X) and (B, Y ) be permutation

groups. For our purposes, X and Y will be finite. Thus A and B can be viewed as

subgroups of S|X| and S|Y | respectively.

We denote by AY
= Map(Y,A) the set of all maps from Y to A. Each element

of AY acts on the Cartesian product X ⇥ Y by only acting on the first coordinate as

follows:

(x, y)f = (xf(y), y) for f 2 AY .

Remark. The reason for our notation AY is recognition of the fact that AY is equiv-

alent to the direct product of isomorphic copies of A where the index of the product

is formed by Y . For example, if Y = {y1, . . . , yn} then for each f 2 AY we get the

tuple (f(y1), . . . , f(yn)) in the direct product An.
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We also define the action of B on X ⇥Y purely through the normal action on

the second coordinate. In other words, we have

(x, y)h = (x, yh) for h 2 B.

Lastly, we define the action of B on AY by

fh
(y) = f(yh�1

) for f 2 AY , y 2 Y and h 2 B.

It is clear that for every h 2 B the map  h
: AY ! AY defined by f 7! fh is

an automorphism. This observation allows us to define a semidirect product of AY

and B.

Definition C.1. Let (A,X) and (B, Y ) be permutation groups with X and Y finite.

Let ' : B ! Aut(AY
) be defined by '(h) =  h. Then we define the (unrestricted)

(permutational) wreath product of A and B, denoted A o B, to be the semidirect

product AY
o'B. As a permutation group, A oB acts imprimitively on the Cartesian

product X ⇥ Y by

(x, y)(f, h) = (xfh
(y), yh) for f 2 AY , h 2 B.

Theorem C.2. Let (A,X) and (B, Y ) be permutation groups with X and Y finite.

Then the wreath product (A oB,X⇥Y ) is a transitive group if and only if (A,X) and

(B, Y ) are transitive groups.

Proof. Suppose (A o B,X ⇥ Y ) is transitive and let (x1, y1) and (x2, y2) be elements

of X ⇥ Y . Then there exists an element (f, h) of A o B such that

(x1, y1)(f, h) = (x2, y2) (3.1)
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From the first coordinate of Equation (3.1) we have that x2 = x1f
h
(y1). Since fh is

a map from Y to A, we know that fh
(y1) 2 A. This implies that (A,X) is transitive.

From the second coordinate of Equation (3.1) we obtain y2 = y1h where h 2 B. It

follows that (B, Y ) is transitive as well.

Suppose conversely that (A,X) and (B, Y ) are transitive. Then for (x1, y1)

and (x2, y2) in X⇥Y there must exist c 2 A and h 2 B so that x2 = x1c and y2 = y1h.

Let f be any map from Y to A that sends y1h
�1 2 Y to c. Then fh

(y1) = c and

(x1, y1)(f, h) = (x1f
h
(y1), y1h)

= (x1c, y1h)

= (x2, y2).

Therefore, (A o B,X ⇥ Y ) is a transitive group.

It can also be shown that the wreath product of solvable groups is solvable.
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