INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17^{\prime \prime} \times 23^{\prime \prime}$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

The effects of air and lip-pressure variations on the motion of a clarinet reed within an artificial embouchure

Miller, Douglas Evan, Ed.D. The University of North Carolina at Greensboro, 1988

Copyright © 1988 by Miller, Douglas Evan. All rights reserved.

U•M•I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad $/$
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page(s) \qquad lacking when material received, and not available from school or author.
12. Page(s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Dissertation contains pages with print at a slant, filmed as received \qquad
16. Other \qquad
\qquad
\qquad

THE EFFECTS OF AIR AND LIP-PRESSURE VARIATIONS
ON THE MOTION OF A CLARINET REED WITHIN AN ARTIFICIAL EMBOUCHURE
by
Douglas Evan Miller

A Dissertation Submitted to
the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment
of the Requirements for the Degree Doctor of Education

Greensboro
1988

Approved by
$\frac{\text { Camer } \ln \text { (Ahewhon }}{\text { Disfertation Adviser }}$

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

Dissertation Adviser \qquad

Committee Members

$\frac{\text { Date of Acceptance by Committee }}{\text { De }}$
$\frac{7 \eta_{i}+22,15 y}{\text { Date of Final Oral Examination }}$
(C) Copyright 1988 by Douglas Evan Miller

The writer would like to express his sincere thanks to many individuals who contributed advice and encouragement throughout the preparation of this dissertation. In particular, I wish to thank Dr. James W. Sherbon for his patience, encouragement, and guidance. I also wish to thank my committee members; Professors Lois V. Edinger, Barbara B. Bair, and Patricia E. Sink for their helpful suggestions. I am especially indebted to Dr. Robert C. Nicklin, Department of Physics, Appalachian State University, for the use of his versatile "Apple-Swiss" computer program and his sympathetic understanding of the nature of this study. I am sincerely grateful to Dr. Walter L. Wehner for his encouragement to pursue the study and for humanistic insights he shared with me along the way. Sincere appreciation is extended to my brother Sid for his engineering expertise and advice.

I wish to express my deep gratitude to my family; Sadie, Frances, Howard, Ann, and Sid for their patience and understanding. Their love and encouragement has undoubtably made the greatest contribution toward the completion of this study. Finally, I wish to thank my wife Elizabeth whose love and patience has sustained me through these many weeks of research.

MILLER, DOUGLAS EVAN, Ed.D. The Effects of Air and Lip-Pressure Variations on the Motion of A Clarinet Reed Within An Artificial Embouchure. (1988) Directed by Dr. James Sherbon. 226 pp .

To observe the influence of air and lip-pressure variations on reed motion, a blowing chamber containing an artificial"embouchure device was constructed into which a clarinet was inserted and sealed at the barrel joint. A DC light source was directed through the bell end of the clarinet into a photo transistor mounted near the mouthpiece. Light fluctuations produced by the reed's movement were converted to voltages and directed to an analog-to-digital converter unit interfaced with an Apple IIe computer.

In air-pressure experiments, lip pressure was held constant while air pressure was varied. In lip-pressure experiments, air pressure was held constant while lip pressure was varied. Intensities were measured on a sound-level meter and air-pressure was monitored via a U-tube water manometer connected to the chamber; thus, the reed's vibrational patterns were observed at specific air pressures, lip pressures, and itensities.

Conclusions: l) For low-intensity tones in all registers, reed motion was sinusoidal. 2) For high-intensity tones in all registers, the reed closed for a portion of its cycle and smaller vibrations were superimposed upon the reed's waveform when it reached maximum displacement. 3) The reed's mode of vibration in
the steady state matched closely the mode of the air column. 4) The reed's natural frequency of vibration was distinguishable within the steady state waveform. 5) Small inaudikle vibrations of the reed at its natural frequency were evident before the reed began to follow the requirements of the air column. 6) At constant lip pressure, an increase in air pressure increased reed amplitude and closure time but did not affect the reed's frequency of vibration. 7) At constant air pressure, lip-pressure reduction increased reed amplitude and intensity. 8) At specific air and lip pressures conducive to a wide range of intensities, closure was not more than 48 percent of a cycle. 9) An increase in reed amplitude did not always produce an increase in intensity level.

TABLE OF CONTENTS

Page
APPROVAL PAGE ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER
I. INTRODUCTION 1
Purpose of the Study 1
Delimitations of the Study 2
Significance of the Study 3
Theories of Reed Motion 6
Reed Motion and Tone Quality 8
Statement of the Problem 9
Foundations for the Study 11
II. REVIEW OF THE LITERATURE 14
Studies of Reed Closure Times 20
III. PROCEDURES 25
Procedural Overview 25
Equipment 27
Specifications of the Artificial Embouchure and Lower-Lip Mechanism 27
Embouchure Chamber 27
Mechanism for Adjusting Pressure and Position of Lip Cushion 28
The Lip Mechanism 31
Air Pressure and Regulation 33
Equipment Used in Quantitative Analyses 34
Data Converter Specifications 35
Page
Control of the Variables 36
Position and Applied Pressure of Lower-Lip Mechanism 37
Applied Ligature Pressure 38
Mass and Density of the Reed 39
Mouthpiece, Instrument, and Pitch 40
Loudness or Intensity 40
Detailed Procedures 41
Air-Pressure Experiments 42
Preliminary Test of Natural Blowing Pressures 42
Air-Pressure Variation and Intensity at Constant Lip Pressure 42
Air Pressure and the Vibrational Frequency of the Reed at Constant Lip Pressure 44
Reed Amplitude and Intensity at Constant Lip Pressure 45
Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure 45
The transient 46 46
Data on the steady state and air- column frequency 47
Lip-Pressure Experiments 48
Lip Pressure and Intensity at Constant Air Pressure 48
Lip Pressure and Amplitude of Reed Motion 49
Lip Pressure and Duration of Reed Closure 49
IV. EVALUATION OF THE DATA 51
Graphic Representation of the Data 51
Numeric Representation of the Data 54
Data Forms 57
Analysis of Data Measurements 59
Air Pressure and Intensity at Constant
Lip Pressure 59
Air Pressure and the Reed's Frequency of Vibration at Constant Lip Pressure 63
Reed Amplitude and Intensity at Constant Lip Pressure 66
Air Pressure and Amplitude of Reed
Motion at Constant Lip Pressure 73
The loading stage 74
The transient stage 77
The sinusoidal stage 85
The closing stage 85
Analyses of closure times 89
Lip Pressure and Intensity at Constant Air Pressure 100
Lip Pressure and Amplitude of Reed Motion 101
Lip Pressure and Duration of Reed Closure 105
Air-Pressure Requirements for Low-Intensity Tones at Two Lip-Pressure Settings 111
V. SUMMARY AND CONCLUSIONS 114
Summary 114
Air-Pressure Experiments 115
Natural Blowing Pressures 115
Air-Pressure Variation and Intensity at Constant Lip Pressure. 115
Air Pressure and the VibrationalFrequency of the Reed at ConstantLip Pressure116
Reed Amplitude and Intensity atConstant Lip Pressure117
Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure 117
The Transient 118
Lip-Pressure Experiments 119
Lip Pressure and Intensity at Constant Air Pressure 119
Lip Pressure and Amplitude of Reed Motion 119

Lip Pressure and Duration of keed Closure 120 Conclusions 120

General Observations of Reed Motion . . 120
Air-Pressure Experiments 121
Lip-Pressure Experiments 123
Duration of Closure i 24
Amplitude and Intensity 124
Implications of the Study and Pedagogical
Applications
Recommendations for Further Research . . . 126

BIBLIOGRAPHY 129

APPENDIX A: DESCRIPTION OF SOFTWARE 137
APPENDIX B: TABLES 140
APPENDIX C: NATURAL BLOWING PRESSURES 220
APPENDIX D: U.S.A. STANDARDS ASSOCIATION OCTAVE
NOTATION • 225
Table Page

1. Stripchart for F4, Series III $33.0 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Page 04 55
2. Tests Using Two Primary Procedures 60
3. Air Pressure vs. Reed Frequency 65
4. Air Pressures vs. Peak Voltages for F4 72
5. Voltage Averages vs. Applied Air Pressures 77
6. High-Intensity Closure Times at Four Pitch Levels 96
7. Point Totals for Reed Closures During Lip-Pressure Reductions 105
8. Point Totals for Reed Closures At
Two Lip-Pressure Settings for F3 110

LIST OF FIGURES
Figure Page

1. The Complete Apparatus 26
2. The Artificial Embouchure and Lower- Lip Mechanism 29
3. The I.ip Mechanism 32
4. Light Intensity Fluctuations for F433.0 cm H 20 , 90 dBA , Gain - 3.3F4 Tl 04 52
5. Data Form 58
6. Vibrational Pattern for Bb5$25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=1.0$
Bb5 Tl 00 67
7. Vibrational Pattern for Bb5$24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain $=1.0$Bb5 Tl 0167
8. Air Pressure Variation on F4$21.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$F4 T2 0068
9. Air Pressure Variation on F4$24.5 \mathrm{~cm} H 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$F4 T2 0168
10. Air Pressure Variation on F4$26.0 \mathrm{~cm} \mathrm{H} 20,88 \mathrm{dBA}$, Gain $=33$F4 T2 0269
11. Air Pressure Variation on F4
$27.0 \mathrm{~cm} \mathrm{H} 20,92 \mathrm{dBA}$, Gain $=33$F4 T2 0369
12. High Intensity Closure for F 4$28.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Gain $=33$F4 T2 0470
Figure Page
13. High Intensity Closure for F4
$29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Gain $=33$ F4 T2 05 70
14. Light Intensities at Various Air Pressures
as Reed Moves Towards the Mouthpiece F4, Gain $=10$, ADC DATA XV 75
15. F4 Transient Stage 80
16. Natural Frequency of the Reed 80
17. Transient Containing Steady State37.0 cm H 20 , Gain $=100$, Page 03F4, Series V81
18. F4 Steady State 82
19. Superimposition of F4 Transient on
F4 Steady State as Shown in Figure 18 82
20. Light Fluctuations for F4 Superimposed with Microphone Fluctuations for F4 84
21. F3 Reed Not Closing$27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 84 \mathrm{dBA}$, Gain $=3.3$F3 T2 0686
22. F4 Reed Not Closing
$25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 75 \mathrm{dBA}$, Gain $=10$ F4 T1 06 86
23. F5 Reed Not Closing
$32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 78 \mathrm{dBA}, \mathrm{Gain}=10$ F5 Tl 00 87
24. Bb5 Reed Not Closing $25.0 \mathrm{~cm} H 2 O, 90 \mathrm{dBA}, \operatorname{Gain}=10$ Bb5 T2 87
25. F5 Reed At Threshold of Closing $34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 86 \mathrm{dBA}$, Gain $=10$ F5 T1 02 88
26. F5 Reed Closing on Mouthpiece $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$ F5 T1 03 88
27. F3 Harmonic Disturbance$32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$F3 T1 0290
28. F3 Harmonic Disturbance $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Gain $=3.3$ F3 Tl 00 90
29. High-Intensity Closure for F3 $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Gain $=3.3$ F3 T1 00 92
30. High-Intensity Closure for F3$27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$F3 Tl 0992
31. High-Intensity Closure for F3$24.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=1.0$F3 T2 0093
32. High-Intensity Closure for F 3 $25.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, Gain $=3.3$ F3 Tl 05 93
33. High-Intensity Closure for F 4$38.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}, \mathrm{Gain}=3.3$F4 T1 0494
34. High-Intensity Closure for F4$34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 106 \mathrm{dBA}$, Gain $=3.3$F4 T1 1094
35. High-Intensity Closure for F5$36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$F5 T1 0395
36. High-Intensity Closure for Bb5 $34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$ Bb5 Tl 0395
37. Lip-Pressure Variation for F 3
$31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 70 \mathrm{dBA}$, Gain $=33$
F3 T1 07 102
38. Lip-Pressure Variation for F3
$29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$
F3 T1 08 102
39. Lip-Pressure Variation for F3 $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$ F3 T1 09 103
40. Lip-Pressure Variation for F3 $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$ F3 Tl 10 .13
41. High Lip Pressure for F3 Threshold Sound 26.0 cm H 20 , Gain $=10$ F3 T3 06 107
42. Low Lip Pressure for F3 Threshold Sound 24.5 cm H 20, Gain $=10$ F3 T3 07 107
43. High Lip Pressure for F3 $27.5 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=10$ F3 T3 08 108
44. Low Lip Pressure for F3 $26.0 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=10$ F3 T3 09 108
45. High Lip Pressure for $F 3$$33.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=10$
F3 T3 10F3 T3 10109
46. Low Lip Pressure for F3 $29.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=10$F3 T3 11109

CHAPTER I

INTRODUCTION

The oscillations of a reed are paramount for the production of sound on a clarinet. Not only is it the most unstable and inconsistent part of the instrument, but also the basic element providing the physical vibration necessary for the production of tone. For these reasons, the reed is frequently the center of attertion when tone quality is less than satisfactory. Because most clarinetists lack a scientific understanding of the characteristics surrounding a reed's vibrational patterns, there is justification for seeking empirical data which will serve as a basis for establishing foundations leading toward better control of the reed.

Purpose of the Study

The purpose of this study was to observe the influence of air and lip-pressure variations upon the oscillatory patterns of a clarinet reed as it vibrated at different frequencies. Results from the study may yield objective data about reed motion which can be of substantial significance in pedagogical applications regarding control of lip and air pressures necessary for optimum tonal
production. Furthermore, the observed changes in the oscillatory patterns of the reed may have an effect on the shape and size of the puffs of air entering the body of the clarinet; consequently, results may indicate that vibrational patterns of the reed may produce harmonic variations in the tone. This potential might explain tonal differences observed when two clarinetists perform on the same instrument.

Delimitations of the Study

This study is not meant to be conclusive, but rather, exploratory. In the interest of conducting a comprehensive examination of the effects of air and lip-pressure variations on reed motion, the investigation necessarily encompassed specific physical characteristics of reed motion such as intensity, amplitude, and closure. A primary motive in conducting this study was to supplement previous findings regarding reed motion by considering the effects of air and lip-pressure variations, variables which have been unheeded in previous studies of this nature. Conclusions from the study are divergent in the interest of presenting a multilateral theory of reed motion under the two conditions stated above. The efficacy and statistical sophistication of the findings are therefore somewhat limited in the interest of this divergency.

Significance of the Study

Single-reed instruments have been common since antiquity. Although manifesting a variety of physical forms, acoustical principles underlying primitive and modern single-reed instruments are very similar. They are comprised of an excitation mechanism, or tone-producing element, coupled to the body of the instrument, which, in turn, shapes an internal air column according to its contour. In a clarinet, the air column is in the shape of a cylinder. The excitation system, consisting of the embouchure, reed, mouthpiece, and ligature, transduces air-pressure provided by the performer into regular air puffs, thus exciting the air column, which, in turn, reacts to vibrational patterns of the reed. The excitation system must therefore match the acoustical requirements of the cylinder (bore) to which it is attached. Stubbins (1965) stated that "intonation, tone quality, ease of performance, flexibility, articulation, and dynamic control, are all affected by this reactance between the air column of the instrument and the tone-generating system" (p. 60).

Historically, a great variety of methods have been employed to excite the resonance frequencies of the air column. The "shepherd's pipe," one of the most primitive single-reed instruments, had a reed which was simply a sliver of cane split from the body of the instrument; thus,
a single tube of cane formed the mouthpiece, ligature, and reed. In the seventeenth century, when this sliver was separated and bound to the instrument by a string, it was given the name "chalumeau." Other single-reed instruments, like the "pibgorn," or "Welsh hornpipe" (sixteenth century), had a reed which was completely enclosed within a chamber and did not make direct contact with the performer's lips. The modern clarinet is a descendant of the chalumeau since it has a separate reed attached to the exterior of the instrument.

Since the creation of the clarinet by Johann Denner in the seventeenth century, trial and error on the part of craftsmen and musicians has yielded improvements upon its various parts. The physical weight of the key system, for example, has increased dramatically, requiring it to be mounted to a body of greater density and strength. Other improvements include a more efficient placement of tone holes, providing instruments with better intonation, and alterations on the size of the bore for greater tonal projection and ease of playing. In contrast, the design of the mouthpiece and reed has varied sonsiderably less than the lower sections of the instrument described above. The reed remains today, as it was in Denner's time; a major variable of tone production over which the clarinetist has immediate and direct control. The mouthpiece, barrel, and lower clarinet sections are not economically feasible items
to replace while the reed is generally considered to be easily obtained, altered, and adjusted. For this reason, once a player has settled on a specific configuration for the instrument, attention is focused on the reed when tone quality is less than satisfactory. Not only is the reed the most inconsistent variable of clarinet tone production but also the part which embodies the most motion. The physical behaviors of vibrating reeds are therefore important for an understanding of the acoustics of the instrument and control of the sound which is produced. Assuming the excitation mechanism forms a carefully balanced system consisting of the mouthpiece, embouchure, ligature, and reed, it follows that this system may be mathematically described as a complex equation comprised of these four variables. If response of the system is less than satisfactory, the equation may be rebalanced through regulation of the variables. Since these variables can be manipulated by the performer to balance their relationship within the system, it becomes evident that specific parameters governing the effects each variable has upon the equation might be formulated. Alterations in any of the four variables (excluding the human factor), may result in profound alterations of the entire system. Since the mouthpiece and ligature are manufactured as part of the instrument, they are generally purchased as a package; thus the reed and embouchure often become logical points of
adjustment. In practice, some techniques of reed adjustment appear to be more effective than others; thus, one assumption forming a basis for the present study lies with an inconsistency in method sustained by a general lack of knowledge about single-reed behavior.

Theories of Reed Motion

Theories regarding the function of the single reed within the excitation mechanism can be traced back to the 1930 s and divided into two distinct categories. One group of theories was based upon the premise that the reed never completely closed the chink or aperture between the reed and the mouthpiece. Ghosh (1938) developed a mathematical theory of reed motion based upon this premise. A similar view of non-closure was presented by Redfield (1934) in his study of air-column behavior in orchestral wind instruments. These theories, however, were not supported by experiments conducted by McGinnis and Gallagher (1941); consequently, a second theoretical category emerged. Using photographs of reed motion produced under a strobe light, McGinnis and Gallagher concluded that the reed completely closed on the mouthpiece during part of a vibrational cycle. Since then, theories have been presented which align more closely with these findings (presented in Chapter II).

The McGinnis and Gallagher (1941) study constitutes a major contribution to the literature on reed motion and very few subsequent studies in this area have been published. Their research greatly expanded knowledge about the vibrational cycle and behavior of the reed. Although the McGinnis and Gallagher study was an important contribution to research on reed motion, numerous variables possibly affecting their findings were left uncontrolled. Specific intensities, lip pressures, and air pressures, for example, were not taken into consideration in their research. Further studies in this area were not conducted until approximately two decades later when John Backus (1960) published observations of ocilloscopic traces of light variations passing between the reed and mouthpiece as tones were produced. As in the McGinnis and Gallagher study, specific parameters of his experiments were not published. These studies, although important in their own right, left many questions unanswered regarding reed behavior under more specifically controlled conditions and did not address the critical interrelationship between air pressure, lip pressure, and reed motion. Research, as exemplified in the present study, may reveal the importance of careful adjustment of air and lip pressure and yield parameters regarding their interaction in the production of musical sound.

Reed Motion and Tone Quality

Vibrational patterns produced by the reed may have an important bearing upon clarinet tone quality. Since applied lip and air pressure are not consistent between players, control of these two factors may demonstrate that reed vibrations are important in the quality of tone produced. Previous research (Parker, 1947; Lanier, 1960; Backus, $1961,1963,1964$) has shown that the material from which the body of the clarinet is made has little effect upon its tone quality. The tonal spectrum which is produced might therefore depend largely upon variables within the excitation mechanism. In addition, studies of the excitation mechanism by Parker (1947) and Mooney (1968) have suggested that the size and shape of the oral cavity does not affect tone quality; thus, evidence supports the isolation of other variables within the excitation mechanism affecting tone quality such as air pressure, lip pressure exerted by the embouchure, amount of mouthpiece inserted within the embouchure, ligature pressure, reed mass, reed density, and the internal and external dimensions of the mouthpiece. By controlling all of these variables except air and lip pressure, the effects of air and lip-pressure variations upon the vibrational pattern of the reed may be observed. If the wave form produced by the reed changes in each register for different air and lip
pressures, it might be concluded that air is entering the air column in varying amounts and configurations. Therefore, the size and shape of the air puffs entering the clarinet may depend upon vibrational characteristics of the tone being produced. This would indicate that the reed's vibrational pattern could be considered as a possible factor contributing to the harmonic structure of the tone.

Statement of the Problem

With the growth of public school instrumental music during this century, a practical interest in the technical aspects of tone production in wind instruments has been fostered among teachers and researchers. Studies of reed motion have been conducted in an attempt to better understand the often curious behavior of woodwind instruments. In recent years, researchers have presented many intriguing questions regarding reed motion, and with the current availability of computer analysis of the tonal spectrum, the possibility of scientific, innovative, and exacting research in this area has become feasible.

Basic characteristics of reed behavior have not, to date, been studied in a thorough and organized way. Research has been, at best, general, and sometimes, misleading. Interesting theories regarding reed motion have surfaced regularly, but few have been supported by quantitative data. To understand reed motion to a degree
necessary for making accurate generalizations about its behavior requires systematic research conducted under carefully controlled conditions. Such research might form a substantial foundation for more diverse theories of reed motion.

To date, few studies of reed motion have been conducted under circumstances which invited accurate control of the variables previously mentioned as being possible contributors to tone production on the clarinet. As a result, many methods used to physically control the action of a reed are obvious products of trial, error, and inefficient ways of measuring. Physics of woodwind sound production are generally dependent upon physical characteristics of reeds and their motion under specific conditions. Benade (1960) wrote:

The makers of wood winds not only discovered the ideal shapes generations ago; they have also empirically exploited the effect of departures from the ideal. They judiciously alter the cross section of the bore by a few thousandths of an inch to compensate for various upsetting effects caused by the complex behaviors of reeds and holes. . . . Although the necessary modifications of a bore can in general be predicted quantitatively by proper mathematical analysis, to my knowledge such methods have almost never been employed by the manufacturers of wood winds. They make the final adjustments in the taper of each bore by a process of trial and error (p. 150).

Detailed computer analyses of the vibrational cycle of the reed are needed to explain its motion in a more exact and scientific manner. A thorough understanding of reed behavior may enhance existing knowledge regarding the
acoustics of the clarinet and its pedagogy.
A primary objective of this study was to control variables of the excitation mechanism which might affect reed motion. In this way, it was hoped that the study would clearly interrelate specific aspects of air and lip-pressure variations on reed motion and yield practical theories which might serve as a foundation for further research. A second objective was to use the findings to clarify existing theories of reed motion which might better serve the demands of current pedagogical practice. For example, in consideration of research conclusions and subsequent observations presented above, two questions emerge as significant points of concern: if the reed does not completely close upon the mouthpiece, regardless of the amount of applied air pressure, it might be concluded that maintaining a perfectly flat surface on the back of the reed is not necessary; conversely, if the reed does close completely for some tones, then a flat reed surface would appear to be imperative.

Foundations for the Study

The following assumptions are presented in regard to this study: (1) via the aid of instrumentation, the reed will exhibit observable motion when a sound is produced, (2) controlled variations in air pressure will be externally and artificially applied to the clarinet at the
mouthpiece end in a manner judged to be similar to human performance, (3) "intensity" will represent sound pressure level, (4) controlled variations in air pressure will produce variations in the intensity level of the sound produced by the clarinet, (5) the natural vibrational frequency of the reed will be damped by an artificial lip mechanism, (6) threshold sound pressure will be the air pressure needed to produce an audible sound, and (7) "pitch" [the psychological counterpart of frequency which is the number of physical vibrations (oscillations) of a mass per second] will represent tones produced by the clarinet.

Primary research questions which formed the foundation
for this study are listed below.

1. At specific frequencies, air pressures, and lip pressures, does the reed completely close on the mouthpiece during any part of its cycle of vibration?
2. What is the interrelationship between applied air pressure, lip pressure, reed amplitude and intensity at specific frequencies?
3. What is the relationship between the frequency of the reed's vibration and the fundamental frequency of the tone produced?

Secondary research questions of focus within this study are as follows:

1. Do air-pressure requirements for low-intensity tones vary with applied lip pressures?
2. What parameters of lip and air pressure are necessary when changing intensity levels on the clarinet?
3. How do air-pressure requirements vary with the frequency being produced at a specific intensity level?
4. What behavior does the reed exhibit at air pressures which are below the threshold of sound production?

CHAPTER II

REVIEW OF THE LITERATURE

The earliest attempts to explain reed motion on the clarinet were in the form of mathematical procedures based upon the assumption that during the vibrational cycle, the reed only partially closed the aperture between the mouthpiece and the reed. These theoretical explanations of the action of the vibrating reed were an attempt to clarify the presence of even-numbered harmonics in the clarinet tone which had first been observed by Blaikley (1884) and Miller (1926). Prior to these discoveries, the clarinet was generally considered to behave as a closed tube (stopped tube) with its audible tone containing only odd-numbered harmonics.

Das (1931) deduced mathematically that the periodicity of the reed's vibration on a mouthpiece relied upon the length of the tube to which it was attached, thus vibrating at the fundamental frequency of the tone being played. He concluded that the motion of the reed could be described as vibration around an equilibrium position and that the reed moved periodically toward and away from the mouthpiece, completely closing the reed-mouthpiece aperture during the part of the cycle when the air pressure within the mouthpiece was low. Das (1931) stated:

The solution . . . can be interpreted as a vibration about a centre of rest which has a sudden shift. . . alternately away from and towards the mouth-piece . . . thus during a condensation the reed opens the chink fully so as to admit air into the tube and shuts up during a rarefaction. . . . The reed vibrates practically in the same phase with the change in pressure in the mouth-piece [sic], opening itself so as to admit air into the tube when the pressure is large and shutting up at low pressure" (p. 231).

Das (1931) deduced that when air pressure within the mouthpiece was low, the reed was drawn inward against its surface (lay). Since, in this case, more of the reed's back was in contact with the surface of the mouthpiece, the vibrating length of the reed was shortened. When air pressure within the instrument equalized with air pressure in the mouth, the reed returned to the position of rest, leaving less of the reed's back against the lay of the mouthpiece and more of the reed's length free to vibrate. In opposition to Das, Redfield (1934) concluded that the reed never completely stopped the applied air supply entering the body of the instrument from the performer's mouth. Using a stethoscope, Redfield observed that sounds transmitted to the medium from the instrument were also transmitted to air confined within the buccal, pharyngeal, laryngeal and pulmonary cavities of the player's body. He concluded that if the reed were closing completely on the mouthpiece, these frequencies would not have been observable within the neck of the player.

A mathematical theory was presented under the same assumption by Ghosh (1938) in which he deduced, at
unspecified frequencies, that the blowing pressure within the mouth remained constant while the pressure within the clarinet and across the reed showed periodic variations. These periodic variations, according to Ghosh, were the result of only a partial closing of the reed on the mouthpiece. He writes: "the chink between the mouthpiece and the reed never shuts completely, that is, the conductivity of the chink is not zero, as in the older theory" (p. 262).

An experimental attempt to "freeze" the image of the vibrating reed was conducted in Germany by Ashoff (1936) using an artificial embouchure and a stroboscope. In order for the reed to be properly photographed, however, he found it necessary to cover the reed with an aluminum coating. This may have caused the reed to exhibit artificial behavior during its vibrational cycle. Ashoff concluded that the reed did not completely close on the mouthpiece during its cycle of vibration.

An experimental study similar to Aschoff's was completed by McGinnis and Gallagher (1941) whereby an artificial embouchure was used, in conjunction with a stroboscope, to produce stop-action photographs of the reed as it vibrated. Unlike the Aschoff study, McGinnis and Gallagher were able to successfully photograph the reed without covering it with aluminum. For tones of high intensity, McGinnis and Gallagher (1941) used photography
to support the premise that the reed remained closed for about $1 / 2$ of its cycle, spent $1 / 4$ of the cycle in transit, and opened for the remaining $1 / 4$ of the cycle, regardless of the frequency of the tone being played. For any pitch, the fundamental frequency of the reed's vibration was found to be stable within one percent of the fundamental
frequency of the tone produced. The researchers found that under normal conditions, the reed vibrated as a unit with the extreme tip remaining parallel to the facing of the mouthpiece. Regarding the motion of the reed for tones of high intensity, they stated:

The motion of the reed during a complete cycle is of interest. Consider that the chink is just on the point of closing. With the aperture closed, the reed appears motionless to the eye for about half the time of a complete cycle. It then leaves the mouthpiece with relatively high velocity and reaches its position of maximum displacement in a series of short spurts. The time spent apparently motionless at maximum displacement is roughly a quarter of the fundamental period. The tip of the reed now returns to the mouthpiece in another series of short spurts, and the fundamental cycle is complete. Thus the actual motion of the reed occupies only about a quarter of the entire period. This description agrees in a general way with the results predicted by Das (1931) in his mathematical development, which, however, were without experimental confirmation (p. 531).

To determine if the reed closed on the mouthpiece,
Obrien (1953) allowed an adjustable needle to protrude through the aperture between the reed and mouthpiece. He found that when the clarinet was blown in a "normal" way, a tone was produced only when the needle was drawn below the plane of the mouthpiece surface. He concluded from these
results that the reed must close completely in order for a sound to be produced.

Using an artificial embouchure, John Backus (1960 to 1974) at the University of Southern California, Los Angeles, conducted a distinguished and inventive series of investigations on the vibrations of clarinet reeds. In one study, Backus (1960) directed light through the bell end of a clarinet and into the aperture between the reed and mouthpiece, where fluctuations in light intensity were monitored by a photomultiplier tube (a light-sensitive transducer) mounted at the tip of the mouthpiece. As the artificially-blown reed vibrated, light-intensity variations were observed on an oscilloscope. By superimposing photographs of oscilloscopic wave patterns created during various stages of the reed's vibration, comparisons were made between the reed's closure times. Backus concluded that the motion of the reed was quite simple and had nearly the same pattern for all tones throughout the range of the clarinet. For high-intensity tones in the chalumeau register, it was observed that the aperture between the reed and the mouthpiece closed for nearly one-half of the cycle, opened for almost one-half of the cycle, and spent the short remainder of time in transit. For low-intensity tones, he found that the aperture did not close completely and the motion became nearly sinusoidal.

Backus (1961) used an artificial embouchure to study the relationship of reed motion to air-column vibrations. A small condenser microphone was inserted within the mouthpiece and arranged so that the microphone assembly could be used in conjunction with the photocell assembly mentioned above. The signal outputs from both assemblies were directed to an oscillosope, making possible simultaneous observation of reed and air-column vibrations. Backus concluded that variations in reed motion followed closely the variations in the air column, thus adding more support to the theories of Das (1931).

In an experimental study of effects of reed/mouthpiece aperture on minimum blowing pressures in the clarinet, Backus (1962) used an artificial embouchure to measure reed/mouthiece aperture, blowing pressure, and operating frequency when the clarinet was "barely" sounding. He found that minimum blowing pressure was directly proportional to reed/mouthpiece aperture and reed stiffness.

Coppenbarger (1971) investigated a vibrating clarinet reed utilizing an artificial embouchure, high-speed cinematography, and a harmonic wave analyzer. He attempted to correlate tone production with reed movement, thus concluding that the reed vibrated at the same frequency as the frequency of the tone being produced. Coppenbarger observed that the lip pressure required to produce a tone
with an artificial embouchure reduced the mouthpiece-reed gap 43 percent from its rest position, and that the reed closed completely about 40 percent of a cycle, but never more than 45 percent.

Studies of Reed Closure Times

The earliest observations regarding the reed's closure time on the mouthpiece were made by McGinnis, Hawkins, and Sher (1943). In an experimental study of tone quality of high-intensity tones, they observed that it was the closure time of the reed which caused the clarinet to behave as a "stopped tube," thus producing odd-numbered harmonics. They observed that during one complete cycle of the reed's vibration, the sound disturbance (condensation) had traveled four lengths of the clarinet. Regarding one cycle of vibration, they stated: "It is important to note that the reed is in its closed position for at least half of the entire period" (p. 229).

It was not until 1960 that Backus studied closure times for loud, medium, and soft tones using tones of different frequencies. Backus (1960) stated:

First, it will be noted that for loud tones the reed aperture is completely closed for nearly half the cycle, and practically completely open for the other half. As the intensity decreases the closed time diminishes, and for soft tones the aperture does not
close at all during the cycle. Second, the waveform is fairly complex for loud tones although the fundamental predominates; for soft tones the waveform is nearly sinusoidal. Third, the waveform becomes simpler as the frequency is increased. (p. 808)

It is possible that various closure times may influence the tone quality produced. It may be assumed that the longer the reed stays open, the amount of air that would be admitted into the body of the clarinet would be greater. This would produce a larger and differently shaped puff of air than one which would result from a longer closure time. Backus (1962) observed:

The harmonic structure of the clarinet tone for several different notes of the scale was recorded at four different loudness levels. It was found that the higher harmonics disappeared as the tone became softer, the number of harmonics decreasing from as many as 15 or more for loud tones to 1 or 2 for soft tones. (p. 717)

Stubbins (1965) also stated that different closure times of the reed had a direct influence on tone quality, but did not support his contentions with quantitative data. Stubbins concluded that a vibrating reed, opening and closing on the mouthpiece, behaved as a valve, admitting "air puffs" of different shapes and sizes into the body of the clarinet. These air puffs, Stubbins contended, contained the potiential for different harmonic patterns.in the tone. He stated:

If a valve flies open and shut very abruptly, and admits the air for only about one-twentieth of a cycle of vibration, it has a potential of producing approximately equal amounts of all of the harmonics. If a valve flies open abruptly, and remains open for about one-fourth of a cycle, and then shuts abruptly,
it has the potential of producing a harmonic pattern which is quite different from the former. A valve opening for only one-eighth of a cycle, again produces a different pattern (p. 59).

When Backus (1961) tested different reeds for closure using an artificial embouchure, he concluded from his observations that some reeds were closing the mouthpiece aperture only on one side. He therefore concluded: "the quality of the tone produced by the reed as judged by the ear does not seem to depend on whether or not the aperture closes completely" (p. 808).

Backus (1966) also studied the effect of warping of the reed tip on clarinet tone. He found that the aperture between the reed and mouthpiece does not close completely during the part of the cycle that the reed is in contact with the mouthpiece due to the presence of a certain amount of warping. That part of the reed which is not in contact with the mouthpiece can still oscillate with a small amplitude at a high frequency.

In a study of the effects of wall material on the steady-state tone quality of woodwind instruments, Backus (1964) found that vibrations of the clarinet body felt by the performer when playing are "caused by the reed beating against the mouthpiece, and not to radial vibrations due to expansion of the tube because of the pressure of the internal standing wave" (p.1884).

Coppenbarger (1970) used high-speed motion pictures of the reed to analyze its movement for tones of high
intensity. By counting the number of frames in the high-speed film, Coppenbarger was able to draw interesting conclusions regarding the reed's closure time on the mouthpiece. Although he analyzed tones of unspecified intensities, he observed a rather consistent pattern of reed behavior. He stated:

The reed usually remains closed with the mouthpiece 40 percent to 45 percent of the complete cycle. There are times when the reed just touches the mouthpiece and opens. When the tip of the reed leaves the mouthpiece, it starts to open in the shape of a sine wave but rapidly gains speed, which tends to square up its shape (p. 113).

The studies reviewed above represent a comprehensive overview of research on reed motion to date. They were focused primarily upon theories regarding reed closure and presented, in this writer's opinion, a somewhat simplistic view of reed motion at unspecified lip pressures and intensities. The predominating lack of attention in these studies to the effects of lip and air-pressure variations on reed motion have yielded tentative and somewhat incomplete evaluations of specific aspects of the findings. For example, an irregularity may be observed in the findings, and subsequent evaluation, of McGinnis, Hawkins, and Sher (1943), in which they seem to contend that the clarinet acts as a "closed pipe," producing odd-numbered harmonics, as a consequence of the reed's closure on the mouthpiece. If applied lip and air-pressure variations had been considered in their experiment, or the specific degree
at which the reed may be considered to be "closed" on the mouthpiece, the researchers may have been reluctant to present such a simple and comprehensive statement. A study such as the present one, in which air and lip-pressure variations are considered in relationship to reed motion, is warranted to explain anomalies found in modern theories of reed motion.

CHAPTER III

PROCEDURES AND EQUIPMENT

Procedural Overview

The purpose of this study was to observe the vibrations of a clarinet reed in all registers as various air and lip pressures were applied. In an attempt to observe the motion of a clarinet reed during the production of a sound, an air-tight chamber was constructed to serve as an artificial embouchure (see Figure l). Multidirectional manipulation of lower-lip pressure upon the reed was made possible by utilizing an externallycontrolled "lower-lip" mechanism housed within the device. The mouthpiece end of the clarinet was inserted into the chamber and sealed at the barrel by means of a rubber gasket. The clarinet was supported on the outside by an adjustable stand which was designed to allow manipulation of its angle of entry into the embouchure chamber. Air pressure within the chamber was controlled by regulating a potentiometer connected to the motor of an air pump and monitored with a water manometer linked to the chamber.

A variable direct-current (DC) light source was placed opposite the bell of the clarinet and adjusted so as to

Figure 1. The Complete Apparatus
direct light through the length of the clarinet and into a photo transistor. Pitches were produced by removing keys from the instrument and inserting rubber plugs into appropriate holes. The clarinet was made to sound by slowly increasing air pressure and simultaneously adjusting the lower-lip mechanism. Motion of the reed was observed using computer-assisted observation of light-intensity variations received through the mouthpiece/reed aperture. Subsequent effects of air and lip-pressure variations upon the motion of the reed were studied.

Equipment

Specifications of the Artificial Embouchure and Lower-Iip Mechanism

Embouchure Chamber

An air-tight wooden chamber measuring $47 \mathrm{~cm} \times 18.5 \mathrm{~cm}$ x 40.7 cm was constructed of $3 / 4$-inch white pine. Foam insulation was used between all joints to provide an airtight seal. The ends of the chamber consisted of 1/4-inch plexiglass mounted on eight evenly distributed posts of threaded stock which were embedded and glued within the main chassis. Wing nuts, attached to the embedded posts, pressed the plexiglass against an insulating layer of $3 / 4$-inch foam weatherstrip tape and provided an effective seal between the side plates and the
chamber. This arrangement allowed the plexiglass to be easily removed when internal adjustments became necessary.

A hole three inches in diameter was drilled into one side of the chamber and was fitted with a three-inch rubber plug through which a smaller hole was cut to accomodate the barrel of the clarinet. In this way, the clarinet could be separated from the chamber quickly and easily for adjustments. Air was delivered from an air supply via a 1 1/2-inch diameter hose which was attached to the opposite side of the chamber and sealed with clear General Electric Silicone sealer.

Mechanism for Adjusting Pressure and Position of Lip Cushion

Multidirectional manipulation of lower-lip pressure upon the reed was made possible by utilizing an externallycontrolled mechanism housed within the chamber (see Figure 2). Horizontal movement of the lip mechanism was achieved by mounting four $1 / 4$-inch steel rods near the top of the chamber and spacing them in a square formation, each two inches apart. This provided a stable foundation upon which a wooden plate of $3 / 4$-inch pine could slide horizontally through the chamber. External control was achieved by mounting an 8 -inch screw rod parallel to the other steel rods, but connected to the pine plate with a sliding lock washer. The other end of the screw rod passed through a threaded nut secured within the opposite side of the

Figure 2. The Artificial Embouchure and Lower-Lip Mechanism
chamber and fitted with a beveled knob. A washer arrangement at each end of the screw rod allowed it to be turned forward or backward through a nut mounted in the side of the chamber, pushing it in a horizontal motion against the pine plate. This provided an accurate and efficient method of moving the pine plate left or right. The pine plate, in turn, extended into the lower part of the chamber and supported another $1 / 4$-inch steel rod axle for the lip mechanism.

Vertical movement of the lip mechanism was achieved by a "see-saw" arrangement along the axle of the pine plate. A second pine plate supporting two brass strips was attached to the axle of the first pine plate. These brass strips extended beyond the length of the second plate by three inches in each direction. In one direction, they extended to an externally-controlled mechanism which provided vertical movement, while in the other direction, they extended to hold a steel axle supporting the lip mechanism.

The externally-controlled mechanism which provided vertical movement was similar in design to the horizontal mechanism described above. Two steel rods, extended from the top to the bottom of the chamber as sliding posts for a third pine plate. A rod of threaded stock was mounted to the plate and threaded through a nut mounted in the top of the chamber to accomodate a knurled knob. By turning the
knurled knob, the rod and the pine plate could be moved vertically in either direction.

To achieve simultaneous movement in all directions, it was necessary to design the two mechanisms so that one movement did not interfere with the other. By placing the brass extenders from the first plate on top of the second plate, they were free to slide across it in a horizontal direction. At the same time, when the vertical plate was moved, it would lift or lower the brass extenders and provide a "see-saw" action across the other plate. By simultaneously adjusting the two external knobs, multidirectional movement of the brass extenders was possible without interference.

The Lip Mechanism

The brass extenders supported the lip mechanism which consisted of a $1 / 2$-inch diameter rubber cylinder molded to a $1 / 4$-inch steel axle (see Figure 3). The lip cushion was constructed from 1 1/4-inch adhesive-backed foam insulation. The adhesive allowed a l-inch square section of insulation to be wrapped around the rubber cylinder. Rubber bands provided additional security to the insulation. After experimenting with a number of different materials, it was determined, by feel and touch, that this arrangement closely simulated the actual texture of a human lip.

Four separate devices were attached to the floor of the chamber: an adjustable mounting for a Type FPT-100 photo transitor; an atomizer mounted so that when a rubber bulb was squeezed cutside the chamber, moisture was sprayed toward the reed/mouthpiece aperture; a thermometer; and a ruler marked in millimeters mounted parallel to the inserted clarinet. A pointer fastened to the axle of the lip mechanism moved along the ruler in such a way that horizontal movement of the mechanism along the reed's surface could be accurately gauged.

Air Pressure and Regulation

The air supply consisted of an air pump housed within a sound-reducing box. The box was constructed from pine, measured $45.5 \mathrm{~cm} \times 47.0 \mathrm{~cm} \times 61.0 \mathrm{~cm}$, and was lined internally with 2 -inch thick rubber foam insulation. The speed of the air pump was regulated by a potentiometer. A hose with an inside diameter of 28 mm was used to distribute air to the chamber since both the volume of air and the air pressure have been determined to be important factors in producing a sound on the clarinet (Coppenbarger, 1970). A standard U-tube manometer was used to measure blowing pressures. Mercury is the most commonly employed liquid in manometers because of its low vapor pressure and its high density. This produces a generally negligible contamination of the gases whose pressures are being
measured and permits the use of manometers of convenient dimensions (Reiman, 1971, p. 218). However, after pilot trials, it was determined that water gave a more sensitive measurement, due to its ability to move greater distance under a specific pressure. Consequently, all measurements were made in terms of centimeters of water displaced. As water lowered in one side of the manometer, it would rise in the other. Respective amounts of displacement in each side were noted and summed. Atmospheric pressure was considered a constant and did not enter into the calculations.

Equipment Used in Quantitative Analyses

Quantitative data were collected using an Apple IIe computer interfaced with a Type FPT-100 photo transistor via a Nalandata A2 Data Converter and a 6522 VIA card installed within the computer. The photo transistor was recessed and mounted within a 6-inch alumninum cylinder having an outside diameter of 1 cm and mounted on a base which permitted accurate alignment with the mouthpiece aperture. A wire from the photo transitor was connected to a nine-volt alkaline battery before it was passed through the wall of the chamber. A 12-volt direct-current light source was placed opposite the bell of the clarinet and adjusted so as to direct the light through the length of the clarinet and into the photo transistor. Power for the
light source was provided by a Model 73 P variable power supply. Direct current versus alternating current (AC) was used to control fluctuations in light intensity which occurred when alternating current was applied. The signal voltage produced by the photo transitor was amplified and directed to an 8-bit analog-to-digital converter interfaced with the computer. The analog-to-digital converter was used in conjunction with "Apple-Swiss" (1986) software (see Appendix A) to produce numeric and graphic representations of the variations in light intensity received by the photo transisitor. For purposes of comparison, a Technics Model RP-3500E Electret Condenser Microphone of 600 ohm impedence was used to record air-pressure variations.

Data Converter Specifications

The analog-signal output from the photo transitor was fed into an analog-to-digital converter (Nalandata A2A Data Converter) designed by Nicklin (1986) at Appalachian State University. The Nalandata A2A was a small unit placed outside the computer. The line from the photo transistor was connected to an input jack of the Nalandata A2A which fed the signal to a linear amplifier offering switchselectable gains (amplifications) of . $33,1.0,3.3,10,33$, and 100 times the original signal voltage. Gain refers to the amount of amplification applied to the measured voltages. Amplification was used, in some trials, to
increase the vertical aspect of the graphs for clarity. After amplification, the signal was passed to an 8-bit analog-to-digital converter capable of discriminating a maximum of 256 voltage levels with accuracy within 0.4 percent. A Versatile Interface Adapter (VIA board) was plugged into the computer and interfaced the Data Converter to the Apple IIe. Accompanying the Nalandata A2A was a software program designed by Nicklin (1986). Graphs were printed on a Star NX-10 dot-matrix printer using a graphics dump program [Triple Dump (1984) by Beagle Brothers Micro Software, Inc.].

Control of the Variables

Vibrational patterns produced by a reed may have an important bearing upon the tone quality which is produced by a clarinet. Since lip pressure and air pressure are different for every player, manipulation of these variables is necessary to demonstrate the possiblility that reed vibrations are an important element in the production of specific tone qualities. Variables within the excitation mechanism which might affect tone quality are: air pressure, lip pressure, ligature tension, reed mass, reed density or stiffness, and the internal and external dimensions of the mouthpiece. By controlling all of these variables while manipulating air and lip pressure, the effects of the latter two variables upon the vibrational
pattern of the reed may be observed.
The following variables were controlled during the experiment: applied air pressure, applied lip pressure; ligature pressure; reed mass; reed density; and dimensions of the mouthpiece. The independent variables were applied air and lip pressures. The dependent variable, which resulted from manipulation of applied air and lip pressure, was the vibrational pattern of the reed as shown by light-intensity variations received by the photo transistor. The artificial embouchure not only made it possible to visually observe the reed's motion but allowed for precise control of the variables. Such control would have been impossible if a human subject had been used.

Position and Applied Pressure of Lower-lip Mechanism

The pressure exerted by the lower-lip mechanism was kept constant in some of the experimental tests. In others, it was varied, in conjunction with air pressure, to produce a sound on the clarinet as the reed was set into motion by the artificial-embouchure mechanism. Too much pressure exerted by the lower-lip mechanism resulted in a "choked" sound and too little pressure caused familiar "squeaks" or "squeals" that are often heard when beginners play the clarinet. Backus (1961) found that "the frequency of a clarinet tone is influenced to some extent by the lip pressure on the reed, giving the clarinetist some control
over the intonation of the instrument" (p.862). Backus (1961) writes:

The damping provided by the player's lip is important in reducing the tendency to produce high-frequency vibrations. The mass of the reed is an important factor determining the production of higher harmonics and is thus of considerable importance to the quality of the tone produced (p. 1652).

The horizontal position where the lower-lip mechanism touched the reed was controlled through the use of a ruler marked in millimeters and mounted close to the mechanism. A pointer attached to the lip mechanism moved along the ruler as its horizontal position was changed. The most advantageous position in this respect was located before any experiments began. This optimum position corresponded to the area where the reed left the facing of the mouthpiece when in its position of rest.

Applied Ligature Pressure

A standard French metal ligature was used during the experiment and was secured to the mouthpiece by tightening two equally-spaced ligature screws. Care was taken to tighten the screws the same amount for each trial. The ligature was aligned with markings on the mouthpiece to ensure constancy of position from trial to trial.

Mass and Density of the Reed

A Vandoren number 3 reed, carefully adjusted to respond well when played with a human embouchure, was used for all trials to ensure constancy in mass and density. The measure of elasticity of a mass, defined as the ratio of stress to strain (Reiman, 1971, p. 250) is a quantity known as "the modulus of elasticity." For linear deformations, as in the vertical movement of a vibrating reed, this modulus is known as Young's modulus (Reiman, 1971, p.250). Backus (1961) found that a wet reed has a smaller modulus, or smaller ratio of stress to strain. He wrote:

The Young's modulus for the cane from which reeds are made varies by more than a factor of two among samples, even for strips of the same cane. The density also varies, but over a smaller range. These variations make finding a good clarinet reed an unpredictable matter. The reed, when wet (as under playing conditions), has a smaller modulus and larger density than when dry (p. 1652).

Thus, a wet reed can be moved, or deformed, with less strain, than one which is dry. For this reason, the reed was kept wet during the experiment to simulate normal playing conditions. To maintain the wet state of the reed, an externally-controlled atomizer bottle was placed within the chamber and directed toward the reed/mouthpiece aperture. Also, because of large amounts of air entering the chamber during each trial, a wet sponge was placed on
the floor of the chamber to help stabilize humidity.

Mouthpiece, Instrument, and Pitch

A standard Portnoy BP-02 mouthpiece with a medium facing was coupled to a plastic Bb Boehm system Vito clarinet in the experiment. Various pitches were attained by wiring keys shut and stopping the holes with rubber plugs. Care was taken to ensure that the ends of the rubber plugs did not protrude into the bore of the clarinet and that the depth of their penetration was kept the same for all holes.

Loudness or Intensity

Intensity was monitored using a Realistic brand sound-level meter in a slow response mode. The slow response was selected since it presented an average intensity level over time, and, for purposes of this experiment, allowed more accurate measurerients to be taken. Since the loudness sensation produced by a vibrational amplitude depends on frequency, an A-weighted scale was used to register sounds in a way human ears hear. The A scale causes the meter to respond to changes in frequency, so as to be less sensitive to low and high frequencies. Backus (1977) states: "It has been found that readings with the A network correspond well to the subjective impression
of the listener to the sound measured" (p. 98).
For purposes of standardization in location, the sound-level meter was kept 30 cm from the clarinet bell and aimed directly at the instrument. The decibel levels chosen for the experiment were subjectively matched to music dynamic markings as follows: $90 \mathrm{dBA}=$ pianissimo $(\mathrm{pp}), 96 \mathrm{dBA}=$ mezzo-forte (mf), and $100 \mathrm{dBA}=$ fortissimo (ff).

Detailed Procedures

To evaluate the many aspects of reed vibration at various air pressures, a number of different procedures were necessary. Workcharts for these procedures may be seen in Appendix B_{y}, Tables 1 through 12. For clarity, these procedures are described below and are grouped according to specific aspects of reed vibration under observation. The procedures were completed for one pitch before advancing to the next, since lip pressure and position had to be changed between pitch levels. The various procedures discussed below were conducted one pitch at a time and in the sequence appearing on the worksheets. For clarity, the procedures are organized into two major categories: those centering around the effects of air-pressure variations and those centering around lip-pressure variations.

Air-Pressure Experiments

Preliminary Test of Natural Blowing Pressures

To compare air-pressure requirements of the artificial-embouchure chamber with those required in human performance, it was necessary to observe those pressures while the clarinet was being played in a natural manner, thus a preliminary test was conducted to determine natural air pressures required to produce tones throughout the range of the clarinet when blown by a human (see Appendix C). A plastic tube was inserted into a human mouth while playing the clarinet and connected to a U-tube water manometer. Air-pressure readings were observed for all pitches extending from E3 to G6 while an intensity level of 100 dBA was maintained.

Air-Pressure Variation and Intensity at Constant Lip Pressure

To determine the range of intensities possible through air pressure variations at constant lip pressure, two primary procedures were conducted.

In the first primary procedure, the lower-lip mechanism of the artificial embouchure was adjusted, in conjunction with air pressure, to produce a tone of high intensity (ff). With lip pressure held constant, air
pressure was reduced in small increments (approximately 2 cm H20) and data were recorded at each increment. This procedure was conducted on three pitches: F3, F5, and F6.

In the second primary procedure, the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a tone of low intensity (pp). With lip pressure held constant, air pressure was increased in small increments and data were recorded at each increment. This procedure was conducted on two pitches: F4 and B-flat 5.

To determine the influence selected lip-pressure settings might have on the results, the first primary procedure was repeated on F5 and the second primary procedure repeated on $F 4$, both with new lip pressure settings. To determine the effects that presetting lip pressure to an optimum setting might have on the results, the lower-lip mechanism was adjusted to an optimum pressure, which, in conjunction with air pressure, produced a tone of high intensity (100 dBA) on B-flat 5. Air pressure was then reduced to produce a tone of low intensity and slowly reapplied in small increments. Intensities were recorded at each increment of air pressure.

Air Pressure and the Vibrational Frequency of the Reed at Constant Lip Pressure

To observe the effects of air-pressure variations on the reed's frequency of vibration, the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a tone of low intensity (90 dBA). Without changing the lower-lip mechanism, air pressure was increased to produce a tone of moderate intensity (96 dBA), and again to produce a tone of high intensity (100 dBA). Data were recorded at each intensity level. These tests were conducted on three pitches: F4, F5, and B-flat 5; and the data was presented in the form of a stripchart table. The reed's frequency of vibration at each pitch and intensity level was determined by multiplying the data rate times the total number of samples recorded within each cycle as shown on the stripcharts. Frequencies were compared across intensities and with a standard table of frequencies of pitches in the tempered scale (Backus, 1977, p. 153). The objective was to confirm, through quantitative data, that the reed vibrates at the frequency of the air column, regardless of the amount of applied air pressure.

Reed Amplitude and Intensity at Constant Lip Pressure

Before proceeding with experiments focusing specifically upon the effects of air pressure and reed amplitude, it was first necessary to observe the relationship between reed amplitude and intensity at constant air pressure. To simultaneously observe effects of air-pressure increases on reed amplitude and intensity, numerical representations (stripcharts) were produced from data previously collected on F4 (See "Air Pressure and Intensity at Constant Lip Pressure," second primary procedure), and used to calculate voltage peaks (reed amplitudes. Reed amplitudes were then compared to observed intensity (sound pressure) changes.

Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure

To observe the effects of air-pressure variations on amplitude of reed motion at constant lip pressure, the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a high-intensity tone of F4. Since the lower-lip mechanism was now set at an optimum pressure for a wide intensity range, the reed was in essence "spring-loaded" by the mechanism into a position conducive to efficient vibration. Air pressure was then reduced until the sound was no longer audible to a human ear, but
the pressure of the lower-lip mechanism was retained. Air pressure was then slowly increased in small increments of $2-3 \mathrm{~cm} \mathrm{H} 20$ until a sound was produced at the subjective threshold of hearing. Light-intensity variations received by the photo transistor were monitored and reproduced as graphs. These graphs were superimposed upon one another and the graphed light intensities were compared with air-pressure measurements.

The transient.

An analysis of transient wave motion was made by combining two procedures. In the first procedure, a transient (a wave consisting of small reed vibrations which appear before an audible tone is initiated) was observed for the tone F 4 by slowly increasing air pressure after the reed had been "spring-loaded" to a pressure conducive to efficient vibration. A microphone was connected to the AC port of the digital converter and used to monitor any transient air-pressure variations which were produced. In the second procedure, air pressure was increased to produce a tone of high intensity and then lip pressure was withdrawn completely. The reed was allowed to continue vibrating, but at its own natural frequency (a squeal), undamped by the pressure of the lower-lip mechanism. Data were then collected via the microphone.

Data from these two procedures were compared by superimposing graphs of resulting wave forms. In this way, data for the F4 transient and the reed's natural frequency of vibration were recorded for comparison.

Data on the steady state and air-column frequency.

Data from the F4 transient waveform demonstrated that it produced a fluctuation of greater wavelength than contained within the transient itself. To deteraine if this observed fluctuation might be an early product of the steady state (a tone, clearly of the vibrational frequency of F4, but not necessarily audible to the human ear), the waveform of the transient was superimposed over a waveform of air-pressure variations produced by the clarinet and measured with the microphone. The two waveforms were then compared. Graphs were also produced for four tones of low intensity (F3, F4, F5, and B-flat 5) in steady state.

Lip-Pressure Experiments

Lip Pressure and Intensity at Constant Air Pressure

Two procedures were conducted to observe the effects of lip pressure on intensity. In the first procedure (Appendix B, Table l, pages 07-10; for explanation of Table l, see Chapter IV, Data Forms), the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a wide range of intensities on the tone F3. Pressure exerted by the lower-lip mechanism was then increased until the clarinet was producing a tone of low intensity (70 dBA). Lip pressure was slowly reduced until it became so weak that the tone could no longer be maintained and intensity variations were recorded.

After completing the first procedure, it was observed that with the application of a constant volume of air to the artificial-embouchure chamber; air pressure, as measured within the chamber, varied as lip pressure was reduced. Therefore, a second procedure was conducted on F4 (Appendix B, Table 4, pages 08-10) in which air pressure within the chamber was kept constant. This was achieved by adjusting the potentiometer which regulated the speed of the air pump. In this procedure, the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a wide range of intensities. Pressure exerted by the
lower-lip mechanism was then increased until the clarinet was producing a tone of low intensity (80 dBA). As applied lip pressure was reduced, air pressure within the chamber was maintained. Data were recorded at high and low lip pressures.

Lip Pressure and Amplitude of Reed Motion

Using data previously collected on F3 (Appendix B, Table 1, pages 07-10), observations were made of the effects of lip-pressure variations on amplitude of reed motion. Four graphs were produced of the reed's motion as lip pressure was reduced in four increments ranging from high pressure to low pressure. Variations in reed amplitude were observed at each lip-pressure increment.

Lip Pressure and Duration of Reed Closure

To observe effects of lip-pressure variations on duration of reed closure, two series of tests were conducted on the tone F3. In the first series, stripcharts were produced from data previously collected on F3 (Appendix B, Table 1 , pages $07-10$) in which lip pressure was slowly reduced in four increments. The lowest three voltages within each stripchart were selected as representing closure points. Air pressure and intensity were also monitored during the lip-pressure variations.

Graphs illustrating each waveform were produced.
In the second series of tests (Appendix B, Table 3, pages 00-11), two procedures were conducted on F3 using high and low lip-pressure settings. In the first procedure (Appendix B, Table 64, pages $06,08,10$), pressure of the lower-lip mechanism was set on a high-pressure setting. Air pressure was manipulated via the potentiometer to produce three intensities: threshold sound level, 90 dBA (mf), and 100 dBA (ff). The effects of high lip pressure on closure times were observed as applied air pressure was increased. In the second procedure (Appendix B, Table 3, pages $07,09,11)$, pressure of the lower-lip mechanism was set on a low-pressure setting. Air pressure was manipulated via the potentiometer to produce three intensity levels; threshold sound level, 90 dBA (mf), and 100 dBA (ff). The effects of low lip-pressure variations on closure times were observed as applied air pressure was increased.

CHAPTER IV
EVALUATION OF THE DATA

Graphic Representation of the Data

Graphic representations of the reed's vibrational cycle were compared for specific pitches at different air and lip pressures. A graphic representation of light fluctuations produced by a vibrating reed is shown in Figure 4. The vertical axis of the graph represents a continuum of light intensities which passed between the reed and mouthpiece, measured in millivolts. Since the numeric range of the data converter was 0 to 255, voltages produced by the photo transitor were presented graphically along a vertical scale comprising 256 increments. For purposes of this study, only relative voltage comparisons were made; therefore, the graphic representations do not include specific increments of voltage.

The horizontal axis represents passage of time in milliseconds. The amount of time depicted by the horizontal axis was adjustable in "steps" to expand or contract the waveform for graphic clarity. All graphic illustrations reproduced for this study were created at "step 1:" that is, 256 samples taken at the rate

Figure 4

> Light-Intensity Fluctuations for F4 $33.0 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=3.3$

F4 Tl 04
of 17,280 samples per second. Therefore, time separation between successive samples was $1 / 17,280$ (or . 0000579) of a second.

Each graph contains 256 samples or points, but since the Apple IIe computer could store 4096 samples at a time, samples were stored and presented in "sections" or "Pages," each containing 256 samples. The computer monitor could therefore be used to present a long stream of samples along the horizontal axis in sections of 256 samples each; i.e. page by page, or screen by screen. Page 5, for example, contained samples 1280 to 1535 (5 Pages x 256 samples per page, to 6 Pages x 256 samples per page, minus l). Therefore, each graph contains 256 possible samples within its vertical range and 256 samples within its horizontal range. The graphs are presented in an oblong shape only to facilitate spreading of the wave form. The frequencies, or hertz, of the graphic representations, are consistent by pitch; that is, $F 4$ in all graphs is equal to approximately 349.23 cycles per second (Backus, 1977, p. 153).

On the vertical scale, the analog-to-digital converter was designed to discriminate a maximum of 256 different voltage levels and to read these voltages to an accuracy of 0.4 percent of the total applied voltage. As light intensity received by the photo transitor increased, so did the voltage sent to the analog-to-digital converter. The converter also made switch-selectable gains available.

Gain refers to the amount of voltage amplification applied to the vertical scale of the graphs. The analog-to-digital converter offered gains of . $33,1.0,3.3,10,33$, and 100 times the incoming signal voltage received from the photo transistor. If the wave form was too flat for observation, it was possible to amplify the vertical aspect by increasing the gain on the converter. The objective was to adjust the gain control on the analog-to-digital converter until the voltage signal corresponded to the vertical range of the graph.

Numeric Representation of the Data

A numeric representation of Figure 4 is presented in Table 1. Each numeric representation is identified as a "stripchart" and begins and ends on a selected sample number or "address." Table 1 represents a stripchart for F4 which begins with sample number 1024 and ends with sample number 1227, inclusive. This stripchart was created by selecting a "starting address" and an "ending address." This particular analysis shows only samples 1024 through 1227 from a total of 4096 samples. Table 1 displays only a portion of the samples contained within its corresponding waveform pictured in Figure 4.

On each stripchart, data are shown in six double-columns as indicated by the dotted lines, each double-column being comprised of two columns of values.

Table 1

Stripchart for F4, Series III
$33.0 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Page 04

STARTING ADDRESS $=1024$ ENDING ADDRESS $=1224$
$S T E P=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1024	109	1058	25	1092	82	1126	127	1160	31	1194	56
1025	115	1059	27	1093	74	1127	132	1161	35	1195	48
1026	121	1060	29	1094	66	1128	134	1162	38	1196	41
1027	125	1061	31	1095	58	1129	135	1163	42	1197	35
1028	127	1062	34	1096	50	1130	135	1164	47	1198	30
1029	131	1063	37	1097	43	1131	133	1165	53	1199	27
1030	131	1064	41	2098	37	1132	132	1166	59	1200	25
1031	131	1065	46	1099	32	1133	129	1167	63	1201	23
1032	130	1066	51	1100	28	1134	126	1168	73	1202	23
1033	128	1067	57	1101	26	1135	122	1169	79	1203	23
1034	125	2068	63	1102	24	1136	118	1170	89	1204	23
1035	122	1069	71	1103	23	1137	114	1171	98	1205	24
1036	118	1070	79	1104	23	1138	109	1172	106	1206	25
1037	114	1071	87	1105	24	1139	104	1173	113	1207	26
1038	110	1072	95	1106	24	1140	98	1174	119	1208	27
1039	104	1073	103	1107	25	1141	90	1175	123	1209	29
1040	98	1074	111	1108	27	1142	82	1176	127	1210	31
1041	93	1075	117	1109	28	1143	73	1177	129	1211	35
1042	85	1076	121	1110	31	1144	64	1178	131	1212	38
1043	77	1077	125	1111	33	1145	56	1179	131	1213	42
1044	69	1078	127	1112	36	1146	48	1180	129	1214	4
1045	61	1079	126	1113	39	1147	40	1181	127	1215	51 59
1046	53	1080	129	1114	44	1148	34	1182	124	1216	59
1047	45	1081	128	1115	49	1149	30	1183	121	1217	66
1048	38	1082	126	1116	55	1150	27	1184	119	1218	74
1049	33	1083	124	1117	62	1151	25	1185	115	1219	83
1050	29	1084	122	1118	69	1152	24	1186	112	1220	91
1051	26	1085	119	1119	77	115	23	1187	107	1221	99 107
1052	24	1086	116	1120	86	1154	23	1188	102	1222	107
1053	23	1087	112	1121	95	1155	25	1189	96	1223.	113
1054	23	1088	109	1122	103	1156	25	1190	90	1224	119
1055	23	1089	103	1123	111	1157	27	1191	82	1225	123
1056	23	1090	97	1124	119	1158	28	1192	74	1226	126
1057	24	1091	90	1125	123	1159	29	1193	64	1227	127

The first value in the first row of column l is the "point number" (sample number). The second value in the first row of column 1 represents light intensity in millivolts corresponding to each sample.

At the top of Table 1 are selected parameters prescribing the curve on page 04 of the entire data set of 4096 samples gathered. The starting address of 1024 denotes that samples from 0000 to 1023 are not shown. The ending address of 1227 denotes that samples beyond 1227 are not shown. This table, therefore, represents only the l024th sample through the l227th sample and their respective voltage values in millivolts. For purposes of symmetry in printing the tables, the ending address designated at the top of each table is three sample numbers lower than the sample number ending each table of data.

Each stripchart presented in this study begins with a starting address from which each corresponding graphic representation was developed. Therefore, each graph and its corresponding stripchart begins with the same sample number. The stripcharts, however, only present a representative portion of the 256 samples shown within each graph.

A survey of the sample values in Table 1 describes a fluctuation which corresponds to the sine curve in Figure 4. By carefully prescribing starting and ending addresses, any part of a graph may be scrutinized in much greater
detail with such a value representation. By noting time values and voltages shown within the graphs, accurate real-time measurements to $1 / 17,280$ of a second could be made of various positions of the reed. In this respect, this study was more comprehensive and microscopic than any presented to date.

Data Forms

A data form was constructed (see Figure 5) to facilitate location of specific wave forms and to provide a log for each sampling. The heading of the form provided a space for indicating the pitch of the tone being studied. Because many tests were often run at the same pitch, a space was also provided for test number and date. The column designated as "Page" designated data Pages containing pertinent values which were briefly described by written observations notated at the end of each row. "Par" designated parameters (page numbers) which were entered into the computer to "call up" a specific data set. "L" and "R" designated water height in inches in the left and right columns of the U-tube manometer, respectively. "T" represented temperature within the embouchure chamber in degrees Centigrade. Sound pressure levels were notated in the column labeled "dBA." The column labeled "R-L, mm H2O" was used to notate air pressure derived by subtracting the water-level measurement observed within the left column of
\qquad Date \qquad

Page	Par	EA	L-R	$\begin{aligned} & \mathrm{cm} \\ & 1120 \end{aligned}$	dBA	T	Gain	Observations
00.	00-01	256						
01	01-02	512						
02	02-03	768						
03	03-04	11024						
04	04-05	1280						
05	05-06	1236.						
06	06-07	17.92						
07	07-08	2048.						
08	08-09	2304						
09	09-10	2560						
20	10-11	2816						
11	11-12	3072						

Disk Title \qquad
Data Name
Starting Address \qquad
Ending-fddress \qquad
Data Step \qquad
Dete \qquad

Figure 5
Data Form
the manometer from the water-level measurement observed within the right column. "EA" represented the "ending address" needed to observe the data set representative of a specific row or observation on the data form. Below the data form, "Disk Title, Data Name, Starting Address, Ending Address, Data Step, and Date" are found. This information allowed access to a data set via the computer. For example, a representative data form from which data in Figure 4 were extracted is shown in Appendix B, Table 6, Page 04.

Analysis of Data Measurements

Air Pressure and Intensity at Constant Lip Pressure

Analyses of intensity data showed that many intensities were attainable by increasing or decreasing air pressure within the embouchure chamber while keeping position and pressure of the lower-lip mechanism constant. To determine the range of intensities possible at constant lip pressure, intensity variations were monitored as air pressure was both increased and decreased in small increments (See Table 2).

In the first series of tests, the lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a tone of high intensity (ff) before air pressure was reduced. This procedure was conducted at three pitch

Table 2
Tests Using Two Primary Procedures
levels: F3, F5, and F6. Test 1 was conducted on the pitch F3 (Appendix B, Table 1, Pages 00-03). The clarinet was made to sound F3 at an intensity level of 98 dBA . Air pressure was reduced in small increments until the sound produced was at the threshold of audibility for a human ear. The resulting intensities ranged from 98 dBA to 68 dBA at constant lip pressure. If air pressure was reduced below 24.5 cm H 20 , the tone became inaudible; therefore, intensity range varied by 30 dBA for $F 3$ as air pressure was decreased at constant lip pressure.

Test 2 was conducted on F5 (Appendix B, Table 9, Pages 03-05). The clarinet was made to sound F5 at 100 dBA with an applied air pressure of $36.5 \mathrm{~cm} H 20$. It was possible to reduce air pressure to 31.5 cm H 20 before the tone faded to inaudibility. This yielded a 10 dBA intensity range. When this test was repeated on $F 5$ at a different lip-pressure setting (Appendix B, Table 9, Pages 06-07), similar results were attained. The intensity range available at constant lip pressure was again 10 dBA for $F 5$.

Test 3 was conducted on F6 (Appendix B, Table l0, Pages 00-01). Air pressure varied from $29.5 \mathrm{~cm} H 20$ to 23.5 cm H20 while intensity varied from 100 dBA to 96 dBA; a range of only 4 dBA. A further decrease in air pressure caused the sound to suddenly become inaudible. There was, therefore, a sharp decline in intensity level for $F 6$ when air pressure was reduced below 23.5 cm H 20 . It was not
possible, at the selected lip pressure, to sustain a tone at less than 96 dBA at $F 6$. The data from these three tests suggest that at constant lip pressure, the intensity range available from air-pressure reduction diminishes at higher frequencies.

To evaluate the effects of increases in air pressure on intensity at constant lip pressure, another series of tests were conducted. The lower-lip mechanism was adjusted, in conjunction with air pressure, to produce a tone of low intensity. With lower-lip pressure constant, air pressure was increased in small increments and data were recorded at two pitch levels: F4 and B-flat 5. Two tests were conducted at each pitch.

The first test was conducted on F4 (Appendix B, Table 5, Pages 00-05). Applied air pressure ranged from 21.5 cm H20 to 29.0 cm H 20 and produced intensities ranging from 80 dBA to 93 dBA ; a range of 13 dBA at constant lip pressure. When this test was repeated on F 4 at a different lip-pressure setting (Appendix B, Table $2, ~ P a g e s ~ 06-08)$, intensities ranged from from 72 dBA to 90 dBA ; a range of 18 dBA at constant lip pressure.

Test 2, on B-flat 5 (Appendix B, Table ll, Pages 08-11), allowed variations in air pressure ranging from 24 cm H20 to 31 cm H 20 , and produced intensities ranging from 90 dBA to 100 dBA ; a range of 10 dBA at constant lip pressure. These data suggest that at constant lip
pressure, the intensity range available by increasing air pressure diminishes at higher frequencies. In a second test on B-flat 5 (Appendix B, Table 12, Pages 02-08), the lower-lip mechanism was adjusted, in conjunction with air pressure (34.0 cm H 20), to produce a high-intensity tone of 100 dBA. Air pressure was lowered from 34.0 cm H 20 to 25.0 cm H20 to produce a tone of the lowest intensity audible to the human ear. As air pressure was then increased, a greater range of intensities resulted: from 90 dBA to 105 dBA; a range of 15 dBA at constant lip pressure. These data suggest that at constant lip pressure, intensity range may increase if lip pressure is preadjusted to a pressure conducive to the production of tones of high intensity. In summary (see Table 2), at constant lip pressure: a) intensity range available through air-pressure variations may increase if lip pressure is preadjusted to an optimum pressure, and b) intensity range available through air-pressure variations diminishes in the higher frequencies.

Air Pressure and the Reed's Frequency of Vibration at Constant Lip Pressure

To observe the effects of air-pressure variations on the reed's frequency of vibration at constant lip pressure, data were recorded at three intensity levels (90 dBA, 96 dBA, 100 dBA) and at three pitch levels (F4, F5, B-flat 5).

Stripcharts were produced for each pitch (Appendix B, Tables 13-21).

Test 1 was conducted on F4 (Appendix B, Table 6, Pages 00, 02, 04). Stripcharts were produced at three intensity levels (90 dBA, 96 dBA, 100 dBA) as shown in Appendix B, Tables 13, 14, and 15. To determine the frequency of reed vibration at each intensity, it was first necessary to determine wavelengths. Wavelengths were determined by choosing a "starting-sample" number at a specific location within a wave and counting the total number of samples contained within one complete cycle of the wave. In Appendix B, Table 13, for example, sample number 19 was chosen as the starting sample since it was observed from the accompanying voltages that amplitude increased at this point. Sample number 19 became an arbitrary reference point within Table 13 where counting began. Additionally, observations showed that one cycle of vibration was completed at sample number 68, where voltages increased again to begin the second cycle. The total number of samples observed within this cycle was 50 samples. Since the data rate was 17,280 samples per second, the frequency of vibration was $(17,280 / 50)$, or 345.6 cycles per second. Utilizing this method of calculation, frequencies were determined for each pitch at each intensity level. A summary of these data is shown in Table 3. When F4 was sounded at an intensity of 100 dBA , each

Pitch	$\frac{\text { Intensity }}{\frac{d B A}{}}$	$\frac{\text { Pressure }}{\text { Cm.H20 }}$	$\begin{aligned} & \text { Samples } \\ & \text { Chosen } \end{aligned}$	$\frac{\text { Samples/ }}{\text { Cycle }}$	Data Form	$\frac{\text { Freq }}{\underline{\mathrm{Hz}}}$	$\begin{aligned} & \text { Freq Hz } \\ & \text { Standard } \end{aligned}$
F4	100	35.5	16-68	50	F4 T3 00	345.6	349.2
F4	96	34.0	566-614	49	F4 T3 02	352.6	
F4	90	33.0	1073-1122	50	F4 T3 04	345.6	
F'5	100	36.5	781-806	26	F5 Tl 03	664.6	698.4
F5	96	33.5	1050-1074	25	F5 Tl 04	691.2	
F5	90	31.5	1298-1323	26	F5 T1 05	664.6	
Bb5	100	25.0	02-21	19	Bb5 Tl 00	909.4	932.3
Bb5	96	24.0	269-286	18	Bb5 Tl 01	960.0	
Bb5	90	22.5	522-540	18	Bb5 Tl 02	960.0	
Table 3							
Air Pressure vs. Reed Frequency							

cycle of reed vibration contained 50 samples, representing a frequency of 345.6 cycles per second. When $F 4$ was sounded at an intensity of 90 dBA , each cycle of reed vibration also contained 50 samples, again representing a frequency of 345.6 cycles per second. When these findings were compared with a frequency standard for $F 4$ within a tempered scale (349.2 cycles per second), it was observed that the reed consistently vibrated at a frequency for F 4. Similar results were observed for F5 and B-flat 5. Figures 6 and 7 illustrate the reed's vibrational patterns for B-flat 5 at 100 dBA and 96 dBA respectively. It can be observed from these figures that as air pressure decreased, amplitude decreased but wavelength remained the same. These data indicate that the reed vibrated at the frequency of the pitch being produced by the air column, and was not affected by air-pressure (intensity) increases. The slight differences between observed reed frequencies and the standard frequencies are negligible, indicating only slight intonation discrepencies which may have been produced by temperature variations within the chamber of the artificial embouchure or within the instrument.

Reed Amplicude and Intensity at Constant Lip Pressure

To observe the relatioinship between reed amplitude and intensity, graphs were produced (Figures 8-13) from data previously collected on F4 (See Appendix B,

Figure 6
Vibrational Pattern for Bb5 $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=1.0$ Bb5 Tl 00

$\because \mathrm{GL}$ tage		FAGE EGG	STEF 1
			$\because \mathrm{T} f(\mathrm{AE}$

Figure 7
Vibrational Pattern for Bb5
$24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}, \mathrm{Gain}=1.0$
Bb5 T1 01

Figure 8
Air Pressure Variation on F4 $21.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$ F4 T2 00

UOLTAGE		FAGE EGE	TEF 1

Figure 9
Air Pressure Variation on $F 4$
$24.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$
F4 T2 01

BRL TAGE		PAGE Q1	STEP 1

Figure 10
Air Pressure Variacion on F 4
$26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, Gain $=33$
F4 T2 C 2

Figure 11
Air Pressure Variation on F4 $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 92 \mathrm{dBA}$, Gain $=33$ F4 T2 03

Figure 12
High Intensity Closure for F4 $28.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Gain $=33$

F4 T2 04

Figure 13
High Intensity Closure for F4 $29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Gain $=33$ F4 T2 05

Table 5, Pages 00-05) in which air pressure was increased in small increments. As air pressure was increased, intensity levels were monitored on the sound-level meter. Figure 8 illustrates the reed's vibrational cycles at 80 dBA which required an air pressure of 21.5 cm H20. In Figure 9, air pressure had been increased to 24.5 cm H 20 but produced only a slight increase in reed amplitude. An increase in intensity level was not observed. Figure 10 shows a dramatic increase in amplitude of the reed's motion as well as an increase in intensity level. In this case, a pressure of 26.0 cm H 20 produced an intensity level of 88 dBA. This trend continues in Figure ll. When an intensity of 93 dBA was reached, additional increases in air pressure did not produce subsequent increases in intensity. Figures 12 and 13 illustrate further increases in air pressure but lower reed amplitudes. Apparently, a saturation point was reached; further increases in air pressure only restricted the reed's movement. Intensity stablilized at 93 dBA for both air pressures.

Numeric representations of Figures 8 through 13 (and a second trial shown in Appendix B, Table 5, Pages 06-08), may be seen in Appendix B, Tables 22 through 30. Using these tables, comparisons were made between air-pressure increases and voltage peaks (reed amplitudes). For example, in Appendix B, Table 22 , the highest voltage produced between sample number (point number) 0 and 203 was

69 millivolts. This voltage represents the voltage peak for F 4 at 21.5 cm H 20 . Voltage peaks were collected in this way from Tables 22 through 30. These data are summarized in Table 4.

Figure,	$\frac{\text { Intensity }}{(\text { dBA })}$	$\frac{\text { Peak Voltage }}{(\text { millivolts })}$	$\frac{\text { Pressure }}{(\mathrm{cm} \mathrm{H2O})}$
F08, T22	80	69	21.5
F09, T23	80	96	24.5
F10, T24	88	158	26.0
F11, T25	92	144	27.0
F12, T26	93	116	28.0
F13, T27	93	104	29.0

Table 4. Air Pressures vs. Peak Voltages for F4

These data suggest that as applied air pressure increases, amplitude of reed motion increases until a saturation point is reached, and that an increase in intensity does not always produce an increase in reed amplitude.

Data observed earlier regarding air pressure and the reed's frequency of vibration may explain these increases in amplitude. As air pressure within the player's mouth increases, more air must pass through the reed/mouthpiece aperture per unit time to equalize the pressure difference
between the player's mouth and the air column of the clarinet. Because the reed vibrates at the frequency of the air column to which it is attached, it cannot increase its frequency to accomodate the additional pressure of air molecules trying to escape through the aperture. Therefore the size of the aperture must increase in proportion to applied air pressure. This can be observed as an increase in reed amplitude. The compressibility of air molecules may play a minor role in this equation.

Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure

To observe the effects of air-pressure variations on reed amplitude, as opposed to intensity, it was necessary to keep the pressure exerted by the lower lip, as well as its position on the reed's surface, constant; since both factors might affect the reed's amplitude at a specific air pressure. In the following tests, where pressure and position of the lower lip were optimum for producing a wide intensity range, a gradual increase in applied air pressure caused the reed to react with a series of motions which were common to all pitches tested. Four stages were observable: the loading stage, the transient stage, the sinusoidal stage, and the closing stage.

The loading stage

The loading stage was so-named because it described movements made by the reed before it began its vibrational cycle. The loading stage could not be successfully initiated until the reed was first "spring-loaded" into playing position by pressure from the lower-lip mechanism. This pressure bent the reed closer to the mouthpiece and held it there until air pressure was applied, at which point molecules of air rushed through the opening between the reed and the mouthpiece. As the velocity of air molecules past the tip of the reed increased, air pressure within the mouthpiece chamber was lowered as described by a principle of fluid mechanics first stated by Bernoulli (1700-1782). Zebrowski (1974) describes Bernoulli's principle as follows: "The pressure in a moving fluid depends on its elevation and on its velocity (p. 277)" i.e. the faster the rate of flow, the lower the pressure. Air pressure reduction within the mouthpiece chamber pulled the reed toward the mouthpiece at a rate which was proportional to the amount of applied air pressure. This can be clearly seen in Figure 14, created by superimposing eight different plots of light intensity passing between the reed and mouthpiece at various air pressures.

The reed was bent, or "spring-loaded" into position by pressure from the lower-lip mechanism before the experiment began. This preset pressure, necessary to engage the

Figure 14
Light Intensities at Various Air Pressures as Reed Moves Towards the Mouthpiece F4, Gain $=10$, ADC DATA XV

Bernoulli effect, was kept constant throughout the procedure. As air pressure was slowly increased, light intensity decreased proportionally, as shown in Figure 14. As the reed was drawn closer to the mouthpiece by the Bernoulli effect, the opening grew smaller, causing a proportional increase in molecular velocity through the venturi. When applied air pressure was stabilized, molecular velocity through the venturi also stabilized and the reed became motionless. This stabilization may be the consequence of a balance between applied air pressure, the "Young's Modulus" or elasticity of the reed, and the Bernoulli effect. As air pressure was stabilized, light intensity passing through the mouthpiece-reed aperture was recorded, producing light-intensity levels as shown in Figure 14. These levels represented distances the reed moved at various air pressures due to the Bernoulli effect and might therefore be used as proportional indicators of molecular velocity within the venturi at a specfic lip pressure. A direct relationship between voltage (light intensity) and applied air pressure can be seen in Table 5, comprised of voltage averages taken from Appendix B, Stripchart Tables 31 through 36. As air pressure increased, voltage averages decreased due to a reduction in reed/mouthpiece aperture.

	Voltages			
Page	High	Low	Average	
			Air Pressure	
02	164	153	158.5	15.5
03	141	132	136.5	18.0
04	116	108	112	20.0
05	103	97	100	22.0
06	77	71	74	24.5
07	53	49	51	27.0
08	34	30	32	29.5
09	20	18	19	32.0

Table 5
Voltage Averages vs. Applied Air Pressures

The transient stage

To fully describe the tones produced by musical instruments, it was necessary to explore the initiation of tones. The begiñing of any tone can be scrutinized very closely by observing its transient state; the sound-wave pattern produced by the tone in the moments before the tone becomes stabilized or fully audible to the human ear. The transient stage exhibited the least amplitude of reed motion and formed quickly within a relatively narrow range of air pressures. In one cycle of vibration observed, applied air pressure caused the reed to move closer to the mouthpiece, thus reducing the opening between the reed and mouthpiece. As a result of this reduction in aperture, air
pressure within the venturi equalized with air pressure within the instrument and the elasticity of the reed began to pull it back to its primary position of rest. This position of rest was never quite reached however, due to force of the air pressure which was still being applied. Instead, the reed returned only part of this distance until it reached the point where the increasing velocity of air molecules through the venturi began to pull it back toward the mouthpiece again. These findings support visual observations made by Coppenbarger (1971), who stated: "Once the sound wave begins, the reed is affected by a Bernoulli condition. The excursion of the reed's tip from the mouthpiece during a vibration is not as large as the mouthpiece-reed gap with the playing embouchure pressure without sound" (p. 119). The reed/mouthpiece aperture levels observed during the loading stage in Figure 14 were characteristic of one specific lower-lip pressure setting. If lower-lip pressure had been increased, the reed would have been pushed into a preset position closer to the mouthpiece and greater air pressure would have been required to initiate the transient stage (See "Lip Pressure and Duration of Reed Closure").

The transient stage encompassed the transition from a non-vibrating state to one of vibration. A microphone was connected to the AC port on the digital converter and low air pressure applied to the artificial embouchure (Appendix

B, Table 8, Page 09). A transient for F4 was observed as shown in Figure 15. At low air pressure, the first vibrations to be observed were small, inaudible vibrations of the reed at its natural frequency. A regular fluctuation in amplitude is noticeable within the transient which matches the reed's natural frequency, shown in Figure 16. It can be seen from Figures 15 and 16 and their accompanying stripcharts in Appendix B, Tables 37 and 38, that amplitude fluctuations within the transient are partly comprised of the reed's natural frequency of vibration.

As the transient began to reach the steady state, a slight fluctuation of greater wave length became evident as shown in Figure 17. The voltage peaks of this wave form may seen in Appendix B, Table 39. When the wave form of the transient was superimposed over the waveform of a steady state $F 4$, it became evident that these longer wavelengths were the early products of the steady state. Figure 18 illustrates the steady state of $F 4$, and Figure 19, the superimposition. Although slightly out of phase, the early stages of the harmonic fundamental can be seen clearly. These observations support findings of Aschoff (1936) and Richardson (1954) that the reed's natural frequency is distinguishable within the steady state. Richardson (1954) writes: "Few wind instruments have transients which are exact copies of their steady states; either 'underblown tones' or 'reed partials' occur in the

Figure 15
F4 Transient Stage

GOL TAGE		FAGE EG	GTEP 1
			TIME

Figure 16
Natural Frequency of the Reed

WOL TAGE		PAGE E4	STEP 1

Figure 17
Transient Containing Steady State 37.0 cm H 20 , Gain $=100$, Page 03

F4, Series V

Figure 18
F4 Steady State

Figure 19
Superimposition of F4 Transient on
F4 Steady State as shown in Figure 18

first tenth of a second until overlaid by the principal tones of the column in its steady state" (p. 962).

The vibrations of the reed must eventually match the resonance mode of the instrument to which it is attached. Stubbins (1969) writes:

Because the harmonic frequency supplied by the tone generating system of the clarinet, matches the resonating or vibrational mode potential of a musical horn, all of the vibrational modes of the air column system are excited by the reed. However, the musical result is that which is obtained by the dampening effect of each of these modes, according to the shape of the air column involved. The shape of the air column reacts in turn, on the vibration pattern of the reed, which is the energy supplier for the sustaining system, and is so dominant, that in practice the tone-generating system of the clarinet is absolutely required to match the requirements of the clarinet to which it is attached, or the results are extremely inefficient (p. 59).

Evidence of this reactance may be seen in Figure 20. The tone of $F 4$ was produced with the artificial embouchure and measurements of light fluctuations produced by the reed were plotted. A plot of air-pressure variations produced within the clarinet sounding $F 4$ was made by connecting the microphone to the analog-to-digital converter. This plot of air-pressure variations was then superimposed over the plot of light-intensity fluctuations as shown in Figure 20. The reed's mode of vibration in the steady state closely matched the frequency produced by the air column.

Figure 20
Light Fluctuations for F4 Superimposed with Microphone Fluctuations for F4

F4, Gain $=33$, ADC DATA XVI

The sinusoidal stage

The third stage of reed motion was the sinusoidal stage. It was produced by the cycle of events described above. For tones of low intensity, the wave forms appeared to be sinusoidal for all frequencies tested. Figures 21 through 24 provide examples of sinusoidal reed movement for low-intensity tones produced at four pitch levels at various air pressures.

The closing Stage

When lip and air pressure were increased to specific degrees, the reed began to close on the mouthpiece. Two graphs were produced on F5 as illustrative examples. Figure 25 shows the reed just beginning to close completely, causing a flat line to appear within the cycle. With increased air pressure, the reed remained against the lay of the mouthpiece for a proportionally longer amount of time during each cycle. Is. Figure 26 , for example, the reed closed for almost half of its cycle. Eventually, at constant lip pressure, a saturation point was reached and closure time remained constant, regardless of further increases in air pressure. If lip pressure was subsequently increased, the reed was suddenly forced against the mouthpiece 100 percent of the cycle,

Figure 21
F3 Reed Not Closing
$27.0 \mathrm{~cm} \mathrm{H2O} ,\mathrm{84} \mathrm{dBA} \mathrm{Gain}=$,3.3
F3 T2 06

WOL TAGE		FAGE EGE	ETEF 1

Figure 22
F4 Reed Not Closing
$25.0 \mathrm{~cm} \mathrm{H2O} ,\mathrm{75} \mathrm{dBA} \mathrm{Gain}=$,10
F4 T1 06

Figure 23
F5 Reed Not Closing
$32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 78 \mathrm{dBA}$, Gain $=10$
F5 Tl 00

FIOL TAGE		FAGE GE	

Figure 24
Bb5 Reed Not Closing
$25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=10$ Bb5 T2 02

YILL TAGE		PAGE EE	STEF 1
		\%	
			$\vdots \quad \vdots$
			TITAE

Figure 25
F5 Reed At Threshold of Closing $34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 86 \mathrm{dBA}$, Gain $=10$

F5 Tl 02

Figure 26
F5 Reed Closing on Mouthpiece
$36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$ F5 T1 03

YOL TAGE		FAGE EO	Ξ TEF 1
$\therefore \quad \therefore$	$\therefore \quad \therefore \quad \therefore \quad \therefore$	$\because \quad \therefore$	$\therefore \quad \therefore$
		-	T.ITEE

terminating the sound completely.
It was observed that when the reed closed against the mouthpiece, other vibrations were sometimes superimposed upon the reed when it reached maximum displacement. Apparently, these vibrations were caused by a physical reaction to the abrupt interruption of the reed's more efficient sinusoidal movement. These additional movements undoubtably contribute to the increased harmonic content of tones of greater intensity. Two graphs were produced on F3 as examples. Figures 27 and 28 show harmonic disturbances for F3 at two different intensity levels. Harmonic disturbance and amplitude increased as air pressure increased. This was found to be true for all pitches tested.

Analyses of closure times

When air pressure was increased to a specific degree, the reed began to close completely on the mouthpiece during part of each cycle. It was observed from Figures 10 through 13 (see "The Effects of Air-Pressure Variations on Reed Amplitude and Intensity at Constant Lip Pressure") that application of greater air pressure increased the duration of time the reed remained closed.

Figure 27
F3 Harmonic Disturbance
$32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$
F3 Tl 02

UGL TAGE		FAGE EE	\bigcirc TEF 1
	2-0	\cdots	-
\ddots		.	\ddots
$\stackrel{ }{ }$			TIFE

Figure 28
F3 Harmonic Disturbance $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Gain $=3.3$ F3 Tl 00

For this reason, subsequent data were obtained on four pitches (F3, F4, F5, and B-flat 5) sounded at high intensity to determine the maximum percent of each cycle the reed can remain closed. Four tests were conducted on F3, four on F4, one on F5, and one on B-flat 5. The results are shown in Tabie 6. Figures 29 through 36, 12 and 13 are visual representations of these tests and Appendix B, Tables 40 through 49, their accompanying stripcharts. By counting samples included in the closed portion of each cycle, reed closure times were calculated for each wave period and compared across wave periods and pitches.

In Table 6, for example, contains four separate tests of $F 4$. Results of the first test are included in the stripchart number found in the row below the pitch designation: F4 Tl 04. This stripchart is located via the Lisc of Tables found at the beginning of Appendix B which indicates the location as Table 44 (Appendix B). The third, fourth, and fifth rows under the pitch name in Table 6 indicate, respectively: applied air pressure, intensity level, and vertical gain used in producing the graphs.

By consulting the appropriate stripchart in Appendix B, Table 44 , the sample (point) values may be seen to fluctuate in regular intervals. For example, in column 1 of Appendix B, Table 44, a column of point numbers can be

Figure 29
High-Intensity Closure for F3 $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Gain $=3.3$ F3 TI 00

VIL TAGE		Pfige ge	STEF 1
		$\therefore \therefore$	\therefore
	\because		
-	-	. -	.
	.		
.	-	. \cdot	TIFIE

Figure 30
High-Intensity Closure for F3 $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}, \mathrm{Gain}=3.3$ F3 T1 09

UOL TAGE		FAGE E 9	ETEF 1
		\therefore	
\cdots		_	TIFTE

Figure 31
High-Intensity Closure for F3 $24.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}, \mathrm{Gain}=1.0$

F3 T2 00

Figure 32
High-Intensity Closure for F3
$25.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, $\mathrm{Gain}=3.3$
F3 Tl 05

YOL TAGE		PAGE ES	OTEF 1
	$\therefore \because$		\because
.			
\cdots			TIME

Figure 33
High-Intensity Closure for F4 $38.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}, \operatorname{Gain}=3.3$ F4 Tl 04

Figure 34
High-Intensity Closure for F4
$34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 106 \mathrm{dBA}$, Gain $=3.3$ F4 Tl 10

UOL TAGE		FAGE 16	ETEF 1
\therefore	\therefore	\therefore	\therefore

Figure 35
High-Intensity Closure for F5 $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$ F5 Tl 03

Figure 36
High-Intensity Closure for Bb5
$34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain $=3.3$
Bb5 Tl 03

Table 6
High-Intensity Closure Times at Four Pitch Levels

Pitch	P3	F3	83	P3	P4	F4	P4	P4	P5	Eb5
Stripchart Number	P3 T1 00	P3 T1 09	P3 T2 00	F3 12. 05	F4 T1 04	F4 T1 10	74 T2 04	F4 2205	P5 T1 03	Bb5 1103
cm. H 2 O	36.5	27.5	24.5	25.5	38.5	34.0	28.0	29.0	36.5	34.0
dBA	98	90	100	88	100.	106.	93	93	100	100
Cain	3.3	3.3	2.0	3.1	3.3	3.3	33	33	3.3.	3.3
Total Points Period 1	98	98	98	-	50	48	49°	48	25	29
Total Points period 2	-	-	-	99	49	50.	49	48	26.	18
points Closing Period 1	47.	46.	47	-	23	21	18.	18	10	8.
points Closing period 2	471	46	-	42 :	22	22	28.	. 29	11	7
Raw Percentage	. 4795918	. 4693877	. 4795928	. 424242	. 4489795	. 4375	. 3673477°	. 3775	. 40	. 4210526.
$\begin{aligned} & \text { Percent of } \\ & \text { cycle } \\ & \text { closed } \end{aligned}$	48	47	48	42	45	44	37	38	40	42

seen starting with 1025. To the right of each point number is a corresponding voltage, beginning with 34 . These voltages decrease as follows: $34,20,10,6,5,5,5$, etc. The repeated values of 5 indicate that the reed stopped moving and closed on the mouthpiece. At point 1052 , voltages began to increase, reaching a peak at point 1058 with a voltage value of 76. Voltages stabilized again at point 1079 and the cycle, or period, was complete. A graphic illustration of this stripchart may be located by referring to the List of Figures and matching the stripchart number with the figure title. Therefore, a graphic representation of Appendix B, Table 44 may be seen in Figure 33. The first four dots or values at the left side of Figure 33 correspond to the first four values seen in the stripchart: $34,20,10,6$. The repeated values of 5 correspond to the flat portion of the wave as seen in the first quadrant of Figure 33.

The fourth row beneath F4 Tl 04 in Table 6 indicates that 50 samples were collected within the first period or cycle observed in the stripchart (Appendix B, Table 44). The fifth row indicates that 49 samples were collected within the second period. It can be seen from Table 6 that the number of samples comprising the first period of each wave closely matched the number of samples comprising the second period.

Samples also were counted within the flat portions of
each wave. These values are shown in the sixth and seventh rows of Table 6 as "Points Closing." As shown in Table 6, the number of samples comprising the closed portion of the first period closely matched the number of samples comprising the second period. By comparing samples comprising the closed portion of the first period with samples comprising an entire cycle, the percentage of time the reed remained closed on the mouthpiece was calculated and listed in the last row of Table 6.

These tests reflected a remarkable consistency when sample totals were compared between consecutive closure times and periods. F3 produced the longest closure time of the pitches tested, that being 48 percent. It was observed from Table 6 that for tones of high intensity, the reed remained closed on the mouthpiece for 37 to 48 percent of its cycle. For tones produced with a preselected lip pressure conducive to the production of a wide intensity range, no evidence was obtained that indicated the reed closes more than 48 percent of its cycle.

Specific time values were calculated for the closures. Appendix B, Table 44, indicates that a data rate of 6983 points (samples) per second were used when collecting these data for F 4 . The data step was 1 , indicating that samples were collected one at a time; therefore, the time between successive points on this stripchart is (1/6983) seconds, or 0.0001432 seconds, or . 14 milliseconds. Referring to

Table 6, it was found that for F3 Tl 00, the first period lasted for a total of 98 points, or 14 milliseconds (98 pts. $x 0.0001432 \mathrm{sec} . / \mathrm{pt} .=0.0140336 \mathrm{sec}$.$) . Closure time$ for the reed during this period was 6.73 milliseconds (47 pts. $\times 0.0001432 \mathrm{sec} . / \mathrm{pt} .=0.0067304 \mathrm{sec}$.$) , or 48$ percent of the first period ($6,73 / 14=0.4807142=48$ percent). As shown above (See "Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure"), when closure time for F 4 reached a certain percent, the system stabilized and amplitude remained constant, regardless of further increases in air pressure. Similar stabilizations are noticeable in Table 6. For example, in F3 T2 00, an applied air pressure of 24.5 cm H20 produced a reed closure of 48 percent. In F3 Tl 00, air pressure was increased to 36.5 cm H 20 but reed closure remained at 48 percent. These data (Table 6) indicate that at constant lip pressure and sufficient air pressure to cause reed closure, increases in air pressure can produce increases in reed closure times, until a closure time of 48 percent is reached. When closure time reaches 48 percent of a cycle, further increases in air pressure do not produce subsequent increases in closure, amplitude, $o x$ intensity, at constant lip pressure. Closure times of longest duration were observed for pitches of lower frequencies.

Lip Pressure and Intensity at Constant Air Pressure

To observe the effects of lip pressure on intensity, two procedures were conducted. In the first procedure, F3 was sounded at very low intensity (70 dBA) as shown in Appendix B, Table l, Page 07). Pressure exerted by the lower-lip mechanism was reduced in four stages and intensity variations were recorded. It was observed that as lip pressure was reduced, intensity increased from 70 dBA to 90 dBA ; a range of 20 dBA . Further reductions in lip pressure did not allow sufficient reed vibration and the tone was no longer sustained. The reed then entered its natural frequency of vibration and squeaking began. The investigator also observed that although the volume of air entering the chamber was constant, air pressure within the chamber decreased from 31.0 cm H 20 to 27.5 cm H 20 as lip pressure was reduced. Therefore, a second procedure was conducted on the tone F4 (Appendix B, Table 4, Pages 08-10). In this procedure, air pressure within the chamber was kept constant by adjusting the potentiometer which regulated the air pump. At a constant air pressure of 34.0 cm H20, lip-pressure reduction produced intensities from 80 dBA to 106 dBA; a range of 26 dBA . These data show that intensity range may be increased if air pressure is maintained within the chamber. Apparently, a player instinctively adjusts lip pressure
upon the reed as air pressure is varied. The range of intensity levels available through variations of lip pressure are impressive. Results support that intensity levels are controllable through a combination of lip and air-pressure variations.

Lip-Pressure and Amplitude of Reed Motion

Using the same data collected previously on F3 (Appendix B, Table 1, pages 07-10), graphs of the reed's amplitude were produced at each lip-pressure increment as shown in Figures 37 through 40. In Figure 37, produced at maximum lip pressure, the reed appeared to be closing on the mouthpiece and exhibited a relatively small amplitude between closures. As lip pressure was reduced, reed amplitude increased dramatically as shown in Figure 38. Although a constant volume of air was applied to the artificial-embouchure chamber, air pressure within the chamber decreased from 31.0 cm H 20 to 29.0 cm H 20 when lip pressure was reduced. This reduction in air pressure may have resulted from a reduction of lip pressure on the reed and the subsequent increase of the aperture between the reed and mouthpiece, thus allowing more air to pass through the aperture during the open part of each cycle. Apparently, a direct relationship exists between the total area under the curve of Figures 37 and 38 , and the volume of air passing through the reed/mouthpiece aperture.

Figure 37
Lip-Pressure Variation for F3
$31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 70 \mathrm{dBA}, \mathrm{Gain}=33$
F3 Tl 07

GOL TFGE		FAGE ET	STEP 1

Figure 38
Lip-Pressure Variation for F3
$29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Gain $=33$
F3 T1 08

勺OL TAGE		Ffige er	ETEP 1
		\checkmark	
			TIME

Figure 39
Lip-Pressure Variation for F3 $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain $=3.3$

F3 Tl 09

Figure 40
Lip-Pressure Variation for F3 27.5 cm H2O, 90 dBA, Gain $=3.3$

F3 T1 10 .

VIL TAGE		PAGE 10 $\therefore \because$.	STEP $\begin{array}{r}1 \\ \vdots\end{array}$
$\because \because$		$\because \cdot{ }^{\circ} \cdot$	
\because	.		
-	\therefore $\therefore-\therefore-\infty$		$\therefore \text { Time }$

Therefore, an increase in the quantity of air passing through the aperture would simultaneously increase the Bernoulli effect.

A further decrease in lip pressure (Figures 39 and 40) increased reed amplitude to such an extent that the wave peaks were no longer within the scope of the graph. For this reason, gain (amplification of the vertical aspect of the graphs) was reduced from 33 to 3.3 , reducing the vertical aspect of the graphs by ten times. This second reduction in lip pessure increased amplitude of reed motion tenfold, increased harmonic disturbance within the waveform, and decreased air pressure within the artificial-embouchure chamber from 29.0 cm H 20 to 27.5 cm H2O .

A third reduction in lip pressure (Figure 40) did not reduce air pressure within the chamber, but increased reed amplitude and harmonic disturbance. These findings support the following observations: that with application of a constant volume of air, a reduction in lip pressure caused a lowering of air pressure within the chamber and produced an increase in reed amplitude and harmonic disturbance.

Lip Pressure and Duration of Reed Closure

Using data collected previously on F3 (Appendix B, Table l, pages 07-10), stripcharts were produced to observe the effects of lip pressure on reed closure times. These stripcharts, which pertain to Figures 37 through 40, are found in Appendix B, Tables 50 through 53. The lowest three voltages in each stripchart were examined as representations of closure voltages since high sensitivity of the photo transistor caused these voltages to fluctuate slightly. These millivolt values are listed in the fourth column of the Table 7.

Figure	cm H20	dBA	Voltages	$\frac{\text { Points }}{\text { Selected }}$

Table 7
Point Totals for Reed Closures During Lip-Pressure Reductions

The point (sample voltage) totals illustrate that closure time was affected minimally by variations in lip pressure at a specific air pressure. Figures 37 through 40
seem to indicate that a reed's closure time on the mouthpiece is directly related to applied air pressure and is not dependent upon air pressure within the chamber or amplitude of the reed's motion. The resultant comparison is that applied air pressure exerted by the lungs of the player determines the closure time for a reed and this time is not appreciably affected by the amount of air being passed through the mouthpiece/reed aperture. These findings seem to indicate that an optimum resistance can be found when playing the clarinet if lip pressure is adjusted.

A second series of tests comprising two procedures were conducted on F3 (Appendix B, Table 3, pages 00-11) in which two lip-pressure settings (high and low) were used at three intensity levels: threshold sound level, 90 dBA (mf), and $100 \mathrm{dBA}(f f)$. In the first procedure, pressure of the lower-lip mechanism was set on a high-pressure setting. Air pressure was manipulated via the potentiometer to produce three intensities. In the second procedure, pressure of the lower-lip mechanism was reduced and set to the low-pressure setting. Air pressure was again manipulated to produce three intensities. Therefore, high and low lip-pressure settings were kept constant across intensities and only applied air pressure was varied.

Figures 41 through 46 (from Appendix B, Table 3, pages 06-11) and their accompanying stripcharts in Appendix B,

Figure 41
High Lip Pressure for F3 Threshold Sound $26.0 \mathrm{~cm} \mathrm{H} 20, \mathrm{Gain}=10$

F3 T3 06

Figure 42
Low Lip Pressure for F3 Threshold Sound 24.5 cm H20, Gain $=10$ F3 T3 07

SOLTAGE		FAGE 日T	STEF 1

Figure 43
High Lip Pressure for F3 $27.5 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=10$

F3 T3 08

Figure 44
Low Lip Pressure for F3
$26.0 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=10$
F3 T3 09

WOL TAGE \therefore	\because	PAGE EG \therefore	STEF $\begin{array}{r}1 \\ \\ \therefore\end{array}$
\cdots	$\cdot \vdots$	\because \ddots	\vdots
	-	- \quad.	$\cdots \quad$.
		\vdots	TIFAE

Figure 45
High Lip Pressure for F3 $33.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=10$

F3 T3 10

Figure 46
Low Lip Pressure for F3
$29.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=10$
F3 T3 11

YOL TAGE	\because	PABE 11	STEF 1
.			- .
- .	-		
			T TITRE

Tables 54 through 57 were used in the analyses. These graphs were produced using a gain (amplification) level of 10. The column designated "Voltages Selected" indicates voltages selected as representing the duration of closure. Table 8 is a summary of closure times for each trial.

| Figure | cm H20 | $\frac{\text { dBA }}{}$ | $\frac{\text { Voltages }}{\text { Selected }}$ | $\frac{\text { Lip }}{\text { Pressure }}$ | $\frac{\text { Points }}{\text { Closing }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41 | 26.0 | -- | 10,11 | high | 11 |
| 42 | 24.5 | - | 48,49 | low | 6 |
| 43 | 27.5 | 90 | 4 | high | 14 |
| 44 | 26.0 | 90 | 5,6 | low | 10 |
| 45 | 33.5 | 100 | 4 | high | 24 |
| 46 | 29.5 | 100 | 4 | low | $19-20$ |

Table 8
Point Totals for Reed Closures At Two Lip-Pressure Settings for F3

Only a slight reduction in closure points is noticeable when lip pressure is reduced and the intensity level is maintained. As expected, air pressure within the chamber dropped slightly as lip pressure was reduced and amplitudes rose dramatically as seen in Figures 43, 44, 45 and 46. The data support that an increase in reed amplitude does not always produce an increase in intensity
level. Pressure exerted by the lower lip is a critical factor. If pressure of the lip is decreased, slightly less air pressure is required to maintain the same intensity level, and conversely.

Figures 45 and 46 illustrate $F 3$ at 100 dBA but with different lip pressures. In Figure 45, amplitude was much less than in Figure 46, yet intensity level remained the same. These findings may indicate that as more lip pressure is applied, lip tissue flattens out and exerts a dampening effect on amplitude of reed vibration. At the same time, closure time is slightly increased as if the dampening effect has transformed lost amplitude into a relatively small amount of closure time. Duration of closure exhibited by the reed must therefore be viewed as one of high pressure, which, when finally released, produces a relative amplitude which is proportional to the time and pressure exerted upon it during the duration of its closure.

Air-Pressure Requirements for Low-Intensity Tones at Two Lip-Pressure Settings

Using data collected previously on F3 (Appendix B, Table 3, pages 07-11), air-pressure requirements for producing tones at the threshold of hearing were observed at high and low lip-pressure settings. Figures 41 and 42 (see "Lip Pressure and Duration of Reed Closure")
illustrate threshold sounds which are bordering on closure. The wave form in Figure 41 was lower than that in Figure 42 because higher lip pressure had almost forced the reed closed. These wave forms clearly indicate that a low-intensity tone (ppp) may be initiated with less loss of air pressure from the mouth (more resistance) by closing off the reed with more lip pressure. These findings support those of Backus (1962). He stated:

The threshold blowing pressure is directly proportional to the reed opening and reed stiffness, and is modified somewhat by the Q [air friction on the internal walls] of the instrument. It does not vary with the reed damping, for example, and should therefore not depend on the condition of the player's lip (p. 312).

If a low-intensity tone is initiated at low lip pressure, persistent loss of air pressure in the mouth and the rush of air into the mouthpiece aperture produces a tone often described by clarinetists as being "spread." A more "focused" low-intensity tone may be produced by closing off the reed with more lip pressure as shown in Figure 41. Since most low-intensity tones, especially in the low register of the clarinet, consist largely of the fundamental, the "spread" feeling described by clarinetists could be due to air loss through the reed/mouthpiece aperture when lip pressure is insufficient to reduce this aperture to a minimum. These findings support those of Ghosh (1938), who provided mathematical evidence showing that a clarinetist can control clarinet tone quality by
slightly increasing or decreasing the pressure of the lip upon the reed. According to Ghosh, this varied the width of the "chink" or space between the reed and the mouthpiece and in turn varied the effective vibrating length of the reed. He hypothesized that this variance in the effective vibrating length may alter the series of harmonics which are produced, thus increasing or decreasing the number and strengths of harmonics present in the tone.

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

The purpose of this study was to observe effects of air and lip-pressure variations on the vibrational patterns of a single reed. In the interest of investigating specific characteristics of reed motion such as intensity, amplitude, and closure, the study was not meant to be statistically conclusive. To facilitate observations, a blowing chamber containing an artificial-embouchure device was constructed into which a clarinet could be inserted and sealed at the barrel joint. A direct-current light source was focused through the bell end of a clarinet, through the reed-mouthpiece aperture, and into a photo transitor mounted within the chamber 2 millimeters from the aperture of the reed and mouthpiece. Light fluctuations produced by the reed's movement on the mouthpiece were detected by the photo transitor and converted into voltages, which were then converted to digital signals by a Nalandata analog-to-digital converter. The analog-to-digital converter was interfaced with an Apple IIe computer and used in conjunction with "Apple-Swiss" softwear developed by Nicklin (1986) to produce graphic representations of the
variations in light intensity received by the photo transistor. The procedures were divided into two major categories: air-pressure experiments and lip-pressure experiments.

Air-Pressure Experiments

Natural Blowing Pressures

A preliminary test was conducted to determine natural air pressures required throughout the range of the clarinet (See Appendix C). A plastic tube was inserted into a human mouth while playing the clarinet and connected to a U-tube water manometer. Air-pressure measurements were observed for all pitches from E3 to G6 while maintaining an intensity level of 100 dBA. This test was conducted to compare blowing pressures required when a human plays the clarinet with those required by the artificial-embouchure device.

Air-Pressure Variation and Intensity at Constant Lip Pressure

Two primary procedures were conducted to determine the range of intensities possible by multidirectional manipulation of air pressure at constant lip pressure. In the first procedure, the lower-lip mechanism of the artificial-embouchure chamber was adjusted, in conjunction
with air pressure, to produce a tone of high intensity. Air pressure was then reduced in small increments and the range of intensities was observed. This procedure was conducted on three tones (F3, F5, and F6) and provided baseline data on functional intensities. In the second procedure, the lower-lip mechanism of the artificialembouchure chamber was adjusted, in conjunction with air pressure, to produce a tone of low intensity. Air pressure was then increased in small increments and the range of intensities was observed. This procedure was conducted on two tones: F4, B-flat 5. These two primary procedures were conducted to determine the range of intensities possible through air-pressure variations at constant lip pressure and were repeated on $F 4, F 5$, and $B-f l a t 5$ to determine the influence selected lip-pressure settings might have on the results.

Air Pressure and the Vibrational Frequency of the Reed at Constant Lip Pressure

To observe effects of air-pressure variations on the reed's frequency of vibration at constant lip pressure, air pressure was manipulated to produce three intensities (90 dBA, 96 dBA , and 100 dBA) on three tones: $\mathrm{F} 4, \mathrm{~F} 5$, and B-flat 5. Using stripcharts of voltages produced by the photo transistor, the reed's frequency of vibration at each pitch and intensity level were determined. Frequencies
were compared across intensities and with a standard table of frequencies for pitches in the tempered scale (Backus, 1977, p. 153) to determine whether the reed's frequency of vibration was the same frequency as the tone being produced.

Reed Amplitude and Intensity at Constant Lip Pressure

To observe the relationship between reed amplitude and intensity, stripcharts were produced from data previously collected on F4 and used to calculate voltage peaks (reed amplitudes). Reed amplitudes were then compared to intensity changes as monitored on a sound-level meter. This procedure was conducted to observe variations in reed amplitude and intensity as air pressure was varied so that a relationship between reed amplitude and intensity might be established before further, and more focused, investigations were initiated.

Air Pressure and Amplitude of Reed Motion at Constant Lip Pressure

To observe the effects of air-pressure variations on amplitude of reed motion at constant lip pressure, the lower-lip mechanism was set at an optimum pressure for producing a high-intensity tone of F 4 . Air pressure was then reduced until the sound was no longer audible to a
human ear, but the pressure of the lower-lip mechanism was retained. Air pressure was slowly increased in small increments until a sound was produced at the subjective threshold of hearing. Light-intensity variations received by the photo transistor were produced as graphs and superimposed upon one another. The charted levels of light intensity were compared with air-pressure measurements to determine the effects air pressure might have upon reed amplitude.

The Transient

Data were collected for light fluctuations on a transient tone for F4 and compared with air-pressure variations of the reed's natural frequency of vibration collected via a microphone interfaced with the computer. By superimposing graphs of the resulting wave forms, data for the F4 transient were compared with the reed's natural frequency of vibration and the steady-state wave form for F4.

Lip-Pressure Experiments

Lip Pressure and Intensity at Constant Air Pressure

Two procedures were conducted to observe the effects of lip pressure on intensity. In the first procedure, without keeping the air pressure within the chamber constant, applied lip pressure was reduced from a high setting to a low setting and intensity range was observed. Upon the determination, from observations of the results, that air pressure within the artificial-embouchure chamber varied as lip pressure was reduced, a second procedure was conducted. In the second procedure, air pressure within the chamber was kept constant, and applied lip pressure was again reduced from a high setting to a low setting. Intensity changes were observed and compared with the findings in the first procedure.

Lip Pressure and Amplitude of Reed Motion

Using data previously collected on F3 in which lip pressure was reduced in four increments, observations were made of the effects of lip-pressure variations on amplitude of reed motion. Graphs were produced and amplitudes were visually compared at each lip-pressure increment.

Lip Pressure and Duration of Reed Closure

To observe effects of lip-pressure variations on duration of reed closure, two series of tests were conducted on the tone F3. In the first series, using stripcharts produced from data previously collected on F3, closure times were studied by observing selected voltages representing closure as shown on the stripcharts. In the second series of tests, air pressure was manipulated to produce three intensities (threshold sound level, 90 dBA , and 100 dBA) at two lip-pressure settings. Stripchart voltages were then studied to observe duration of reed closure at two lip-pressure settings.

Conclusions

Based upon observations, conclusions are categorized and listed below.

General Observations of Reed Motion

1. At specific air and lip pressures, the reed completely closed on the mouthpiece during its cycle of vibration.
2. For low-intensity tones in all registers, the motion of the reed produced a wave form which was sinusoidal.
3. For high-intensity tones in all registers, the motion of the reed produced a square-wave form, showing that
the reed closed on the mouthpiece for a portion of its cycle.
4. When the reed closed against the mouthpiece with a specific force, smaller vibrations were superimposed upon the reed's waveform when it reached maximum displacement. These additional movements undoubtably contributed to increased harmonic content in tones of greater intensity.
5. The reed's mode of vibration in the steady state matched closely the mode of the air column.
6. The reed's natural frequency of vibration was distinguishable within the steady state.
7. Small inaudible vibrations of the reed at its natural frequency, combined with reed partials, were evident before the reed began to follow the requirements of the air column.

Air-Pressure Experiments

1. At constant lip pressure, an increase in air pressure increased amplitude of reed motion but did not affect the reed's frequency of vibration.
2. At constant lip pressure, a continual increase in air pressure eventually caused the reed to close on the mouthpiece during its cycle of vibration, but its frequency of vibration remained constant.
3. At constant lip pressure, an increase in air pressure
produced an increase in closure time.
4. Four stages were observable when air pressure was applied to the reed: the loading stage, the transient stage, the sinusoidal stage, and the closing stage.
a. The loading stage, necessary to engage the Bernoulli effect while preventing the reed from vibrating at its own natural frequency, was created by pressure exerted on the reed by the lower lip before playing began.
b. The transient stage was observed to have the least amplitude of reed motion and formed quickly within a relatively narrow range of air pressures. The reed's frequency of vibration remained constant as the transient formed.
c. The sinusoidal stage was observed to be a characteristic model of the vibrational cycle of the reed before closure began.
d. The closing stage was the observed motion of the reed when it closed completely on the mouthpiece. In this stage, reed motion produced a wave form which closely resembled a square wave.
5. When the clarinet was played by a person, there was a noticeable decrease in air pressure required to maintain the same intensity level in the low register as in the high register, thus specific pitches required more air pressure to maintain an equal intensity level
with neighboring pitches.

Lip-Pressure Experiments

1. With the application of constant air pressure, a reduction in lip pressure caused a decrease in air pressure within the artificial-embouchure chamber and an increase in reed amplitude and intensity level. The frequency of reed vibration remained constant as lip pressure was reduced.
2. There was minimal change in closure time observed when air pressure was held constant and lip pressure was reduced. Lip-pressure reduction did not appreciably affect closure times and the frequency of reed vibration remained constant.
3. Lip pressure influenced hearing-threshold sound pressures only slightly and not to the degree that it affected sounds of greater intensity. Often, the same air pressure initiated a sound at different lip pressures.
4. Air pressure increased within the artificial-embouchure chamber as lip pressure increased because less air escaped between the reed and mouthpiece.
5. A low-intensity tone (ppp) was initiated with less loss of air pressure from within the artificial-embouchure chamber when the reed/mouthpiece aperture was reduced with more lip pressure. This, in effect, created more
resistance within the system. Therefore, lip pressure becomes an important factor in regulating the amount of resistance a player desires for a specific tone quality.

Duration of Closure

1. Reed closure began at lower air pressures for tones of higher frequency.
2. At specific air and lip-pressures, the reed never closed more than 48 percent of a cycle, regardless of frequency or intensity level.
3. There was great consistency in closure times from cycle to cycle within the same wave.

Amplitude and Intensity

1. An increase in reed amplitude did not always produce an increase in intensity level, therefore, lip pressure may be an important factor affecting amplitude at specific air pressures.

Implications of the Study and Pedagogical Applications

Abstract

At present, the pedagogy of the clarinet is comprised of a complex, often confusing, variety of teaching strategies. Teachers of the clarinet remain very individualistic in their ideas regarding the proper parameters leading to success in performance. Some teachers may concentrate on tone quality at the expense of technique, while others may insist on technical agility at the expense of tone quality. This dichotomy may have emerged from a lack of understanding among players as to how the many physical aspects of tone production must be tempered to work together. The findings of the present study indicate that the parameters for lip and air pressure, when considering the simple production of sound, are rather broad. With the ever-increasing body of scientific research literature regarding the clarinet, very specific physical criteria must be researched to verify the success of pedagogical practices. More research is needed to bring these physical criteria into focus for the teacher of the clarinet so that some of the subjectivity which surrounds highly successful clarinet teaching and performance may be eliminated.

Recommendations for Further Research

As shown in the present study, the interaction of air and lip pressure in producing a specific pattern of reed motion is crucial; consequently, specific theories presented in the past need to be reevaluated in the light of these new findings. New questions have emerged which invite further inquiries into the characteristics of reed motion at different lip positions. Lip position, held constant in the present study, may add another dimension to our present understanding of reed motion at specific air and lip pressures. When a mouthpiece is inserted further into the player"s mouth, the lower lip comes into contact with the reed at a lower point, thus leaving more of the reed's surface free to vibrate. Might a practical method be discovered, through empirical means, of predicting and locating an ideal lip position, which takes into consideration the internal and external dimensions of the mouthpiece? Might different lip positions on the mouthpiece and reed alter the findings of the present study regarding air and lip-pressure requirements under specific conditions? Questions also remain unanswered concerning damping effects of the lip upon the reed. Might damping effects contribute to closure times at specific air and lip pressures?

Interesting theories have abounded regarding the
pedagogy of tongue position and its relation to the production of tone quality when playing the clarinet. One curious aspect of these theories is the presumption on the part of some teachers that the shape of the tongue increases the velocity of air across the reed/mouthpiece aperture and changes, possibly through damping effects, the "color" of the tone which is produced. To date, accurate measurements of air velocity across the tip of the reed have been impossible; partly because of a lack of technology which is damanded for such a measurement, and partly because of difficulties encountered when attempting to acquire measurements in an area as small as the oral cavity. Even with the availability of highly sensitive transducers, artificial-embouchure devices, and computers, the feasibility of acquiring such a measurement is limited. The present study, however, opened some interesting alternatives regarding the measurement of velocity across the reed whch might be expanded into a functional method of measurement. For example, when applying a slow increase of air pressure to a reed which was preset into playing position (loading stage), a reduction in reed/mouthpiece aperture was directly proportional to the amount of applied air pressure. Would not the reverse be true? Might this observation be used in reverse, so that observable changes in the reed/mouthpiece aperture, under specific conditions, could be used as an indicator of variations in molecular
velocity across the reed? Mooney (1968) used an artificial-embouchure device to study wave forms of the tones produced when an artificial tongue was placed near the reed. In conjunction with the theory presented above, this method might be used to determine whether tongue placement has an effect on the tone quality which is produced. Such an investigation would have important pedagogical implications.

BIBLIOGRAPHY

Ahrens, A. W. (1947). Characteristic limitations of the internal tuning of selected wind instruments. Journal of Experimental Education, 15(4), 269-39.

American Psychological Association, Council of Editors (1967). Publication manual of the American Psychological Association (3rd. ed.). Washington, DC: Author.

Anfinson, R. E. (1969). A cinefluorographic investigation of selected clarinet playing techniques. Journal of Research in Music Education, 17(2), 227-39.

Aschoff, V. (1936). Experimentelle untersuchungen an einer klarinette \{An experimental investigation of a clarinet\}. Akustische Zeitschrift, 10, 77-93.

Backus, J. G. (1977). The acoustical foundations of music (2nd ed.). New York: W. W. Norton and Company, Inc.

Backus, J. G. (1960). Studies of the vibrations of clarinet reeds. Journal of the Acoustical Society of America, 32, 935 (Abstract).

Backus, J. G. (1961). Vibration of the air column and the reed in the clarinet. Journal of the Acoustical Society of America, 33, 806-9.

Backus, J. G. (1961). Influence of the reed on the vibration frequency of clarinet tones. Journal of the Acoustical Society of America, 33, 862 (Abstract).

Backus, J. G. (1961). Behavior and properties of clarinet reeds. Journal of the Acoustical Society of America, 33, 1652 (Abstract).

Backus, J. G. (1962). Variation with loudness of the harmonic structure of clarinet and bassoon tones. Journal of the Acoustical Society of America, 34, 717 (Abstract).

Backus, J. G. (1962). Experimental check of the theoretical expressions for frequency shift and maximum blowing pressure in the clarinet. Journal of the Acoustical Society of America, 34, 1994 (Abstract).

Backus, J. G. (1963). Frequency shift for loud tones of the clarinet. Journal of the Acoustical Society of America. 35, 771 (Abstract).

Backus, J. G. (1964). Effect of wall material on the steady-state tone quality of woodwind instruments. Journal of the Acoustical Society of America, 36, 1881-87.

Backus, J. G. (1964). Effect of steady flow on the response frequencies and Q 's of the clarinet. Journal of the Acoustical Society of America, 36, 2014 (Abstract).

Backus, J. G. (1965). Measurement of clarinet resonance frequencies. Journal of the Acoustical Society of America, 37, 1203 (Abstract).

Backus, J. G. (1966). Clarinet reed parameters. Journal of the Acoustical Society of America, 39, 1220 (Abstract).

Backus, J. G. (1966). Effect of warping of the reed tip on clarinet tones. Journal of the Acoustical Society of America, 40, 1252 (Abstract).

Backus, J. G. (1968). Resonance frequencies of the clarinet. Journal of the Acoustical Society of America, 43(6), 1272-81.

Backus, J. G. (1971). Improved equipment for plotting resonance curves for wind instruments. Journal of the Acoustical Society of America, 50, 128 (Abstract).

Backus, J. G. (1972). Interaction of the clarinet reed with an air column having a single resonance. Journal of the Acoustical Society of America, 52, 147 (Abstract).

Backus, J. G. (1974). Input impedence curves for reed instruments. Journal of the Acoustical Society of America, 56, 1266-79.

Backus, J. G. (1974). Composite woodwind reed. Journal of the Acoustical Society of America, 56, 1664 (Abstract).

Backus, J. G. (1985). The effect of the player's vocal tract on woodwind instrument tone. Journal of the Acoustical Society of America, 78, 17-20.

Bartholomew, W. (1942). Acoustics of music. New York: Prentice Hall, Inc.

Benade, A. H. (1959). On woodwind instrument bores. Journal of the Acoustical Society of America, 31(2), 137-146.

Benade, A. H. (1960). Horns, strings, and harmony. Garden City, New York.

Benade, A. H. (1960). The physics of woodwinds. Scientific American, 204(4). 145-154.

Benade, A. H. (1966). Relation of air-column resonances to sound spectra produced by wind instruments. Journal of the Acoustical Society of America, 40, 247-9.

Benade, A., \& Gans, D. (1966). Sound production in wind instruments. In Report on New York Academy of Science Conference on Sound Production. Cleveland, Ohio: Case Western Reserve University, Department of Physics.

Benade, A. H. (1968). On the propagation of sound waves in a cylindrical conduit. Journal of the Acoustical Society of America, 44, 616-23.

Benade, A. H. (1970). Acoustic criteria and procedures for adjusting tone and response in woodwinds. Journal of the Acoustical Society of America, 48: 89 (Abstract).

Benade, A. H., \& Worman, W. E. (1971). Schematic representation of wind instrument oscillation. Journal of the Acoustical Society of America, 49, 127 (Abstract).

Benade, A. H., \& Worman, W. E. (1972). Spectrum development with playing level in wind instruments. Journal of the Acoustical Society of America, 52, 148 (Abstract).

Benade, A. H., \& Bebler, J. M. (1974). Reed cavity and neck proportions in conical woodwinds. Journal of the Acoustical Society of America, 55, 458 (Abstract).

Bert, P. A. (1968). Correlations between theoretical and measured standing-wave patterns in a cylinder. Journal of the Acoustical Society of America, 45, 313 (Abstract).

Blaikley, D. (1918). Acoustics in relation to wind instruments. Metronome, 34(12), 35(1), 35(2).

Bouhuys, A. (1964). Sound-power production in wind instruments. Journal of the Acoustical Society of America, 37(3), 453-56.

Bouhuys, A. (1964). Lung volumes and breathing patterns in wind-instrument players. Journal of Applied Physiology, 19, 967-75.

Bouhuys, A. (1969). Human factors in wind-instrument performance. Journal of the Acoustical Society of America, 45, 296 (Abstract).

Brymer, J. (1976). The clarinet. New York: Macmillan Publishing Co., Inc.

Broadhouse, J. (1892). Musical acoustics. London: William Reeves.

Carse, A. (1939). Musical wind instruments. London: MacMillan \& Co.

Colby, N. (1938). Sound waves and acoustics. New York: Holt \& Co.

Coppenbarger, R. D. (1971). An investigation of the vibrating clarinet reed utilizing high spped cinematography. Dissertation Abstracts International, 31, 4196A. (University Microfilms No. 71-3689).

Culver, C. (1907). Musical acoustics. Philadelphia: Theodore Presser.

Das. P. (1931). Theory of the clarinet. Indian Journal of Physics, 6(1), 225-232.

Dauberry, U. (1920). Orchestral wind instruments. London: William Reeves.

Dunstan, R. (1918). Some acoustical properties of wind instruments. Proceedings of the Music Association, 44th Session, London. 53-70.

Farnsworth, D. W. (1940). High speed motion pictures of the human vocal cords. Bell Lab Record, 18, 207-208.

Freedman, M. D. (1967). Analysis of musical instrument tones. Journal of the Acoustical Society of America, 4l. 793-806.

Ghosh, R. (1938). The theory of the clarinet. Journal of the Acoustical Society of America, 9, 255-64.

Hall, J. C. \& Kent, E. L. (1960). Relationships between wind instruments timbre and sound spectra. Journal of the Acoustical Society of America, 32, 935 (Abstract).

Hall, J. C. \& Lockwood, C. E. (1963). Characteristics of the tone quality of wind instruments. Journal of the Acoustical Society of America, 35, 1902 (Abstract).

Hall, J. C. (1963). System for measuring the acoustical response of wind instruments. Journal of the Acoustical Society of America, 35, 1902 (Abstract).

Helmholtz, H. (1895). On the sensations of tone as a physiological basis for the theory of music. (3rd ed.). Longmans, Green and Co.

Higbee, G. A. \& Strong, W. J. (1968). Computer model of a clarinet. Journal of the Acoustical Society of America. 45r. 313 (Abstract).

Hogben, L. (1937). Mathematics for the million. New York: W. W. Norton and Company, Inc.

Hooper, H. \& Gwynne, P. (1977). Physics and the physical perspective. New York: Harper and Rcw, Inc.

Intravaia, L. J. \& Resnick, R. S. (1968). A research study of a technique for adjusting clarinet reeds. Journal of Research in Music Education, 16(1), 45-58.

Jeans, J. (1939). Science and music. New York: MacMillan Co.
Kent, E. L. (Ed.).(1977). Musical acoustics: piano and wind instruments. Pennsylvania: Dowden, Hutchinson, and Ross, Inc.

Kirck, G. (1983). The reed guide. A handbook for modern reed working for all single reed woodwind instruments. Reed-mate Company.

Lanier, J. M. (1960). An acoustical analysis of tones produced by clarinets constructed of various materials. Journal of Research in Music Education, 8(1), 16-22.

Lorenzini, R. (1983). Reeds and reed-making. Sounds of Woodwinds, 1 (2), l-2.

Meyer, J. (1969). Uber die intonation bei den klarinetten \{On the intonation of clarinets\}. Instrumentenbau Zeitschrift, 23, 209-13.

McGinnis, C., \& Gallagher, C. (1941). The mode of vibration of a clarinet reed. Journal of the Acoustical Society of America, 12. 529-31.

McGinnis, C., \& Pepper, R. (1945). Intonation of the boehm clarinet. Journal of the Acoustical Society of America, 16(3), 188-193.

Miller, D. C. (1909). The influence of the material of wind instruments on tone quality. Science, 29, l6l-l71.

Mooney, J. E. (1968). The effect of the oral cavity on the tone quality of the clarinet. Dissertation Abstracts International, 29, 2742A. (University Microfilms No. 69-2007) .

Munroe, M. E. (1963). The language of mathematics. Ann Arbor: The University of Michigan Press.

Nederveen, C. J. (1968). Influence of reed motion on the resonance frequency of reed-blown wood-wind instruments. Journal of the Acoustical Society of America, 45, 513-14.

Nederveen, C. J. (1969). Acoustical aspects of wind instruments. Amsterdam: Fritz Kunt.

Nicklin, R. (1986). Apple Swiss [Computer program]. Boone, NC: Nalan Computer Specialties.

Nicklin, R. (1986). Nalandata A2A Data Converter [Computer program manual]. Boone, NC: Nalan Computer Specialties.

Olson, H. F. (1952). Musical engineering (2nd ed.). New York: McGraw-Hill Book Company, Inc.

Opperman, K. (1960). The art of making and adjusting single reeds. New York: Chappell and Co.

Parker, S. E. (1947). Analysis of the tones of wooden and metal clarinets. Journal of the Acoustical Society of America, 19, 415-19.

Porter, M. M. (1967). The embouchure. London: Boosey and Hawkes.

Redfield, J. (1934). Air column behavior in orchestral wind instruments. Journal of the Acoustical Society of America, 6, 34-6.

Reiman, A. L. (1971). Physics: mechanics and heat (Vol. 1). New York: Barnes and Noble.

Rendall, G. (1954). The clarinet. New York: Philosophical Library.

Richardson, E. G. (1929). The acoustics of orchestral instruments and the organ. New York: Oxford University Press.

Richardson, E. G. (1954). The transient tones of wind instruments. Journal of the Acoustical Society of America, 26(6), 960-62.

Robbins, D. H. (1968). Observation of the motion of the tongue in a reed organ pipe. Journal of the Acoustical Society of America, 45, 313 (Abstract).

Russianoff, L. (1974). The reed is dead: long live the reed. The Clarinet, $1,4-5$.

Saunders, F. (1946). Analyses of the tones of a few wind instruments. Journal of the Acoustical Society of America, 18(2), 395-401.

Simonsen, M. \& Renstrom, R. (1984). Triple-Dump [Computer program]. San Diego, CA: Beagle Bros. Inc.

Simonsen, M. \& Renstrom, R. (1984). Triple-Dump [Computer program manual]. San Diego, CA: Beagle Bros. Inc.

Skei, A. B. (1985). Woodwind, brass, and percussion instruments of the orchestra: a bibliographic guide. New York: Garland Publishing, Inc.

Spratt, J. (1956). How to make your own clarinet reeds. Stamford, Connecticut: Jack Spratt Music Company.

Stauffer, D. (1954). Intonation deficiencies of wind instruments in ensemble. Published doctoral dissertation, The Catholic University of America Press, Washington, D. C.

Stauffer, D. (1968). Role of oral cavities in the support of tone production in wind instruments. Journal of the Acoustical Society of America, 44, 367 (Abstract).

Stubbins, W. H., Lillya, C. P., \& Frederick, J. R. (1956). Effects of blowing pressure and embouchure factors on trumpet tone production. Journal of the Acoustical Society of America, 28, 769 (Abstract).

Stubbins, W. (1969). The art of clarinetistry. Ann Arbor, Michigan: Guillaume Press.

Taylor, J. (1932). Control of pitch in wind instruments. Journal of the Acoustical Society of America, 3, 317.

Taylor, R. B. (1969). A study of the concepts of breathing as presented in literature dealing with tone production for orchestral brass-wind instruments. Dissertation Abstracts International, 29, 2296A. (University Microfilms No. 69-678)

Todenhoft, C. N. (1967). The effect of humidity upon the intonation and response of wood clarinets. Dissertation Abstracts International, 28, 254A. (University Microfilms No. 67-351).

Watson, F. R. (1935). Sound. New York: John Wiley and Sons, Inc.

Wehner, W. L. (1961). The effect of interior shape and size of clarinet mouthpieces on intonation and tone quality. Dissertation Abstracts International, 61, 5031.

Wheeler, R. L. (1977). New technology refutes old techniques. The Instrumentalist, 32(2), 64-70.

Willaman, R. (1949). The clarinet and clarinet playing. Salt Point, New York: Author.

Wood, A. B. (1964). A textbook of sound. London: G. Bell and Sons, Ltd.

Worman, W. E. (1968). Spectral component coupling in wind instruments. Journal of the Acoustical Society of America, 45, 313 (Abstract).

Worman, W. E. (1970). Self-sustained oscillations in clarinet-like systems - quantitative results. Journal of the Acoustical Society of America, 48, 89 (Abstract).

Worman, W. E. (1972). Spectrum development with playing level in wind instruments. Journal of the Acoustical Society of America, 52, 148 (Abstract).

Young, R. W. (1947). Dependence of tuning of wind instruments on temperature. Journal of the Acoustical Society of America, 17(3), 187-191.

Young, R. W., \& Webster, J. C. (1959). Some factors affecting the intonation of a clarinet. Journal of the Acoustical Society of America, 31, 839 (Abstract).

Zebrowski, E., Jr. (1974). Physics for technicians. New York: McGraw-Hill.

APPENDIX A
DESCRIPTION OF SOFTWARE

Description of "Apple Swiss" Software

The "Apple Swiss" software used in this study was produced by Nicklin (1986) at Appalachian State University and is distributed by Nalan Computer Specialties (106 Highland Park Lane, Boone, N.C., 28607). The software program is designed to accompany the Nalandata A2 Data Converter Unit (see description in text in Chapter III, "Data Converter Specifications"). Using this software, digitized signals from the data converter can be manipulated (integrated, differentiated, normalized, compared with another signal, or simply stored) for printout, for storage on disk or tape, or for display on the video screen. The brief description of "Apple Swiss" applications which follow are only a small sample of possible applications offered within the software program. The main menu of the software program offers a variety of visual formats for the data. One may select parameters of the data set, the rate of samples to be collected per second, and memory range to be used. The menu offers a "scope" option which converts the screen of the computer into a real-time oscilloscope so that data being received from a transducer may be observed directly. By pushing any key on the computer's keyboard, data is taken, under preselected parameters, and stored within the computer. Via another memu option, data collected may be graphed,
page by page (for description of "pages," see Chapter IV, "Graphic Representation of the Data"), or screen by screen. Using "Triple Dump" (1984) by Beagle Bros. Inc., any "screen" of data may be converted to hard copy via a variety of parameter settings. Another menu option offers hard copy of data in the form of "stripcharts." Data may also be observed in a low-resolution plot called a "glass stripchart." Screens (or pages) of data may be superimposed upon one another for comparison, and hard copy is available of the superimpositions. The versatility of the program is notable. The softwear package is available with a manual and an Nalandata A2 Data Converer Unit from the address shown above.

APPENDIX B

TABLES

Table Page
1-B. Artificial Embouchure Tests for F3, Series I 141
2-B. Artificial Embouchure Tests for F3. Series II 142
3-B. Artificial Embouchure Tests for F3 Series III 143
4-B. Artificial Embouchure Testsfor F4, Series I144
5-B. Artificial Embouchure Tests for F4, Series II 145
6-B. Artificial Embouchure Tests for F4, Series III 146
7-B. Artificial Embouchure Tests for F4 Series IV 147
8-B. Artificial Embouchure Tests fo F4 Series V 148
9-B. Artificial Embouchure Tests for F5, Series I 149
10-B. Artificial Embouchure Tests for F6, Series I 150
11-B. Artificial Embouchure Testsfor Bb5, Series I 15112-B. Artificial Embouchure Testsfor Bb5, Series II . . .152
13-B. Stripchart for F4, Series III$35.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 3.3F4 T3 00 153
14-B. Stripchart for F4, Series III$34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain 3.3F4 T3 02154
Table
15-B. Stripchart for F4, Series III $33.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3 F4 T3 04 155
16-B. Stripchart for F5, Series I$36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 3.3F5 Tl 03 156
17-B. Stripchart for F5, Series I$33.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain 3.3F5 Tl 04157
18-B. Stripchart for F5, Series I31.5 cm H 2 O , 90 dBA , Gain 3.3F5 Tl 05158
19-B. Stripchart for Bb5, Series I $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 1.0 Bb5 Tl 00 159
20-B. Stripchart for Bb5, Series I$24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain 1.0Bb5 Tl 01160
2l-B. Stripchart for Bb5, Series I$22.5 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain 1.0Bb5 Tl 02161
22-B. Stripchart for F4, Series II$21.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Page 00162
23-B. Stripchart for F4, Series II $24.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Page 01 163
24-B. Stripchart for F4, Series II $26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, Page 02 164
25-B. Stripchart for F4, Series II 27.0 cm H2O, 92 dBA , Page 03 165
26-B. Stripchart for F4, Series II $28.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Page 04 166
27-B. Stripchart for F4, Series II 29.0 cm H2O, 93 dBA , Page 05 167
28-B. Stripchart for F4, Series II $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 72 \mathrm{dBA}$, Page 06 168
Table Page
29-B. Stripchart for F 4 , Series II $26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 85 \mathrm{dBA}$, Page 07 169
30-B. Stripchart for F 4 , Series II $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 08 170
31-B. Stripcharts for F4, Series IV Pages 02, 03 171
32-B. Stripcharts for F4, Series IV Pages 04, 05 172
33-B. Stripcharts for F4, Series IV Pages 06, 07 173
34-B. Stripcharts for F4, Series IV Pages 08, 09 174
35-B. Stripcharts for F 4 , Series IV Pages 10, 11 175
36-B. Stripcharts for F4, Series IVPages 00, 0117637-B. Stripchart for F4, Series V36.0 cm H 20 , Gain $=100$, Page 09Transient Containing Reed'sNatural Frequency17738-B. Stripchart for F4, Series V37.0 cm H 2 O , Gain $=1.0$, Page 04Reed's Natural Frequency178
39-B. Stripchart for F4, Series V37.0 cm H 20 , Gain $=100$, Page 03Transient Containing Steady State179
40-B. Stripchart for F3 High Intensity Closure$36.5 \mathrm{~cm} \mathrm{H} 20,98 \mathrm{dBA}$, Gain $=3.3$F3 T1 00180
4l-B. Stripchart for F3 High Intensity Closure$27.5 \mathrm{~cm} \mathrm{H} 20,90 \mathrm{dBA}$, Gain $=3.3$F3 T1 09181
42-B. Stripchart for F3 High Intensity Closure $24.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=1.0$ F3 T2 00 182
Table Page
43-B. Stripchart for F3 High Intensity Closure $25.5 \mathrm{~cm} \mathrm{H} 20,88 \mathrm{dBA}, \operatorname{Gain}=3.3$ F3 Tl 05 183
44-B. Stripchart for F4 High Intensity Closure $38.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=3.3$ F4 TI 04 184
45-B. Stripchart for F4 High Intensity Closure $34.0 \mathrm{~cm} \mathrm{H} 20,106 \mathrm{dBA}$, Gain $=3.3$ F4 Tl 10 185
46-B. Stripchart for F4 High Intensity Closure $28.0 \mathrm{~cm} \mathrm{H} 20,93 \mathrm{dBA}$, Gain $=33$ F4 T2 04 186
47-B. Stripchart for F4 High Intensity Closure $29.0 \mathrm{~cm} \mathrm{H} 20,93 \mathrm{dBA}$, Gain $=33$ F4 T2 05 187
48-B. Stripchart for F5 High Intensity Closure $36.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=3.3$ F5 Tl 03 188
49-B. Stripchart for Bb5 High Intensity Closure $34.0 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=3.3$ Bb5 Tl 03 189
50-B. Stripchart for F3, Series I $31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 70 \mathrm{dBA}$, Gain 3 F3 T1 07 190
51-B. Stripchart for F3, Series I $29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}, \mathrm{Gain} 33$ F3 T1 08 191
52-B. Stripchart for F3, Series I $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3F3 Tl 09192
53-B. Stripchart for F3, Series I $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3 F3 T1 10 193
54-B. Stripchart for F3, Series III $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 10 High Lip Pressure F3 T3 08 194
Table Page
55-B. Stripchart for F3, Series III $26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 10 Low Lip Pressure F3 T3 09 19556-B. Stripchart for F3, Series III$33.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 10High Lip PressureF3 T3 10 19657-B. Stripchart for F3, Series III$29.5 \mathrm{~cm} H 2 \mathrm{O}, 100 \mathrm{dBA}, \mathrm{Gain} 10$Low Lip PressureF3 T3 11197
58-B. Stripchart for F3, Series II$36.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Page 01 19859-B. Stripchart for F 3 , Series II$34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 97.5 \mathrm{dBA}$, Page 02 199
60-B. Stripchart for F3, Series II$32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Page 03 200
61-B. Stripchart for F 3 , Series II 30.5 cm H2O, 94 dBA , Page 04 201
62-B. Stripchart for F3, Series II $29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, Page 05 202
63-B. Stripchart for F3, Series II $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 84 \mathrm{dBA}$, Page 06 203
64-B. Stripchart for F3, Series II$25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 78 \mathrm{dBA}, \mathrm{Page} 07$. 204
65-B. Stripchart for F3, Series II$23.5 \mathrm{~cm} H 20,71 \mathrm{dBA}$, Page 08 205
66-B. Stripchart for F3, Series II22.5 cm H2O, 68 dBA, Page 09 20667-B. Stripchart for F5, Series I$31.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Page 06207
68-B. Stripchart for F5, Series I $29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 86 \mathrm{dBA}$, Page 07 208
69-B. Stripchart for Bb5, Series I $24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 09 209
70-B. Stripchart for Bb 5 , Series I $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$. Page 10 210
71-B. Stripchart for Bb5, Series I $31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Page 11 211
72-B. Stripchart for Bb5, Series II $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 02 21273-B. Stripchart for Bb5, Series II$25.6 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Page 04213
74-B. Stripchart for Bb5, Series II$26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Page 06 21475-B. Stripchart for Bb5, Series II$39.0 \mathrm{~cm} \mathrm{H} 20,105 \mathrm{dBA}$, Page 08 215
76-B. Stripchart for $F 6$, Series $I$$29.5 \mathrm{~cm} H 20,100$ dBA, Page 00 216
77-B. Stripchart for F6, Series I23.5. cm H2O, 96 dBA, Page 01 217
78-B. Stripchart for F3, Series IIIThreshold Sound and High Lip Pressure26.0 cm H20, Gain 10F3, T3, 06 218
79-B. Stripchart for F3, Series IIIThreshold Sound at Low Lip Pressure24.5 cm H 20 , Gain 10F3, T3, 07 219

Table 1-B

Artificial Embouchure Tests for F3
Series I

Pitch	[$\mathrm{F3}$			Test. No. 1				Date 6-1-87 Observations
Page	Par	EA.	L-R	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$	dBA	T	Gain	
00.	00-01	256	$\begin{aligned} & 37 / 4 \\ & 73.5 \end{aligned}$	36.5	98	26	3.3	ff
01	01-02	512	$70.5 /$	30.5	96	26	3.3	mf
02	02-03	768	$38.5 /$	32.5	90	28	3.3	pp
03	03-04	1024	$\begin{aligned} & 42 / 1 \\ & 66.5 \end{aligned}$	24.5	68	28.	3.3	Threshold sound pressure
04	04-05	1280	$\begin{aligned} & 40.5 / \\ & 68 \end{aligned}$	27i. 5	74	28	3.3	Threshold closing pressure
05	05-06	2536	$\begin{aligned} & 41.5 / \\ & 67 . \\ & \hline \end{aligned}$	25.5	88	28	3.3	Varied air pressure Joudest tone possible
06	06-07	17.92	43/65	22.0	68	28	3.3	Varied air pressure Softest tone possible
07	07-08	2048	39/.70	32.0	70	28	33	Constant air pressure Maximum lip pressure, ppp
08	08-09	2304	40/69	29.0	80	28	33	Less lip pressure, mf
09	09-10	2560	$\begin{aligned} & 41 / \\ & 68.5 \end{aligned}$	27.5	90	28	3.3	Less lip pressure, ff
10	10-11	2816	$\begin{aligned} & 41 / \\ & 68.5 \end{aligned}$	27.5	90	28.	3.3	Least amt. lip pressure possible before squeaking
11	11-12	307.2			-		:	

Disk Title ADC Data TX
Data Name F3: TEST 1°
Starting Address 0000
Ending Address 2816
Data Step 01
Date 010687

Table 2-B

Artificial Embouchure Tests for F3

 Series II

Disk Title ADC Data IX
Data Name _F3 TEST 2
Starting Address 0000
Ending Address 2560
Data Step 01
Date 010687

Table 3-B

Artificial Embouchure Tests for F3 Series III

Pitch	- F 3	Test ITo. 3						Date 6-1-67 Observations
Page	Par	EA	I-R	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$	dBA	T	Gain	
00.	00-01	256	$\begin{aligned} & 41.5 / \\ & 66.5 \end{aligned}$	25.0	-	26.	3.3	Threshold Sound High Lip Pressure
01	01-02	512	$\begin{aligned} & 41.5 / \\ & 66.5 \end{aligned}$	25.0	-	26	3.3	Threshold Sound Lov Lip Pressure
02	02-03	768	$\begin{aligned} & 39.5 / \\ & 68.0 \end{aligned}$	28.5	90	26.	3.3	High Lip Pressure 90 dBA
03	03-04	1024	$\begin{aligned} & 40.0 / \\ & 67.5 \end{aligned}$	27.5	90	26	3.3	Low Lip Pressure 90 dBA .
04	04-05	1280	$\begin{aligned} & 38.0 / \\ & 69.5 \end{aligned}$	31.5	100	$26:$	3.3	Hfigh Lip Pressure 100 dBA
05	05-06	1536	$\begin{aligned} & 40.0 / \\ & 67.5 \end{aligned}$	27.5	100	26	3.3	Low Lip Pressure 100 dBA
06	06-07	17.92	$\begin{aligned} & 40.5 / \\ & 66.5 \end{aligned}$	26.0	-	26	10	Threshold Sound High Lip Pressure
07	07-08	2048	$\begin{aligned} & 41.5 / \\ & 66.0 \end{aligned}$	24.5	-	26	10	Threshold Sound Iow Lip Pressure
08	08-09	2304	$\begin{aligned} & 40.0 / \\ & 67.5 \end{aligned}$	27.5	90	26	10	High Lip Pressure 90 dBA
09	09-10	2560	$\begin{aligned} & 40.5 / \\ & 66.5 \\ & \hline \end{aligned}$	26.0	90	26	10	Low Lip Pressure 90 dBA
10	10-11	2816	$\begin{aligned} & 37.5 / \\ & 71.0 \end{aligned}$	33.5	100	26	10	High Lip Pressure 100 dBA
11	11-12	307.2	$\begin{aligned} & 39.0 / \\ & 68.5 \end{aligned}$	29.5	100	26	10	Low Lip Pressure 100 dBA

Table 4-B

Artificial Embouchure Tests for F4 Series I

Pitch	- ${ }^{\text {F4 }}$			Test. No. _ I				$\text { Date } \quad 5-30-87$ Observations
Page	Par	EA	L-R.	$\begin{gathered} \mathrm{cm} \\ \mathrm{H} 2 \mathrm{O} \end{gathered}$	dBA	T	Gain	
00.	00-01	256	41/69	28.0	90	25.	3.3	pp , reed closing on mp
01	01-02	512						
02	02-03	768	39/71	32.0	96.	25	3.3	mf , reed closing on mp
03	03-04	2024		-				
04	04-05	2280	$\begin{aligned} & 36 / \\ & 74.5 \end{aligned}$	38.5	100	25	3.3	If, moved LI mech. to left
05	05-06	1536						
06	06-07	27.92	42/67	25.0	75	25	10	ppp, reed not. closing on mp
07	07-08	2048						
08	08-09	2304	38/72	34.0	80	25	100	mf, maximum lip pressure
09	09-10	2560						.
10	10-11	2816	38/72	34.0	106	25	3.3	ff, minimum lip pressure
11	11-12	307.2				-	:	

Table 5-B

Artificial Embouchure Tests for F4 Series II

Pitch	h F4	Test, No. 2						Date \qquad Observations
Page	Par	EA	I-R	$\begin{gathered} \mathrm{cm} \\ \mathrm{H} 2 \mathrm{O} \end{gathered}$	dBA	T	Gain	
00.	00-01	256	$\begin{aligned} & 43.5 / \\ & 65 \end{aligned}$	21.5	80	27.	33	Threshold sound, ppp
01	01-02	512	$\begin{aligned} & 42 / \\ & 66.5 \end{aligned}$	24.5	80	27	33	
02	02-03	768	$\begin{aligned} & 41.5 / \\ & 67.5 \end{aligned}$	26.0	88	27	33	mp
03	03-04	1204	41/68	27.0	92	27	33	
04	04-05	2280	$\begin{aligned} & 40.5 / \\ & 68.5 \end{aligned}$	28.0	93	27:	33	
05	05-06	2536	40/69	29.0	93	32	33	
06	06-07	17.92	42/67.	25.0	72	30	33	Threshold sound, ppp
07	07-08	2048	$\begin{aligned} & 47.51 \\ & 67.5 \end{aligned}$	26.0	85	32	33	mp
08	08-09	2304	41/68	27.0	90	32	33	mf
09	09-10	2560						
10	10-11	2816						
12	11-12	307.2					:	

Disk Title ADC Data V
Data Hame F4 TEST 2
Starting Address \qquad
Ending Address \qquad
Data Step \qquad 01
je:tc 300587

Table 6-B

Artificial Embouchure Tests for F4 Series III

Pitch	- F_{4}	Test No. 3						Date 3-30-87
Page	Par	EA	L-R	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$	dBA	T	Gain	
00.	00-01	256	$\begin{aligned} & 43.5 / \\ & 79 \end{aligned}$	35.5.	100	26	3.3	ff, reed closing on mp
01	01-02	512						
02	02-03	768	$\begin{aligned} & 44.5 / \\ & 78.5 \end{aligned}$	34.0	96	26	3.3	mf, reed not closing on mp
03	03-04	2024						
04	04-05	1280	45/78	33.0	90	26	3.3	p, reed not closing on mp
05	05-06	2536						
06	06-07	1792						
07	07-08	2048						
08	08-09	2304						
09	09-10	2560						
10	10-11	2816						
11	11-12	307.2						

Disk Title ADC
Data Hame
Starting Address
Ending Address
Data Step $\quad 01$
Date 300387

Table 7-B

Artificial Embouchure Tests for F4 Series IV

Pitch F4
Test. No.
Date 6-3-87;

Disk Title ADC; DATA XV
Data Name E4 TRANS
Starting Address 0000
Ending Address \qquad
\qquad
Data Step 01
Date 30687

Table 8-B

Artificial Embouchure Tests for F4 Series V

Pitc	- F 4	Test lo. 5						Date 5-30-37 Observations
Page	Par	EA	L-R	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$	dBA	T	Gain	
00.	00-01	256	$\begin{aligned} & 36.5 / \\ & 73.5 \end{aligned}$	37.9				aic $=$ ic
01	01-02	512	$\begin{aligned} & 36.51 \\ & 73.5 \end{aligned}$	37.0	--			$m i c=a c$
02	02-03	768	$\begin{aligned} & 36.5 / \\ & 73.5 \end{aligned}$	37.0	-	26	100	
03	03-04	1024	$\begin{aligned} & 36.5 / \\ & 73.5 \end{aligned}$	37.0	--	26	100	Transient containins steady state (lisint)
04	04-05	1280	$\begin{aligned} & 36.5 / \\ & 73.5 \end{aligned}$	37.0	-	26	1.0	$\underset{\text { (mic) }}{\substack{\text { Reed's } \\ \text { natural frequency }}}$
05	05-06	2536.						
06	06-07	17.92						
07	07-08	2048						
08	08-09	2304						
09	09-10	2560		36.0	-		100	Transient conteining Reed's Nat. Freq. of V (mic
10	10-11	8816						
11	11-12	307.2						

Disk Title | ADC DATA XVI |
| :--- |
| Data Name - P4 Trans_2 |
| Starting Address -0000 |
| Ending Address -2560 |
| Data Step 01 |
| Date $5=30-87$ |

Table 9-B

Artificial Embouchure Tests for F5 Series I

Pitch	W F5			Test: Ho. 1				Date 6-2-87 Observations
Page	Par	EA	L-R.	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$	dBA	T	Gain	
00.	00-01	256	$38.5 /$	32.5	78	26.	10	Threshold sound pressure
01	01-02	512	38/72	34.0	84	26	10	Threshold Closing Pressure
02	02-03	768	38/72	34.0	86.	26	10	Threshold Closing Pressure
03	03-04	2024	$\begin{aligned} & 37 / \\ & 73.5 \end{aligned}$	36.5	100	26	3.3	ff, reed closing on mp
04	04-05	1280	$\begin{aligned} & 38 / \\ & 71.5 \end{aligned}$	33.5	96	26	3.3	mf, reed closing on mp
05	05-06	1536.	$\begin{aligned} & 39 / \\ & 70.5 \end{aligned}$	31.5	90	26	3.3	P, reed closing on mp
06	06-07	17.92	$\begin{aligned} & 39 / \\ & 70.5 \end{aligned}$	37.5	96.	26	3.3.	mf, marimum air pressure
07	07-08	2048	40/69	29.0	86	26	3.3	p (about 1 cm. range, then tone stopped.)
08	08-09	2304						
09	09-10	2560						
10	10-11	2816						
11	11-12	307.2					-	

Disk Title ADC Data XIIII	
Data Name FSt	
Starting Address	0000
Ending Address	2048
Data Step 01	
Wete _020687	

Table l0-B

Artificial Embouchure Tests for F6 Series I

Disk Title _ AD	ADC. Data XIV	
Data Name F6	F6 TEST 1	
Starting Address	0000	
Ending Address	0512	
Data Step 01		
Dete 020687		

Table 11-B

Artificial Embouchure Tests for Bb5 Series I

Pitch	h Bb 5			Test. Ho. 1				$\text { Date } 5-31-87$ Observations
Page	Par	EA	L-R.	$\begin{aligned} & \mathrm{cm} \\ & \mathrm{H} 20 \end{aligned}$	dBA	T	Gain	
00.	00-01	256	42/67	25	100	26	1.0	ff
01	01-02	512	$\begin{aligned} & 42.5 / \\ & 60.5 \end{aligned}$	24	96	26	1.0	mf
02	02-03	768	$\begin{gathered} 43.0 / \\ 65.5 \\ \hline \end{gathered}$	22.5	90	26	1.0	pp
03	03-04	1024	38/72	34	100	28	3.3	ff: Least amount of lip pressure possible, closing
04	04-05	1280	40/70	30	103	32	3.3	ff: Squeak when lip pressure reduced past certain point
05	05-06	1536	$\begin{aligned} & 40.5 / \\ & 68.5 \\ & \hline \end{aligned}$	28	80	32	3.3	Host lip pressure possible without choking sound, pp closine. Less=subtone
06	06-07	1792	40/69	29	105	26	1.0	Threshold closing pressure
07	07-08	2048	41/68	27	90	28	1.0	Threshold sound level $=\mathrm{mf}$ Unable to get very soft
08	08-09	2304	$\begin{aligned} & 42.5 / \\ & 66.5 \end{aligned}$	24	90	30	1.0	Threshold sound pressure
09	09-10	2560	$\begin{aligned} & 42.5 / \\ & 66.5 \end{aligned}$	24	90	30	1.0	pp: Lip pressure constant
10	10-11	2816	42/67	25	100	30	1.0	mf: Lip pressure constant
21	11-12	3072	39/70	31	100	30	1.0	same mf dynamic even with increase in pressure

Disk Title ADC Data VII \& VIII

Data Name | B FLAT 5 TI |
| :--- |
| Starting Address 0000 |
| Ending Address $\frac{3072}{}$ |
| Date Step 01 |
| Date 310597 |.

Table 12-B

Artificial Embouchure Tests for Bb5

 Series II

Disk Title ADC Data III	
Data Name HE	H FLAT 5 TEST 3
Starting Address	0000
Ending Address	2560
Data Step 01	
Date 033087	

Table 13-B

Stripchart for F4, Series III $35.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 3.3 F4 T3 00

```
STARTING ADDRESS = 0 ENDING ADDRESS = 200
STEP = l DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

$-\sim$	---
1	24
2	5
3	5
4	5
5	5
6	5
7	6
8	5
9	5
10	5
11	5
12	5
13	5
14	6
15	5
16	5
17	5
18	5
19	7
20	13
21	21
22	29
23	39
24	51
25	75
26	107
27	139
28	159
29	175
30	180
31	177
32	171
33	166

-24	162
35	158
36	157
37	157
38	157
39	157
40	156
41	153
42	150
43	146
44	141
45	132
46	118
47	100
48	80
49	48
50	20
51	8
52	5
53	5
54	5
55	5
56	5
57	6
58	5
59	5
60	5
61	5
62	5
63	6
64	6
65	6
66	5
67	5

68	5	102	
69	7.	103	
70	14	104	
71	23	105	
72	31	106	
73	39	107	
74	55	108	
75	79	109	
76	111	110	
77	151	111	
78	173	112	
79	185	113	
80	188	114	
81	185	115	
82	180	116	
83	175	117	
84	172	118	
85	170	119	
86	169	120	15
87	168	121	23
88	168	122	31
89	168	123	42
90	166	124	55
91	163	125	79
92	160	126	111
93	156	127	151
94	150	128	171
95	142	129	183
96	128	130	186
97	108	131	182
98	80	132	176
99	48	133	171
100	20	134	167
101	8	135	164

136	162
137	162
138	161
139	160
140	158
141	156
142	152
143	148
144	144
145	134
146	120
147	100
148	72
149	40
150	16
151	7
152	5
153	5
154	5
155	5
156	5
157	5
158	5
159	5
160	5
161	5
162	5
163	6
164	6
165	5
166	5
167	5
168	5
169	7

-170	15
171	23
172	31
173	41
174	59
175	79
176	111
177	143
178	167
179	175
180	179
181	176
182	170
183	167
184	164
185	161
186	160
187	160
188	160
189	159
190	159
191	154
192	152
193	148
194	142
195	134
196	120
197	100
198	72
199	44
200	18
201	7
202	5
203	5

Table 14-B

> Stripchart for F4, Series III $34.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, ~ 96$ dBA, Gain 3.3 F4 T3 02

```
STARTING ADURESS = 512 ENDING ADDRESS = 712
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

512	11	546	117
513	11	547	108
514	11	548	98
515	12	549	88
516	13	550	76
517	15	551	64
518	19	552	44
519	21	553	32
520	23	554	18
521	25	555	12
522	29	556	9
523	37	557	7
524	47	558	7
525	59	559	9
526	71	560	10
527	87	561	11
528	99	562	11
529	115	563	11
530	127	564	11
531	143	565	11
532	155	566	13
533	163	567	15
534	165	568	19
535	164	569	21
536	160	570	23
537	155	571	25
538	150	572	29
539	146	573	37
540	142	574	47
541	140	575	59
542	138	576	71
543	135	577	85
544	131	578	95
545	124	579	111

580	127
581	141
582	151
583	156
584	157
585	155
586	150
587	145
588	140
589	136
590	134
591	132
592	129
593	126
594	122
595	116
596	108
597	100
598	90
599	80
600	68
601	52
602	40
603	26
604	16
605	11
606	8
607	7
608	7
609	9
610	10
611	11
612	11
613	11

$-\sim-$	-
614	11
615	13
616	15
617	17
618	20
619	22
620	23
621	27
622	31
623	39
624	51
625	63
626	79
627	91
628	103
629	119
630	133
631	142
632	153
633	158
634	158
635	156
636	152
637	147
638	143
639	140
640	138
641	136
642	133
643	130
644	124
645	118
646	112
647	102

-7	
648	92
649	80
650	66
651	52
652	36
653	24
654	16
655	10
656	8
657	8
658	9
659	10
660	11
661	11
662	12
663	12
664	12
665	14
666	17
667	19
668	21
669	23
670	25
671	29
672	35
673	46
674	59
675	71
676	85
677	95
678	111
679	127
680	143
681	155
6	

-28	161
683	164
684	163
685	158
686	153
687	148
688	144
689	141
690	138
691	136
692	133
693	128
694	122
695	116
696	108
697	98
698	88
699	74
700	60
701	44
702	32
703	20
704	12
705	9
706	7
707	8
708	9
709	10
710	11
711	11
712	11
713	11
714	12
715	14

Table 15-B

Stripchart for F4, Series III $33.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3
F4 T3 04

STAR'PING ADDRESS $=1024$ ENDING ADDRESS $=1224$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1024	109	1058	25	1092	82	1126	127	1160	31	1194	56
1025	115	1059	27	1093	74	1127	132	1161	35	1195	48
1026	121	1060	29	1094	66	1128	134	1162	38	1196	41
1027	125	1061	31	1095	58	1129	135	1163	42	1197	35
1028	127	1062	34	1096	50	1130	135	1164	47	1198	30
1029	131	1063	37	1097	43	1131	133	1165	53	1199	27
1030	131	1064	41	1098	37	1132	132	1166	59	1200	25
1031	131	1065	46	1099	32.	1133	129	1167	63	1201	23
1032	130	1066	51	1100	28	1134	126	1168	73	1202	23
1033	128	1067	57	1101	26	1135	122	1169	79	1203	23
1034	125	1068	63	1102	24	1136	118	1170	89	1204	23
1035	122	1069	71	1103	23	1137	114	1171	98	1205	24
1036	118	1070	79	1104	23	1138	109	1172	106	1206	25
1037	114	1071	87	1105	24	1139	104	1173	113	1207	26
1038	110	1072	95	1106	24	1140	98	1174	119	1208	27
1039	104	1073	103°	1107	25	1141	90	1175	123	1209	29
1040	98	1074	111	1108	27	1142	82	1176	127	1210	31
1041	93	1075	117	1109	28	1143	73	1177	129	1211	35
1042	85	1076	121	1110	31	1144	64	1178	131	1212	38
1043	77	1077	125	1111	33	1145	56	1179	131	1213	42
1044	69	1078	127	1112	36	1146	48	1180	129	1214	47
1045	61	1079	128	1113	39	1147	40	1181	127	1215	51
1046	53	1080	129	1114	44	1148	34	1182	124	1216	59
1047	45	1081	128	1115	49	1149	30	1183	121	1217	66
1048	38	1082	126	1116	55	1150	27	1184	119	1218	74
1049	33	1083	124	1117	62	1151	25	1185	115	1219	83
1050	29	1084	122	1118	69	1152	24	1186	112	1220	91
1051	26	1085	119	1119	77	1153	23	1187	107	1221	99
1052	24	1086	116	1120	86	1154	23	1188	102	1222	107
1053	23	1087	112	1121	95	1155	25	1189	96	1223	113
1054	23	1088	109	1122	103	1156	25	1190	90	1224	119
1055	23	1089	103	1123	111	1157	27	1191	82	1225	123
1056	23	1090	97	1124	119	1158	28	1192	74	1226	126
1057	24	1091	90	1125	123	1159	29	1193	64	1227	127

Table 16-B

Stripchart for F5, Series I $36.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 3.3 F5 T1 03

```
STARTING ADDRESS = 768 ENDING ADDRESS = 968
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

768	8	802	6	836	87	870	10	904	6	938	83
769	6	803	6	837	95	871	7	905	6	939	92
770	6	804	6	838	98	872	6	906	6	940	95
771	6	805	7	839	96	873	6	907	7	941	96
772	6	806	9	840	86	874	6	908	7	942	88
773	6	807	21	841	72	875	6	909	15	943.	74
774	6	808	43	842	48	876	6	910	39	944	56
775	6	809	63	843	28	877	ϵ	911	63	945	32
776	6	810	79	844	12	878	6	912	79	946	16
777	6	811	91	845	7	879	6	913	91	947	8
778	6	812	95	846	6	880	6	914	99	948	6
779	6	813	96	847	6	881	6	915	100	949	6
780	7	814	89	848	6	882	7	916	96	950	6
781	13	815	76	849	6	883	11	917	84	951	6
782	31	816	56	850	6	884	27	918	64	952	6
783	59	817	36	851	6	885	55	919	42	953	6
784	77	818	18	852	6	886	75	920	22	954	6
785	89	819	8	853	6	887	89	921	10	955	6
786	95	820	6	854	6	888	97	922	7	956	6
787	98	821	6	855	6	889	102	923	6	957	6
788	94	822	6	856	7	890	100	924	6	958	6
789	84	823	6	857	7	891	90	925	6	959	7
790	66	824	6	858	15	892	76	926	6	960	13
791	48	825	6	859	39	893	52	927	6	961	31
792	24	826	6	860	63	894	32	928	6	962	55
793	11	827	6	861	83	895	16	929	6	963	75
794	7	828	6	862	94	896	8	930	6	964	87
795	6	829	6	863	100	897	7	931	6	965	95
796	6	830	6	864	101	898	6	932	6	966	97
797	6	831	7	865	96	899	6	933	7	967	94
798	6	832	11	866	82	900	6	934	9	968	84
799	6	833	31	867	64	901	6	935	23	969	66
800	6	834	55	868	40	902	6	936	47	970	48
801	6	835	75	869	20	903	6	937	69	971	24

Table 17-B

Stripchart for F5, Series I $33.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain 3.3 F5 Tl 04

STARTING ADDRESS $=1024$ ENDING ADDRESS $=1224$
$\operatorname{STEP}=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1024	11	1058	70	1092	6	1126	10	1160	72	1194	ϵ
1025	19	1059	57	1093	6	1127	19	1161	64	1195	6
1026	35	1060	42	1094	6	1128	31	1162	44	1196	6
1027	53	1061	26	1095	6	1129	55	1163	28	1197	6
1028	67	1062	14	1096	6	1130	70	1164	16	1198	6
1029	77	1063	8	1097	6	1131	79	1165	9	1199	6
1030	81	1064	7	1098	7	1132	85	1166	7	1200	6
1031	80	1065	6	1099	7	1133	85	1167	6	1201	7
1032	74	1066	6	1100	8	1134	80	1168	6	1202	7
1033	64	1067	6	1101	14	1135	70	1169	6	1203	11
1034	48	1068	6	1102	27	1136	56	1170	6	1204	23
1035	32	1069	6	1103	43	1137	36	1171	6	1205	39
1036	18	1070	6	1104	61	1138	21	1172	6	1206	55
1037	10	1071	6	1105	75	1139	12	1173	6	1207	69
1038	7	1072	6	1106	83	1140	7	1174	6	1208	77
1039	6	1073	7	1107	85	1141	7	1175	6	1209	80
1040	6	-1074	7	1108	82	1142	6	1176	7	1210	79
1041	6	1075	10	1109	74	1143	6	1177	9	1211	73
1042	6	1076	19	1110	64	1144	6	1178	15	1212	64
1043	6	1077	31	1111	44	1145	6	1179	31	1213	48
1044	6	1078	54	1112	28	1146	6	1180	47	1214	32
1045	6	1079	69	1113	16	1147	6	1181	63	1215	16
1046	6	1080	79	1114	9	1148	6	1182	75	1216	9
1047	6	1081	83	1115	7	1149	7	1183	80	1217	7
1048	7	1082	83	1116	7	1150	7	1184	81	1218	6
1049	7	1083	77	1117	6	1151	7	1185	76	1219	6
-1050	13	1084	66	1118	6	1152	13	1186	66	1220	6
1051	27	1085	52	1119	6	1153	23	1187	52	1221	6
1052	43	1086	34	1120	6	1154	39	1188	36	1222	6
1053	59	1087	20	1121	6	1155	58	1189	21	1223	6
1054	71	1088	10	1122	6	1156	71	1190	11	1224	6
1055	79	1089	7	1123	7	1157	79	1191	7	1225	6
1056	81	1090	7	1124	7	1158	83	1192	6	1226	7
1057	78	1091	6	1125	7	1159	80	1193	6	1227	7

Table 18-B

> Stripchart for F5, Series I $31.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3
> F5 T1 05

STARTING ADDRESS $=1280$ ENDING ADDRESS $=1480^{\circ}$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1280	48	1314	9	1348	8	1382	48	1416	9	1450	6
1281	48	1315	8	1349	10	1383	48	1417	7	1451	10
1282	46	1316	7	1350	12	1384	45	1418	7	1452	12
1283	41	1317	7	1351	15	1385	41	1419	7	1453	15
1284	34	1318	7	1352	23	1386	34	1420	7	1454	23
1285	27	1319	7	1353	30	1387	27	1421	7	1455	30
1286	20	1320	7	1354	37	1388	20	1422	7	1456	39
1287	14	1321	7	1355	43	1389	14	1423	7	1457	45
1288	10	1322	8	1356	47	1390	10	1424	7	1458	49
1289	8	1323	9	1357	50	1391	8	1425	9	1459	50
1290	7	1324	11	1358	48	1392	7	1426	10	1460	49
1291	7	1325	15	1359	44	1393	7	1427	13	1461	45
1292	7	1326	21	1360	38	1394	7	1428	18	1462	40
1293	7	1327	27	1361	32	1395	7	1429	25	1463	32
1294	7	1328	35	1362	24	1396	7	1430	31	1464	24
1295	7	1329	42	1363	16	1397	7	1431	39	1465	18
1296	7	1330	47	1364	12	1398	7	1432	45	1466	13
1297	8	1331	50	1365	9	1399	7	1433	47	1467	10
1298	10	1332	50	1366	8	1400	9	1434	47	1468	8
1299	13	1333	48	1367	7	1401	11	1435	45	1469	7
1300	17	1334	42	1368	7	1402	$\therefore 15$	1436	41	1470	7
1301	23	1335	36	1369	7	1403	$21^{\text {i }}$	1437	34	1471	7
1302	30	1336	28	1370	7	1404	28	1438	26	1472	7
1303	38	1337	20	1371	7	1405	35	1439	20	1473	7
1304	44	1338	14	1372	7	1406	41	1440	14	1474	7
1305	47	1339	11	1373	7	1407	46	1441	10	1475	7
1306	49	1340	8	1374	9	1408	47	1442	8	1476	9
1307	48	1341	7	1375	11	1409	46	1443	7	1477	11
1308	44	1342	7	1376	14	1410	42	1444	7	1478	14
1309	38	1343	7	1377	19	1411	37	1445	7	1479	19
1310	32	1344	7	1378	25	1412	30	1446	7	1480	25
1311	24	1345	7	1379	31	1413	22	1447	7	1481	31
1312	17	1346	7	1380	39	1414	16	1448	7	1482	39
1313	12	1347	7	1381	45	1415	12	1449	7	1483	45

Table 19-B

Stripchart for Bb5, Series I $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 1.0
Bb5 T1 00

Table 20-B

> Stripchart for Bb5, Series I $24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Gain 1.0 Bb5 Tl 01

```
STARTING ADDRESS = 256 ENDING ADDRESS = 456
```

STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

256	41	290	30	324	21	358	29	392	45	426	53
257	45	291	35	325	23	359	24	393	40	427	53
258	47	292	39	326	27	360	21	394	34	428	50
259	50	293	43	327	31	361	20	395	28	429	46
260	51	294	46	328	35	362	23	396	23	430	40
261	52	295	49	329	39	363	27	397	20	431	34
262	50	296	52	330	43	364	31	398	20	432	28
263	46	297	54	331	47	365	35	399	23	433	23
264	41	298	54	332	50	366	39	400	27	434	21
265	35	299	52	333	53	367	43	401	31	435	21
266	29	300	48	334	54	368	46	402	35	436	25
267	24	301	42	335	53	369	49	403	39	437	29
268	21	302	35	336	50	370	51	404	43	438	33
269	20-	303	28	337	46	371	52	405	46	439	38
270	23	304	24	338	40	372	52	406	49	440	42
271	27	305	21	339	33	373	48	407	51	441	45
272	31	306	22	340	27	374	44	408	52	442	49
273	35	307	25	341	23	375	38	409	51	443	51
274	39	308	29	342	21	376	32	410	48	444	53
275	43	309	33	343	21	377	26	411	42	445	54
276	47	310	37	344	24	378	22	412	36	446	52
277	49	311	41	345	29	379	20	413	30	447	48
278	52	312	45	346	33	380	21	414	25	448	43
279	53	313	49	347	37	381	25	415	21	449	37
280	52	314	51	348	41	382	29	416	20	450	30
281	49	315	54	349	45	383	33	417	22	451	25
282	44	316	55	350	47	384	37	418	26	452	21
283	38	317	53	351	51	385	41	419	30	453	21
284	32	318	49	352	53	386	45	420	34	454	23
285	26	319	44	353	53	387	47	421	39	455	27
286	22	320	38	354	51	388	50	422	43	456	31
287	20-	321	32	355	48	389	52	423	46	457	37
288	22	322	25	356	42	390	52	424	49	458	41
289	26	323	22	357	36	391	50	425	51	459	45

Table 2l-B

Stripchart for Bb5, Series I $22.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}, \mathrm{Gain} 1.0$ Bb5 Tl 02

STARTING ADDRESS $=512$ ENDING ADDRESS $=712$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

512	55	546	49
513	57	547	51
514	58	548	54
515	57	549	55
516	55	550	57
517	52	551	58
518	46	552	58
519	40	553	56
520	35	554	52
521	32	555	46
522	30-	556	40
523	31	557	35
524	34	558	32
525	39	559	31
526	43	560	33
527	47	561	37
528	49	562	41
529	51	563	45
530	54	564	47
531	55	565	51
532	57	566	54
533	57	567	56
534	56	568	58
535	53	569	59
536	48	570	59
537	42	571	58
538	37	572	54
539	32	573	49
540	30^{-}	574	44
541	30	575	38
542	33	576	34
543	37	577	32
544	42	578	31
545	45	579	35

	$-0----$
580	39
582	43
583	51
584	54
585	56
586	58
587	59
588	60
589	59
590	56
591	52
592	46
593	41
594	36
595	33
596	32
597	34
598	38
599	42
600	46
601	50
602	53
603	55
604	58
605	59
606	60
607	60
608	58
609	54
610	49
611	44
612	38
613	34

614	32
615	32
616	35
617	39
618	45
619	47
620	51
621	54
622	55
623	57
624	59
625	59
626	58
627	55
628	51
629	45
630	40
631	35
632	32
633	31
634	33
635	37
636	42
637	46
638	49
639	51
640	54
641	56
642	58
643	59
644	58
645	56
646	52
647	48

648	41
649	36
650	32
651	30
652	31
653	35
654	39
655	43
656	47
657	50
658	53
659	55
660	56
661	58
662	58
663	56
664	53
665	48
666	43
667	38
668	33
669	30
670	31
671	33
672	37
673	41
674	45
675	47
676	51
677	53
678	55
679	57
680	58
681	57

682	---
685	50
684	45
685	40
686	35
687	32
688	30
689	31
690	35
691	39
692	44
693	47
694	51
695	53
696	55
697	57
698	58
699	58
700	57
701	54
702	49
703	44
704	38
705	34
706	31
707	31
708	34
709	39
710	43
711	47
712	50
713	53
714	55
715	57

Table 22-B

Stripchart for F 4 , Series II $21.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Page 00

```
STARTING ADDRESS = 0 ENDING ADDRESS = 200
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

0	55
1	57
2	59
3	60
4	61
5	62
6	63
7	65
8	66
9	67
10	68
11	69
12	69
13	69
14	69
15	68
16	68
17	67
18	67
19	66
20	65
21	64
22	64
23	63
24	62
25	61
26	60
27	58
28	57
29	55
30	54
31	53
32	52
33	52

-14	51
35	51
36	51
37	51
38	51
39	51
40	51
41	52
42	52
43	53
44	54
45	54
46	55
47	55
48	57
49	58
50	59
51	61
52	62
53	63
54	63
55	65
56	66
57	67
58	68
59	69
60	69
61	69
62	68
63	68
64	67
65	67
66	66
67	65

$-\infty$			
$-\sim$	64	102	60
69	63	103	61
70	62	104	62
71	62	105	63
72	61	106	65
73	60	107	66
74	58	108	66
75	57	109	66
76	55	110	66
77	54	111	65
78	52	112	65
79	51	113	64
80	50	114	63
81	49	115	63
82	49	116	62
83	49	117	62
84	49	118	61
85	50	119	60
86	49	120	60
87	49	121	59
88	49	122	58
89	50	123	56
90	50	124	55
91	50	125	54
92	51	126	52
93	51	127	51
94	52	128	50
95	53	129	50
96	53	130	49
97	55	131	49
98	56	132	49
99	57	133	49
100	59	134	49
101	59	135	49

136	49
137	50
138	48
139	51
140	51
141	52
142	53
143	53
144	54
145	55
146	57
147	59
148	60
149	61
150	62
151	63
152	64
153	66
154	67
155	68
156	69
157	69
158	69
159	69
160	68
161	68
162	67
163	67
164	67
165	66
166	65
167	64
168	63
169	62

170	61
171	60
172	59
173	57
174	55
175	54
176	53
177	52
178	52
179	51
180	51
181	51
182	51
183	52
184	51
185	52
186	52
187	52
188	53
189	53
190	54
191	55
192	55
193	57
194	58
195	59
196	61
197	62
198	63
199	63
200	65
201	66
202	67
203	68

Table 23-B

Stripchart for F4, Series II
$24.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 80 \mathrm{dBA}$, Page 01

Table 24-B

Stripchart for F4, Series II $26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 88 \mathrm{dBA}$, Page 02

STARTING $\text { STEP }=1$	DATA	RATE 51	$\begin{array}{r} \text { EN } \\ 172 \end{array}$	NG ADD	$\text { RESS }=$						
SIX COLU	: Po	NT NU	BER	VALUE							
513	84	547	67	581	55	615	76	649	107	683	54
514	81	548	70	582	56	616	73	650	127	684	54
515	79	549	75	583	56	617	71	651	143	685	56
516	76	550	83	584	56	618	69	652	147	686	55
517	74	551	103	585	57	619	67	653	144	687	56
518	71	552	125	586	57	620	64	654	134	688	57
519	69	553	143	587	57	621	61	655	120	689	59
520	67	554	152	588	57	622	58	656	108	690	61
521	65	555	151	589	58	623	55	657	96	691	63
522	63	556	144	590	59	624	54	658	90	692	65
523	60	557	130	591	61	625	54	659	85	693	67
524	57	558	116	592	63	626	54	660	82	694	69
525	55	559	105	593	64	627	54	661	79	695	73
526	53	560	96	594	66	628	53	662	77	696	79
527	53	561	90	595	68	629	53	663	74	697	95
528	53	562	87	596	70	630	53	664	72	698	119
529	53	563	85	597	73	631	53	665	70	699	139
530	53	564	82	598	79	632	54	666	68	700	151
531	53	565	80	599	91	633	54	667	66	701	152
532	53	566	77	600	111	634	54	668	64	702	148
533	53	567	74	601	135	635	54	669	61	703	138
534	53	568	72	602	-151	636	55	670	58	704	128
535	53	569	71	603	158	637	55	671	55	705	112
536	54	570	69	604	155	638	55	672	53	706	101
537	54	571	66	605	144.	639	56	673	53	707	93
538	55	572	63	606	132	640	58	674	53	708	89
539	55	573	60	607	116	641	59	675	53	709	86
540	55	574	57	608	104	642	61	676	53	710	84
541 ,	55	575	56	609	96	643	63	677	53	711	82
542	58	576	55	610	91	644	64	678	53	712	79
543	60	577	55	611	87	645	67	679	53	713	76
544	61	578	55	612	85	646	70	680	53	714	74
545	63	579	55	613	82	647	75	681	53	715	72
546	65	580	55	614	79	648	87	682	54	716	70

Table 25-B

Stripchart for F4, Series II $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 92 \mathrm{dBA}$, Page 03

```
STARTING ADDRESS = 769 ENDING ADDRESS = 969
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

		-1	$-\cdots$
769	78	803	70
770	76	804	75
771	74	805	87
772	73	806	103
773	71	807	123
774	70	808	135
775	68	809	136
776	65	810	122
777	61	811	106
778	58	812	92
779	55	813	84
780	54	814	80
781	54	815	77
782	54	816	76
783	54	817	75
784	54	818	74
785	53	819	72
786	53	820	71
787	53	821	70
788	54	822	68
789	54	823	66
790	54	824	64
791	54	825	62
792	53	826	58
793	54	827	55
794	54	828	53
795	54	829	52
796	55	830	52
797	55	831	52
798	57	832	52
799	58	833	52
800	60	834	52
801	63	835	52
802	67	836	52

837	53	871	71
838	53	872	70
839	53	873	68
840	53	874	64
841	53	875	60
842	52	876	57
843	54	877	55
844	54	878	55
845	55	879	55
846	56	880	55
847	57	881	55
848	59	882	55
849	61	883	55
850	65	884	55
851	68	885	55
852	71	886	56
853	79	887	56
854	91	888	56
855	111	889	56
856	127	890	56
857	139	891	56
858	136	892	57
859	120	893	57
860	104	894	58
861	92	895	59
862	86	896	59
863	82	897	62
864	80	898	65
865	79	899	69
866	78	900	71
867	77	901	76
868	76	902	83
869	74	903	95
870	73	904	119

-105	139
906	144
907	136
908	120
909	104
910	93
911	86
912	83
913	81
914	80
915	79
916	78
917	76
918	74
919	72
920	71
921	69
922	66
923	64
924	59
925	56
926	54
927	54
928	54
929	54
930	54
931	53
932	53
933	54
934	54
935	54
936	54
937	54
938	54

939	54
940	54
941	54
942	54
943	55
944	55
945	57
946	59
947	62
948	65
949	69
950	73
951	79
952	95
953	111
954	127
955	131
956	122
957	108
958	96
959	84
960	80
961	76
962	75
963	75
964	74
965	73
966	71
967	70
968	69
969	67
970	65
971	64
972	60

Table 26-B

Stripchart for F4, Series II $28.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 93 \mathrm{dBA}$, Page 04

STARTING ADDRESS $=1025$ ENDING ADDRESS $=1225$
$\operatorname{STEP}=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

						1127	53	1161	71	1195	77
1025	53	1059	71	1093	57						
1026	53	1060	71	1094	61	1128	53	1162	70 68	1196	87 99
1027	53	1061	70	1095	63	1129	53	1163	68	1197	99
1028	52	1062	69	1096	69	1130	53	1164	67	1198	110
1029	52	1063	68	1097	73	1131	53	1165	65	1199	111
1030	52	1064	67	1098	79	1132	53	1166	62	1200	104
1031	53	1065	66	1099	91	1133	54	1167	58	1201	90
1032	53	1066	64	1100	103	1134	54	1168	55	1202	80
1033	53	1067	63	1101	111	1135	54	1169	53	1203	75
1034	53	1068	61	1102	108	1136	54	1170	53	1204	72
1035	52	1069	58	1103	96	1137	54	1171	52	1205.	71
1036	52	1070	54	1104	86	1138	55	1172	53	1206	71
1037	53	1071	51	1105	78	1139	55	1173	52	1207	70
1038	53	1072	51	1106	75	1140	55	1174	52	1208	69
1039	53	1073	50	1107	73	1141	57	1175	52	1209	68
1040	53	1074	50	1108	72	1142	61	1176	52	1210	67
1041	53	1075	50	1109	72	1143	65	1177	52	1211	66
1042	53	1076	50	1110	72	1144	69	1178	52	1212	64
1043	54	1077	50	1111	71	1145	73	1179	52	1213	63
1044	57	1078	50	1112	70	1146	78	1180	52	1214	61
1045	61	1079	50	1113	69	1147	87	1181	52	1215	58
1046	63	1080	50	1114	67	1148	101	1182	52	1216	54
1047	68	1081	51	1115	67	1149	111	1183	52	1217	52
1048	71	1082	51	1116	65	1150	116	1184	52	1218	51
1049	78	1083	51	1117	62	1151	112	1185	53	1219	50
1050	87	1084	51	1118	59	1152	97	1186	53	1220	50
1051	103	1085	51	1119	55	1153	86	1187	53	1221	50
1052	111	1086	51	1120	53	1154	80	1188	53	1222	50
1053	112	1087	51	1121	53	1155	76	1189	53	1223	50
1054	100	1088	51	1122	53	1156	75	1190	55	1224	50
1055	88	1089	52	1123	53	1157	75	1191	60	1225	50
1056	80	1090	52	1124	53	1158	74	1192	63	1226	50
1057	75	1091	52	1125	53	1159	73	1193	67	1227	51
1058	72	1092	54	1126	52	1160	72	1194	71	1228	51

Table 27-B

Stripchart for FA , Series II
$29.0 \mathrm{~cm} \mathrm{H} 20,93 \mathrm{dBA}$, Page 05

SIX COLUMNS: POINT NUMBER				VALUE							
1281	55	1315	56	1349	83	1383	54	1417	55	1451	74
1282	55	1316	54	1350	77	1384	54	1418	55	1452	74
1283	56	1317	54	1351	74	1385	55	1419	55	1453	73
1284	56	1318	53	1352	71	1386	57	1420	55	1454	71
1285	56	1319	53	1353	72	1387	60	1421	55	1455	70
1286	56	1320	53	1354	71	1388	63	1422	55	1456	69
1287	56	1321	53	1355	71	1389	68	1423	55	1457	67
1288	57	1322	53	1356	70	1390	71	1424	55	1458	65
1289	59	1323	53	1357	69	1391	77	1425	55	1459	62
1290	63	1324	53	1358	67	1392	85	1426	55	1460	59
1291	67	1325	53	1359	66	1393	95	1427	55	1461	56
1292	71	1326	53	1360	64	1394	101	1428	55	1462	54
1293	75	1327	53	1361	62	1395	103	1429	55	1463	53
1294	79	1328	53	1362	60	1396	100	1430	55	1464	53
1295	87	1329	53	1363	56	1397	92	1431	56	1455	53
1296	99	1330	53	1364	54	1398	84	1432	56	1466	53
1297	103	1331	53	1365	53	1399	80	1433	56	1467	52
1298	104	1332	53	1366	52	1400	77	1434	57	1468	52
1299	99	1333	53	1367	52	1401	76	1435	59	1469	52
1300	90	1334	53	1368	52	1402	75	1436	63	1470	53
1301	83	1335	53	1369	52	1403	75	1437	67	1471	52
1302	78	1336	54	1370	52	1404	74	1438	71	1472	53
1303	76	1337	55	1371	52	1405	73	1439	75	1473	53
1304	75	1338	57	1372	52	1406	72	1440	79	1474	53
1305	75	1339	61	1373	52	1407	71	1441	87	1475	52
1306	74	1340	65	1374	53	1408	69	1442	99	1476	53
1307	73	1341	69	1375	53	1409	68	1443	103	1477	53
1308	72	1342	73	1376	53	1410	66	1444	104	1478	53
1309	70	1343	79	1377	53	1411	62	1445	98	1479	53
1310	69	1344	87	1378	53	1412	58	1446	90	1480	53
1311	68	1345	94	1379	53	1413	56	1447	83	1481	53
1312	66	1346	98	1380	54	1414	55	1448	78	1482	53
1313	63	1347	96	1381	54	1415	55	1449	76	1483	54
1314	60	1348	90	1382	54	1416	55	1450	75	1484	57

Table 28-B

Stripchart for F4, Series II $25.0 \mathrm{~cm} H 2 \mathrm{O}, 72 \mathrm{dBA}$, Page 06

```
STARTING ADDRESS = 1537 ENDING ADDRESS = 1737
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

1537	73	1571	90	1605	71	1639	68	1673	85	1707	79
1538	72	1572	88	1606	72	1640	68	1674	84	1708	82
1539	72	1573	87	1607	73	1641	68	1675	82	1709	83
1540	71	1574	85	1608	74	1642	68	1676	80	1710	85
1541	71	1575	83	1609	75	1643	68	1677	79	1711	87
1542	71	1576	81	1610	77	1644	68	1678	77	1712	89
1543	71	1577	80	1611	78	1645	69	1679	76	1713	90
1544	71	1578	78	1612	80	1646	69	1680	75	1714	91
1545	71	1579	77	1613	82	1647	69	1681	75	1715	91
1546	71	1580	75	1614	84	1648	70	1682	74	1716	92
1547	71	1581	74	1615	85.	1649	70	1683	74	1717	91
1548	71	1582	73	1616	86	1650	71	1684	73	1718	90
1549	71	1583	72	1617	87	1651	71	1685	73	1719	88
1550	72	1584	71	1618	87	1652	72	1686	72	1720	87
1551	72	1585	71	1619	87	1653	73	1687	72	1721	85
1552	73	1586	70	1620	87	1654	74	1688	71	1722	83
1553	73	1587	69	1621	86	1655	75	1689	71	1723	81
1554	74	1588	69	1622	84	1656	76	1690	71	1724	79
1555	74	1589	68	1623	82	1657	77	1691	71	1725	77
1556	75	1590	68	1624	80	1658	79	1692	71	1726	76
1557	75	1591	69	1625	78	1659	81	1693	71	1727	75
1558	77	1592	67	1626	77	1660	83	1694	71	1728	73
1559	78	1593	68	1627	76	1661	85	1695	71	1729	72
1560	79	1594	67	1628	75	1662	87	1696	72	1730	72
1561	81	1595	67	1629	74	1663	89	1697	72	1731	71
1562	83	1596	68	1630	72.	1664	91	1698	73	1732	71
1563	85	1597	68	1631	72	1665	92	1699	73	1733	70
1564	87	1598	68	1632	71	1666	93	1700	73	1734	69
1565	88	1599	68	1633	70	1667	93	1701	74	1735	69
1566	89	1600	69	1634	63	1668	93	1702	75	1736	68
1567	91	1601	69	1635	69	1669	92	1703	75	1737	68
1568	91	1602	69	1636	69	1670	91	1704	77	1738	68
1569	91	1603	70	1637	69	1671	89	1705	77	1739	68
1570	91	1604	71	1638	68	1672	87	1706	79	1740	68

Table 29-B

Stripchart for F4, Series II $26.0 \mathrm{~cm} \mathrm{H} 20,85 \mathrm{dBA}$, Page 07

STARTING ADDRESS $=1793$ ENDING ADDRESS $=1993$
STEP $=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

1793	88	1827	117	1861	55	1895	67	1929	244	1963	61
1794	82	1828	143	1862	55	1896	65	1930	240	1964	63
1795	77	1829	183	1863	57	1897	63	1931	224	1965	63
1796	74	1830	215	1864	57	1898	60	1932	196	1966	65
1797	72	1831	231	1865	58	1899	58	1933	176	1967	67
1798	70	1832	236	1866	59	1900	56	1934	152	1968	69
1799	67	1833	228	1867	60	1901	54	1935	132	1969	71
1800	65	1834	208	1868	61	1902	53	1936	120	1970	75
1801	62	1835	184	1869	63	1903	53	1937	108	1971	79
1802	60	1836	160	1870	65	1904	53	1938	98	1972	89
1803	57	1837	140	1871	67	1905	53	1939	90	1973	107
1804	56	1838	128	1872	69	1906	53	1940	84	1974	127
1805	55	1839	114	1873	72	1907	54	1941	78	1975	175
1806	55	1840	104	1874	79	1908	54	1942	75	1976	207
1807	55	1841	96	1875	93	1909	55	1943	72	1977	235
2808	56	1842	86	1876	115	1910	55	1944	70	1978	241
1809	56	1843	80	1877	143	1911	56	1945	68	1979	232
1810	57	1844	76	1878	183	1912	57	1946	66	1980	212
1811	57	1845	72	1879	213	1913	58	1947	63	1981	192
1812	57	1846	70	1880	227	1914	59	1948	60	1982	164
1813	58	1847	67	1881	226	1915	60	1949	58	1983	146
1814	59	1848	65	1882	212	1916	62	1950	56	1984	130
1815	60	1849	62	1883	192	1917	63	1951	55	1985	117
1816	61	1850	60	1884	168	1918	65	1952	55	1986	106
1817	62	1851	57	1885	146	1919	67	1953	55	1987	97
1818	63	1852	55	1886	128	1920	69	1954	55	1988	88
1819	65	1853	54	1887	116	1921	71	1955	56	1989	81
1820	66	1854	53	1888	106	1922	76	1956	56	1990	76
1821	68	1855	53	1889	96	1923	85	1957	57	1991	73
1822	70	1856	53	1890	88	i924	103	1958	57	1992	70
1823	71	1857	54	1891	81	1925	127	1959	58	1993	68
1824	75	1858	54	1892	77	1926	159	1960	59	1994	66
1825	81	1859	54	1893	72	1927	199	1961	59	1995	63
1826	95	1860	55	1894	69	1928	231	1962	60	1996	60

Table 30-B-

Stripchart for F4, Series II $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 08

STARTING ADDRESS = 2049 ENDING ADDRESS $=2249$
STEP $=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

2049	61	2083	56	2117	144	2151	70	2185	58	2219	100
2050	62	2084	55	2118	128	2152	71	2186	58	2220	93
2051	65	2085	55	2119	118	2153	75	2187	58	2221	86
2052	67	2086	55	2120	109	2154	78	2188	58	2222	81
2053	69	2087	55	2121	102	2155	87	2189	58	2223	77
2054	71	2088	55	2122	96	2156	111	2190	59	2224	74
2055	73	2089	55	2123	88	2157	159	2191	60	2225	70
2056	76	2090	55	2124	82	2158	223	2192	60	2226	68
2057	83	2091	55	2125	78	2159	255	2193	61	2227	64
2058	95	2092	55	2126	74	2160	255	2194	61	2228	60
2059	127	2093	56	2127	72	2161	255	2195	61	2229	57
2060	191	2094	57	2128	69	2162	240	2196	62	2230	55
2061	247	2095	57	2129	65	2163	216	2197	63	2231	55
2062	255	2096	57	2130	61	2164	192	2198	66	2232	55
2063	255	2097	58	2131	58	2165	164	2199	69	2233	55
2064	248	2098	59	2132	56	2166	146	2200	71	2234	55
2065	224	2099	59	2133	55	2167	132	2201	73	2235	55
2066	200	2100	62	2134	55	2168	122	2202	75	2236	55
2067	176	2101	63	2135	55	2169	114	2203	79	2237	55
2068	156	2102	67	2136	56	2170	108	2204	91	2238	55
2069	138	2103	68	2137	56	2171	100	2205	119	2239	55
2070	128	2104	70	2138	55	2172	92	2206	175	2240	57
2071	117	2105	73	2139	56	2173	86	2207	223	2241	57
2072	109	2106	79	2140	56	2174	81	2208	255	2242	57
2073	102	2107	95	2141	57	2175	78	2209	255	2243	57
2074	94	2108	143	2142	58	2176	75	2210	252	2244	58
2075	86	2109	191	2143	59	2177	72	2211	232	2245	59
2076	80	2110	239	2144	59	2178	68	2212	208	2246	61
2077	76	2111	255	2145	59	2179	64	2213	180	2247	63
2078	73	2112	252	2146	60	2180	60	2214	160	2248	66
2079	70	2113	234	2147	61	2181	58	2215	140	2249	68
2080	66	2114	212	2148	63	2182	58	2216	128	2250	70
2081	64	2115	192	2149	65	2183	58	2217	115	2251	73
2082	59	2116	164	2150	67	2184	58	2218	107	2252	77

Table 31-B

Stripcharts for F4, Series IV
Pages 02, 03

STARTING ADDRESS $=512$ ENDING ADDRESS $=612$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

512	163	529	163
513	163	530	163
514	163	531	162
515	164	532	162
516	164	533	163
517	164	534	162
518	164	535	162
519	164	536	162
520	164	537	162
521	164	538	162
522	164	539	161
523	164	540	161
524	163	541	161
525	163	542	161
526	163	543	161
527	163	544	160
528	163	545	160

546	160	563	157
547	160	564	157
548	159	565	156
549	159	566	156
550	159	567	156
551	159	568	155
552	159	569	155
553	159	570	154
554	158	571	155
555	158	572	155
556	158	573	155
557	158	574	155
558	158	575	155
559	158	576	155
560	157	577	155
561	157	578	154
562	157	579	154

580	154
581	154
582	154
583	154
584	154
585	154
586	154
587	154
588	154
589	154
590	154
591	154
592	153
593	153
594	153
595	153
596	153

$-0-\infty$	$-0-$
597	153
598	153
599	153
600	153
601	154
602	154
603	154
604	154
605	154
606	154
607	154
608	154
609	154
610	154
611	155
612	155
613	155

STARTING ADDRESS $=769$ ERDING ADDRESS $=869$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

769	135	786	133
770	135	787	133
771	135	788	132
772	135	789	132
773	135	790	132
774	134	791	132
775	134	792	132
776	134	793	132
777	134	794	132
778	135	795	132
779	134	796	132
780	133	797	132
781	133	798	132
782	133	799	132
783	133	800	132
784	133	301	132
785	133	802	132

$-0-\cdots$	
803	132
804	132
805	132
806	132
807	132
808	132
809	133
810	132
811	133
812	133
813	133
814	133
815	132
816	133
817	133
818	133
819	133

820	133
821	133
822	133
823	133
824	133
825	134
826	134
827	134
828	135
829	135
830	135
831	135
832	135
833	135
834	135
835	135
836	136

837	136
838	137
839	137
840	137
841	137
842	137
843	138
844	138
845	138
846	138
847	139
848	140
849	139
850	139
851	139
852	139
853	140

$-2-140$	
854	140
855	140
856	140
857	140
858	140
859	140
860	140
861	141
862	141
863	140
864	141
865	141
866	141
867	141
868	141
869	141
870	141

Table 32-B

Stripcharts for F4, Series IV
Pages 04, 05

STARTING ADDRESS $=1281$ ENDING ADDRESS $=1381$
22.0 cm H 20 STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1281	101	1298	99	1315	97	1332	98	1349	99	1366	102
1282	101	1299	99	1316	97	1333	98	1350	99	1367	102
1283	101	1300	100	1317	97	1334	97	1351	99	1368	102
1284	101	1302	98	1318	97	1335	97	1352	99	1369	102
1285	101	1302	98	1319	97	1336	97	1353	99	1370	102
1286	101	1303	98	1320	97	1337	97	1354	99	1371	103
1287	101	1304	99	1321	97	1338	97	1355	100	1372	103
1288	100	1305	98	1322	97	1339	97	1356	99	1373	103
1289	100	1306	98	1323	98	1340	98	1357	100	1374	103
1290	100	1307	98	1324	97	1341	98	1358	100	1375	103
1291	100	1308	98	1325	97	1342	98	1359	101	1376	103
1292	100	1309	98	1326	97	1343	98	1360	101	1377	103
1293	99	1310	98	1327	97	1344	98	1361	101	1378	103
1294	100	1311	98	1328	97	1345	98	1362	101	1379	103
1295	100	1312	97	1329	97	1346	98	1363	101	1380	103
1296	100	1313	97	1330	98	1347	99	1364	102	1381	103
1297	100	1314	97	1331	98	1348	99	1365	112	1382	103

Table 33-B

Stripcharts for F4, Series IV
Pages 06,07
24.5 cm H 20

STARTING ADDRESS $=1537$ ENDING ADDRESS $=1637$ STEP $=1$ DATA RATE $=6983$
six columns: point number value

1537	77	1554	76	1571	75	1588	73	1605	72	1622	73
1538	77	1555	76	1572	75	1589	73	1606	72	1623	73
1539	77	1556	75	1573	74	1590	73	1607	72	1624	73
2540	77	1557	76	1574	74	1591	73	1608	72	1625	73
1541	77	1558	76	1575	74	1592	72	1609	72	1626	73
1542	77	1559	76	1576	74	1593	72	1610	72	1627	73
1543	77	1560	76	1577	74	1594	72	1611	72	1628	73
1544	77	1561	76	1578	74	1595	71	1612	73	1629	74
1545	77	1562	76	1579	74	1596	72	1613	73	1630	74
1546	77	1563	76	1580	74	1597	72	1614	73	1631	74
1547	77	1564	76	1581	74	1598	71	1615	73	1632	74
1548	77	1565	75	1582	74	1599	71	1616	73	1633	74
1549	76	1566	75	1583	74	1600	71	1617	73	1634	74
1550	76	1567	75	1584	74	1601	71	1618	73	1635	74
1551	76	1568	75	1585	74	1602	72	1619	73	1636	74
iここ2	76	1569	75	1586	73	1603	72	1620	73	1637	74
1553	75	1570	75	1587	73	1604	72	1621	73	1638	75

```
STARTING ADDRESS = 1793 ENDING ADDRESS \(=1893\)
STEP \(=1\) DATA RATE \(=6983\)
```

SIX COLUMNS: POINT NUMBER VALUE

$-\infty$											
1793	52	1810	52	1827	51	1844	50	1861	50	1878	49
1794	52	1811	52	1828	51	1845	50	1862	50	1879	49
1795	52	1812	52	1829	51	1846	50	1863	50	1880	49
1796	52	1813	53	1830	50	1847	50	1864	50	1881	50
1797	52	1814	52	1831	50	1848	50	1865	50	1882	49
1798	52	1815	53	1832	51	1849	50	1866	50	1883	50
1799	52	1816	53	1833	50	1850	50	1867	50	1884	50
1800	53	1817	52	1834	50	1851	50	1868	49	1885	49
1801	53	1818	52	1835	50	1852	50	1869	49	1886	49
1802	53	1819	52	1836	50	1853	50	1870	49	1887	50
1803	52	1820	52	1837	50	1854	50	1871	50	1888	49
1804	52	1821	52	1838	50	1855	50	1872	50	1889	50
1805	52	1822	51	1839	50	1856	49	1873	49	1890	50
1806	52	1823	51	1840	50	1857	50	1874	49	1891	50
1807	52	1824	51	1841	50	1858	49	1875	49	1892	49
1808	53	1825	51	1842	49	1859	50	1876	49	1893	50
1809	52	1826	51	1843	50	1860	50	1877	43	1894	50

Table 34-B

Stripcharts for F4, Series IV
 Pages 08, 09

STARTING ADDRESS $=2049$ ENDING ADDRESS $=2149$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

				2083		2100	31	2117	30	2134	31
2049	33	2066	33	2083	31						
2050	34	2067	32	2084	31	2101	31	2118	30 30	2135 2136	31
2051	34	2068	33	2085	31	2102	31	2119	30	2136	31
2052	34	2069	32	2086	31	2103	31	2120	30	2137	31
2053	34	2070	32	2087	31	2104	31	2121	31	2138	31
2054	33	2071	32	2088	31	2105	31	2122	31	2139	31
2055	33	2072	32	2089	31	2106	31	2123	31	2140	31
2056	33	2073	32	2090	31	2107	31	2124	30	2141	31
2057	33	2074	32	2091	31	2108	31	2125	31	2142	31
2058	33	2075	32	2092	31	2109	30	2126	31	2143	31
2059	32	2076	32	2093	31	2110	30	2127	31	2144	31
2060	32	2077	32	2094	31	2111	31	2128	31	2145	32
2061	32	2078	31	2095	31	2112	31	2129	31	2146	32
2062	32	2079	31	2096	31	2113	31	2130	31	2147	32
2063	33	2080	31	2097	31	2114	31	2131	31	2148	32
2064	33	2081	31	2098	31	2115	31	2132	31	2149	31
2065	33	2082	31	2099	31	2116	30	2133	31	2150	32

STARTING ADDRESS $=2305$ ENDING ADDRESS $=2405$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

2305	19	2322	19	2339	19	2356	20	2373	19	2390	20
2306	19	2323	18	2340	20	2357	19	2374	19	2391	20
2307	18	2324	18	2341	20	2358	19	2375	19	2392	20
2308	18	2325	18	2342	19	2359	19	2376	19	2393	20
2309	18	2326	18	2343	19	2360	19	2377	19	2394	20
2310	18	2327	18	2344	19	2361	19	2378	19	2395	20
2311	18	2328	18	2345	20	2362	19	2379	19	2396	20
2312	18	2329	88	2346	20	2363	19	2380	10	2397	20
2313	18	2330	18	2347	20	2364	19	2381	19	2398	20
2314	18	2331	19	2348	19	2365	19	2382	19	2399	19
2315	18	2332	19	2349	19	2366	19	2383	19	2400	19
2316	18	2333	19	2350	19	2367	19	2384	19	2401	19
2317	18	2334	19	2351	19	2368	19	2385	19	2402	19
2318	18	2335	19	2352	19	2369	19	2386	19	2403	20
2319	18	2336	19	2353	19	2370	19	2387	20	2404	19
2320	18	2337	19	2354	20	2371	19	2388	20	2405	19
2321	18	2338	19	2355	20	2372	19	2389	20	2406	19

Table 35-B

Stripcharts for F4, Series IV
 Pages 10, 11

32.5 cm H 20

STARTING ADDRESS $=2561$ ENDING ADDRESS $=2661$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

2561	29	2578	14	2595	5	2612	34	2629	9	2646	
2562	34	2579	11	2596	5	2613	37	2630	7	2647	
2563	38	2580	9	2597	5	2614	38	2631	6	2648	
2564	39	2581	7	2598	5	2615	38	2632	5	2649	
2565	40	2582	6	2599	5	2616	37	2633	5	2650	
2566	40	2583	5	2600	5	2617	36	2634	5	2651	
2567	38	2584	5	2601	5	2618	34	2635	5	2652	
2568	37	2585	5	2602	5	2619	32	2636	5	2653	
2569	35	2586	5	2603	6	2620	30	2637	5	2654	
2570	34	2587	5	2604	6	2621	28	2638	5	2655	
2571	32	2588	5	2605	7	2622	26	2639	5	2656	11
2572	30	2589	5	2606	9	2623	24	2640	5	2657	15
2573	28	2590	5	2607	11	2624	22	2641	5	2658	19
2574	26	2591	5	2608	15	2625	20	2642	5	2659	25
2575	24	2592	5	2609	21	2626	17	2643	5	2660	30
2576	21	2593	5	2610	25	2627	14	2644	5	2661	35
2577	18	2594	S	2611	30	2628	11	2645	5	2662	37

STARTING ADDRESS $=2817$ ENDING ADDRESS $=2917$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

	18	2834	4	2851	10	2868	15	2885	4	2902	13
2817	18	2834	4	2852	11	2869	13	2886	4	2903	15
2819	16	2836	4	2853	13	2870	12	2887	4	2904	16
2820	14	2837	4	2854	15	2871	10	2888	4	2905	18
2821	12	2838	4	2855	17	2872	9	2889	4	2906	19
2822	11	2839	4	2856	18	2873	8	2890	4	2907	20
2823	10	2840	4	2857	20	2874	7	2891	4	2908	21
2824	8	2841	4	2858	21	2875	6	2892	4	2909	21
2825	7	2842	4	2859	21	2876	5	2893	5	2910	22
2826	6	2843	5	2860	21	2877	5	2894	5	2911	21
2827	6	2844	5	2861	21	2878	5	2895	5	2912	21
2828	5	2845	5	2862	21	2679	4	2896	6	2913	20
2829	5	2846	6	2863	20	2880	4	2897	6	2914	19
2830	4	2847	6	2864	19	2881	4	2898	7	2915	18
2831	4	2848	7	2865	19	2882	4	2899	8	2916	17
2832	4	2849	7	2866	17	2883	4	2900	9	2917	15
2833	4	2850	9	2867	16	2884	4	2901	11	2918	14

Table 36-B

Stripcharts for F4, Series IV Pages 00, 01

```
STARTING ADDRESS = 0 ENDING ADDRESS = 100
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

0	3	17	43
1	4	18	43
2	5	19	42
3	9	20	40
4	19	21	36
5	31	22	32
6	41	23	24
7	49	24	16
8	53	25	10
9	53	26	6
10	51	27	4
11	49	28	3
12	46	29	3
13	44	30	3
14	44	31	3
15	43	32	3
16	43	33	3

$--\cdots-\cdots$	
34	3
35	3
36	3
37	3
38	3
39	3
40	3
41	3
42	3
43	3
44	3
45	3
46	3
47	3
48	3
49	3
50	3

-51	5
52	7
53	14
54	25
55	35
56	43
57	49
58	51
59	50
60	48
61	45
62	43
63	42
64	42
65	42
66	42
67	42

-68	41
68	40
69	37
70	32
71	26
73	20
74	12
75	7
76	4
77	3
78	3
79	3
80	3
81	3
82	3
83	3
84	3

-25	3
85	3
86	3
87	3
88	3
89	3
90	3
91	3
92	3
93	3
94	3
95	3
96	3
97	3
98	3
99	3
100	4
101	5

STARTING ADDRESS $=257$ ENDING ADDRESS $=357$
STEP $=1$ DATA RATE $=6983$
34.5 cm H 20

SIX COLUMNS: POINT NUMBER VALUE

								325		342	109
257	80	274	5	291	91	308	72	325	5		109
258	72	275	5	292	106	309	56	326	5	343	109
259	64	276	5	293	110	310	40	327	5	344	104
260	48	277	5	294	108	311	20	328	5	345	97
261	32	278	5	295	102	312	9	329	5	346	92
262	13	279	5	296	96	313	6	330	5	347	87
263	7	280	5	297	91	314	6	331	5	348	85
264	5	281	5	298	88	315	5	332	5	349	85
265	5	282	5	299	87	316	5	333	6	350	87
266	5	283	5	300	87	317	5	334	6	351	89
267	5	284	5	301	89	318	5	335	6	352	90
268	5	285	5	302	91	319	5	336	7	353	91
269	5	286	6	303	92	320	5	337	11	354	90
270	5	287	7	304	93	321	5	338	27	355	88
271	5	288	15	305	91	322	5	339	59	356	82
272	5	289	39	306	88	323	5	340	83	357	74
273	5	290	71	307	81	324	5	341	99	358	64

Table 37-B

Stripchart for F4, Series V 36.0 cm H 2 O , Gain $=100$, Page 09
Transient Containing Reed's
Natural Frequency

STARTING ADDRESS $=2305$ ENDING ADDRESS $=2560$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER

2305	131	2348	137
2306	130	2349	137
2307	135	2350	133
2308	136	2351	128
2309	132	2352	127
2310	131	2353	127
2311	135	2354	131
2312	133	2355	135
2313	131	2356	139
2314	133	2357	136
2315	134	2358	134
2316	133	2359	131
2317	133	2360	125
2318	133	2361	125
2319	135	2362	131
2320	136	2363	137
2321	133	2364	136
2322	129	2365	133
2323	130	2366	131
2324	133	2367	127
2325	138	2368	133
2326	134	2369	134
2327	131	2370	135
2328	131	2371	133
2329	131	2372	131
2330	133	2373	131
2331	133	2374	133
2332	132	2375	129
2333	131	2376	127
2334	134	2377	134
2335	133	2378	139
2336	135	2379	136
2337	135	2380	128
2338	128	2381	131
2339	130	2382	131
2340	135	2383	131
2341	133	2384	134
2342	130	2385	130
2343	134	2386	131
2344	132	2387	135
2345	130	2388	132
2346	131	2389	131
2347	133	2390	135

2391

Table 38-B

Stripchart for F4, Series V
37.0 cm H 20 , Gain $=1.0$, Page 04
Reed's Natural Frequency

STARTING ADDRESS $=1025$ ENDING ADDRESS $=1280$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1025	127	1068	132	1111	133	1154	136	1197	128	1240	127
1026	135	1069	132	1112	133	1155	128	1198	124	1241	135
1027	133	1070	134	1113	132	1156	119	1199	127	1242	134
1028	133	1071	136	1114	128	1157	125	1200	131	1243	133
1029	133	1072	130	1115	124	1158	134	1201	132	1244	133
1030	132	1073	120	1116	126	1159	134	1202	133	1245	132
1031	129	1074	123	1117	130	1160	133	1203	135	1246	130
1032	125	1075	133	1118	132	1161	133	1204	134	1247	126
1033	125	1076	135	1119	133	1162	133	1205	128	1248	125
1034	129	1077	133	1120	135	1163	131	1206	119	1249	127
1035	132	1078	133	1121	135	1164	128	1207	127	1250	131
1036	132	1079	133	1122	128	1165	125	1208	135	1251	132
1037	135	1080	131	1123	119	1166	127	1209	134	1252	133
1038	135	1081	128	1124	127	1167	131	1210	133	1253	136
1039	129	1082	124	1125	135	1168	132	1211	133	1254	132
1040	119	1083	127	1126	134	1169	133	1212	132	1255	120
1041	125	1084	131	1127	133	1170	135	1213	129	1256	122
1042	133	1085	132	1128	133	1171	134	1214	125	1257	131
1043	134	1086	133	1129	133	1172	122	1215	125	1258	135
1044	133	1087	135	1130	130	1173	121	1216	127	1259	131
1045	133	1088	135	1131	126	1174	127	1217	132	1260	133
1046	133	1089	128	1132	125	1175	135	1218	132	1261	133
1047	131	1090	119	1133	127	1176	133	1219	134	1262	132
1048	128	1091	127	1134	131	1177	133	1220	136	1263	128
1049	124	1092	135	1135	132	1178	133	1221	132	1264	125
1050	127	1093	134	1136	133	1179	132	1222	120	1265	125
1051	131	1094	133	1137	136	1180	129	1223	123	1266	130
1052	132	1095	133	1138	133	1181	125	1224	133	1267	132
1053	133	1096	132	1139	121	1182	125	1225	135	1268	133
1054	135	1097	130	1140	121	1183	129	1226	133	1269	135
1055	134	1098	126	1141	131	1184	132	1227	133	1270	135
1056	128	1099	125	1142	135	1185	132	1228	133	1271	128
1057	121	1100	127	1143	133	1186	135	1229	131	1272	119
1058	127	1101	132	1144	133	1187	136	1230	128	1273	125
1059	135	1102	132	1145	133	1188	130	1231	125	1274	134
1060	133	1103	134	1146	132	1189	120	1232	126	1275	134
1061	133	1104	136	1147	128	1190	123	1233	131	1276	133
1062	133	1105	132	1148	125	1191	1.33	1234	132	1277	133
1063	132	1106	120	1149	125	1192	135	1235	133	1278	133
1064	129	1107	123	1150	130	1193	133	1236	135	1279	130
1065	125	1108	131	1151	132	1194	133	1237	135	1280	125
1066	125	1109	135	1152	132	1195	133	1238	128	1281	127
1067	127	1110	133	1153	135	1196	131	1230	119	1282	126

Table 39-B

Stripchart for F4, Series V 37.0 cm H 20 , Gain $=100$, Page 03 Transient Containing Steady State

STARTING ADDRESS $=769$ ENDING ADDRESS $=1024$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

769	129
770	131
771	130
772	129
773	129
774	129
775	131
776	130
777	126
778	125
779	133
780	132
781	127
782	131
783	135
784	132
785	129
786	125
787	127
788	130
789	130
790	131
791	134
792	135
793	133
794	131
795	130
796	133
797	130
798	127
799	134
800	135
801	135
802	132
803	131
804	135
805	136
806	131
807	131
808	133
809	125
810	127
811	138

812	129
813	127
814	133
815	133
816	130
817	127
818	126
819	127
820	132
821	129
822	127
823	127
824	127
825	129
826	127
827	131
828	129
829	127
830	129
831	130
832	127
833	127
834	131
835	129
836	131
837	132
838	131
839	129
840	127
841	131
842	132
843	133
844	133
845	131
846	130
847	133
848	135
849	132
850	129
851	133
852	137
853	134
854	132

855	135
856	134
857	130
858	130
859	131
860	133
861	133
862	132
863	135
864	132
865	129
866	131
867	132
868	129
869	127
870	129
871	125
872	127
873	131
874	111
875	131
876	126
877	125
878	127
879	130
880	124
881	127
882	131
883	129
884	127
885	131
886	130
887	127
888	133
889	132
890	128
891	127
892	133
893	132
894	130
895	130
896	130
897	134

-10-1	
898	135
899	135
900	135
901	132
902	129
903	131
904	131
905	133
906	135
907	134
908	132
909	135
910	134
911	133
912	132
913	129
914	133
915	133
916	131
917	129
918	127
919	133
920	133
921	130
922	128
923	129
924	129
925	127
926	129
927	127
928	127
929	131
930	132
931	129
932	127
933	131
934	131
935	128
936	127
937	127
938	133
939	134
940	132

941	130
942	125
943	127
944	135
945	136
946	135
947	137
948	129
949	127
950	130
951	131
952	133
953	135
954	137
955	136
956	132
957	128
958	127
959	133
960	137
961	136
962	133
963	130
964	125
965	127
966	135
967	137
968	136
969	133
970	128
971	127
972	126
973	127
974	133
975	135
976	135
977	135
978	131
979	127
980	124
981	127
982	133
983	130

$-\cdots-\cdots$	
984	133
985	133
986	132
987	129
988	129
989	126
990	127
991	143
992	136
993	125
994	131
995	133
996	131
997	133
998	135
999	132
1000	135
1001	133
1002	125
1003	131
1004	133
1005	135
1006	133
1007	132
1008	131
1009	131
1010	132
1011	132
1012	133
1013	134
1014	134
1015	131
1016	127
1017	130
1018	160
1019	127
1020	131
1021	133
1022	132
1023	130
1024	121
1025	127
1026	135

Table 40-B

Stripchart for F3 High-Intensity Closure $36.5 \mathrm{~cm} \mathrm{H} 20,98 \mathrm{dBA}$, Gain $=3.3$
F3 T1 00

```
STARTING ADDRESS = 80 ENDING ADDRESS = 280
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

80	164	114	2	148	195	182	142	216	2	250	198
81	162	115	2	149	. 200	183	130	217	2	251	196
82	158	116	2	150	199	184	112	218	2	252	197
83	153	117	2	151	194	185	88	219	2	253	198
- 84	146	118	2	152	190	186	52	220	2	254	199
85	132	119	2	153	189	187	16	221	2	255	200
86	112	120	2	154	190	188	3	222	2	256	23
87	84	121	2	155	131	189	2	223	2	257	43
88	48	122	2	156	-191	190	2	224	2	258	63
89	12	123	2	157	193	191	2	225	3	259	91
90	3	124	2	158	195	192	2	226	2	260	119
91	2	125	2	159	194	193	. 2	227	2	261	151
92	2	126	3	160	190	194	2	228	2	262	175
93	2	127	2	161	186	195	2	229	2	263	191
94	2	128	2	162	182	196	2	230	2	264	207
95	2	129	2	163	180	197	2	231	2	265	212
96	2	130	2	164	183	198	2	232	2	266	210
97	2	131	2	165	189	199	2	233	2	267	208
98	2	132	2	166	195	200	2	234	3	268	207
99	2	133	2	167	198	201	2	235	4	269	209
100	2	134	2	168	194	202	2	236	15	270	213
101	2	135	2	169	184	203	2	237	55	271	215
102	2	136	3	170	172	204	2	238	103	272	214
. 103	2	137	5	171	161	205	2	239	151	273	211
104	2	138	23	172	154	206	2	240	183	274	208
105	2	139	63	173	149	207	2	241	203	275	207
106	2	140	111	174	147	208	2.	242	200	276	209
107	2	141	155	175	149	209	2	243	188	277	212
108	2	142	187	176	153	210	2	244	183	278	214
1109	2	143	201	177	157	211	2	245	191	279	214
110	2	144	196	178	158	212	2	246	199	280	212
111	2	145	184	179	157	213	2	247	206	281	210
112	2	146	181	180	154	214	2	248	206	282	209
113	2	147	187	181	148	215	2	249	202	283	208

Table 41-B

> Stripchart for F3 High-Intensity Closure $27.5 \mathrm{~cm} \mathrm{H20} 90 dBA,$, Gain $=3.3$
> F3 TI 09

```
STARTING ADDRESS = 2305 ENDING ADDRESS = 2505
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

2305	119	2339	11	2373	10	2407	114	2441	10	2475	11
2306	119	2340	11	2374	10	2408	113	2442	10	2476	11
2307	119	2341	11	2375	10	2409	114	2443	10	2477	11
2308	119	2342	11	2376	10	2410	115	2444	10	2478	12
2309	119	2343	10	2377	10	2411	116	2445	10	2479	12
2310	119	2344	10	2378	11	2412	115	2446	10	2480	13
2311	119	2345	10	2379	11	2413	112	2447	10	2481	18
2312	121	2346	10	2380	11	2414	104	2448	10	2482	31
2313	121	2347	10	2381	12	2415	96	2449	10	2483	47
2314	121	2348	10	2382	13	2416	90	2450	10	2484	71
2315	117	2349	10	2383	15	2417	84	2451	10	2485	87
2316	112	2350	10	2384	27	2418	80	2452	10	2486	99
2317	104	2351	10	2385	43	2419	79	2453	10	2487	105
2318	96	2352	10	2386	63	2420	77	2454	10	2488	107
2319	89	2353	10	2387	83	2421	79	2455	10	2489	108
2320	85	2354	10	2388	94	2422	78	2456	10	2490	110
2321	83	2355	10	2389	99	2423	77	2457	10	2491	113
2322	82	2356	10	2390	102	2424	74	2458	10	2492	114
2323	82	2357	10	2391	103	2425	67	2459	10	2493	114
2324	82	2358	10	2392	1.05	2426	58	2460	10	2494	112
2325	81	2359	10	2393	107	2427	48	2461	10	2495	111
2326	78	2360	10	2394	109	2428	32	2462	10	2496	113
2327	72	2361	10	2395	110	2429	20	2463	10	2497	115
2328	64	2362	10	2396	108	2430	14	2464	10	2498	117
2329	50	2363	10	2397	107	2431	12	2465	10	2499	119
2330	36	2364	10	2398	107	2432	11	2466	10	2500	119
2331	24	2365	10	2399	109	2433	11	2467	11	2501	119
2332	16	2366	10	2400	111	2434	10	2468	11	2502	119
2333	13	2367	10	2401	113	2435	10	2469	11	2503	119
2334	12	2368	10	2402	114	2436	10	2470	11	2504	119
2335	11	2369	10	2403	114	2437	10	2471	11	2505	119
2336	11	2370	10	2404	114	2438	10	2472	11	2506	118
2337	11	2371	10	2405	114	2439	10	2473	11	2507	119
2338	11	2372	10	2406	114	2440	10	2474	11	2508	119

Table 42-B
Stripchart for F3 High-Intensity Closure $24.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=1.0$
F3 T2 00

```
STARTING ADDRESS = 0 ENDING ADDRESS = 200
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

0	3	34	61	68	58	102	3	136	64	170	36
1	3	35	65	69	54	103	3	137	60	171	20
2	3	36	64	70	48	104	3	138	60	172	8
3	3	37	61	71	36	105	3	139	63	173	4
4	3	38	58	72	24	106	3	140	69	174	3
5	3	39	58	73	8	107.	3	141	70	175	3
6	3	40	62	74	4	108	3	142	69	176	3
7	3	41	66	75	3	109	3	143	68	177	3
8	3	42	67	76	3	110	3	144	68	178	3
9	3	43	67	77	3	111	3	145	69	179	3
10	3	44	66	78	3	112	3	146	69	180	3
11	3	45	65	79	3	113	3	147	67	181	3
12	3	46	66	80	3	114	3	148	65	182	3
13	3	47	66	81	3	115	3	149	66	183	3
14	3	48	64	82	3	116	3	150	70	184	3
15	3	49	63	83	3	117	3	151	75	185	3
16	3	50	63	84	3	118	3	152	77	186	3
17	3	51	67	85	3	119	3	153	75	187	3
18	3	52	71	86	3	120	3	154	70	188	3
19	3	53	75	87	3	121	3	155	64	189	3
20	3	54	73	88	3	122	4	156	60	190	3
21	3	55	68	89	3	123	4	157	59	191	3
22	3	56	64	90	3	124	11	158	59	192	3
23	3	57	38	91	3	125	31	159	60	193	3
24	4	58	57	92	3	126	51	160	61	194	3
25	11	59	57	93	3	127	63	161	63	195	3
26	27	60	58	94	3	128	69	162	66	196	3
27	47	61	59	95	3	129	64	163	69	197	3
28	61	62	61	96	3	130	59	164	69	198	3
29	66	63	63	97	3	131	56	165	67	199	3
30	64	64	67	98	3	132	59	166	64	200	3
31	57	65	68	99	3	133	63	167	59	201	3
32	54	66	66	100	3	134	68	168	53	202	3
33	55	67	64	101	3	135	67	169	46	203	3

Table 43-B
Stripchart for F3 High-Intensity Closure $25.5 \mathrm{~cm} \mathrm{H} 20,88 \mathrm{dBA}$, Gain $=3.3$
F3 T1 05

STARTING ADDRESS $=1281$ ENDING ADDRESS $=1481$
STEP $=1$ DATA RATE $=6983$
six columns: point number value

1281	155	1315	13	1349	12	1383	175	1417	11	1451	11
1282	159	1316	12	1350	12	1384	179	1418	12	1452	12
1283	165	1317	12	1351	12	1385	181	1419	12	1453	12
1284	171	1318	12	1352	12	1386	182	1420	12	1454	12
1285	175	1319	12	1353	12	1387	181	1421	12	1455	12
1286	179	1320	12	1354	12	1388	181	1422	12	1456	1
1287	180	1321	12	1355	12	1389	181	1423	12	1457	14
1288	180	1322	12	1356	12	1390	182	1424	11	1458	18
1289	180	1323	12	1357	13	1391	183	1425	11	1459	27
1290	181	1324	12	1358	13	1392	182	1426	11	1460	45
1291	182	1325	12	1359	15	1393	178	1427	11	1461	63
1292	183	1326	12	1360	23	1394	172	1428	11	1462	87
1293	183	1327	12	1361	37	1395	165	1429	11	1463	107
1294	181	1328	12	1362	55	1396	160	1430	11	1464	125
1295	176	1329	12	1363	79	1397	154	1431	11	1465	139
1296	168	1330	12	1364	95	1398	153	1432	11	1466	149
1297	161	1331	12	1365	118	1399	155	1433	11	1467	153
1298	156	1332	12	1366	133	1400	159	1434	11	1468	153
1299	154	1333	12	1367	143	1401	166	1435	11	1469	152
1300	157	1334	12	1368	151	1402	168	1436	11	1470	149
1301	163	1335	12	1369	154	1403	166	1437	11	1471	146
1302	169	1336	12	1370	153	1404	160	1438	11	1472	146
1303	172	1337	11	1371	149	1405	148	1439	11	1473	147
1304	172	1338	11	1372	146	1406	134	1440	11	1474	150
1305	166	1339	11	1373	144	1407	116	1441	11	1475	153
1306	156	1340	11	1374	144	1408	96	1442	11	1476	156
1307	144	1341	11	1375	146	1409	74	1443	11	1477	159
1308	128	1342	11	1376	149	1410	52	1444	11	1478	162
1309	106	1343	12	1377	151	1411	32	1445	11	1479	167
1310	84	1344	12	1378	154	1412	17	1446	11	1480	173
1311	64	1345	12	1379	157	1413	13	1447	11	1481	179
1312	40	1346	12	1380	159	1414	12	1448	11	1482	184
1313	24	1347	12	1381	165	1415	12	1449	11	1483	187
1314	16	1348	12	1382	170	1416	12	1450	11	1484	189

Table 44-B

Stripchart for F4 High-Intensity Closure
$38.5 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}, \mathrm{Gain}=3.3$
F4 Tl 04

```
STARTING ADDRESS = 1025 ENDING ADDRESS = 1225
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

1025	34	1059	74	1093	5	1127	6	1161	64	1195	5
1026	20	1060	72	1094	5	1128	5	1162	60	1196	5
1027	10	1061	69	1095	5	1129	5	1163	57	1197	5
1028	6	1062	65	1096	5	1130	5	1164	57	1198	5
1029	5	1063	61	1097	5	1131	5	1165	59	1199	6
1030	5	1064	58	1098	5	1132	5	1166	61	1200	6
1031	5	1065	56	1099	5	1133	5	1167	60	1201	9
1032	5	1066	58	1100	5	1134	5	1168	57	1202	23
1033	5	1067	61	1101	6	1135	5	1169	54	1203	47
1034	5	1068	62	1102	7	1136	5	1170	52	1204	63
1035	5	1069	60	1103	15	1137	5	1171	49	1205	75
1036	5	1070	57	1104	39	1138	5	1172	42	1206	76
1037	5	1071	54	1105	59	1139	5	1173	32	1207	74
1038	5	1072	52	1106	74	1140	5	1174	17	1208	72
1039	5	1073	48	1107	79	1141	5	1175	8	1209	69
1040	5	1074	38	1108	77	1142	5	1176	6	1210	65
1041	5	1075	24	1109	75	1143	5	1177	5	1211	62
1042	5	1076	12	1110	73	1144	5	1178	5	1212	59
1043	5	1077	7	1111	69	1145	5	1179	5	1213	57
1044	5	1078	6	1112	65	1146	5	1180	5	1214	59
1045	5	1079	5	1113	62	1147	5	1181	5	1215	62
1046	5	1080	5	1114	59	1148	5	1182	5	1216	62
1047	5	1081	5	1115	59	1149	5	1183	5	1217	59
1048	5	1082	5	1116	63	1150	6	1184	5	1218	56
1049	5	1083	5	1117	65	1151	7	1185	5	1219	54
1050	5	1084	5	1118	63	1152	11	1186	5	1220	51
1051	5	1085	5	1119	59	1153	31.	1187	5	1221	46
1052	6	1086	5	1120	56	1154	53	1188	5	1222	36
1053	7	1087	5	1121	53	1155	69	1189	5	1223	20
1054	15	1088	5	1122	50	1156	75	1190	5	1224	10
1055	39	1089	5	1123	42	1157	75	1191	5	1225	6
1056	61	1090	5	1124	32	1158	74	1192	5	1226	5
1057	73	1091	5	1125	16	1159	71	1193	5	1227	5
1058	76	1092	5	1126	8	1160	68	1194	5	1228	5

Table 45-B

Stripchart for F4 High-Intensity Closure
$34.0 \mathrm{~cm} \mathrm{H} 20,106 \mathrm{dBA}$, Gain $=3.3$
F4 Tl 10

STARTING ADDRESS $=2561$ ENDING ADDRESS $=2761$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

2561	6	2595	6	2629	60	2663	13	2697	6	2731	45
2562	6	2596	6	2630	61	2664	19	2698	6	2732	40
2563	6	2597	6	2631	58	2665	31	2699	6	2733	36
2564	7	2598	6	2632	52	2666	46	2700	6	2734	32
2565	14	2599	6	2633	44	2667	57	2701	6	2735	22
2566	21	2600	6	2634	39	2668	69	2702	6	2736	16
2567	31	2601	6	2635	35	2669	79	2703	6	2737	9
2568	47	2602	6	2636	29	2670	80	2704	6	2738	7
2569	61	2603	6	2637	21	2671	76	2705	6	2739	6
2570	73	2604	6	2638	13	2672	68.	2706	6	2740	6
2571	82	2605	6	2639	8	2673	58	2707	6	2741	6
2572	82	2606	6	2640	6	2674	52	2708	6	2742	6
2573	78	2607	6	2641	6	2675	50	2709	6	2743	6
2574	69	2608	6	2642	6	2676	51	2710	6	2744	6
2575	58	2609	6	2643	6	2677	53	2711	7	2745	6
2576	53	2610	6	2644	6	2678	57	2712	12	2746	6
2577	52	2611	6	2645	6	2679	59	2713	19	2747	6
2578	53	2612	7	2646	6	2680	56	2714	30	2748	6
2579	55	2613	7	2647	6	2681	49	2715	45	2749	6
2580	59	2614	14	2648	6	2682	42	2716	59	2750	6
2581	61	2615	21	2649	6	2683	37	2717	71	2751	6
2582	58	2616	31	2650	6	2684	34	2718	79	2752	6
2583	52	2617	47	2651	6	2685	29	2713	82	2753	6
2584	44	2618	61	2652	6	2686	21	2720	78	2754	6
2585	40	2619	74	2653	6	2687	13	2721	70	2755	6
2586	36	2620	83	2654	6	2688	8	2722	60	2756	6
2587	30	2621	84	2655	6	2689	7	2723	54	2757	6
2588	21	2622	80	2656	6	2690	6	2724	53	2758	6
2589	13	2623	72	2657	6	2691	6	2725	53	2759	7
2590	8	2624	60	2658	6	2692	6	2726	56	2760	7
2591	6	2625	54	2659	6	2693	6	2727	61	2761	12
2592	6	2626	53	2660	6	2694	6	2728	62	2762	19
2593	6	2627	53	2661	6	2695	6	2729	59	2763	29
2594	6	2628	55	2662	7	2696	6	2730	52	2764	45

> Table 46-B
> Stripchart for F4 High-Intensity Closure $28.0 \mathrm{~cm} \mathrm{H} 20,93 \mathrm{dBA}$, Gain $=33$
> F4 T2 04

```
STARTING ADDRESS = 1025 ENDING ADDRESS = 1225
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER

1025	53
1025	53
1026	53
1027	52
1028	52
1029	52
1030	52
1031	53
1032	53
1033	53
1034	53
1035	52
1036	52
1037	53
1038	53
1039	53
1040	53
1041	53
1042	53
1043	54
1044	57
1045	61
1046	63
1047	68
1048	71
1049	78
1050	87
1051	103
1052	111
1053	112
1054	100
1055	88
1056	80
1057	75
1058	72

VALUE

1059	71	1093	57	1127	53	1161	71	1195	77
1060	71	1094	61	1128	53	1162	70	1196	87
1061	70	1095	63	1129	53	1163	68	1197	99
1062	69	1096	69	1130	53	1164	67	1198	110
1063	68	1097	73	1131	53	1165	65	1199	111
1064	67	1098	79	1132	53	1166	62	1200	104
1065	66	1099	91	1133	54	1167	58	1201	90
1066	64	1100	103	1134	54	1168	55	1202	80
1067	63	1101	111	1135	54	1169	53	1203	75
1068	61	1102	108	1136	54	1170	53	1204	72
1069	58	1103	96	1137	54	1171	52	1205	71
1070	54	1104	86	1138	55	1172	53	1206	71
1071	51	1105	78	1139	55	1173	52	1207	70
1072	51	1106	75	1140	55	1174	52	1208	69
1073	50	1107	73	1141	57	1175	52	1209	68
1074	50	1108	72	1142	61	1176	52	1210	67
1075	50	1109	72	1143	65	1177	52	1211	66
1076	50	1110	72	1144	69	1178	52	1212	64
1077	50	1111	71	1145	73	1179	52	1213	63
1078	50	1112	70	1146	78	1180	52	1214	61
1079	50	1113	69	1147	87	1181	52	1215	58
1080	50	1114	67	1148	101	1182	52	1216	54
1081	51	1115	67	1149	111	1183	52	1217	52
1082	51	1116	65	1150	116	1184	52	1218	51
1083	51	1117	62	1151	112	1185	53	1219	50
1084	51	1118	59	1152	97	1186	53	1220	50
1085	51	1119	55	1153	86	1187	53	1221	50
1086	51	1120	53	1154	80	1188	53	1222	50
1087	51	1121	53	1155	76	1189	53	1223	50
1088	51	1122	53	1156	75	1190	55	1224	50
1089	52	1123	53	1157	75	1191	60	1225	50
1090	52	1124	53	1158	74	1192	63	1226	50
1091	52	1125	53	1159	73	1193	67	1227	51
1092	54	1126	52	1160	72	1194	71	1228	51

Table 47-B
 Stripchart for F4 High-Intensity Closure $29.0 \mathrm{~cm} \mathrm{H} 20,93 \mathrm{dBA}$, Gain $=33$
 F4 T2 05

STARTING ADDRESS $=1281$ ENDING ADDRESS $=1481$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1281	55	1315	56	1349	83	1383	54	1417	55	1451	74
1282	55	1316	54	1350	77	1384	54	1418	55	1452	74
1283	56	1317	54	1351	74	1385	55	1419	55	1453	73
1284	56	1318	53	1352	71	1386	57	1420	55	1454	71
1285	56	1319	53	1353	72	1387	60	1421	55	1455	70
1286	56	1320	53	1354	71	1388	63	1422	55	1456	69
1287	56	1321	53	1355	71	1389	68	1423	55	1457	67
1288	57	1322	53	1356	70	1390	71	1424	55	1458	65
1289	59	1323	53	1357	69	1391	77	1425	55	1459	62
1290	63	1324	53	1358	67	1392	85	1426	55	1460	59
1291	67	1325	53	1359	66	1393	95	1427	55	1461	56
1292	71	1326	53	1360	64	1394	101	1428	55	1462	54
1293	75	1327	- 53	1361	62	1395	103	1429	55	1463	53
1294	79	1328	53	1362	60	1396	100	1430	55	1464	53
1295	87	1329	53	1363	56	1397	92	1431	56	1465	53
1296	99	1330	53	1364	54	1398	84	1432	56	1466	53
1297	103	1331	53	1365	53	1399	80	1433	56	1467	52
1298	104	1332	53	1366	52	1400	77	1434	57	1468	52
1299	99	1333	53	1367	52	1401	76	1435	59	1469	52
1300	90	1334	53	1368	52	1402	75	1436	63	1470	53
1301	83	1335	53	1369	52	1403	75	1437	67	1471	52
1302	78	1336	54	1370	52	1404	74	1438	71	1472	53
1303	76	1337	55	1371	52	1405	73	1439	75	1473	53
1304	75	1338	57	1372	52	1406	72	1440	79	1474	53
1305	75	1339	61	1373	52	1407	71	1441	87	1475	52
1306	74	1340	65	1374	53	1408	69	1442	99	1476	53
1307	73	1341	69	1375	53	1409	68	1443	103	1477	53
1308	72	1342	73	1376	53	1410	66	1444	104	1478	53
1309	70	1343	79	1377	53	1411	62	1445	98	1479	53
1310	69	1344	87	1378	53	1412	58	1446	90	1480	53
1311	68	1345	94	1379	53	1413	56	1447	83	1481	53
1312	66	1346	98	1380	54	1414	55	1448	78	1482	53
1313	63	1347	96	1381	54	1415	55	1449	76	1483	54
1314	60	1348	90	1382	54	1416	55	1450	75	1484	57

Table 48-B

Stripchart for F5 High-Intensity Closure
$36.5 \mathrm{~cm} \mathrm{H20} 100 \mathrm{dBA},, \mathrm{Gain}=3.3$
F5 Tl 03

STARTING ADDRESS $=769$ ENDING ADDRESS $=969$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

Table 49-B

Stripchart for Bb5 High-Intensity Closure
$34.0 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Gain $=3.3$
Bb5 T1 03

```
STARTING ADDRESS = 769 ENDING ADDRESS = 969
STEP = 1 DATA RATE =6983
```

SIX COLUMNS: POINT NUMBER VALUE

769	5	803	5	837	7	871	64	905	79	939	39
770	5	804	5	838	5	872	32	906	80	940	63
771	5	805	5	839	5	873	10	907	68	941	75
772	6	806	5	840	5	874	6	908	40	942	79
773	7	807	5	841	5	875	5	909	16	943	72
774	15	808	5	842	5	876	5	910	7	944	52
775	39	809	6	843	5	877	5	911	5	945	24
776	63	810	9	844	5	878	5	912	5	946	8
777	75	811	27	845	6	879	5	913	5	947	5
778	80	812	55	846	7	880	5	914	5	948	5
779	74	813	70	847	15	881	6	915	5	949	5
780	56	814	77	848	43	882	6	916	5	950	5
781	24	815	76	849	63	883	11	917	5	951	5
782	9	816	64	850	77	884	31	918	6	952	5
783	5	817	36	851	80	885	59	919	7	953	5
784	5	818	12	852	72	886	75	920	19	954	5
785	5	819	6	853	50	887	82	921	47	955	6
786	5	820	5	854	24	888	80	922	63	956	11
787	5	821	5	855	8	889	64	923	78	957	31
788	5	822	5	856	5	890	34	924	80	958	55
789	5	823	5	857	5	891	12	925	72	959	71
790	5	824	5	858	5	892	6	926	48	960	78
791	6	825	5	859	5	893	5	927	20	961	74
792	11	826	5	860	5	894	5	928	8	962	56
793	31	827	6	861	5	895	5	929	5	963	32
794	59	828	7	862	5	896	5	930	5	964	10
795	73	829	23	863	6	897	5	931	5	965	6
796	79	830	47	864	7	898	5	932	5	966	5
797	76	831	63	865	15	899	6	933	5	967	5
798	64	832	76	866	31	900	6	934	5	968	5
799	32	833	77	867	63	901	9	935	5	969	5
800	10	834	66	868	77	902	23	936	5	970	5
801	6	835	42	869	82	903	55	937	7	971	5
802	5	836	16	870	76	904	71	938	15	972	5

Table 50-B

Stripchart for F3, Series I $31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 70 \mathrm{dBA}$, Gain 33
F3 Tl 07

STARTING ADDRESS = 1793 ENDING ADDRESS = 1993 STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1793	85	1827	85	1861	110	1895	87	1929	85	1963	103
1794	85	1828	85	1862	110	1896	87	1930	86	1964	102
1795	84	1829	86	1863	109	1897	87	1931	86	1965	102
1796	84	1830	86	1864	109	1898	87	1932	87	1966	101
1797	84	1831	86	1865	109	1899	87	1933	87	1967	101
1798	83	1832	87	1866	109	1900	86	1934	89	1968	100
1799	83	1833	87	1867	108	1901	86	1935	90	1969	100
1800	83	1834	87	1868	108	1902	86	1936	91	1970	99
1801	83	1835	88	1869	107	1903	86	1937	93	1971	98
1802	83	1836	90	1870	106	1904	86	1938	94	1972	98
1803	83	1837	91	1871	106	1905	86	1939	95	1973	97
1804	83	1838	93	1872	105	1906	86	1940	96	1974	96
1805	83	1839	94	1873	104	1907	86	1941	97	1975	95
1806	83	1840	95	1874	103	1908	85	1942	98	1976	94
1807	83	1841	97	1875	103	1909	85	1943	99	1977	93
1808	83	1842	99	1876	102	1910	85	1944	100	1978	93
1809	83	1843	100	1877	101	1911	85	1945	101	1979	92
1810	83	1844	101	1878	100	1912	85	1946	101	1980	91
1811	83	1845	102	1879	99	1913	85	1947	102	1981	90
1812	83	1846	103	1880	98	1914	85	1948	102	1982	89
1813	83	1847	104	1881	96	1915	85	1949	103	1983	88
1814	83	1848	105	1882	95	1916	85	1950	103	1984	88
1815	84	1849	106	1883	94	1917	85	1951	104	1985	87
1816	83	1850	106	1884	93	1918	85	1952	104	1986	87
1817	83	1851	107	1885	92	1919	85	1953	104	1987	87
1818	83	1852	108	1886	91	1920	85	1954	104	1988	87
1819	83	1853	109	1887	90	1921	85	1955	104	1989	87
1820	84	1854	109	1888	90	1922	85	1956	104	1990	87
1821	84	1855	110	1889	89	1923	85	1957	104	1991	87
1822	84	1856	110	1890	89	1924	84	1958	104	1992	87
1823	84	1857	110	1891	89	1925	86	1959	102	1993	87
1824	85	1858	110	1892	88	1926	85	1960	103	1994	87
1825	85	1859	110	1893	88	1927	85	1961	103	1995	87
1826	85	1860	110	1894	87	1928	86	1962	103	1996	87

Table 5l-B
Stripchart for F3, Series I $29.0 \mathrm{~cm} H 2 O, 80$ dBA, Gain 33 F3 Tl 08

(s)											
STARTING ADDRESS $=2049$ ENDING ADDRESS $=2249$ STEP $=1$ DATA RATE $=6983$											
SIX COLUMNS : POINT NUMBER				VALUE							
2049	85	2083	158	2117	89	2151	90	2185	150	2219	85
2050	85	2084	155	2118	89	2152	90	2186	145	2220	85
2051	85	2085	154	2119	89	2153	91	2187	137	2221	85
2052	85	2086	154	2120	89	2154	92	2188	129	2222	85
2053	86	2087	155	2121	89	2155	94	2189	122	2223	85
2054	86	2088	153	2122	89	2156	95	2190	117	2224	85
2055	86	2089	148	2123	89	2157	98	2191	113	2225	86
2056	87	2090	140	2124	89	2158	100	2192	110	2226	86
2057	88	2091	133	2125	89	2159	102	2193	108	2227	86
2058	90	2092	128	2126	89	2160	104	2194	106	2228	86
2059	92	2093	120	2127	89	2161	107	2195	104	2229	86
2060	95	2094	117	2128	89	2162	111	2196	103	2230	86
2061	97	2095	114	2129	89	2163	115	2197	102	2231	86
2062	99	2096	112	2130	89	2164	119	2198	101	2232	86
2063	101	2097	110	2131	89	2165	126	2199	100	2233	87
2064	103	2098	109	2132	89	2166	135	2200	99	2234	87
2065	108	2099	108	2133	89	2167	143	2201	98	2235	87
2066	113	2100	107	2134	89	2168	151	2202	96	2236	87
2067	119	2101	106	2135	89	2169	154	2203	94	2237	87
2068	125	2102	105	2136	89	2170	155	2204	92	2238	87
2069	134	2103	104	2137	89	2171	158	2205	90	2239	87
2070	143	2104	103	2138	89	2172	163	2206	88	2240	88
2071	150	2105	101	2139	89	2173	165	2207	87	2241	88
2072	154	2106	99	2140	89	2174	165	2208	88	2242	88
2073	156	2107	96	2141	89	2175	166	2209	86	2243	89
2074	159	2108	94	2142	89	2176	164	2210	86	2244	89
2075	161	2109	92	2143	89	2177	164	2211	86	2245	89
2076	164	2110	91	2144	89	2178	162	2212	85	2246	89
2077	166	2111	91	2145	89	2179	160	2213	85	2247	90
2078	165	2112	91	2146	89	2180	157	2214	85	2248	90
2079	164	2113	91	2147	89	2181	153	2215	85	2249	91
2080	163	2114	90	2148	89	2182	152	2216	85	2250	91
2081	162	2115	90	2149	89	2183	152	2217	85	2251	93
2082	260	2116	90	2150	89	2184	152	2218	85	2252	95

Table 52-B

Stripchart for F3, Series I $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3 F3 T1 09

STARTING ADDRESS $=2305$ ENDING ADDRESS $=2505$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

2305	119	2339	11	2373	10	2407	114	2441	10	2475	11
2306	119	2340	11	2374	10	2408	113	2442	10	2476	11
2307	119	2341	11	2375	10	2409	114	2443	10	2477	11
2308	119	2342	11	2376	10	2410	115	2444	10	2478	12
2309	119	2343	10	2377	10	2411	116	2445	10	2479	12
2310	119	2344	10	2378	11	2412	115	2446	10	2480	13
2311	119	2345	10	2379	11	2413	112	2447	10	2481	18
2312	121	2346	10	2380	11	2414	104	2448	10	2482	31
2313	121	2347	10	2381	12	2415	96	2449	10	2483	47
2314	121	2348	10	2382	13	2416	90	2450	10	2484	71
2315	117	2349	10	2383	15	2417	84	2451	10	2485	87
2316	112	2350	10	2384	27	2418	80	2452	10	2486	99
2317	104	2351	10	2385	43	2419	79	2453	10	2487	105
2318	96	2352	10	2386	63	2420	77	2454	10	2488	107
2319	89	2353	10	2387	83	2421	79	2455	10	2489	108
2320	85	2354	10	2388	94	2422	78	2456	10	2490	110
2321	83	2355	10	2389	99	2423	77	2457	10	2491	113
2322	82	2356	10	2390	102	2424	74	2458	10	2492	114
2323	82	2357	10	2391	103	2425	67	2459	10	2493	114
2324	82	2358	10	2392	105	2426	58	2460	10	2494	112
2325	81	2359	10	2393	107	2427	48	2461	10	2495	111
2326	78	2360	10	2394	109	2428	32	2462	10	2496	113
2327	72	2361	10	2395	110	2429	20	2463	10	2497	115
2328	64	2362	10	2396	108	2430	14	2464	10	2498	117
2329	50	2363	10	2397	107	2431	12	2465	10	2499	119
2330	36	2364	10	2398	107	2432	11	2466	10	2500	119
2331	24	2365	10	2399	109	2433	11	2467	11	2501	119
2332	16	2366	10	2400	111	2434	10	2468	11	2502	119
2333	13	2367	10	2401	113	2435	10	2469	11	2503	119
2334	12	2368	10	2402	114	2436	10	2470	11	2504	119
2335	11	2369	10	2403	114	2437	10	2471	11	2505	119
2336	11	2370	10	2404	114	2438	10	2472	11	2506	118
2337	11	2371	10	2405	114	2439	10	2473	11	2507	119
2338	11	2372	10	2406	114	2440	10	2474	11	2508	119

Table 53-B

Stripchart for F3, Series I $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 3.3 F3 Tl 10

```
STARTING ADDRESS = 2561 ENDING ADDRESS = 2761
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

2561	14	2595	191	2629	93	2663	13	2697	175	2731	35
2562	16	2596	219	2630	119	2664	13	2698	207	2732	47
2563	14	2597	230	2631	151	2665	13	2699	227	2733	79
2564	13	2598	224	2632	182	2666	12	2700	229	2734	107
2565	12	2599	204	2633	184	2667	12	2701	216	2735	108
2566	11	2600	180	2634	160	2668	12	2702	192	2736	80
2567	11	2601	160	2635	96	2669	11	2703	172	2737	32
2568	11	2602	149	2636	32	2670	11	2704	162	2738	13
2569	11	2603	151	2637	12	2671	11	2705	167	2739	11
2570	12	2604	159	2638	11	2672	11	2706	181	2740	11
2571	13	2605	175	2639	10	2673	12	2707	199	2741	11
2572	15	2606	191	2640	11	2674	13	2708	215	2742	11
2573	17	2607	213	2641	11	2675	15	2709	222	2743	12
2574	16	- 2608	221	2642	14	2676	17	2710	222	2744	19
2575	13	2609	220	2643	31	2677	17	2711	218	2745	38
2576	13	2610	212	2644	50	2678	14	2712	215	2746	38
2577	12	2611	204	2645	32	2679	13	2713	219	2747	18
2578	12	2612	201	2646	13	2680	13	2714	227	2748	12
2579	12	2613	203	2647	11	2681	12	2715	231	2749	11
2580	12	2614	204	2648	10	2682	13	2716	226	2750	11
2581	13	2615	202	2649	10	2683	15	2717	208	2751	10
2582	14	2616	196	2650	10	2684	31	2718	180	2752	11
2583	23	2617	187	2651	11	2685	63	2719	148	2753	11
2584	47	2618	180	2652	13	2686	119	2720	128	2754	12
2585	75	2619	179	2653	27	2687	159	2721	127	2755	15
2586	95	2620	186	2654	32	2688	187	2722	155	2756	18
2587	103	2621	197	2655	16	2689	203	2723	191	2757	14
2588	108	2622	207	2656	12	2690	200	2724	231	2758	12
2589	107	2623	208	2657	11	2691	192	2725	245	2759	11
2590	104	2624	196	2658	10	2692	172	2726	228	2760	11
2591	109	2625	176	2659	10	2693	152	2727	192	2761	10
2592	123	2626	144	2660	10	2694	140	2728	128	2762	11
2593	143	2627	112	2661	11	2695	143	2729	72	2763	11
2594	167	2628	90	2662	11	2696	155	2730	40	2764	11

Table 54-B

Stripchart for F3, Series III $27.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 10

High Lip Pressure
F3 T3 08

Table 55-B

> Stripchart for F3, Series III $26.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Gain 10

> Low Lip Pressure F3 T3 09

STARTING ADDRESS $=2305$ ENDING ADDRESS $=2505$ STEP = 1 DATA RAME $=17280$

SIX COLUMNS: POINT NUMBER VALUE

2305	136	2339	111	2373	6	2407	92	2441	183	2475	7
2306	128	2340	127	2374	6	2408	74	2442	201	2476	-
2307	112	2341	157	2375	6	2409	56	2443	211	2477	,
2308	96	2342	175	2376	7	2410	40	2444	212	2478	11
2309	80	2343	197	2377	8	2411	28	2445	208	2479	13
2310	64	2344	211	2378	9	2412	18	2446	200	2480	15
2311	48	2345	216	2379	11	2413	12	2447	186	2481	19
2312	33	2346	215	2380	12	2414	8	2448	176	2482	23
2313	22	2347	208	2381	14	2415	6	2449	164	2483	35
2314	14	2348	197	2382	17	2416	5	2450	155	2484	51
2315	9	2349	184	2383	21	2417	5	2451	148	2485	71
2316	7	2350	176	2384	30	2418	5	2452	140	2486	95
2317	5	2351	166	2385	43	2419	5	2453	130	2487	118
2318	5	2352	160	2386	63	2420	5	2454	120	2488	141
2319	5	2353	150	2387	87	2421	5	2455	104	2489	159
2320	5	2354	142	2388	109	2422	6	2456	90	2490	183
2321	5	2355	132	2389	127	2423	6	2457	74	2491	203
2322	5	2356	118	2390	157	2424	6	2458	58	2492	215
2323	5	2357	104	2391	179	2425	7	2459	42	2493	219
2324	6	2358	86	2392	199	2426	7	2460	32	2494	216
2325	6	2359	70	2393	215	2427	9	2461	19	2495	208
2326	6	2360	52	2394	223	2428	10	2462	12	2496	197
2327	7	2361	38	2395	223	2429	11	2463	8	2497	185
2328	7	2362	25	2396	216	2430	13	2464	6	2498	176
2329	9	2363	16	2397	205	2431	15	2465	5	2499	166
2330	10	2364	11	2398	193	2432	19	2466	5	2500	160
2331	12	2365	8	2399	182	2433	26	2467	5	2501	150
2332	14	2366	6	2400	172	2434	38	2468	5	2502	141
2333	17	2367	5	2401	164	2435	55	2469	5	2503	130
2334	22	2368	5	2402	156	2436	75	2470	5	2504	116
2335	31	2369	5	2403	148	2437	95	2471	5	2505	100
2336	47	2370	5	2404	137	2438	119	2472	6	2506	84
2337	63	2371	5	2405	128	2439	143	2473	6	2507	68
2338	87	2372	6	2406	108	2440	167	2474	6	2508	50

Table 56-B

Stripchart for F3, Series III $33.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 10

High Lip Pressure F3 T3 10

STARTING ADDRESS $=2561$ ENDING ADDRESS $=2761$ STEP $=1$ DATA RATE $=17280$

SIX COLUMNS: POINT NUMBER VALUE

2561	4	2595	4	2629	50	2663	5	2697	4	2731	32
2562	4	2596	4	2630	48	2664	7	2698	4	2732	24
2563	4	2597	4	2631	43	2665	19	2699	4	2733	18
2564	4	2598	4	2632	36	2666	43	2700	4	2734	12
2565	6	2599	4	2633	28	2667	63	2701	4	2735	8
2566	11	2600	4	2634	21	2668	87	2702	4	2736	5
2567	27	2601	4	2635	16	2669	95	2703	4	2737	4
2568	55	2602	4	2636	10	2670	99	2704	4	2738	4
2569	79	2603	4	2637	7	2671	92	2705	4	2739	4
2570	95	2604	4	2638	5	2672	80	2706	4	2740	4
2571	103	2605	4	2639	4	2673	66	2707	4	2741	4
2572	102	2606	4	2640	4	2674	56	2708	4	2742	4
2573	90	2607	4	2641	4	2675	49	2709	4	2743	4
2574	76	2608	4	2642	4	2676	46	2710	4	2744	4
2575	65	2609	4	2643	4	2677	47	2711	4	2745	4
2576	56	2610	4	2644	4	2678	51	2712	5	2746	4
2577	50	2611	4	2645	4	2679	50	2713	7	2747	4
2578	49	2612	4	2646	4	2680	45	2714	15	2748	4
2579	52	2613	4	2647	4	2681	38	2715	39	2749	4
2580	53	2614	5	2648	4	2682	30	2716	63	2750	4
2581	51	2615	9	2649	3	2683	22	2717	87	2751	4
2582	45	2616	23	2650	4	2684	16	2718	99	2752	4
2583	37	2617	47	2651	4	2685	12	2719	102	2753	4
2584	28	2618	71	2652	4	2686	8	2720	96	2754	4
2585	21	2619	87	2653	4	2687	5	2721	82	2755	4
2586	16	2620	95	2654	4	2688	4	2722	69	2756	4
2587	10	2621	96	2655	4	2689	4	2723	58	2757	4
2588	6	2622	86	2656	4	2690	4	2724	50	2758	4
2589	5	2623	72	2657	4	2691	4	2725	47	2759	4
2590	4	2624	60	2658	4	2692	4	2726	49	2760	4
2591	4	2625	52	2659	4	2693	4	2727	52	2761	4
2592	4	2626	46	2660	4	2694	4	2728	52	2762	7
2593	4	2627	45	2661	4	2695	4	2729	48	2763	15
2594	4	2628	47	2662	4	2696	4	2730	40	2764	31

Table 57-B

Stripchart for F3, Series III $29.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Gain 10 Low Lip Pressure F3 T3 11

STARTING ADDRESS $=2817$ ENDING ADDRESS $=3017$
STEP $=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

2817	19	2851	4	2885	218	2919	231	2953	4	2987	128
2818	63	2852	4	2886	202	2920	255	2954	4	2988	80
2819	127	2853	4	2887	176	2921	255	2955	4	2989	32
2820	215	2854	4	2888	136	2922	255	2956	4	2990	10
2821.	255	2855	4	2889	96	2923	255	2957	4	2991	5
2822	255	2856	4	2890	40	2924	255	2958	4	2992	4
2823	255	2857	4	2891	12	2925	248	2959	4	2993	4
2824	255	2858	4	2892	5	2926	240	2960	4	2994	4
2825	255	2859	4	2893	4	2927	236	2961	4	2995	4
2826	244	2860	4	2894	4	2928	233	2962	5	2996	4
2827	234	2861	4	2895	4	2929	230	2963	6	2997	4
2828	229	2862	4	2896	4	2930	229	2964	7	2998	4
2829	226	2863	5	2897	4	2931	228	2965	15	2999	4
2830	222	2864	6	2898	4	2932	227	2966	39	3000	4
2831	221	2865	7	2899	4	2933	224	2967	111	3001	4
2832	221	2866	13	2900	4	2934	218	2968	191	3002	4
2833	221	2867	31	2901	4	2935	208	2969	255	3003	4
2834	220	2868	95	2902	4	2936	184	2970	255	3004	4
2835	216	2869	191	2903	4	2937	152	2971	255	3005	4
2836	204	2870	255	2904	4	2938	112	2972	255	3006	4
2837	184	2871	255	2905	4	2939	64	2973	255	3007	4
2838	160	2872	255	2906	4	2940	20	2974	244	3008	4
2839	112	2873	255	2907	4	2941	7	2975	234	3009	4
2840	64	2874	255	2908	4	2942	4	2976	230	3010	4
2841	24	2875	255	2909	4	2943	4	2977	228	3011	5
2842	8	2876	246	2910	4	2944	4	2978	226	3012	5
2843	4	2877	240	2911	4	2945	4	2979	224	3013	7
2844	4	2878	236	2912	5	2946	4	2980	222	3014	11
2845		2879	234	2913	5	2947	4	2981	220	3015	23
2846	4	2880	233	2914	7	2948	,	2982	218	3016	79
2847	4	2881	232	2915	11	2949	4	2983	216	3017	159
2848	4	2882	232	2916	23	2950	4	2984	206	3018	239
2849	4	2883	231	2917	63	2951	4	2985	192	3019	255
2850	4	2884	228	2918	159	2952	4.	2986	164	3020	255

Table 58-B

Stripchart for F3, Series II $36.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Page 01

STARTING ADDRESS $=257$ ENDING ADDRESS $=457$
STEP = 1 DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

257	185	291	231	325	8	359	203	393	180	427	9
258	177	292	226	326	8	360	206	394	160	428	9
259	187	293	212	327	8	361	200	395	128	429	9
260	203	294	194	328	8	362	188	396	96	430	9
261	213	295	176	329	9	363	184	397	48	431	9
262	210	296	144	330	8	364	191	398	12	432	9
263	200	297	112	331	8	365	206	399	10	433	9
264	190	298	64	332	8	366	215	400	9	434	9
265	191	299	16	333	8	367	218	401	9	435	9
266	207	300	10	334	8	368	215	402	9	436	9
267	221	301	9	335	8	369	213	403	9	437	9
268	227	302	9	336	8	370	214	404	9	438	9
269	224	303	9	337	8	371	215	405	9	439	9
270	220	304	9	338	8	372	213	406	9	440	9
271	220	305	9	339	8	373	208	407	8	441	9
272	222	306	9	340	8	374	206	408	9	442	9
273	221	307	9	341	8	375	211	409	9	443	9
274	218	308	9	342	8	376	223	410	9	444	9
275	215	309	9	343	8	377	239	411	9	445	10
276	219	310	9	344	8	378	242	412	9	446	11
277	231	311	9	345	9	379	232	413	9	447	13
278	247	312	9	346	9	380	212	414	9	448	31
279	254	313	9	347	10	381	193	415	9	449	87
280	248	314	9	348	11	382	184	416	9	450	143
281	228	315	9	349	23	383	185	417	9	451	191
282	210	316	9	350	63.	384	189	418	9	452	217
283	197	317	9	351	127	385	193	419	9	453	212
284	195	318	9	352	175	386	199	420	9	454	196
285	198	319	9	353	206	387	206	421	9	455	182
286	201	320	9	354	208	388	215	422	9	456	183
287	205	321	9	355	192	389	223	423	9	457	199
288	211	322	9	356	178	390	222	424	9	458	213
289	221	323	9	357	174	391	214	425	9	459	213
290	229	324	9	358	187	392	200	426	9	460	204

Table 59-B

Stripchart for F3, Series II $34.0 \mathrm{~cm} H 2 O, 97.5 \mathrm{dBA}$. Page 02

```
STARTING ADDRESS = 513 ENDING ADDRESS = 713
STEP = 1 DATA RATE = 17280
```


SIX COLUMNS: POINT NUMBER VALUE

			$-\cdots$
513	207	547	9
514	213	548	9
515	219	549	9
516	226	550	9
517	228	551	9
518	221	552	9
519	208	553	9
520	192	554	9
521	164	555	9
522	136	556	9
523	96	557	9
524	52	558	9
525	16	559	9
526	11	560	9
527	9	561	9
528	9	562	9
529	9	563	9
530	9	564	8
531	9	565	9
532	9	566	9
533	9	567	9
534	9	568	9
535	9	569	9
536	9	570	9
537	9	571	9
538	9	572	10
539	9	573	11
540	9	574	15
541	9	575	39
542	9	576	87
543	9	577	127
544	9	578	175
545	9	579	203
546	9	580	206

$--19-$	
581	196
582	181
583	179
584	189
585	199
586	205
587	200
588	189
589	185
590	191
591	205
592	215
593	218
594	215
595	212
596	211
597	212
598	212
599	210
600	209
601	215
602	227
603	238
604	240
605	228
606	210
607	192
608	185
609	186
610	191
611	195
612	199
613	206
614	213

$-2-15$	219
615	219
616	210
617	196
618	196
619	176
620	152
621	128
622	80
623	36
624	12
625	10
626	9
627	9
628	9
629	9
630	9
631	9
632	9
633	9
634	9
635	9
636	9
637	9
638	9
639	9
640	9
641	9
642	9
643	9
644	9
645	9
646	9
647	9
648	9

649	9
650	9
651	9
652	9
653	9
654	9
655	9
656	9
657	9
658	9
659	9
660	9
661	9
662	9
663	9
664	9
665	9
666	9
667	9
668	9
669	9
670	10
671	10
672	11
673	23
674	55
675	103
676	159
677	191
678	215
679	212
680	200
681	188
682	191

683	205
684	215
685	216
686	208
687	196
688	195
689	207
690	219
691	227
692	226
693	221
694	218
695	218
696	219
697	217
698	214
699	214
700	222
701	235
702	243
703	240
704	224
705	204
706	192
707	184
708	187
709	191
710	198
711	203
712	207
713	215
714	218
715	216
716	204

Table 60-B

Stripchart for F3, Series II $32.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 98 \mathrm{dBA}$, Page 03

```
STARTING ADDRESS = 769 ENDING ADDRESS = 969
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

$7--\cdots$	
769	9
770	9
771	9
772	9
773	9
774	9
775	9
776	9
777	9
778	9
779	9
780	9
781	9
782	9
783	9
784	9
785	9
786	9
787	9
788	9
789	9
790	9
791	9
792	9
793	9
794	9
795	9
796	9
797	9
798	9
799	9
800	9
801	9
802	9

-1	
803	9
804	9
805	9
806	9
807	9
808	9
809	10
810	10
811	11
812	11
813	15
814	31
815	71
816	119
817	167
818	203
819	221
820	220
821	209
822	200
823	199
824	207
825	215
826	219
827	216
828	208
829	206
830	211
831	223
832	231
833	235
834	233
835	228
836	225

837	224
838	225
839	227
840	229
841	233
842	239
843	247
844	246
845	237
846	224
847	208
848	198
849	197
850	203
851	211
852	218
853	223
854	226
855	226
856	222
857	212
858	194
859	168
860	144
861	104
862	64
863	20
864	11
865	10
866	9
867	9
868	9
869	9
870	9

$-7-\cdots$	
871	9
872	9
873	9
874	9
875	9
876	9
877	9
878	9
879	9
880	9
881	9
882	9
883	9
884	9
885	9
886	9
887	9
888	9
889	9
890	9
891	9
892	9
893	9
894	9
895	9
896	9
897	9
898	9
899	9
900	9
901	9
902	9
903	9
904	9

905	9
906	9
907	9
908	9
909	10
910	10
911	11
912	19
913	47
914	87
915	127
916	175
917	205
918	214
919	208
920	196
921	189
922	191
923	203
924	213
925	213
926	208
927	201
928	203
929	211
930	223
931	231
932	232
933	227
934	222
935	221
936	223
937	225
938	227

	$-\sim$
939	230
940	237
941	245
942	249
943	246
944	234
945	216
946	202
947	197
948	201
949	207
950	218
951	223
952	228
953	231
954	230
955	224
956	212
957	192
958	164
959	128
960	88
961	40
962	16
963	11
964	10
965	9
966	9
967	9
968	10
969	10
970	10
971	9
972	9

Table 61-B

Stripchart for F3, Series II $30.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 94 \mathrm{dBA}$, Page 04

```
STARTING ADDRESS = 1025 ENDING ADDRESS = 1225
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

1025	9	1059	207	1093	148	1127	9	1161	215	1195	20
1026	10	1060	214	1094	112	1128	9	1162	215	1196	12
1027	10	1061	215	1095	72	1129	9	1163	219	1197	11
1028	10	1062	214	1096	32	1130		1164	226	1198	10
1029	10	1063	213	1097	12	1131	9	1165	233	1199	10
1030	10	1064	214	1098	11	1132	9	1166	237	1200	10
1031	10	1065	219	1099	10	1133	9	1167	236	1201	10
1032	10	1066	227	1100	9	1134°	9	1158	232	1202	10
1033	10	1067	231	1101	9	1135	9	1169	228	1203	10
1034	10	1068	233	1102	9	1136	9	1170	227	1204	10
1035	10	1069	230	1103	9	1137		1171	231	1205	10
1036	10	1070	224	1104	9	1138	9	1172	235	1206	10
1037	10	1071	221	1105	9	1139	9	1173	241	1207	9
1038	10	1072	221	1106	9	1140	10	1174	245	1208	9
1039	10	1073	225	1107	9	1141	10	1175	247	1209	9
1040	10	1074	230	1108	9	1142	11	1176	245	1210	9
1041	10	1075	235	1109	9	1143	11	1177	240	1211	9
1042	10	1076	237	1110	9	1144	13	1178	232	1212	9
1043	11	1077	237	1111	9	1145	23	1179	224	1213	9
1044	11	1078	233	1112	9	1146	47	1180	212	1214	9
1045	12	1079	226	1113	9	1147	79	1181	206	1215	9
1046	15	1080	216	1114	9	1148	123	1182	207	1216	9
1047	31	1081	206	1115	9	1149	159	1183	215	1217	9
1048	63	1082	199	1116	9	1150	191	1184	223	1218	9
1049	107	1083	197	1117	9	1151	211	1185	235	1219	9
1050	151	1084	203	1118	9.	1152	217	1186	239	1220	9
1051	183	1085	213	1119	9	1153	213	1187	236	1221	9
1052	207	1086	223	1120	9	1154	206	1188	226	1222	9
1053	215	1087	229	1121	9	1155	201	1189	212	1223	9
1054	214	1088	228	1122	9	1156	202	1190	194	1224	9
1055	208	1089	221	1123	9	1157	207	1191	172	1225	9
1056	200	1090	210	1124	9	1158	213	1192	144	1226	9
1057	198	1091	196	1125	9	1159	217	1193	104	1227	9
1058	202	1092	176	1126	9	1160	217	1194	64	1228	9

Table 62-B

Stripchart for F3, Series II $29.0 \mathrm{~cm} H 2 \mathrm{O}, 88 \mathrm{dBA}$, Page 05

STARTING ADDRESS $=1281$ ENDING ADDRESS $=1481$ STEP $=1$ DATA RATE $=17280$

SIX COLUMNS: POINT NUMBER VALUE

1281	10	1315	10	1349	145	1383	9	1417	9	1451	143
1282	9	1316	10	1350	145	1384	9	1418	9	1452	147
1283	9	1317	10	1351	146	1385	9	1419	10	1453	148
1284	9	1318	10	1352	146	1386	9	1420	10	1454	148
1285	9	1319	10	1353	147	1387	9	1421	10	1455	145
1286	9	1320	10	1354	148	1388	9	1422	11	1456	140
1287	9	1321	10	1355	148	1389	9	1423	12	1457	132
1288	9	1322	11	1356	146	1390	9	1424	15	1458	128
1289	9	1323	11	1357	142	1391	9	1425	23	1459	121
1290	9	1324	11	1358	138	1392	9	1426	39	1460	119
1291	9	1325	13	1359	132	1393	9	1427	55	1461	119
1292	9	1326	19	1360	124	1394	9	1428	75	1462	121
1293	9	1327	31	1361	120	1395	9	1429	94	1463	123
1294	9	1328	47	1362	118	1396	9	1430	107	1464	124
1295	9	1329	69	1363	117	1397	9	1431	114	1465	122
1296	9	1330	87	1364	119	1398	9	1432	117	1466	119
1297	9	1331	103	1365	121	1399	9	1433	117	1467	113
1298	9	1332	115	1366	121	1400	9	1434	116	1468	104
1299	9	1333	121	1367	120	1401	9	1435	117	1469	96
1300	9	1334	122	1368	116	1402	9	1436	118	1470	80
1301	9	1335	123	1369	108	1403	9	1437	120	1471	64
1302	9	1336	123	1370	98	1404	9	1438	122	1472	40
1303	9	1337	123	1371	85	1405	9	1439	122	1473	24
1304	9	1338	123	1372	68	1406	9	1440	123	1474	13
1305	9	1339	124	1373	52	1407	9	1441	123	1475	11
1306	9	1340	125	1374	32.	1408	9	1442	125	1476	11
1307	9	1341	126	1375	18	1409	9	1443	129	1477	10
1308	9	1342	127	1376	12	1410	9	1444	135	1478	10
1309	9	1343	129	1377	11	1411	9	1445	139	1479	10
1310	10	1344	131	1378	10	1412	9	1446	142	1480	10
1311	10	1345	135	1379	10	1413	9	1447	143	1481	10
1312	10	1346	139	1380	9	1414	9	1448	142	1482	10
1313	10	1347	143	1381	9	1415	9	1449	142	1483	10
1314	10	1348	145	1382	9	1416	9	1450	142	1484	10

Table 63-B

Stripchart for F3, Series II $27.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 84 \mathrm{dBA}$, Page 06

```
STARTING ADDRESS = 1537 ENDING ADDRESS = 1737
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

1537	109	1571	97	1605	56	1639	115	1673	82	1707	59
1538	111	1572	94	1606	57	1640	116	1674	79	1708	61
1539	113	1573	92	1607	58	1641	117	1675	77	1709	62
1540	114	1574	90	1608	59	1642	118	1676	75	1710	63
1541	116	1575	87	1609	60	1643	118	1677	73	1711	66
1542	117	1576	85	1610	61	1644	119	1678	71	1712	67
1543	117	1577	83	1611	63	1645	119	1679	70	1713	69
1544	118	1578	82	1612	63	1646	119	1680	68	1714	71
1545	119	1579	80	1613	66	1647	119	1681	66	1715	73
1546	119	1580	78	1614	67	1648	119	1682	64	1716	75
1547	120	1581	76	1615	68	1649	118	1683	63	1717	78
1548	121	1582	73	1616	70	1650	118	1684	61	1718	79
1549	121	1583	70	1617	72	1651	118	1685	59	1719	83
1550	122	1584	68	1618	73	1652	117	1686	57	1720	85
1551	122	1585	65	1619	76	1653	116	1687	56	1721	87
1552	122	1586	64	1620	78	1654	116	1688	55	1722	90
1553	121	1587	61	1621	80	1655	114	1689	54	1723	92
1554	121	1588	60	1622	83	1656	113	1690	54	1724	94
1555	121	1589	59	1623	85	1657	112	1691	53	1725	97
1556	120	1590	58	1624	87	1658	110	1692	53	1726	99
1557	119	1591	58	1625	89	1659	109	1693	53	1727	101
1558	119	1592	57	1626	91	1660	108	1694	53	1728	103
1559	118	1593	57	1627	93	1661	106	1695	52	1729	106
1560	116	1594	56	1628	95	1662	105	1696	52	1730	107
1561	114	1595	56	1629	97	1663	104	1697	53	1731	109
1562	113	1596	55	1630	98.	1664	102	1698	52	1732	111
1563	112	1597	55	1631	101	1665	100	1699	53	1733	113
1564	110	1598	55	1632	103	1666	98	1700	53	1734	115
1565	109	1599	55	1633	105	1667	95	1701	54	1735	118
1566	108	1600	55	1634	108	1668	93	1702	55	1736	119
1567	106	1601	55	1635	110	1669	91	1703	55	1737	121
1568	104	1602	55	1636	111	1670	88	1704	56	1738	122
1569	102	1603	55	1637	113	1671	86	1705	57	1739	123
1570	100	1604	55	1638	115	1672	84	1706	58	1740	123

Table 64-B

Stripchart for F3, Series II $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 78 \mathrm{dBA}$, Page 07

STARTING ADDRESS $=1793$ ENDING ADDRESS $=1993$
STEP $=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

1793	58	1827	11	1861	107	1895	24	1929	11	1963	111
1794	48	1828	11	1862	109	1896	18	1930	11	1964	113
1795	37	1829	11	1863	111	189\%	14	1931	11	1965	115
1796	27	1830	11	1864	115	1898	13	1932	11	1966	117
1797	20	1831	11	1865	117	1899	12	1933	11	1967	119
1798	16	1832	11	1866	119	1900	12	1934	11	1968	120
1799	13	1833	11	1867	122	1901	12	1935	11	1969	121
1800	12	1834	11	1868	123	1902	11	1936	11	1970	122
1801	11	1835	11	1869	125	1903	11	1937	11	1971	122
1802	11	1836	11	1870	126	1904	11	1938	11	1972	122
1803	11	1837	11	1871	127	1905	11	1939	12	1973	122
1804	11	1838	11	1872	127	1906	11	1940	12	1974	120
1805	11	1839	11	1873	128	1907	11	1941	13	1975	119
1806	11	1840	11	1874	128	1908	11	1942	15	1976	116
1807	11	1841	12	1875	127	1909	11	1943	19	1977	114
1808	11	1842	1.3	1876	125	1910	11	1944	25	1978	111
1809	11	1843	11	1877	123	1911	11	1945	34	1979	108
1810	11	1844	17	1878	120	1912	11	1946	43	1980	106
1811	11	1845	22	1879	118	1913	11	1947	55	1981	104
1812	11	1846	29	1880	115	1914	11	1948	63	1982	102
1813	11	1847	39	1881	113	1915	11	1949	73	1983	100
1814	11	1848	47	1882	110	1916	11	1950	79	1984	97
1815	11	1849	59	1883	108	1917	11	1951	87	1985	94
1816	11	1850	70	1884	106	1918	11	1952	91	1986	89
1817	11	1851	79	1885	102	1919	11	1953	94	1987	86
1818	11	1852	85	1886	99.	1920	11	1954	96	1988	76
1819	10	1853	91	1887	96	1921	11	1955	99	1989	68
1820	10	1854	95	1888	90	1922	11	1956	100	1990	57
1821	10	1855	98	1889	84	1923	11	1957	101	1991	48
1822	10	1856	100	1890	76	1924	11	1958	102	1992	36
1823	10	1857	102	1891	66	1925	11	1959	103	1993	27
1824	10	1858	103	1892	56	1926	11	1960	105	1994	20
1825	10	1859	105	1893	44	1927	11	1961	107	1995	16
1826	10	1860	106	1894	32	1928	11	1962	109	1996	13

Table 65-B

Stripchart for F3, Series II $23.5 \mathrm{~cm} H 20,71 \mathrm{dBA}$, Page 08

STARTING ADDRESS $=2049$ ENDING ADDRESS $=2249$
STEP $=1$ DATA RATE $=17280$
SIX COLUMNS: POINT NUMBER VALUE

2049	19	2083	13	2117	109	2151	14	2185	16	2219	113
2050	17	2084	13	2118	109	2152	13	2186	18	2220	113
2051	16	2085	14	2119	110	2153	13	2187	19	2221	112
2052	14	2086	15	2120	111	2154	13	2188	22	2222	111
2053	14	2087	15	2121	111	2155	13	2189	25	2223	110
2054	13	2088	17	2122	110	2156	13	2190	28	2224	109
2055	13	2089	19	2123	110	2157	13	2191	31	2225	107
2056	13	2090	22	2124	109	2158	12	2192	39	2226	105
2057	13	2091	25	2125	108	2159	13	2193	43	2227	102
2058	13	2092	28	2126	106	2160	12	2194	50	2228	99
2059	12	2093	31	2127	105	2161	12	2195	55	2229	96
2060	12	2094	37	2128	103	2162	12	2196	62	2230	92
2061	12	2095	43	2129	100	2163	12	2197	67	2231	88
2062	12	2096	47	2130	97	2164	12	2198	74	2232	84
2063	12	2097	55	2131	94	2165	12	2199	79	2233	80
2064	12	2098	61	2132	90	2166	12	2200	85	2234	76
2065	12	2099	67	2133	87	2167	12	2201	89	2235	72
2066	12	2100	73	2134	83	2168	12	2202	93	2236	66
2067	12	2101	77	2135	79	2169	12	2203	95	2237	60
2068	12	2102	82	2136	75	2170	12	2204	97	2238	54
2069	12	2103	86	2137	70	2171	12	2205	99	2239	48
2070	12	2104	89	2138	65	2172	12	2206	101	2240	42
2071	12	2105	91	2139	60	2173	12	2207	103	2241	37
2072	12	2106	94	2140	53	2174	12	2208	105	2242	32
2073	12	2107	95	2141	48	2175	12	2209	106	2243	27
2074	12	2108	97	2142	41	2176	12	2210	107	2244	23
2075	12	2109	99	2143	36	2177	13	2211	108	2245	20
2076	12	2110	101	2144	32	2178	13	2212	109	2246	17
2077	12	2111	102	2145	26	2179	13	2213	110	2247	16
2078	12	2112	103	2146	23	2180	13	2214	111	2248	14
2079	12	2113	105	2147	20	2181	13	2215	111	2249	14
2080.	12	2114	106	2148	18	2182	14	2216	113	2250	13
2081	12	2115	107	2149	16	2183	15	2217	113	2251	13
2082	13	2116	108	2150	15	2184	15	2218	113	2252	13

Table 66-B

Stripchart for F3, Series II $22.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 68 \mathrm{dBA}$, Page 09

```
STARTING ADDRESS = 2305 ENDING ADDRESS = 2505
STEP = 1 DATA RATE = 17280
```

SIX COLUMNS: POINT NUMBER VALUE

					-						
2305	49	2339	86	2373	23	2407	59	2441	74	2475	23
2306	52	2340	85	2374	23	2408	61	2442	72	2476	23
2307	54	2341	83	2375	23	2409	63	2443	70	2477	23
2308	57	2342	81	2376	23	2410	66	2444	68	2478	23
2309	59	2343	79	2377	23	2411	69	2445	66	2479	23
2310	62	2344	77	2378	23	2412	71	2446	64	2480	24
2311	63	2345	75	2379	23	2413	73	2447	61	2481	24
2312	67	2346	72	2380	23	2414	75	2448	58	2482	25
2313	69	2347	70	2381	23.	2415	77	2449	56	2483	25
2314	71	2348	68	2382	23	2416	79	2450	54	2484	26
2315	74	2349	65	2383	23	2417	80	2451	52	2485	27
2316	76	2350	63	2384	23	2418	82	2452	49	2486	27
2317	78	2351	60	2385	24	2419	83	2453	47	2487	28
2318	80	2352	58	2386	25	2420	85	2454	45	2488	29
2319	82	2353	55	2387	25	2421	86	2455	42	2489	30
2320	84	2354	53	2388	26	2422	86	2456	40	2490	31
2321	86	2355	50	2389	27	2423	87	2457	39	2491	33
2322	87	2356	47	2390	28	2424	87	2458	37	2492	35
2323	89	2357	45	2391	29	2425	87	2459	35	2493	36
2324	90	2358	43	2392	29	2426	87	2460	34	2494	39
2325	91	2359	41	2393	31	2427	87	2461	32	2495	40
2326	91	2360	39	2394	33	2428	87	2462	30	2496	43
2327	91	2361	37	2395	35	2429	87	2463	29	2497	45
2328	91	2362	35	2396	36	2430	87	2464	28	2498	47
2329	92	2363	33	2397	38	2431	87	2465	27	2499	49
2330	92	2364	32	2398	39.	2432	86	2466	26	2500	51
2331	91	2365	30	2399	42	2433	85	2467	25	2501	53
2332	91	2366	29	2400	43	2434	84	2468	25	2502	56
2333	91	2367	28	2401	46	2435	83	2469	25	2503	59
2334	90	2368	27	2402	47	2436	82	2470	24	2504	61
2335	90	2369	26	2403	50	2437	81	2471	23	2505	63
2336	89	2370	25	2404	53	2438	80	2472	23	2506	66
2337	88	2371	25	2405	55	2439	78	2473	23	2507	69
2338	87	2372	24	2406	58	2440	76	2474	23	2508	71

Table 67-B

Stripchart for FS , Series I
$31.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Page 06

STARTING ADDRESS = 1792 ENDING ADDRESS $=1992$
STEP $=1$ DATA RATE $=17280$

number value											
1792	62	1826	10	1860	25	1894	61	1928	10	1962	23
1793	56	1827	9	1861	31	1895	56	1929	9	1963	29
1794	48	1828	9	1862	39	1896	48	1930	8	1964	38
1795	40	1829	9	1863	50	1897	40	1931	9	1965	47
1796	32	1830	10	1864	58	1898	32	1932	9	1966	55
1797	24	1831	11	1865	63	1899	24	1933	10	1967	63
1798	18	1832	13	1866	68	1900	17	1934	12	1968	67
1799	13	1833	17	1867	69	1901	13	1935	15	1969	68
1800	11	1834	21	1868	67	1902	10	1936	19	1970	67
1801	9	1835	27	1869	62	1903	9	1937	25	1971	64
1802	9	1836	35	1870	54	1904	9	1938	31	1972	56
1803	9	1837	45	1871	46	1905	9	1939	41	1973	48
1804	9	1838	55	1872	37	1906	9	1940	51	1974	38
1805	10	1839	61	1873	28	1907	9	1941	57	1975	29
1806	12	1840	67	1874	21	1908	11	1942	63	1976	21
1807	15	1841	69	1875	16	1909	13	1943	66	1977	16
1808	19	1842	69	1876	12	1910	15	1944	66	1978	12
1809	23	1843	65	1877	10	1911	22	1945	62	1979	10
1810	31	1844	60	1878	9	1912	29	1946	57	1980	9
1811	39	1845	52	1879	9	1913	37	1947	50	1981	9
1812	47	1846	42	1880	9	1914	45	1948	41	1982	9
1813	58	1847	32	1881	9	1915	53	1949	32	1983	10
1814	63	1848	24	1882	10	1916	59	1950	24	1984	11
1815	68	1849	18	1883	12	1917	63	1951	18	1985	13
1816	68	1850	14	1884	15	1918	65	1952	14	1986	15
1817	66	1851	11	1885	19	1919	64	1953	11	1987	20
1818	62	1852	10	1886	26	1920	59	1954	9	1988	27
1819	54	1853	9	1887	31	1921	53	1955	9	1989	35
2820	46	1854	9	1888	43	1922	45	1956	9	1990	43
1821	37	1855	9	1889	51	1923	36	1957	9	1991	53
1822	28	1856	10	1890	59	1924	28	1958	10	1992	60
1823	21	1857	12	1891	63	1925	20	1959	11	1993	66
1824	16	1858	15	1892	66	1926	16	1960	13	1994	69
1825	12	1859	19	1893	65	1927	12	1961	17	1995	69

Table 68-B

Stripchart for F5, Series I $29.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 86 \mathrm{dBA}$, Page 07

Table 69-B

Stripchart for Bb5, Series I $24.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 09

```
STARTING ADDRESS = 2305 ENDING ADDRESS =2505
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

2305	16	2339	26	2373	32	2407	31	2441	25	2475	15
2306	12	2340	22	2374	31	2408	32	2442	27	2476	19
2307	11	2341	17	2375	28	2409	33	2443	30	2477	23
2308	11	2342	13	2376	24	2410	32	2444	33	2478	26
2309	12	2343	11	2377	19	2411	30	2445	34	2479	29
2310	15	2344	10	2378	15	2412	26	2446	34	2480	31
2311	18	2345	11	2379	12	2413	22	2447	32	2481	33
2312	21	2346	13	2380	10	2414	18	2448	30	2482	34
2313	25	2347	15	2381	10	2415	14	2449	26	2483	33
2314	28	2348	19	2382	11	2416	11	2450	21	2484	31
2315	31	2349	23	2383	13	2417	10	2451	16	2485	28
2316	33	2350	26	2384	16	2418	10	2452	13	2486	24
2317	34	2351	29	2385	19	2419	12	2453	11	2487	19
2318	34	2352	31	2386	23	2420	15	2454	10	2488	14
2319	32	2353	33	2387	26	2421	19	2455	11	2489	12
2320	29	2354	33	2388	29	2422	22	2456	14	2490	10
2321	25	2355	33	2389	31	2423	25	2457	17	2491	10
2322	21	2356	30	2390	32	2424	28	2458	20	2492	12
2323	16	2357	27	2391	32	2425	30	2459	23	2493	14
2324	13	2358	23	2392	31	2426	32	2460	27	2494	18
2325	11	2359	18	2393	28	2427	33	2461	30	2495	21
2326	10	2360	14	2394	25	2428	33	2462	31	2496	25
2327	11	2361	11	2395	20	2429	31	2463	34	2497	27
2328	14	2362	10	2396	16	2430	28	2464	34	2498	30
2329	17	2363	10	2397	13	2431	24	2465	33	2499	31
2330	20	2364	12	2398	10	2432	19	2466	30	2500	33
2331	23	2365	15	2399	10	2433	15	2467	26	2501	33
2332	27	2366	18	2400	11	2434	12	2468	22	2502	32
2333	30	2367	21	2401	13	2435	10	2469	18	2503	28
2334	31	2368	24	2402	15	2436	11	2470	14	2504	24
2335	33	2369	27	2403	19	2437	12	2471	11	2505	20
2336	34	2370	30	2404	23	2438	14	2472	10	2506	16
2337	33	2371	31	2405	25	2439	17	2473	11	2507	12
2338	30	2372	32	2406	28	2440	21	2474	13	2508	10

Table 70-B

Stripchart for Bb5, Series I $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Page 10

STARTING ADDRESS $=2561$ ENDING ADDRESS $=2761$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

2561	40	2595	37	2629	25	2663	13	2697	4	2731	3
2562	34	2596	39	2630	29	2664	19	2698	6	2732	3
2563	26	2597	39	2631	35	2665	23	2699	11	2733	3
2564	18	2598	36	2632	39	2666	28	2700	15	2734	5
2565	9	2599	30	2633	40	2667	33	2701	21	2735	7
2566	4	2600	22	2634	38	2668	39	2702	26	2736	13
2567	3	2601	13	2635	34	2669	41	2703	31	2737	18
2568	3	2602	6	2636	26	2670	41	2704	35	2738	23
2569	3	2603	3	2637	18	2671	38	2705	39	2739	27
2570	6	2604	3	2638	9	2672	32	2706	41	2740	31
2571	10	2605	3	2639	4	2673	24	2707	40	2741	37
2572	15	2606	4	2640	3	2674	14	2708	36	2742	39
2573	19	2607	7	2641	3	2675	6	2709	28	2743	39
2574	25	2608	11	2642	3	2676	4	2710	18	2744	36
2575	30	2609	17	2643	5	2677	3	2711	10	2745	32
2576	35	2610	22	2644	9	2678	3	2712	5	2746	22
2577	39	2611	26	2645	14	2679	4	2713	3	2747	13
2578	41	2612	31	2646	19	2680	7	2714	3	2748	6
2579	40	2613	35	2647	23	2681	12	2715	3	2749	4
2580	36	2614	39	2648	29	2682	17	2716	6	2750	3
2581	28	2615	39	2649	34	2683	23	2717	9	2751	3
2582	20	2616	37	2650	39	2684	27	2718	15	2752	4
2583	11	2617	32	2651	40	2685	31	2719	19	2753	7
2584	5	2618	24	2652	39	2686	37	2720	25	2754	11
2585	3	2619	16	2653	36	2687	41	2721	29	2755	15
2586	3	2620	8	2654	28	2688	42	2722	35	2756	21
2587	3	2621	4	2655	20	2689	39	2723	39	2757	26
2588	5	2622	3	2656	12	2690	33	2724	41	2758	31
2589	7	2623	3	2657	5	2691	26	2725	40	2759	35
2590	13	2624	4	2658	3	2692	16	2726	36	2760	39
2591	18	2625	7	2659	3	2693	8	2727	29	2761	39
2592	23	2626	11	2660	3	2694	4	2728	20	2762	37
2593	27	2627	15	2661	5	2695	3	2729	12	2763	32
2594	31	2628	21	2662	7	2696	3	2730	5	2764	24

Table 71-B

Stripchart for Bb 5 , Series I $31.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Page 11

```
STARTING ADDRESS = 2817 ENDING ADDRESS = 3017
STEP = 1 DATA RATE = 6983
```

SIX COLUMNS: POINT NUMBER VALUE

2817	16	2851	32	2885	27	2919	6	2953	3	2987	2
2818	6	2852	27	2886	31	2920	13	2954	3	2988	3
2819	3	2853	18	2887	32	2921	23	2955	4	2989	3
2820	3	2854	9	2888	28	2922	29	2956	11	2990	3
2821	2	2855	4	2889	22	2923	31	2957	19	2991	3
2822	2	2856	3	2890	12	2924	29	2958	27	2992	7
2823	2	2857	3	2891	5	2925	24	2959	31	2993	15
2824	3	2858	2	2892	3	2926	16	2960	31	2994	26
2825	3	2859	2	2893	3	2927	8	2961	27	2995	31
2826	3	2860	2	2894	2	2928	3	2962	20	2996	33
2827	3	2861	3	2895	2	2929	2	2963	10	2997	30
2828	6	2862	3	2896	2	2930	2	2964	4	2998	24
2829	13	2863	3	2897	3	2931	2	2965	3	2999	14
2830	23	2864	4	2898	3	2932	2	2966	3	3000	6
2831	29	2865	11	2899	3	2933	2	2967	2	3001	3
2832	32	2866	21	2900	3	2934	2	2968	2	3002	3
2833	30	2867	28	2901	7	2935	3	2969	2	3003	2
2834	25	2868	31	2902	15	2936	3	2970	3	3004	2
2835	16	2869	32	2903	23	2937	5	2971	3	3005	2
2836	8	2870	28	2904	29	2938	11	2972	3	3006	3
2837	3	2871	20	2905	31	2939	21	2973	3	3007	3
2838	3	2872	10	2906	29	2940	28	2974	9	3008	3
2839	3	2873	4	2907	22	2941	31	2975	19	3009	3
2840	2	2874	3	2908	13	2942	30	2976	27	3010	7 15
2841	2	2875	3	2909	6	2943	25	2977	31	3011	15
2842	2	2876	2	2910	3*	2944	17	2978	32	3012	23
2843	3	287.7	2	2911	3	2945	8	2979	28	3013	31
2844	3	2878	2	2912	2	2946	4	2980	21	3014	33
2845	3	2879	3	2913	2	2947	2	2981	12	3015	30
2846	5	2880	3	2914	2	2948	3	2982	5	3016	24
2847	11	2881	3	2915	2	2949	2	2983	3	3017	16
2848	21	2882	3	2916	2	2950	2	2984	3	3018	8
2849	29	2883	7	2917	3	2951	2	2985	2	3019 3020	3
2850	32	2884	18	2918	3	2952	3	2986	2	3020	3

Table 72-B

Stripchart for Bb5, Series II $25.0 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 90 \mathrm{dBA}$, Page 02

STARTING ADDRESS $=513$ ENDING ADDRESS $=713$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

513	0	547	0	581	0	615	0	649	0	683	0
514	0	548	0	582	0	616	0	650	0	684	0
515	0	549	0	583	0	617	0	651	0	685	0
516	0	550	0	584	0	618	0	652	0	686	0
517	0	551	0	585	0	619	0	653	0	687	0
518	0	552	0	586	0	620	0	654	0	688	0
519	0	553	0	587	0	621	0	655	0	689	0
520	0	554	0	588	0	622	0	656	0	690	0
521	0	555	0	589	0	623	0	657	0	691	0
522	0	556	0	590	0	624	0	658	0	692	0
523	0	557	0	591	0	625	0	659	0	693	0
524	0	558	0	592	0	626	0	660	0	694	0
525	0	559	0	593	0	627	0	661	0	695	0
526	0	560	0	594	0	628	0	662	0	696	0
527	0	561	0	595	0	629	0	663	0	697	0
528	0	562	0	596	0	630	0	664	0	698	0
529	0	563	0	597	0	631	0	665	0	699	0
530	0	564	0	598	0	632	0	666	0	700	0
531	0	565	0	599	0	633	0	667	0	701	0
532	0	566	0	600	0	634	0	668	0	702	0
533	0	567	0	601	0	635	0	669	0	703	0
534	0	568	0	602	0	636	0	670	0	704	0
535	0	569	0	603	0	637	0	671	0	705	0
536	0	570	0	604	0	638	0	672	0	706	0
537	0	571	0	605	0	639	0	673	0	707	0
538	0	572	0	606	0	640	0	674	0	708	0
539	0	573	0	607	0	641	0	675	0	709	0
540	0	574	0	608	0	642	0	676	0	710	0
541	0	575	0	609	0	643	0	677	0	711	0
542	0	576	0	610	0	644	0	678	0	712	0
543	0	577	0	611	0	645	0	679	0	713	0
544	0	578	0	612	0	646	0	680	0	714	0
545	0	579	0	613	0	647	0	681	0	715	0
546	0	580	0	614	0	648	0	682 .	0	716	0

Table 73-B

Stripchart for Bb5, Series II
$25.6 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Page 04

STARTING ADDRESS $=1025$ ENDING ADDRESS $=1225$ STEP $=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1025	0	1059	0	1093	0	1127	0	1161	0	1195	0
1026	0	1060	0	1094	0	1128	0	1162	0	1196	0
1027	0	1061	0	1095	0	1129	0	1163	0	1197	0
1028	0	1062	0	1096	0	1130	0	1164	0	1198	0
1029	0	1063	0	1097	0	1131	0	1165	0	1199	0
1030	0	1064	0	1098	0	1132	0	1166	0	1200	0
1031	0	1065	0	1099	0	1133	0	1167	0	1201	0
1032	0	1066	0	1100	0	1134	0	1168	0	1202	0
1033	0	1067	0	1101	0	1135	0	1169	0	1203	0
1034	0	1068	0	1102	0	1136	0	1170	0	1204	0
1035	0	1069	0	1103	0	1137	0	1171	0	1205	0
1036	0	1070	0	1104	0	1138	0	1172	0	1206	0
1037	0	1071	0	1105	0	1139	0	1173	0	1207	0
1038	0	1072	0	1106	0	1140	0	1174	0	1208	0
1039	0	1073	0	1107	0	1141	0	1175	0	1209	0
1040	0	1074	0	1108	0	1142	0	1176	0	1210	0
1041	0	1075	0	1109	0	1143	0	1177	0	1211	0
1042	0	1076	0	1110	0	1144	0	1178	0	1212	0
1043	0	1077	0	1111	0	1145	0	1179	0	1213	0
1044	0	1078	0	1112	0	1146	0	1180	0	1214	0
1045	0	1079	0	1113	0	1147	0	1181	0	1215	0
1046	0	1080	0	1114	0	1148	0	1182	0	1216	0
1047	0	1081	0	1115	0	1149	0	1183	0	1217	0
1048	0	1082	0	1116	0	1150	0	1184	0	1218	0
1049	0	1083	0	1117	0	1151	0	1185	0	1219	0
1050	0	1084	0	1118	0	1152	0	1186	0	1220	0
1051	0	1085	0	1119	0	1153	0	1187	0	1221	0
1052	0	1086	0	1120	0	1154	0	1188	0	1222	0
1053	0	1087	0	1121	0	1155	0	1189	0	1223	0
1054	0	1088	0	1122	0	1156	0	1190	0	1224	0
1055	0	1089	0	1123	0	1157	0	1191	0	1225	0
1056	0	1090	0	1124	0	1158	0	1192	0	1226	0
1057	0	1091	0	1125	0	1159	0	1193	0	1227	0
1058	0	1092	0	1126		1160	0	1194	0	1228	0

Table 74-B

Stripchart for Bb5, Series II
$26.0 \mathrm{~cm} \mathrm{H} 20,100 \mathrm{dBA}$, Page 06

STARTING ADDRESS $=1537$ ENDING ADDRESS $=1737$
$S T E P=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1537	0	1571	0	1605	0	1639	0	1673	0	1707	0
1538	0	1572	0	1606	0	1640	0	1674	0	1708	0
1539	0	1573	0	1607	0	1641	0	1675	0	1709	0
1540	0	1574	0	1608	0	1642	0	1676	0	1710	0
1541	0	1575	0	1609	0	1643	0	1677	0	1711	0
1542	0	1576	0	1610	0	1644	0	1678	0	1712	0
1543	0	1577	0	1611	0	1645	0	1679	0	1713	0
1544	0	1578	0	1612	0	1646	0	1680	0	1714	0
1545	0	1579	0	1613	0	1647	0	1681	0	1715	0
1546	0	1580	0	1614	0	1648	0	1682	0	1716	0
1547	0	1581	0	1615	0	1649	0	1683	0	1717	0
1548	0	1582	0	1616	0	1650	0	1684	0	1718	0
1549	0	1583	0	1617	0	1651	0	1685	0	1719	0
1550	0	1584	0	1618	0	1652	0	1686	0	1720	0
1551	0	1585	0	1619	0	1653	0	1687	0	1721	0
1552	0	1586	0	1620	0	1654	0	1688	0	1722	0
1553	0	1587	0	1621	0	1655	0	1689	0	1723	0
1554	0	1588	0	1622	0	1656	0	1690	0	1724	0
1555	0	1589	0	1623	0	1657	0	1691	0	1725	0
1556	0	1590	0	1624	0	1658	0	1692	0	1726	0
1557	0	1591	0	1625	0	1659	0	1693	0	1727	0
1558	0	1592	0	1626	0	1660	0	1694	0	1728	0
1559	0	1593	0	1627	0	1661	0	1695	0	1729	0
1560	0	1594	0	1628	0	1662	0	1696	0	1730	0
1561	0	1595	0	1629	0	1663	0	1697	0	1731	0
1562	0	1596	0	1630	0	1664	0	1698	0	1732	0
1563	0	1597	0	1631	0	1665	0	1699	0	1733	0
1564	0	1598	0	1632	0	1666	0	1700	0	1734	0
1565	0	1599	0	1633	0	1667	0	1701	0	1735	0
1566	0	1600	0	1634	0	1668	0	1702	0	1736	0
1567	0	1601	0	1635	0	1669	0	1703	0	1737	0
1568	0	1602	0	1636	0	1670	0	1704	0	1738	0
1569	0	1603	0	1637	0	1671	0	1705	0	1739	0
1570	0	1604	0	1638	0	1672	0	1706	0	1740	0

Table 75-B

Stripchart for Bb5, Series II $39.0 \mathrm{~cm} \mathrm{H} 20,105 \mathrm{dBA}$, Page 08

STARTING ADDRESS = 2049 ENDING ADDRESS $=2249$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

2049	0	2083	0	2117	0	2151	0	2185	0	2219	0
2050	0	2084	0	2118	0	2152	0	2186	0	2220	0
2051	0	2085	0	2119	0	2153	0	2187	0	2221	0
2052	0	2086	0	2120	0	2154	0	2188	0	2222	0
2053	0	2087	0	2121	0	2155	0	2189	0	2223	0
2054	0	2088	0	2122	0	2156	0	2190	0	2224	0
2055	0	2089	0	2123	0	2157	0	2191	0	2225	0
2056	0	2090	0	2124	0	2158	0	2192	0	2226	0
2057	0	2091	0	2125	0	2159	0	2193	0	2227	0
2058	0	2092	0	2126	0	2160	0	2194	0	2228	0
2059	0	2093	0	2127	0	2161	0	2195	0	2229	0
2060	0	2094	0	2128	0	2162	0	2196	0	2230	0
2061	0	2095	0	2129	0	2163	0	2197	0	2231	0
2062	0	2096	0	2130	0	2164	0	2198	0	2232	0
2063	0	2097	0	2131	0	2165	0	2199	0	2233	0
2064	0	2098	0	2132	0	2166	0	2200	0	2234	0
2065	0	2099	0	2133	0	2167	0	2201	0	2235	0
2066	0	2100	0	2134	0	2168	0	2202	0	2236	0
2067	0	2101	0	2135	0	2169	0	2203	0	2237	0
2068	0	2102	0	2136	0	2170	0	2204	0	2238	0
2069	0	2103	0	2137	0	2171	0	2205	0	2239	0
2070	0	2104	0	2138	0	2172	0	2206	0	2240	0
2071	0	2105	0	2139	0	2173	0	2207	0	2241	0
2072	0	2106	0	2140	0	2174	0	2208	0	2242	0
2073	0	2107	0	2141	0	2175	0	2209	0	2243	0
2074	0	2108	0	2142	0	2176	0	2210	0	2244	0
2075	0	2109	0	2143	0	2177	0	2211	0	2245	0
2076	0	2110	0	2144	0	2178	0	2212	0	2246	0
2077	0	2111	0	2145	0	2179	0	2213	0	2247	0
2078	0	2112	0	2146	0	2180	0	2214	0	2248	0
2079	0	2113	0	2147	0	2181	0	2215	0	2249	0
2080	0	2114	0	2148	0	2182	0	2216	0	2250	0
2081	0	2115	0	2149	0	2183	0	2217	0	2251	0
2082	0	2116	0	2150	0	2184	0	2218	0	2252	0

Table 76-B

Stripchart for F6, Series I $29.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 100 \mathrm{dBA}$, Page 00

STARTING ADDRESS $=0$ ENDING ADDRESS $=200$ $S T E P=1$ DATA RATE $=17280$

SIX COLUMNS: POINT NUMBER VALUE

0	82	34	83	68	84	102	85	136	81	170	85
1	82	35	85	69	82	103	83	137	81	171	86
2	82	36	87	70	82	104	83	138	82	172	85
3	83	37.	86	71	83	105	80	139	83	173	84
4	84	38	85	72	86	106	78	140	84	174	85
5	85	39	85	73	87	107	79	141	82	175	86
6	83	40	87	74	85	108	79	142	81	176	87
7	80	41	88	75	85	109	83	14.3	78	177	87
8	79	42	88	76	85	110	83	144	79	178	85
9	79	43	86	77	86	111	82	145	80	179	83
10	81	44	83	78	87	112	81	146	83	180	82
11	84	45	82	79	86	113	82	147	83	181	83
12	84	46	83	80	84	114	83	148	82	182	85
13	83	47	85	81	82	115	84	149	82	183	87
14	83	48	87	82	80	116	83	150	83	184	86
15	83	49	87	83	81	117	80	151	84	185	85
16	85	50	86	84	84	118	78	152	85	186	86
17	86	51	86	85	86	119	78	153	84	187	87
18	85	52	87	86	84	120	79	154	81	188	88
19	82	53	88	87	83	121	81	155	79	189	89
20	80	54	89	88	83	122	83	156	79	190	86
21	80	55	87	89	84	123	81	157	81	191	84
22	82	56	84	90	86	124	81	158	84	192	83
23	85	57	82	91	86	125	81	159	85	193	83
24	86	58	83	92	83	126	82	160	83	194	85
25	84	59	84	93	81	127	83	161	83	195	87
26	84	60	87	94	79	128	83	162	83	196	87
27	85	61	87	95	79	129	80	163	85	197	86
28	86	62	86	96	82	130	78	164	86	198	86
29	87	63	85	97	84	131	77	165	85	199	87
30	86	64	86	98	84	132	78	166	83	200	88
31	84	65	87	99	82	133	81	167	81	201	89
32	82	66	88	100	82	134	83	168	80	202	87
33	81	67	87	101	83	135	82	169	82	203	85

Table 77-B

Stripchart for F 6 , Series I
$23.5 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}, 96 \mathrm{dBA}$, Page 01

STARTING ADDRESS $=257$ ENDING ADDRESS $=457$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

257	0	291	0	325	0	359	0	393	0	427	0
258	0	292	0	326	0	360	0	394	0	428	0
259	0	293	0	327	0	361	0	395	0	429	0
260	0	294	0	328	0	362	0	396	0	430	0
261	0	295	0	329	0	363	0	397	0	431	0
262	0	296	0	330	0	364	0	398	0	432	0
263	0	297	0	331	0	365	0	399	0	433	0
264	0	298	0	332	0	366	0	400	0	434	0
265	0	299	0	333	0	367	0	401	0	435	0
266	0	300	0	334	0	368	0	402	0	436	0
267	0	301	0	335	0	369	0	403	0	437	0
268	0	302	0	336	0	370	0	404	0	438	0
269	0	303	0	337	0	371	0	405	0	439	0
270	0	304	0	338	0	372	0	406	0	440	0
271	0	305	0	339	0	373	0	407	0	441	0
272	0	306	0	340	0	374	0	408	0	442	0
273	0	307	0	341	0	375	0	409	0	443	0
274	0	308	0	342	0	376	0	410	0	444	0
275	0	309	0	343	0	377	0	411	0	445	0
276	0	310	0	344	0	378	0	412	0	446	0
277	0	311	0	345	0	379	0	413	0	447	0
278	0	312	0	346	0	380	0	414	0	448	0
279	0	313	0	347	0	381	0	415	0	449	0
280	0	314	0	348	0	382	0	416	0	450	0
281	0	315	0	349	0	383	0	417	0	451	0
282	0	316	0	350	0	384	0	418	0	452	0
283	0	317	0	351	0	385	0	419	0	453	0
284	0	318	0	352	0	386	0	420	0	454	0
285	0	319	0	353	0	387	0	421	0	455	0
286	0	320	0	354	0	388	0	422	0	456	0
287	0	321	0	355	0	389	0	423	0	457	0
288	0	322	0	356	0	390	0	424	0	458	0
289	0	323	0	357	0	391	0	425	0	459	0
290	0	324	0	358	0	392	0	426	0	460	0

Table 78-B

Stripchart for F3, Series III Threshold Sound at High Lip Pressure 26.0 cm H 20 , Gain 10 F3, T3, 06

S'CARTING ADDRESS $=1537$ ENDING ADDRESS $=1737$ $S T E P=1$ DATA RATE $=6983$

SIX COLUMNS: POINT NUMBER VALUE

1537	16	1571	49	1605	17	1639	12	1673	47	1707	25
1538	14	1572	48	1606	19	1640	11	1674	45	1708	27
1539	13	1573	47	1607	21	1641	11	1675	42	1709	31
1540	12	1574	46	1608	23	1642	11	1676	39	1710	34
1541	11	1575	44	1609	26	1643	10	1677	36	1711	37
1542	11	1576	41	1610	29	1644	10	1678	32	1712	40
1543	10	1577	39	1611	33	1645	10	1679	29	1713	43
1544	10	1578	36	1612	37	1646	11	1680	26	1714	45
1545	10	1579	32	1613	39	1647	11	1681	23	1715	47
1546	10	1580	29	1614	43	1648	11	1682	21	1716	49
1547	10	1581	27	1615	46	1649	12	1683	19	1717	50
1548	10	1582	24	1616	49	1650	12	1684	17	1718	50
1549	11	1583	22	1617	50	1651	13	1685	15	1719	50
1550	11	1584	19	1618	51	1652	14	1686	14	1720	48
1551	11	1585	17	1619	52	1653	15	1687	12	1721	47
1552	12	1586	16	1620	52	1654	17	1688	12	1722	45
1553	13	1587	14	1621	52	1655	19	1689	11	1723	43
1554	14	1588	13	1622	51	1656	21	1690	10	1724	40
1555	15	1589	12	1623	50	1657	23	1691	10	1725	38
1556	17	1590	11	1624	48	1658	26	1692	10	1726	35
1557	19	1591	11	1625	45	1659	29	1693	10	1727	32
1558	21	1592	10	1626	42	1660	31	1694	10	1728	29
1559	23	1593	10	1627	39	1661	36	1695	10	1729	26
1560	26	1594	10	1628	36	1662	39	1696	10	1730	23
1561	29	1595	10	1629	32	1663	43	1697	11	1731	21
1562	31	1596	10	1630	29	1664	45	1698	11	1732	18
1563	35	1597	10	1631	26	1665	47	1699	11	1733	16
1564	38	1598	10	1632	24	1666	50	1700	13	1734	15
1565	41	1599	11	1633	21	1667	51	1701	13	1735	14
1566	43	1600	11	1634	19	1668	52	1702	15	1736	13
1567	45	1601	12	1635	17	1669	52	1703	16	1737	12
1568	47	1602	13	1636	15	1670	52	1704	18	1738	11
1569	48	1603	14	1637	14	1671	51	1705	20	1739	10
1570	49	1604	12	1638	13	1672	49	1706	23	1740	10

Table 79-B

Stripchart for F3, Series III Threshold Sound at Low Lip Pressure 24.5 cm H 20 , Gain 10
F3, T3, 07

STARTING AUDRESS $=1793$ ENDING ADDRESS $=1993$
STEP $=1$ DATA RATE $=6983$
SIX COLUMNS: POINT NUMBER VALUE

1793	62	1827	53	1861	90	1895	69	1929	46	1963	83
1794	65	1828	51	1862	88	1896	72	1930	45	1964	80
1795	68	1829	49	1863	85	1897	75	1931	45	1965	77
1796	69	1830	48	1864	82	1898	78	1932	46	1966	74
1797	71	1831	48	1865	80	1899	79	1933	46	1967	70
1798	75	1832	48	1866	77	1900	82	1934	47	1968	68
1799	77	1833	48	1867	74	1901	83	1 y 35	49	1969	65
1800	79	1834	49	1868	70	1902	86	1936	50	1970	62
1801	83	1835	50	1869	68	1903	87	1937	52	1971	60
1802	87	1836	50	1870	64	1904	89	1938	55	1972	58
1803	89	1837	51	1871	62	1905	91	1939	56	1973	56
1804	90	1838	53	1872	60	1906	91	1940	59	1974	54
1805	92	1839	55	1873	57	1907	92	1941	63	1975	53
1806	94	1840	58	1874	55	1908	92	1942	67	1976	51
1807	95	1841	61	1875	53	1909	90	1943	70	1977	49
1808	96	1842	63	1876	51	1910	89	1944	72	1978	49
1809	96	1843	66	1877	49	1911	87	1945	75	1979	49
1810	94	1844	69	1878	47	1912	84	1946	79	1980	48
1811	93	1845	71	1879	45	1913	81	1947	81	1981	48
1812	91	1846	75	1880	45	1914	78	1948	83	1982	49
1813	88	1847	77	1881	45	1915	75	1949	86	1983	49
1814	86	1848	79	1882	44	1916	72	1950	87	1984	50
1815	84	1849	83	1883	45	1917	69	1951	89	1985	51
1816	81	1850	85	1884	45	1918	66	1952	91	1986	53
1817	78	1851	87	1885	46	1919	63	1953	91	1987	56
1818	75	1852	89	1886	48	1920	60	1954	93	1988	59
1819	72	1853	90	1887	50	1921	58	1955	94	1989	62
1820	69	1854	92	1888	52	1922	57	1956	95	1990	65
1821	66	1855	94	1889	55	1923	55	1957	95	1991	67
1822	64	1856	95	1890	57	1924	53	1958	95	1992	70
1823	62	1857	95	1891	60	1925	51	1959	93	1993	73
1824	60	1858	95	1892	63	1926	50	1960	91	1994	75
1825	58	1859	94	1893	65	1927	48	1961	88	1995	79
1826	56	1860	92	1894	67	1928	47	1962	85	1996	81

APPENDIX C

NATURAL BLOWING PRESSURES

Analyses of Natural Blowing Pressure Tests

It was observed that with the A-weighted scale in operation, the fortissimo of 100 DbA measured by the sound-level meter was not always in accordance with the subjective dynamic sensitivity of the ear of the performer. A chromatic scale was played slowly (quarter note $=\operatorname{mm} 40$) (by human means) and tape recorded while maintaining a constant 100 DbA. Upon playback, it was very noticeable that the scale did not sound dynamically consistent to the writer, although most of the pitches sounded within the mf to ff range. The blowing pressures observed are listed in Table C-1. The pitches listed are transposed (i.e. E3 would sound D3).

> Table C-l
> Mouth Pressures for Various Pitches of High Intensity

Pitch	cm H20	Pitch	Cm H20
E3	53.0	C5	42.0
F3	51.0	C\#5	44.0
F\#3	51.0	D5	51.0
G3	44.0	D\#5	37.0
G\#3	48.0	E5	37.0
A3	51.0	F5	37.0
A\#3	42.0	F\#5	39.0
B3	44.0	G5	35.0
C4	48.0	G\#5	35.0
C\#4	62.0	A5	33.0
D4	48.0	A\#5	33.0
D\#4	48.0	B5	28.0
E4	42.0	C6	30.5
F4	46.0	C\#6	30.5
F\#4	51.0	D6	28.0
G4	46.0	D\#6	28.0
G\#4	46.0	E6	28.0
A4	46.0	F6	30.5
A\#4	60.0	F\#6	30.5
B4	42.0	G6	33.0

There was a noticeable decrease in the amount of air pressure required to maintain the same intensity level in the low and high registers. It was noted that specific pitches required more air pressure to maintain an equal intensity level with neighboring pitches. These pitches (C\#4, F\#4, A\#4, D5) are notorious among clarinetists as being "bad" tones on the Boehm system clarinet in terms of tone quality. An example is C\#4, which required 62 cm H 20 , as compared to pitches in close proximity to it, C4 and D4, each of which required 48 cm H20. Similar cases may be found for $F \# 4, A \# 4$, and D5.

Pressures used by McGinnis and Gallagher (1940) ranged from 1.6 cm to 3.6 cm of mercury. Converted into centimeters of water, this would be equivalent to a range of 22 cm to 49 cm :

Density of $\mathrm{H} 20=1.000 \mathrm{~g} / \mathrm{cm} 3$ Density of $\mathrm{Hg}=13.55 \mathrm{~g} / \mathrm{cm} 3$

$$
\begin{aligned}
& 1.6 \mathrm{~cm} \mathrm{Hg} \times 13.55=21.68 \mathrm{~cm} \mathrm{H} 20 \\
& 3.6 \mathrm{~cm} \mathrm{Hg} \mathrm{x} 13.55=48.78 \mathrm{~cm} \mathrm{H} 20
\end{aligned}
$$

Backus (1961) found that blowing pressure for a clarinet as sounded by an artificial embouchure was between 5 and 20 inches of water ($10-40 \mathrm{~mm} \mathrm{Hg}$). Converted to cm H 20 , this would represent a range of 13 cm H 20 to 52 cm H 20 .

5 inches $\mathrm{H} 20 \times 2.6 \mathrm{~cm} /$ inch $=13 \mathrm{~cm} \mathrm{H} 20$
20 inches $\mathrm{H} 20 \times 2.6 \mathrm{~cm} /$ inch $=52 \mathrm{~cm} \mathrm{H} 20$
or:
$10 \mathrm{~mm} \mathrm{Hg}(1 \mathrm{~cm} \mathrm{Hg}) \times 13.55=13.55 \mathrm{~cm} \mathrm{H} 20$
$40 \mathrm{~mm} \mathrm{Hg}(4 \mathrm{~cm} \mathrm{Hg}) \times 13.55=54.20 \mathrm{~cm} \mathrm{H} 20$

Backus noted that "the same range of pressures is required for blowing the clarinet by mouth" (p. 806).

An average range of blowing pressure for the clarinet was reported by Broadhouse (1892) as being "15 to 18 inches of water" (p. 229). Mooney (1968) concluded that "clarinetists use slightly different air pressures in the mouth to produce tones at the same "volume" and pitch. Air pressure decreases as the high register is approached" (p. 2742). Bouhuys (1964) noted that "measurements of mouth pressures and air-flow rates during play on various wind instruments have shown a wide range of variability. In most instruments, mouth pressures increase with both
frequency and sound output" (p. 453). This would seem to be in disagreement with findings of Bouhuys as well as with the findings above. In summary, it was observed that air-pressure requirements for sounding a clarinet via an aritificial-embouchure device were consistent with air-pressure requirements for a clarinet as blown by a human.

APPENDIX D
U.S.A. STANDARDS ASSOCIATION OCTAVE NOTATION
U.S.A. Standards Association Octave Notation

