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Small mammal and ectoparasite community variation and abundance is important for monitoring 

the transmission rate of zoonotic diseases and informing conservation efforts that maintain host 

and parasite biodiversity in ecosystems facing global climate change. The purpose of this study 

was to identify the factors driving variation in small mammal and ectoparasite communities in 

the Southern Appalachian Mountains. I took an approach to sampling that allowed me to test 

predictions from island biogeography theory; namely, that host species richness varies with 

distance from the main Appalachian mountain range. I also examined how ectoparasite species 

richness varied with small mammal richness as well as ecological variables. Finally, I analyzed 

ectoparasite abundances at the community- and individual-host levels to understand how changes 

in host species richness may affect infestation rates. Comprehensive field surveys and 

ectoparasite screenings were performed across four field sites, two isolated from the Southern 

Appalachian Mountains and two along the Southern Appalachian Mountains. I found that these 

field sites were characterized by a mix of high and low elevation mammal species, and that 

community structure varied with degree of isolation for mammals, but not ectoparasites. Habitat 

type was a significant driver of species variation within and among sites. I found decreased 

abundances in ectoparasite compound communities when host species diversity was highest, 

which is consistent with predictions from a dilution effect. However, when evaluating 

abundances of individual ectoparasites, only one (Leptotrombidium peromysci) of four species 

displayed patterns consistent a dilution effect. My results provide new information on small 

mammal distributions and ectoparasite associations at disparate sites across the foothills of the 

Southern Appalachians but suggest that host-parasite associations and the intensity of infection 

are subject to additional environmental or ecological drivers beyond those investigated here.
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CHAPTER I: INTRODUCTION 

Global temperatures have increased by 0.18°C (0.32°F) since 1981, and they are predicted to 

continue to increase at a rapid rate (Root et al. 2003, Dahlman 2020). Many biological systems 

and processes are already showing significant change in response to global warming (Moritz et 

al. 2008, Warren et al. 2010, Löffler et al. 2011). Parasites are major components of many 

ecological food webs (Lafferty et al. 2006), but the structure of host-parasite networks and the 

causes of their variation through space and time are understudied in most ecosystems. This lack 

of baseline data hinders our ability to determine global change effects on parasite biodiversity, as 

well as entire ecosystem processes. For example, temperature shifts are expected to alter the 

distribution and ecology of parasites, including their life cycles, transmission rates, phenology, 

and encounter rates with novel or naïve hosts (Poulin 2006, Polley and Thompson 2009, Polley 

et al. 2010). Therefore, expanded monitoring efforts are critical for obtaining more knowledge 

about parasites, their persistence on the landscape, and their ability to impact future wildlife 

dynamics under altered climate regimes (Brooks and Hoberg 2007, Polley and Thompson 2009).  

 

A parasitic interaction is defined as an organism (a parasite) living off another organism (the 

host), harming it and possibly causing death (Poulin, 2007). Hosts typically provide the parasite 

with nutrients to be able to live and reproduce, either on the outside (ectoparasites) or inside 

(endoparasites) of the body (McDonald et al 1989). Importantly, some ectoparasites are vectors 

of pathogens that can cause zoonotic diseases (e.g., viruses, bacterial, parasites, fungi that spread 

between vertebrate animals to humans), indirectly transmitting these to terminal hosts (Brazier, 

2018, World Health Organization, 2020). In the Southeastern U.S. alone, numerous parasite 

vectors occur including the Blacklegged or Deer tick (Ixodes scapularis), which is known for 

transmitting Lyme disease spirochete, Borrelia burgdorferi, a cause of potentially chronic health 

issues. Deer ticks contract B. burgdorferi through bloodmeals (horizontal transmission) and can 

subsequently pass it to hosts (Schwan and Piesman 2002, Kurokawa et al. 2020). Similarly, the 
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American dog tick (Dermacentor variabilis) uses horizonal transmission and a blood meal to 

transmit the causative agent of Rocky Mountain Spotted Fever, the bacterium Rickettsia 

rickettsia, a disease that is serious or deadly in humans if not treated early (CDC, 2020). 

American dog ticks are found throughout the Southeastern U.S. and are common in North 

Carolina, Tennessee, Missouri, Arkansas, and Oklahoma (CDC, 2020). Other ectoparasitic 

vectors include lice (Order Phthiraptera; Smith et al. 1997) and fleas (Order Siphonaptera; Bitam 

et al. 2010). For example, fleas play a role in transmission of Bartonella in rodents (Gutiérrez et 

al. 2015). Lice (Ediculus humanus corporis) can similarly transmit diseases including Epidemic 

Typhus, which is caused by the bacteria Rickettsia powasekii which it contracts from infected 

southern flying squirrels (Glaucomys volans). When asymptomatic and untreated, the bacterium 

R. powasekii can lead Brill-Zinsser disease in humans (CDC, 2020). 

 

DRIVERS OF ECTOPARASITE DISTRIBUTION AND ABUNDANCE 

 

Parasite communities are typically characterized at 3 different levels: infracommunity (all of the 

parasites within a single individual host), component community (all of the parasites within a 

monospecific population of hosts), and compound community or supracommunity (all of the 

parasites within individuals of all host species in an ecosystem; Dove, 2006). Understanding how 

increasing temperature and disrupted ecological processes will affect the diversity and 

abundance of ectoparasites at each of these levels is critical for developing a better understanding 

on the potential contributors to zoonotic disease transmission, which remains a critical goal in 

biology (CDC, 2017). To accomplish this, it is important to quantify geographic distributions of 

individual parasite species that can spread these diseases and understand how composition of 

entire parasite communities is modulated by environmental variables as well as distributions of 

their hosts.  
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Two central factors for determining parasite occurrence and density (e.g., per host individual) are 

the identity and abundance of host species. For example, high host population densities can cause 

transmission rates of parasites to also increase (Krasnov et al. 2007). Conversely, the dilution 

effect predicts that pathogen transmission rates decrease with increasing host species richness 

(Gibson and Nguyen 2020). This may occur because a high proportion of host species may be 

suboptimal reservoirs for maintaining the disease agent (Schmidt and Ostfeld 2001, Civitello et 

al. 2015, Halliday et al. 2020). Thus, a stronger dilution effect is expected when there is an 

abundance of poorly competent reservoir species, effectively lowering the probability of 

pathogen transmission for any given bite from a vector (Schmidt and Ostfeld 2001, Johnson and 

Thieltges 2010). However, the dilution effect has inconsistent support to date, and within 

ectoparasite systems it has not been well studied. Krasnov et al. (2007) studied infestation rates 

of Ixodid ticks (Ixodes rincinus and I. trianguliceps) in small mammals and found a dilution 

effect in the generalist I. ricinus but not for the specialist I. trianguliceps (Krasnov et al. 2007). 

More broadly, Civitello et al. (2015) performed a metanalysis and provided evidence that host 

diversity can indeed inhibit parasite abundance per individual host, but also demonstrated 

variation in the magnitude of dilution when comparing across parasite type, life cycle, functional 

group, and level of specialization (Civitello et al. 2015).  

 

MONTANE ECOSYSTEMS AS NATURAL EXPERIMENTS IN PARASITOLOGY 

 

Montane systems provide a potentially fruitful model for understanding linkages between host 

communities, parasite communities, and effects of global climate change. In temperate North 

America, many montane regions at southern latitudes contain boreal communities that are 

comprised of species often associated with higher latitudes (called “sky islands”). These 

communities can be shaped by complex processes of colonization and extinction, and their 

patterns of species diversity have sometimes been viewed in the context of island biogeography 

theory (MacArthur and Wilson 1967, Brown 1971). Sky islands are defined as “isolated 
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mountain surrounded by radically different environments” (Browne and Ferree 2007). Island 

biogeography theory predicts that diversity within “sky islands” reflects a balance between 

colonization and extinction. More isolated islands are predicted to have lower species richness 

than islands closer to the “mainland” due to lower colonization rates (MacArthur and Wilson 

1967, Bierregaard and Zimmerman 1986).  

 

Naturally occurring differences in habitat isolation levels may provide a “natural experiment” for 

studying how parasite diversity and infestation rates relate to the spatial and host setting in 

mountain systems. Indeed, the distribution and abundance of parasites and pathogens in montane 

systems is generally expected to mirror biogeographic patterns observed in hosts. A study by 

Williamson et al. (2018) focused on avian haemosporidian parasites and their variation with 

respect to species composition and abundance across eight sky islands in the southwestern 

United States, within a single host species (Audubon’s Warbler; Setophaga auduboni). They 

found that parasite turnover was three-fold higher than bird community turnover and could be 

predicted by elevation, climate and host composition, implying that hosts as well as environment 

play a role in determining which parasite species will be present and abundant in a community 

(Williams et al. 2018).  

 

Additional studies like the one above are critical as montane vertebrate communities shift and 

come into contact with those associated with lower elevations (Rickart 2001, Chen et al. 2011). 

At southern latitudes in particular, montane-associated boreal communities may be especially 

sensitive to global climate change because they often exist on the southern periphery of species’ 

ranges, such as in the Southern Appalachians or ranges of the Great Basin or desert Southwest 

(Allen and Lendemer 2016). If these systems are operating in accordance with island 

biogeographic theory, one potential outcome is reduction in boreal habitat area and increase in 

isolation which can lead to reduced species richness via extinction (McCain and Grytnes 2010). 

Reduced species richness may occur due to a lack of gene flow, limited access to necessary 



 

   5 

resources (Himes and Kenagy 2010), competition from lower-elevation species, and other altered 

landscape ecological processes. Therefore, focusing monitoring effort on intermediate elevations 

where high- and low-elevations communities may begin to interface with one another is an 

important component of monitoring efforts. 

 

STUDY SYSTEM 

 

The Southern Appalachians are an extremely biodiverse mountain range located in the 

southeastern United States (Simon et al. 2005), stretching across Tennessee, Virginia, North 

Carolina, South Carolina, and Georgia. This project focused on the Southern Appalachian 

Mountains of North Carolina and a small portion in northeastern Georgia; these mountains span 

a large elevational gradient up to the highest peak east of the Mississippi River (Mount Mitchell, 

2037.3 m). North Carolina has additional high peaks such as Grandfather Mountain (1,818 m), 

Albert Mountain (1,592 m), and Looking Glass (1,210 m) that provide habitat for a diverse mix 

of plants and animals (Peakbagger, 2020).  

 

For example, the Southern Appalachians are home to some of the most extensive broad-leaved 

deciduous forest in North America and nearly 2,000 plant species, 200 of which are endemics 

(Muir, 2018). The region also harbors more than 460 species of animals (although the actual 

number may be as high as 800; Muir (2018)). Importantly, this includes boreal species that are 

typical of the Northeastern United States and Canada, which exist only at high elevations in 

North Carolina. For mammals, these include the Northern flying squirrel (Glaucomys sabrinus 

coloratus; Loeb et al. 2000), Masked shrew (Sorex cinereus), Smoky shrew (Sorex fumeus), 

Water shrew (Sorex palustris), Rock shrew (Sorex dispar), Woodland jumping mouse 

(Napaeozapus insignis), Northern short-tailed shrew (Blarina brevicauda), and the Southern red-
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backed vole (Myodes gapperi; Ford et al. 1999). As climates warm, these communities could 

come in contact with species typical of the foothills and Piedmont including the White-footed 

mouse (Peromyscus leucopus), Southern short-tailed shrew (Blarina carolinensis), Meadow vole 

(Microtus pennsylvanicus), and Eastern woodrat (Neotoma floridana; LeGrand et al. 2021).  

 

Insufficient research has been done in the Southern Appalachians and surrounding foothills to 

determine how changing climates may be altering small mammal and ectoparasite distributions 

and the structure of mammal-parasite networks (i.e., the sum of interactions between parasites 

and hosts). Many ectoparasites have been documented in the mountains of North Carolina to 

date, including focused studies on fur mites (Myobia spp., Haemogamaus ambulans, 

Protomyobia spp., Xenoryctes nudus, and Myonyssus jamesoni; Owen, 1984), botflies 

(Cuterebra fontinella; e.g., Lackey et al. 1985), and numerous species of ticks, fleas, and lice 

(McCay and Durden, 1996; Madhav et al. 2004). However, these data are limited in both space 

and time, and have rarely been considered in both ecological and host community contexts. For 

example, previous studies in other montane systems suggest that mammal communities at higher 

and lower elevations are usually less diverse compared to the intermediate elevations where 

communities meet (McCain, 2003) and potentially share parasites and pathogens.  

 

The purpose of my research was to provide more comprehensive knowledge on small mammal 

and ectoparasite communities at intermediate elevations in the foothills of the Southern 

Appalachians. Specifically, I wanted to evaluate how the degree of isolation of montane 

ecosystems affects the diversity and abundance of mammalian hosts and the ectoparasites they 

carry. To do that, I studied mammalian and ectoparasite diversity in two montane sites which are 

part of the main Appalachian mountain chain (“mainland” sites) and two isolated sites located 

further from the Appalachians. My specific aims were to:  

(1) Evaluate the effect of montane habitat isolation on mammalian species richness. I 
hypothesized that mammal species richness and community composition will vary 
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with distance from the main Appalachian cordillera. Based on island biogeography 
theory, I specifically predicted a negative relationship between species richness and 
distance from the Appalachians. To test this, I performed field and laboratory research 
focused on characterizing variation in small mammal community richness using 
comprehensive field sampling and DNA barcoding.  

(2) Evaluate the effect of montane habitat isolation on ectoparasite distributions. I 
hypothesized that ectoparasite species richness and community composition will 
vary with distance from the Appalachian cordillera. Based on island biogeography 
theory and the intimate host associations of many ectoparasites, I predict that more 
depauperate small mammal communities will harbor fewer ectoparasite species. To test 
this, I performed screens of all small mammals captured in the field to sample and 
identified entire ectoparasite communities to the species level.  

(3) Evaluate the relationship between host species richness and ectoparasite abundances. I 
hypothesize that ectoparasite abundances will be altered by variation in species 
richness of host communities. Specifically, based on the dilution effect, I predict that 
sites with relatively low host species richness (potentially, those more isolated from the 
Appalachian cordillera) will have higher ectoparasite loads per individual mammal host, 
and vice versa. 
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CHAPTER II: METHODS 

FIELD SAMPLING 

 

My research focused largely on compound communities of ectoparasites. A total of four sites 

along the foothills of the Southern Appalachian Mountains (ranging in elevation from 275 to 

952m) were chosen for field surveys; Chattahoochee National Forest (Georgia), Cold Mountain 

Game Land, South Mountains Game Land, and Green River Game Land (all North Carolina; 

Table 1, Figure 1). All sites lie between the Piedmont and the high peaks of the Southern 

Appalachian Mountains, but they are isolated to varying extents from the main cordillera. Each 

site was visited twice within the time frame of June-September 2020 for 6 nights total (3 nights 

each trip), except for Chattahoochee-Oconee National Forest which was visited once for 6 

consecutive nights in August 2020.  

 

At each site, small mammals and associated ectoparasites (ticks, lice, fleas, and mites) were 

sampled for between 2,721-2,850 total trap nights (Table 1). Trap nights were calculated as the 

total number of traps used per night multiplied by the total number of nights spent at a field site. 

I used two trap types in each habitat class at each site: Sherman live traps and pitfall traps (40 oz 

plastic cups buried flush with the ground). In addition, I used snap traps on a single transect at a 

single site (Chattahoochee). Traps were placed using a transect method in the two major habitat 

classes present in this system: mature forest and meadow. These habitats were trapped roughly in 

proportion to their abundance on the landscape, with a majority of traps at each site being within 

mature forest (the predominant habitat), One exception to this was at Cold Mountain Game 

Land, where presence of maintained meadow habitats led to 50 more traps being used in meadow 

than forest. Across all sites, there were 19 total transects within meadows (ranging from 30-60 

traps per transect) and 28 total transects in forests (ranging from 20-80 traps per transect). Traps 
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were opened at dusk and closed at dawn to minimize the time captured individuals were in traps, 

to enhance animal well-being, and to maximize ectoparasite retention.  

 

Captured small mammals were anesthetized using an isoflurane vapor method, then screened for 

ectoparasites (see below). Standard field measurements were taken on captured mammals 

(lengths and weight) as well as sex, external reproductive status, and age class (based on pelage 

and external traits). A portion of the small mammal specimens were preserved as voucher 

specimens with associated tissue samples, providing a clear record of the species caught and 

allowing future researchers the opportunity to verify my findings. To avoid replication in non-

vouchered individuals, and to provide material for DNA barcoding, an ear punch was collected 

from the right ear and preserved in 95% ethanol. Recaptured individuals received a second ear 

punch in the left ear to avoid replicate ectoparasite screening. If an individual was trapped and 

had two ear punches it was released and not re-screened. Animals not collected as voucher 

specimens were released unharmed on the trap site at which they were caught. All small mammal 

capture and handling protocols followed guidelines of the American Society of Mammalogists 

Animal Care and Use Committee (Sikes et al. 2016) and were conducted under approved IACUC 

protocols (UNCG #20-008).  

 

To screen anesthetized individuals for ectoparasites, I combed through the fur with a flea/louse 

comb to remove parasites. I also used the back of fine tipped forceps to dislodge ectoparasites 

that did not come off while being brushed. Parasites were collected into a white container for 

optimal contrast and visualization. All ectoparasite specimens collected off each individual were 

preserved as a single lot in a 75% ethanol and then sorted taxonomically by Order in the lab 

under a dissection microscope. 
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IDENTIFICATION OF HOST AND PARASITE SPECIES 

 

To obtain species identifications for mammal taxa hard to distinguish in the field, I used DNA 

barcoding at a single mitochondrial (mtDNA) locus (Johns and Avise, 1998) – cytochrome b 

(cyt-b). Peromyscus and Blarina were the two focal genera for DNA barcoding, as each is 

potentially represented by two species at our mid-elevation field sites (P. leucopus, P. 

maniculatus; B. brevicauda, B. carolinensis). However, some individuals of additional species 

were also barcoded to confirm my field identifications. 

 

To perform DNA extraction, an ear punch or a subsample of liver tissue (for voucher specimens 

only; roughly 10mg) was placed into an Eppendorf tube labeled with a unique UNCG tissue ID 

(GT number). DNA extractions were performed using a Purelink Genomic DNA kit 

(ThermoFisher Scientific) following manufacturer’s instructions. Following DNA extraction, 

standard polymerase chain reaction (PCR) amplifications were done in 25µl volumes using a 

combination of the primers MSB05 and MSB14 (Hope et al. 2014) on a Veriti PCR thermocycler 

(Applied Biosystems). Cycling parameters were identical for all samples and consisted of the 

following: initial denaturation at 94°C for 5 min; followed by 35 cycles of denaturation (94°C for 

15 seconds), annealing (51°C for 20 seconds), and extension (72°C for 1 minute); and a final 

extension step of 72°C for 5 minutes. PCR products were quantified fluorometrically using a 

Qubit 4.0.  

 

In preparation for sequencing, two 96 well plates were filled with 10µl of PCR products and 

cleaned using EXOSAP-IT and sequenced in forward and reverse directions on an ABI 3730 

sequencer at the NC State University Genomic Sciences Laboratory (Raleigh, NC, USA). 

Resulting chromatograms were manually edited and aligned using the software Genious 

2021.0.3. The BLAST plugin in Genious was used to determine species identifications. 
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Specifically, determinations were based off the match that had the highest percent identity to 

samples in the NCBI database. I used a minimum percent identity threshold to determine species 

identification of 90%, although all full cyt-b sequences had between 97-99% similarity. Because 

smaller fragments led to lower percent similarities with GenBank entries, I also considered these 

and assigned identities in light of other mammal species barcoded from the same site. The 

smallest cyt-b fragment I sequenced was 574 bp and this had a 75% similarity to sequences in 

GenBank.  

 

All ectoparasites collected as part of this work were identified to species and age class using field 

guides and expert taxonomist identifications (Dr. Lance Durden, Georgia Southern University). 

 

COMMUNITY ANALYSES 

 

I used a combination of community ecology and ecological network analyses to compare small 

mammal and ectoparasite diversity and abundance within and among the four sites. My analyses 

employed a mix of classical statistical models of community composition data, including 

restricted and unrestricted multivariate analysis of site-by-species abundance tables with spatial 

pattern analysis (Dray et al. 2012).  

 

First, species richness was used to quantify the total number of the species in a community at 

each site, utilizing DNA barcode data when available (for mammals only). I also computed Bray-

Curtis dissimilarities for mammal and ectoparasite communities, as the sample size was large 

enough to compare the four field sites and their relative abundance of ectoparasites (Ricotta and 

Podani 2017). Bray-Curtis dissimilarities are obtained by calculating a distance matrix, selecting 



 

   12 

two reference points, and projecting all the samples onto the axis by their relationships based on 

the two reference points that were selected (Beals, 1984). The response data for both mammals 

and parasites were scaled total richness. For small mammal communities, this was the total 

number of species per site by the total number of individuals captured per site. For ectoparasite 

communities, this was total number of ectoparasite species scaled by total number of host 

individuals per site. I performed a nonmetric multidimensional scaling (NMDS) analysis on 

dissimilarity matrices to compare each community type in multivariate space. I also repeated all 

of these tests for ectoparasite component communities found on the best-represented host species 

(P. leucopus). All analyses were performed using the vegan package v. 2.57 (Oksanen et al. 

2020) in R (R Core Team, 2013). I also used functions in ggplot2 v. 3.3.3 to visualize the data. 

Due to overlap on some plots, I used the geom_jitter plotting function to allow better 

visualization. 

 

A series of more in-depth statistical tests was performed to test potential drivers of community 

diversity and structure. First, I tested whether small mammal and ectoparasite communities 

varied among mid-elevation sites. Second, I tested whether additional ecological characteristics 

influenced community structure; specifically, degree of isolation from the Appalachians (binary; 

mainland or isolated) and habitat type (meadow vs. forest). For each test, I used a 

PERMANOVA to test differences between group means accounting between the structure of 

data. The PERMANOVA was implemented in the function adonis2 in the vegan package v. 2.16 

(Oksanen et al. 2020) in R.  

 

NETWORK ANALYSES 

 



 

   13 

Network ecology investigates the structure, function, and evolution of ecological systems at 

different scales with the use of metrics that quantify interaction networks. Network models can 

increase understanding of ecosystem-level phenomena by illuminating complex, emergent 

properties of networks such the role of a particular species or a trait in structuring communities 

and maintaining long-term species interactions (Lau et al. 2017). Previous studies have used 

similar methods to reveal important aspects of host-parasite community structure (Wells et al. 

2011, Esser et al. 2016). 

 

I first constructed a bipartite ecological network for all sites combined using the bipartite v. 2.16 

package (Dormann et al. 2008) in R. This allowed me to visualize connections within the entire 

host-parasite assemblage and to quantify complexity of host-parasite associations. To construct 

this network, small mammal and ectoparasite associations were tabulated and represented as both 

presence/absence and as scaled abundances (described above). The former was the input for an 

unweighted analysis, and the latter was the input for a weighted analysis. Based on 

PERMANOVA results (see Community analyses above) and the differences observed among 

habitat types, I also performed these workflows to construct meadow and forest networks. 

 

To further quantify network properties among ecological categories, I used the metrics of links 

per species, interaction strength and connectance (Dormann et al. 2009). Connectance is defined 

as the realized proportion of possible links, and links per species describes the average amount of 

ectoparasites associated with an individual host (Doormann et al. 2009). Finally, interaction 

strengths quantify the imbalance between the interaction strength of a species pair (Doormann et 

al. 2009). Connectance and links per species were calculated only from the unweighted data, and 

interaction strength was calculated from the weighted data.  
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TESTS OF DIFFERENCES IN INFESTATION RATE  

 

To understand how site- and host-based metrics influenced ectoparasite loads on small 

mammals, a series of statistical tests was performed. Due to the data being non-normally 

distributed, a Kruskal-Wallis was used to test for effects of field site, degree of isolation, and 

habitat type (meadow and forest) on ectoparasite densities for the whole small mammal 

community, as well as every individual P. leucopus. Kruskal-Wallis tests evaluate whether the 

medians of two or more groups are different (Stephanie, 2016), and these tests were performed 

using the kruskal.test function in stats v. 3.6.1 (Wickham et al. 2020) in R. Subsequently, a 

pairwise Mann-Whitney U test was performed to identify statistically significant differences in 

ectoparasite loads. The Mann-Whitney U tests for whether two samples are likely to derive from 

some population (LaMorte, 2017), and I ran these tests using function wilcox.test in the R 

package stats version 3.6.1 (Wickham et al. 2020). To visualize differences in total ectoparasite 

load, I used boxplots of ectoparasite communities found on P. leucopus captured in each habitat 

type (meadow vs forest) within the four field sites. In this case, a single extreme outlier (87 

ectoparasites on an individual) was removed to aid in visualization of more subtle differences.  

 

Finally, as a more precise test of whether infestation rates decreased with increasing host species 

richness and were thus consistent with a dilution effect, I examined abundances of single 

ectoparasite species. To do this, I plotted abundances for four ectoparasite species that were 

present at each of the four sites against the small mammal species richness observed at a site-

wise basis.
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CHAPTER III: RESULTS 

 

FIELD RESULTS AND TAXONOMIC IDENTIFICATION 

 

Field data collection occurred between 15 June and 1 September 2020, including a total of 7 

expeditions and 11,211 trapnights (Table 1). Ratios of traps in forest versus meadow habitats 

were 730/140 (Chattahoochee-Oconee National Forest), 450/500 (Cold Mountain Game Land, 

730/560 (Green River Game Land), and 710/245 (South Mountain Game Land). Chattahoochee-

Oconee National Forest had an average temperature of 29°C for the entire trapping period; the 

first portion of the trip was sunny ending with a significant amount of rainfall. Cold Mountain 

Game Land had average temperatures of 26°C in the June session and 28°C in the August 

session. The average temperatures for Green River Game Land were 25°C (with moderate 

rainfall) in the June session and 28°C in the August session.  South Mountain Game Land 

average temperatures were 20°C (with substantial rainfall) in the June session, and 31°C for the 

August session (Table 1).  

 

Overall trap success (total number of captures divided by the total number of trapnights) was 

low, and variable among field sites. Trap success at Chattahoochee-Oconee National Forest was 

lowest, at just 0.9%. Cold Mountain, Green River, and South Mountains Game Lands had trap 

successes of 1.6%, 2.1%, and 2.7%, respectively. Combined trap success across all sites was 

1.8%. Between the four sites, a total of 205 specimens were either captured and released, or 

preserved as voucher specimens. Eleven different small mammal species (Table 2) were 

collected in total. P. leucopus was the most abundant species captured from all four field sites 

(140 out of 205 captures). Ninety-six small mammal individuals were DNA-barcoded to confirm 
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field identifications; 36 were identified from full cyt-b sequences and the remainder with partial 

fragments (minimum size 574bp). The percent identities in BLAST searches ranged from 90% to 

99% with the exception being the smallest fragment (547bp) which had a percent identity of 

74%.  

 

Twenty-two different species of ectoparasites (Table 3) were collected in total. The most 

abundant ectoparasites were Acariformes (mites) and Trombidiformes (chiggers) and the least 

abundant were Ixodida (ticks). All ectoparasites were identified to species and life stage with 

100% identification success.  

 

MAMMAL COMMUNITY COMPARISON 

 

The composition of small mammal communities across the four field sites included a mix of 

high- and low-elevation species (Figure 2). Species characteristic of lower elevations were O. 

nuttalli (Keller et al. 2003) and Sigmodon hispidus (Dunnum et al. 2002, Webster et al. 2004, 

LeGrand et al. 2021) and those characteristic of higher elevations were B. brevicauda (Hess, 

2016), S. cinereus (LeGrand et al. 2021), S. cooperi (Linzey, 1984), N. insignis (Harrington, 

2004), and Z. hudsonius (Whitaker, 1972). P. leucopus and S. hispidus were the two most 

dominant species collected (166 combined individuals, 80% of the total captures). 

 

The NMDS for small mammal communities (Figure 3a) displays variation among sites, but also 

within-site variation between two habitat types. Meadow habitats at South Mountain Game Land 

and Green River Game Land had the most similar small mammal communities; these general 

field sites were also the closest to one another spatially. The highest dissimilarity was found 



 

   17 

between meadow habitats at Chattahoochee-Oconee and Cold Mountain; these were over double 

the dissimilarity of the former comparison. Considering within-site patterns, meadow and forest 

at Cold Mountain Game Land had the most similar mammal communities, while meadow and 

forest at South Mountains Game Land had the most dissimilar communities within sites. A 

PERMANOVA of the mammal community did not recover an effect of site on small mammal 

community composition. However, I did find an effect of both isolation (P = 0.04) and habitat 

type (P < 0.01) as drivers of the small mammal communities (Table 4).  

 

ECTOPARASITE COMMUNITY COMPARISON 

 

The twenty-two different ectoparasite species collected (Table 3) varied in abundance among 

sites (Figure 4). Ectoparasite community variation as visualized by NMDS (Figure 3b) revealed 

that, as with mammal communities, ectoparasite communities in meadow habitats at 

Chattahoochee-Oconee National Forest and Green River Game Land were the most dissimilar, 

with more than double the distance in community composition as compared to meadows at South 

Mountain Game Land and Green River Game Land. Conversely, forest habitats at 

Chattahoochee-Oconee and South Mountain were the most similar in ectoparasite community 

composition, which is opposite the trends for meadow habitats but similar to the small mammal 

community comparison (Figure 3a, b). 

 

Structural differences in species composition among ectoparasite communities are as follows. 

The lice Hoplopleura hesperomydis and H. hirsuta were only collected from South Mountain 

and Green River Game Lands, and thus could be major contributors to the similarity between 

those two field sites (Figure 3b). H. hirsuta in particular is a specialist to S. hispidus, which was 

collected in abundance (Table 2) from both sites. Conversely, Comatacarus americanus 
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(Trombidiformes) was only collected from Chattahoochee National Forest and was one 

contributor to the dissimilarity of this site relative to South Mountain and Green River Game 

Lands (which lacked C. americanus). Further, the sucking louse H. erratica was only 

encountered on a single T. striatus collected from Cold Mountain Game Land, which may have 

contributed to the uniqueness of ectoparasite communities at this site.  

 

Despite the above levels of variation, a PERMANOVA did not support field site as having a 

significant effect on the ectoparasite community data. Among ecological variables, isolation also 

had no effect on community composition, but habitat type trended towards an effect (P = 0.09; 

Table 5).  

 

FOOTHILLS HOST-ECTOPARASITE NETWORK 

 

My finding that there were no significant effects of site on mammal or ectoparasite communities 

supported use of a bipartite network analysis for the combined data, based on all small mammal 

species that hosted ectoparasites (9 of 11 total species captured). In the unweighted network 

analysis, input data are binary (0 for no association, 1 for association) and all links in the graph 

are the same width. This network showed that P. leucopus had the most diverse ectoparasite 

load, with 11 different ectoparasite species hosted (Db, Ol, Af, Ew, Is, Eu, Hhe, Lp, Ph, Dv, Gh; 

see Table 3 for species codes). Conversely, two hosts (Z. hudsonius and T. striatus) only had one 

ectoparasite species collected from them; Z. hudsonius hosted Glycyphagus hypudaei and T. 

striatus hosted Hoplopleura erratica. I calculated the indices of connectance and links per 

species from this unweighted network. Connectance among all hosts and ectoparasites was 0.18, 

meaning the realized proportion of associations was 0.18 ectoparasites cooccurring with the 9 
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different hosts. Links per species was calculated as 1.19, indicating an average number of 1.19 

ectoparasite species associated with each individual host species. 

 

Since habitat was a contributing factor for mammal community structure, and a marginal 

(although non-significant) effect for parasite communities, I constructed a similar unweighted 

network for each of the two habitat types (meadow and forest). In the meadow network, there 

were 6 small mammal hosts and 14 ectoparasite species. P. leucopus and S. hispidus were the 

most infected hosts in meadows; both had 6 different ectoparasites collected off of them (P. 

leucopus hosted Ph, Dv, Hhe, Lp, Ol, and Af; S. hispidus hosted Ol, Af Hhi, Cp, Pb, and Pg). Z. 

hudsonius and B. brevicauda were the least infected hosts with only 1 ectoparasite species (Z. 

hudsonius hosted G. hypudaei; B. brevicauda hosted Doraptopsylla blarinae). In the meadow 

network, connectance was 0.226 and links per species was 0.95.  

 

Similar to the meadow, the forest network contained 6 small mammal hosts, but a larger 

diversity of ectoparasite species (17). P. leucopus was again the most infected host, having 10 

different ectoparasite-host interactions, and N. insignis and T. striatus had the fewest 

ectoparasite-host interactions, at 1 per species. The 10 different ectoparasites found on P. 

leucopus were Db, Ph, Eb, Ew, Is, Hhi, Dv, Lp, Ol, Af, and Gh. N. insignis hosted 1 G. 

hypudaei, and T. striatus hosted only H. erratica. In the forest network, connectance was 0.245 

and links per species was 1.09, both of which were higher than in the meadow network.  

 

WEIGHTED HOST-PARASITE NETWORKS  
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To assess differences in intensity of ectoparasite-host interaction across sites, a weighted 

bipartite network analysis was also performed, wherein wider edges indicate stronger 

ectoparasite-host interaction compared to narrower edges (Figure 5a. The two species that had 

the highest diversity of ectoparasites were P. leucopus and S. hispidus (11 and 6 interactions, 

respectively).  The strongest interaction (7) was between the southern bog lemming (Synaptomys 

cooperi) and the mite Laelaps alaskensis (La), but I note that only 1 S. cooperi was collected in 

my study. B. brevicauda and O. nuttalli also had relatively strong interactions; B. brevicauda 

was a host of 5 different ectoparasites but the strongest interactions were with C. americanus and 

D. blarinae. O. nuttalli had one less interaction than B. brevicauda, and its strongest interaction 

was with the mite A. fahrenholzi.  

 

Like unweighted analyses above, I computed weighted networks for each habitat type (Figure 

5b, c). The mammals Z. hudsonius, S. cooperi, and S. hispidus were only collected in the 

meadow habitat, where the latter two hosts had the strongest ectoparasite-host interactions; S. 

cooperi again displayed a strong association with L. alaskensis, and S. hispidus displayed a 

strong association with A. fahrenholzi. S. hispidus was also the only host to carry the sucking 

louse H. hirsuta. Within the meadow there was a relatively low interaction strength of -0.224. 

 

Figure 5c displays the weighted network for the forest habitat. The ectoparasites D. blarinae, A. 

fahrenholzi, G. hypudaei, L. peromysci, and O. leucopus had at least 2 or more host interactions 

in this network. P. leucopus, B. brevicauda, N. insignis, and T. striatus had the strongest 

ectoparasite-host interactions. P. leucopus had 11 different ectoparasite interactions; the 

strongest was with L. peromysci. B. brevicauda had 5 ectoparasites interactions; the strongest 

were with C. americanus and D. blarinae. N. insignis and T. striatus (the latter was represented 

by a single host individual) had the two strongest ectoparasite-host interactions, with G. 

hypudaei and H. erratica, respectively. The strength of ectoparasite-host interactions was much 

higher in forests (0.104) than in meadows.  
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ECTOPARASITE LOADS OF SMALL MAMMALS 

 

Infestation rate was first measured using abundances across the component parasite community; 

the unit of analysis was the total number of ectoparasites collected off all host individuals, scaled 

by the total number of small mammals captured at each site (or habitat type). A Kruskal-Wallis 

test revealed that site did not play a role in combined ectoparasite loads on the small mammal 

community (P = 0.32). The same test assessing whether ecological variables contributed to 

ectoparasite loads recovered no statistical evidence that degree of isolation contributed to 

ectoparasite abundance (P = 0.44), but again there was a marginally significant trend for habitat 

(P = 0.09; Table 6). A post-hoc, pairwise Mann-Whitney U test did not recover any differences 

among sites for scaled ectoparasite loads (Table 7). 

 

As P. leucopus was by far the most abundant species collected, I performed the same workflow 

to assess how site, habitat type, and degree of isolation influenced ectoparasite load on this 

species (Table 6). For P. leucopus individuals there was a strong effect of site on parasite load (P 

= 0.0003). South Mountain Game Land had the highest ectoparasite abundance (239 total 

ectoparasites collected off P. leucopus) and Cold Mountain Game Land had the lowest (28 total 

ectoparasites). There was no statistical effect of isolation, but, unlike for all small mammals, 

there was a statistically significant effect for P. leucopus (P = 0.04). P. leucopus from forests had 

higher ectoparasite richness and abundance (17 ectoparasite species and 475 in total collected; 

mean of 4.20 ectoparasites per individual) compared to those in the meadows (14 ectoparasite 

species and 18 in total collected; mean of 0.67 ectoparasites per individual; Figure 6). However, I 

note a higher number of  P. leucopus individuals were captured within the forest, which could 

contribute to these differences among habitat types. 
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To assess if abundances of individual ectoparasites varied with mammal species richness, four 

ectoparasite species that were each collected at all four field sites (L. peromysci, G. hypudaei, O. 

leucopus, and A. fahrenholzi) were analyzed using a Kruskal-Wallis test, both for the whole 

mammal community and those found on P. leucopus (Table 8). Site had an effect on abundance 

only of L. peromysci (P << 0.01). Degree of isolation contributed to the abundance of G. 

hypudaei (P = 0.05) and A. fahrenholzi (P = 0.03), but not L. peromysci or O. leucopus. Habitat 

affected the abundance for L. peromysci (P = 0.01) and A. fahrenholzi (P = 0.01). O. leucopus 

did not show any statistical evidence that field site, habitat type, or isolation was driving the 

abundance of this species. For the P. leucopus ectoparasite community, three species (L. 

peromysci, G. hypudaei, and O. leucopus) were collected from the four field sites and were 

analyzed here. Site impacted abundance of L. peromysci and G. hypudaei on white-footed mice 

(L. peromysci, P << 0.01; G. hypudaei, P = 0.01). Isolation only impacted abundance of G. 

hypudaei (P = 0.05). Again, O. leucopus had no statistical evidence for isolation, habitat, or field 

site in driving the abundance of this species.  

 

As a formal test of whether ectoparasite infestation rates were consistent with a dilution effect, I 

plotted infestation rates (total number of each species per individual host) against host species 

richness on a site-wise basis. I did this only for the four ectoparasite species mentioned above, 

each of which were found at all four field sites. At the community level, the chigger L. peromysci 

was the only ectoparasite species that showed the expected pattern, whereby infestation rate 

decreased as species richness increased, which is thus consistent a dilution effect in this species 

(Figure 7). However, within P. leucopus, none of the three ectoparasite species analyzed 

displayed a trend in host abundance impacting the infestation rate across the four field sites 

(Figure 8).



 

   23 

CHAPTER IV: DISCUSSION 

SMALL MAMMAL COMMUNITIES AND ISLAND BIOGEOGRAPHY THEORY 

 

Small mammal communities that I sampled along the foothills of the Southern Appalachian 

Mountains differed within field sites (i.e., between habitat classes), but not significantly so 

among sites. Even after accounting for these habitat effects, however, there was a weak but 

significant effect of degree of isolation on species richness. This supports the hypothesis that 

mammal communities fundamentally differ in the Southern Appalachians with distance from the 

highest peaks. Unfortunately, my data did not allow an explicit test of island biogeographic 

expectations that formed my initial hypothesis (decreasing species diversity with increasing 

isolation), specifically due to low trap success and the likelihood that some species were present, 

but not encountered, in my live-trapping surveys. However, my data were still potentially 

consistent with theoretical expectations, as explained below.  

 

Eleven different mammal species were captured across sites, representing a mix of high and low 

elevation species coexisting at intermediate elevations. When D. virginiana (which is ubiquitous 

but was only detected at a single site in this study) is excluded from the comparison, just 5 

mammal species were captured at isolated sites. Conversely, the least-isolated site (Cold 

Mountain; Figure 1) had the highest small mammal diversity (7 species). Island biogeography 

theory predicts increased dispersal and colonization with decreasing isolation (Cook et al. 2002), 

which could explain these patterns, especially the highest diversity being observed at Cold 

Mountain. Conversely, one complicating factor is that surveys at the other site not considered to 

be isolated (Chattahoochee-Oconee) resulted in 5 species, identical to isolated sites but with a 

slightly different species composition. 
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Although island biogeography theory has been applied to a variety of sky island systems in 

North America, it is possible that the Southern Appalachians lack the extreme degrees of 

isolation that is a fundamental assumption of the theory. An alternative (but not mutually 

exclusive) scenario is that all sites surveyed here exist along a single broad elevational gradient, 

and that patterns of species diversity in the region are driven by a phenomenon similar to the 

mid-domain effect. The mid-domain effect is a hypothesis to describe why species diversity is 

higher at intermediate elevations compared to the high and low elevation communities (McCain, 

2003). Rickart (2001) also found support for this theory in the intermontane West, and the 

communities I sampled were likewise a combination of low elevation species such as O. nuttalli 

(Keller et al. 2003) and S. hispidus (Dunnum et al. 2002), and high elevation species such as B. 

brevicauda (Hess, 2016), S. cooperi (Linzey, 1984), N. insignis, and Z. hudsonius (Whitaker, 

1972).  

 

One factor that prevents parsing the true drivers of mammal diversity in this system is the lack of 

comprehensive, site-based field sampling along individual mountain ranges. This would help 

disentangle potential effects of elevation and isolation in structuring small mammal 

communities. Still, regardless of specific drivers of richness, my data support the hypothesis that 

small mammal community structure varies with distance from the main Appalachian cordillera. 

As climate changes reshape these elevation communities, there is potential for ectoparasites to 

colonize new hosts and disrupt modern host-parasite networks – specifically, the system-wide 

interactions among hosts and their parasites (Bellay et al. 2018).  

 

FURTHER NOTES ON SMALL MAMMAL COMMUNITIES 
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To provide additional support for patterns of small mammal distributions found here, a 

comprehensive literature comparison was done to contextualize results with historic mammal 

records in North Carolina and Georgia. Among lower-elevation species, I found S. hispidus in 

abundance at the lower elevation (~250 m) sites (Green River Game Land and South Mountain 

Game Land), which matches prior records indicating this species has an elevation range of 

roughly 0-1,130 m, but is scarce above 400 m (Meikle and Powers 2011, LeGrand et al. 2021). P. 

leucopus was also found in abundance at all sites and, while not necessarily restricted to low 

elevations (range of 0-1,800 m), it is more commonly found at lower elevations (LeGrand et al. 

2021). Regarding higher-elevation species, I found B. brevicauda primarily at the higher 

elevation (782-952 m) sites (Chattahoochee-Oconee National Forest and Cold Mountain Game 

Land). This species has an elevational range of roughly 450-1,770 m (Ballenger, 2011, LeGrand 

et al. 2021). Similar to B brevicauda, S. cooperi and S. cinereus have higher elevation ranges (S. 

cinereus, 500-1,861 m; S. cooperi, 0-1,818 m; LeGrand et al. 2021) and were only collected 

from the highest-elevation (~782 m) site (Cold Mountain Game Land).  

 

Although my data offer a view of community structure in the most common small mammals 

along the Southern Appalachian Mountains, as stated above they are unlikely to represent a 

comprehensive picture of mid-elevation communities due to the roughly 2% trap success I 

observed. This could have been due to the almost exclusive use of Sherman live traps, which was 

necessary so that individuals could be screened alive for ectoparasites. Nevertheless, my data do 

offer baseline information on some small mammals that are particularly poorly studied in North 

Carolina; specifically, the southern bog lemming (S. cooperi) and meadow jumping mouse (Z. 

hudsonius). 
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In my literature search, I found just 130 museum records of S. cooperi and 53 records of Z. 

hudsonius combined from North Carolina (out of 14,849 small mammal records from 39 

different museum collections). Little is known about the current distributions and ecology of 

either species in our state. Recent records have shown that the range of S. cooperi may have 

shifted into North Carolina from Tennessee, along higher elevations of the Southern Appalachian 

Mountains (Campbell et al. 2010). According to Laerm et al. (1995), in Tennessee and South 

Carolina, Z. hudsonius is regarded as a species of special concern but has insufficient records 

available. The putative rarity of each species on the landscape may be due to competition by 

other small mammals (Z. hudsonius by N. insignis, S. cooperi by M. pennsylvanicus; Linzey, 

1984). For example, M. pennsylvanicus has been found in Haywood County (Lee et al. 1982), 

and M. pennsylvanicus and S. cooperi have similar habitat preferences with the former 

outcompeting the latter (Linzey 1984, Krupa and Haskins 1996). LeGrand et al. (2021) lists 

records from 5 different counties in North Carolina that contain 1-3 Z. hudsonius records each 

(Henderson, Madison, Watauga, Alleghany, and Wake Counties). Here, I collected 3 Z. 

hudsonius from Cold Mountain Game Land in Haywood County, the latter of which had no prior 

county-level records. One reason for this may be competition with N. insignis. Although Z. 

hudsonius is found mostly in moist meadows and sometimes forest edges, and N. insignis is 

found in cool moist forests, they may overlap in edge habitats where competition for habitats and 

food causes low abundance of Z. hudsonius (Webster et al. 2004, LeGrand et al. 2021).  

 

ECTOPARASITE COMMUNITY COMPOSITION 

 

Ectoparasite communities displayed some variation among the four field sites and between 

habitat classes (meadow and forest), but a PERMANOVA recovered neither geographic (site) 

nor ecological (degree of isolation, habitat type) as a significant driver of composition. Still, as in 

mammal communities, habitat classes were a marginally significant driver (P = 0.09). The 
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isolated sites Green River Game Land and South Mountain Game Land were most similar to one 

another, and these were most divergent from meadow habitats at non-isolated sites (Cold 

Mountain Game Land and Chattahoochee National Forest; Figure 3b). Six ectoparasite species 

were found at Chattahoochee and not at Green River (Asiochirus blarina, Comatacarus 

americanus, Doratopsylla blarinae, Echinonyssus blarinae, Haemogamasus ambulans, 

Peromyscopsylla hesperomys). Nine ectoparasite species were found at Green River but not at 

Chattahoochee (Ctenophthalmus pseudagyrtes, D. variabilis, Echinonyssus utahensis, Epitedia 

wenmanni, Hoplopleura hesperomydis, I. scapularis, Listrophorus mexicanus, Prolistrophorus 

bakeri, Polygenis gwyni). Green River Game Land had fleas, ticks, mites, and lice collected 

whereas Chattahoochee National Forest only had chiggers, mites, and fleas. Of the ectoparasites 

that were collected, 6 are known diseases vectors: I. scapularis (Lyme disease: B. burgdorferi; 

Burgdorfer et al 1985 ), D. variabilis (RMSF: R. rickettsii), P. gwyni (Myrune typhus: Rickettsia 

typhi; Durden et al. 2005), Orchopeas leucopus (Rickettsia-felis: cat-flea typhus; Fedele et al. 

2020), C. pseudagyrtes (Bartonella : Carrion’s disease, cat scratch disease, trench fever; Reeves 

et al. 2007), and H. ambulans (Hantavirus, Tularemia: Francisella tularensis; Valiente Moro et 

al. 2005).  

 

As stated above, habitat likely played a role in affecting the variation in the ectoparasite 

community composition in addition to the small mammal community. Different habitats 

harbored various species, probably depending on the resources available, habitat preference, and 

other biotic and abiotic factors (Stevens and O’Connor 2006). A possible explanation for why 

there is a difference between the meadow and forest ectoparasite communities is the host 

community composition. Indeed, networks also showed important variation in structure and 

connectance properties. Both Green River and South Mountain Game Lands had a high 

abundance of S. hispidus within the meadow habitat, and this species had a high parasite load 

(8.81), which may have driven the similarity between these habitats. In comparison, forest 
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habitats provide many species with canopy cover and resource availability, and the may not be as 

resource-limited or patchy compared to a meadow habitat (Carey and Harington 2000).  

 

ECTOPARASITE COMMUNITIES IN CONTEXT  

 

Variation among habitats had a stronger contribution to small mammal and ectoparasite 

communities than site identity. Forest habitats displayed the highest number of both mammal and 

ectoparasite species. Forest ecosystems at the four field sites were primary Oak, Dry-Oak, and 

Cove forests, with herbaceous understory of rhododendron (Rhododendron catawbiense) and 

mountain laurel (Kalmia latifolia; NCWRC, 2015). Conversely, maintained ecosystems such as 

meadows showed a negative impact on species variation, including a negative effect on 

ectoparasite loads. All three Game Lands meadows were maintained as grassy areas for target 

game species (NCWRC, 2015); moreover, they tended to be surrounded by forest and isolated 

which likely creates low accessibility for meadow-dwelling species to colonize. Meadows were 

also usually small in areal extent; this could generate interspecific competition for space and 

resources in a given patch (Balčiauskas et al. 2019). Mammals caught at both habitat types were 

P. leucopus, B. brevicauda, and N. insignis. In the meadow these 3 species display less 

ectoparasite host interactions but the interactions they had were stronger in the meadow vs the 

forest. In the forest there was higher host species abundance overall, thus allowing more 

generalist ectoparasites to interact with different hosts. Within the forest habitat, P. leucopus 

ectoparasite load were not diluted by the high species richness. Similar to P. leucopus, B. 

brevicauda, had a lower parasite load in the meadow vs the forest. B. brevicauda only had 

interaction with D. blarinae in the meadow. The lower infestation on B. brevicauda in the 

meadow can potentially be explained by the high S. hispidus abundance and its specialist H. 

hirsuta. Infestation of ectoparasites have a higher chance of being diluted is there are more 

specialist in the community (Agosta et al. 2010).  
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Different habitat types also led to altered ectoparasite-host interactions (Figure 5a). A weighted 

bipartite network analysis describes the strengths of interactions from the 8 mammal species that 

had ectoparasite infections. P. leucopus had the most interactions with the 22 ectoparasite 

species collected, although this may in part be due to the abundance of P. leucopus in the study 

(Table 3). The other species with the most ectoparasite interactions were B. brevicauda and S. 

hispidus. Interestingly, however, these mammals with highest infection rates also differ in their 

elevational ranges, B. brevicauda being found in higher elevations, S. hispidus in lower to middle 

elevations, and P. leucopus being in both (LeGrand et al. 2021). While P. leucopus and B. 

brevicauda were most abundant in forest habitats, S. hispidus and S. cooperi were only collected 

from meadows. Both had multiple ectoparasite interactions, on S. hispidus, Phthiraptera (H. 

hirsuta), Siphonaptera (C. pseudagyrtes, O. leucopus, Polygenis gwyni), and Acariformes (A. 

Fahrenholzi, Prolistrophorus bakeri were collected and S. cooperi had Acariformes (A. 

Fahrenholzi, L. mexicanus, L. alaskensis). These patterns suggest that each mammal species 

brings their ectoparasites to this mid-elevation interaction, likewise, causing mixing of 

ectoparasite communities at the mid-elevation. 

 

To account for the effect of habitat type on network structure, I calculated weighted and 

unweighted host-ectoparasite interactions from the meadow and forest habitat, across all sites 

(Figure 5). The meadow habitat had a lower overall connectance (realized proportion of possible 

links) of 0.226 compared to the forest of 0.246, indicating a lower proportion of host-ectoparasite 

interactions in the meadow systems. Also, the meadow had 0.95 links per species compared to 

the forest of 1.09, indicating that forest-dwelling mammals have more interactions with different 

ectoparasites, which likely leads to their higher ectoparasite loads. Interaction strength can be 

measured on a scale of -1 to 1, with zero indicating highly symmetric interaction strength and 

values close to 1 or −1 indicating high asymmetry (Vazquez et al. 2007). A negative interaction 

strength means that there is strong effect from interaction partners but does not exert a strong 
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reciprocal effect (Vazquez et al. 2007). From the meadow interaction strength was -0.224, this 

meant that there were overall lower ectoparasite-host interactions and the forest had 0.104, which 

had a higher ectoparasite-host interaction. However, I note that interaction strength can be 

impacted by the abundance load on an individual and by the scaled amount of host that were 

collected of that species. For T. striatus and S. cooperi, the high interaction strength comes from 

the fact that only 1 host individual was encountered.  

 

Finally, to investigate factors important for driving ectoparasite abundance, I analyzed the latter 

data with respect to the same variables as for community structure (site, habitat, and degree of 

isolation). I limited my analysis to 4 ectoparasite species (L. peromysci, G. hypudaei, O. 

leucopus, and A. fahrenholzi) found at all field sites, and found statistical evidence for site 

playing a role in the abundance of L. peromysci (P << 0.01). I found statistical evidence for 

habitat playing a role in the abundance of L. peromysci as well as A. fahrenholzi (P = 0.01). 

Further, I found that degree of isolation influenced the abundance of A. fahrenholzi and G. 

hypudaei (P <= 0.05). Some of these same trends were recovered for the ectoparasite 

communities found only on the white-footed mouse (P. leucopus). From these tests alone, it is 

difficult to know if these specific ecological variables are the cause of changing abundances, or it 

host-mediated variables are also involved. However, they do suggest high individuality in how 

ectoparasite transmission and infestation vary among habitats.  

 

ECTOPARASITE LOADS AND HOST SPECIES DIVERSITY 

 

Abundance and species composition of host communities are crucial factors in driving the 

abundance of ectoparasites (Johnson and Thieltges 2010). The dilution effect describes a 
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negative relationship between the parasite infestation parameter and host abundance and 

diversity of an individual parasite species (Johnson and Thieltges 2010), and it has been widely 

observed among parasite and pathogen species (Civatello et al. 2015). In that scenario, life stages 

of the ectoparasite may become crippled due to use of suboptimal hosts, leading to infection rates 

being diluted in a community with high host diversity (Pfäffle et al. 2015). Conversely, such a 

finding could result when host species densities are high (irrespective of host identity), which 

should permit increased transmission rates of many ectoparasites. 

 

Across field sites, South Mountain Game Land had the highest scaled abundance of ectoparasites 

on individual mammals (N = 5.3) and the lowest number of mammal species (N = 5) collected. 

This site-wide pattern is consistent with predictions from the dilution effect. However, this 

pattern was not observed in each habitat. At South Mountains, forest habitats had 4 small 

mammal species collected and several P. leucopus with high ectoparasite loads (one individual 

had ~37 L. peromysci). Conversely, meadows at South Mountain were dominated by the cotton 

rat (S. hispidus; 74% of captures) and while this species had the highest ectoparasite load, one 

ectoparasite (the louse Hoplopleura hirsuta) was especially common. H. hirsuta is a specialist 

for S. hispidus (Agosta et al. 2010) and is able to take advantage of the high abundance of its 

preferred host species. Opposite of South Mountains Game Land, Cold Mountain Game Land 

had the lowest abundance of total ectoparasites (N =1.5 individuals per host individual) and the 

highest small mammal diversity (N = 7; Table 2). This site-wide pattern is also consistent with a 

dilution effect. However, a comparison of the raw data indicates that at least one of the highest 

scaled ectoparasite loads at Cold Mountain was in S. cooperi, of which only a single individual 

was collected, which could easily bias my results.  

 

The dilution effect is still debated in the literature due to the lack of research done (Tetlock et al. 

1996). To achieve a more precise test of whether mammal species diversity impacted species-
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specific infestation, I analyzed four individual ectoparasite species that each occurred across all 

four sites (Leptotrombidium peromysci, Glycyphagus hypudaei, Orchopeas leucopus, and 

Androlaelaps fahrenholzi). If ectoparasite loads are influenced by a dilution effect, I expected to 

see lower abundance within each ectoparasite species in scenarios of highest host species 

diversity, and vice versa. However, I found little evidence for such an effect (Figure 7). The sole 

exception was the chigger L. peromysci, which displayed the lowest infestation rates in 

conditions of highest mammal diversity (Green River and Cold Mountain), consistent with the 

dilution effect. As ectoparasite samples themselves were biased towards P. leucopus (the most 

common capture) as a host, I analyzed infestation rates on this single host to understand if 

similar patterns emerged. Indeed, patterns of infestation within this host species were more 

consistent with the dilution effect, generally being lower when host diversity at sites was higher, 

and vice versa. The effect was weak, but present, in G. hypudaei and L. peromysci. Future work 

on additional parasite species will be critical to understand the extent to which dilution may 

indeed be present. 

 

High host species diversity and abundance dilutes the infection rate by increasing opportunities 

for infection of species that are not optimal reservoir hosts, potentially also preventing 

completion of the full life cycle and transmission of bacteria to the host (Khalil et al. 2016). 

However, the dilution effect also assumes parasites are not extreme host specialists. As 

previously mentioned, Krasnov et al. (2007) studied the generalist I. rincinus and specialist I. 

trianguliceps and displayed how ectoparasites that are generalist have a higher chance of 

prevalence compared to specialist. Specifically, extreme specialists have stronger constraints on 

their ability to exploit competent hosts and are less likely to demonstrate the dilution effect 

(Kransnov et al. 2007). Another study done by Krasnov et al. (2002) supports the argument that 

the dilution effect requires parasites not to be extreme host specialists. Those authors found that, 

in the specialist fleas Xenopsylla dipodilli and Nosopsyllus iranus theodori on the desert rodent 

species Gerbillus dasyurus, infestations increased as favorable host density increased (Krasnov 
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et al. 2002). Civatello et al. (2015) also found that parasite dynamics may be driven by the 

particular host species present rather than the diversity and undisturbed habitats having higher 

densities of parasite or vectors compared to disturbed sites (Civatello et al. 2015).  

 

PEROMYSCUS LEUCOPUS BIAS 

 

Across all sites, P. leucopus was the most commonly captured mammal (Table 2), and it had the 

highest amount of different ectoparasite interactions as well (N = 11), suggesting (as above for 

ectoparasite loads) that there may be sample bias in my community data. P. leucopus also had 

more interactions within the forest (11) than in meadow (6). Similarly, Mize et al. (2011) studied 

habitat correlations with the spatial distribution ectoparasites on P. leucopus in southern 

Michigan and found that habitat should be included in one of the drivers of assessments in spatial 

distribution of ectoparasites with P. leucopus (Mize et al. 2011). Those authors found that ticks, 

in particular I. scapularis and D. variabilis, were more abundant in recently disturbed habitats. 

This agrees in part with my data; for I. scapularis and D. variabilis, 67% of individuals were 

collected from a recently maintained meadow habitat, compared to 33% was from an old-growth 

forest.  

 

While P. leucopus had the highest amount of ectoparasite interactions, many ectoparasites were 

generalists and found to be associated with other small mammals as well. This may be why in the 

forest I found the highest number of ectoparasite-host interactions. For example, O. leucopus was 

found on P. leucopus, but also P. maniculatus and O. nuttalli. O. leucopus in other studies has 

shown to favor for mice as a host, this can explain why it was found on P. leucopus, P. 

maniculatus, and O. nuttalli (Veitch et al. 2020). Also, G. hypudaei was collected from P. 
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leucopus, P. maniculatus, and S. hispidus. Thus, while my data are biased towards P. leucopus, 

the fact that many ectoparasites I found are generalists makes it reasonable to believe that it is 

not driving all patterns reported here (Agosta et al. 2010). In general, there is a pressing need to 

understand how ectoparasite abundance and variation vary not only among ecological factors 

(e.g., Table 8), but also whether an ectoparasite has a generalist or specialist life history. 

 

CONCLUSION 

 

Overall, my results provide new information for patterns of parasite occurrence on Southern 

Appalachians mammal communities. For small mammals themselves, species diversity varied 

only slightly with distance from the Appalachian cordillera, providing minimal support for an 

island biogeographic model in diverse Southern Appalachians ecosystems. Conversely, degree of 

isolation as well as habitat type each contributed significantly to variation in small mammal 

community structure. Ectoparasite communities on small mammals were less sensitive to the 

above predictors than hosts, largely varying between forest and meadow habitats. Host-parasite 

networks were more diverse and more complex in forests relative to meadows. However, 

patterns of ectoparasite infestation rates on small mammals were complex and hard to interpret 

with respect to host diversity and composition. At the community level, infestation rates were 

highest when mammal species richness was lowest, and vice versa, providing preliminary 

evidence for a dilution effect. Yet, infestation rates within the best-sampled ectoparasite species, 

were only consistent with a dilution effect in one case, although these trends were still supported 

when data were limited to just the best sampled host species (P. leucopus). This study was 

conducted at multiple field sites where many biotic and abiotic factors likely impacted data 

collection, but it remains novel in that few comprehensive surveys like mine have been reported 

from North Carolina to date. Similar work spanning the field to laboratory will be critical for 

anticipating response of mid-elevation vertebrate communities in our region to climate and land 
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use change, as well as host turnover and changing ectoparasite community composition and 

abundance. 
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APPENDIX A: FIGURES AND TABLES 

Table 1. Characteristics of field sites in this study. Several trap lines were established in each site 
spanning elevations as well as habitat types (meadow, mature forest). Field sites were classified 
on their degree of isolation from the Southern Appalachian Mountains (isolated or not isolated). 

Temperatures are the average from all sessions at a field site.

Site Name 
Distance 

classification 

Elevational 

Range Trapped 
County Land Ownership 

Average 

Temp. 

Total 

Trapnights 

Chattahoochee 

Oconee National 

Forest (CH) 

Not isolated 425 - 782m 
Rabun 

(Georgia) 

U.S. National Forest 

Service 
29°C 2,850 

Cold Mountain 

Game Land (CM) 
Not isolated 886 - 952m Haywood 

NC Wildlife Recourses 

Commission 
27°C 2,790 

South Mountains 

Game Land (SM) 
Isolated 199 - 505m 

Rutherford + 

Cleveland 

NC Wildlife Research 

Commission 
26°C 2,721 

Green River 

Game Land (GR) 
Isolated 275 - 490m 

Henderson + 

Polk 

NC Wildlife Research 

Commission 
25°C 2,850 
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Field sites Chattahoochee Cold Mountain Green River South Mountain Total 
Ind. 

% Tot. 
Capt. 

Host Meadow Forest All Meadow Forest All Meadow Forest All Meadow Forest All   
Blarina 
brevicauda 3 4 7 1 7 8 0 2 2 0 2 2 19 9 % 

Sorex 
cinereus 0 0 0 0 1 1 0 0 0 0 0 0 1 1% 

Zapus 
hudsonius 0 0 0 2 1 3 0 0 0 0 0 0 3 1.5% 

Napaeozapus 
insignis 0 1 1 1 2 3 1 0 1 1 0 1 6 3% 

Peromyscus 
leucopus 2 14 16 6 21 27 12 36 48 7 42 49 140 68% 

Peromyscus 
maniculatus 0 1 1 0 2 2 0 0 0 0 0 0 3 1.5% 

Ochrotomys 
nuttalli 0 2 2 0 0 0 0 1 1 0 1 1 4 2% 

Sigmodon 
hispidus 0 0 0 0 0 0 6 0 6 20 0 20 0 13% 

Synaptomys 
cooperi 0 0 0 1 0 1 0 0 0 0 0 0 1 1% 

Tamias 
striatus 0 0 0 0 1 1 0 0 0 0 0 0 1 1% 

Didelphis 
virginiana 0 0 0 0 0 0 0 1 1 0 0 0 1 1% 

Total  
Ind. 5 22 27 11 35 46 19 40 59 28 45 73 205  

% Tot.  
Captures   13%   22%   29%   36%    

Table 2. Small mammal occurrences within sites, and habitat types within sites. The total number 
of individuals captured, and the percent of total captures is listed for each species (right 

columns). The total number of individuals captured, and percent of total captures is also listed 
for each site (bottom row). In each case, the percent of total captures represents the total number 

of individuals scaled by the total number of trap nights (see Table 1).
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Order Species Green River Cold Mountain South Mountain Chattahoochee 
 Forest Meado

w 
Forest Meado

w  
Forest Meado

w 
Forest Meado

w 
 
Trombidi
-formes 

 

Comatacarus 
americanus (Ca)  

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

18 
(0.82) 

0  
(0) 

Leptotrombidium 
peromysci (Lp)  

5 
(0.13) 

0  
(0) 

7  
(0.2) 

3  
(0.27) 

203 
(4.51) 

3 
 (0.11) 

134 
(6.09) 

0  
(0) 

 
 
 
 
 
 
 
 

Acari- 
formes 

 
 

Androlaelaps  
fahrenholzi (Af) 

9  
(0.23) 

41 
(2.16) 

2  
(0.06) 

2  
(0.18) 

4  
(0.09) 

31 
 (31) 

1  
(0.05) 

0 
(0) 

Laelaps  
alaskensis (La) 

0  
(0) 

0 
 (0) 

0 
(0) 

7  
(0.64) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

Listrophorus  
mexicanus (Lm) 

1  
(0.03) 

0  
(0) 

1  
(0.03) 

4  
(0.36) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

Haemogamasus 
ambulans (Ha) 

0  
(0) 

0 
 (0) 

0  
(0) 

0 
 (0) 

0  
(0) 

0  
(0) 

1  
(0.05) 

0  
(0) 

Prolistrophorus  
bakeri (Pb) 

0  
(0) 

4  
(0.21) 

0  
(0) 

0  
(0) 

0 
 (0) 

66  
(1.47) 

0  
(0) 

0  
(0) 

Echinonyssus  
utahensis (Eu)  

1  
(0.03) 

0  
(0) 

 0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

0  
(0) 

Asiochirus  
blarina (Ab)  

0  
(0) 

0  
(0) 

0  
0) 

0  
(0) 

3  
(0.07) 

0 
 (0) 

2  
(0.09) 

0  
(0) 

Echinonyssus  
blarinae (Eb)  

0 
 (0) 

0 
 (0) 

0  
(0) 

0  
(0) 

3  
(0.07) 

0  
(0) 

1  
(0.05) 

0  
(0) 

Glycyphagus  
hypudaei (Gh)  

24  
(0.6) 

0  
(0) 

9  
(0.26) 

1 
 (0.09) 

6  
(0.13) 

0  
(0) 

27 
(1.23) 

0  
(0) 

 
Ixodida 

 

Ixodes  
scapularis (Is)  

1 
(0.03) 

 1 
(0.05) 

0 
(0) 

0  
(0) 

0  
(0) 

1  
(1) 

0  
(0|) 

0  
(0) 

Dermacentor  
variabilis (Dv) 

0  
(0) 

3 
 (0.16) 

1  
(0.03) 

0 
 (0) 

1  
(1) 

1  
(0.02) 

0  
(0) 

0  
(0) 

 
 

Phthir-
aptera 

 

Hoplopleura  
erratica (He)  

0  
(0) 

0 
 (0) 

0  
(0) 

6  
(0.55) 

0  
(0) 

0 
 (0) 

0  
(0) 

0  
(0) 

Hoplopleura 
hesperomydis (Hhe)  

3  
(0.08) 

1  
(0.05) 

0  
(0) 

0 
 (0) 

8 
 (8) 

0  
(0) 

0  
(0) 

0 
 (0) 

Hoplopleura  
hirsuta (Hhi)  

0  
(0) 

36  
(1.89) 

0  
(0) 

0  
(0) 

0 
 (0) 

37 
 (37) 

0  
(0) 

0  
(0) 

 
 
 
 
 
 
Siphon- 
aptera  
 

Polygenis  
gwyni (Pg)  

0  
(0) 

9  
(0.47) 

0  
(0) 

 0 
 (0)  

0 
 (0) 

0  
(0) 

0 
 (0) 

0  
(0) 

Ctenophthalmus 
pseudagyrtes (Cp)  

0 
(0) 

3  
(0.16) 

1  
(0.03) 

0 
 (0) 

1  
(1) 

0  
(0) 

0  
(0) 

0  
(0) 

Epitedia  
wenmanni (Ew)  

2  
(0.05) 

0  
(0) 

0  
(0) 

0  
(0) 

1 
 (1) 

0 
 (0) 

0 
 (0) 

0  
(0) 

Doratopsylla  
blarinae (Db) 

0  
(0) 

0  
(0) 

7  
(0.2) 

0 
 (0) 

6  
(0.13) 

0  
(0) 

7  
(0.32) 

1 
 (0.2) 

Peromyscopsylla 
hesperomys (Ph)  

0  
(0) 

0  
(0) 

4  
(0.11) 

2  
(0.18) 

0  
(0) 

0  
(0) 

6  
(0.27) 

0  
(0) 

Orchopeas  
leucopus (Ol) 

5  
(0.13) 

4  
(0.21) 

10 
(0.29) 

0  
(0) 

10 
(0.22) 

2 
(2) 

7  
(0.32) 

0 
 (0) 

Table 3 . Ectoparasite occurrences within sites and habitat types. For each ectoparasite x site 
combination (i.e., each cell), top and bottom values represent the total number of individuals 

collected and the ratio of total number collected to total infected hosts at each site, respectively.
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  Df Sums of Sqs Mean Sqs F.Model R2 Pr(>F) 

By field site 

Field Site 3 0.37 0.12 1.54 0.29 0.22 

By ecological properties 

Habitat Type 1 0.64 0.64 8.60 0.51 0.002 

Isolation 1 0.24 0.24 3.26 0.19 0.04 

Table 4 Permutational Multivariate Analysis of Variance tests comparing small mammal 
community variation across three different variables (field site, isolation, and habitat type). The 
raw data were total number of each small mammal species scaled by total number of individuals 

captured per site.
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  Df Sums of Sqs Mean Sqs F.Model R2 Pr(>F) 

By field site 

Field Site 3 1.26 0.42 1.19 0.44 0.23 

By ecological properties 

Habitat Type 1 0.52 0.52 1.48 0.18 0.09 

Isolation 1 0.45 0.45 1.19 0.16 0.31 

Table 5 Permutational Multivariate Analysis of Variance tests comparing ectoparasite 
community variation on white-footed mice (Peromyscus leucopus) across three different 
variables (field site, isolation, and habitat type). The raw data were total number of each 

ectoparasite species scaled by total number of host individuals captured per site.
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 chi-squared df p-value 

Whole mammal community 

Field site  
3.51 

 
3 

 
0.32 

Habitat type 2.77 1 0.09 

Isolation 0.60 1 0.44 

P. leucopus community 

Field site 18.75 3 0.0003 

Habitat type  
4.33 

 
1 

 
0.04 

Isolation 1.17 1 0.28 

Table 6 Results of Kruskal-Wallis tests comparing ectoparasite load of all the individual small 
mammals trapped across field sites, habitat types (meadow vs forest), and degrees of isolation. 
The top panel lists results for every individual ectoparasite species pooled across whole small 

mammal communities, and the bottom lists results for only ectoparasites collected from 
individual P. leucopus.
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 w p 95 % confidence interval sample estimate (difference in location) 
Whole mammal community 

Habitat type 418 0.09 -2.10, 6.75e-05- -0.99 

Isolation 3 0.69 -0.05, 0.34 0.15 
P. leucopus community 

Habitat type 2150.5 0.04 1.84e-05, 9.99e-01 << 0.01 

Isolation 2398.5 0.28 -9.99e-01 2.62e-05 -2.48e-05 

Table 7 Mann-Whitney U Wallis tests comparing ectoparasite load of all the individual small 
mammals trapped across the two habitat types (meadow vs forest), and degrees of isolation .The 

top panel lists results for every individual ectoparasite species pooled across whole small 
mammal communities, and the bottom lists results for only ectoparasites collected from 

individual P. leucopus.
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Table 8 Results of Kruskal-Wallis tests comparing abundances for the four most-commonly 
sampled ectoparasite species. The top panel lists results for every individual ectoparasite species 

pooled across whole small mammal communities, and the bottom lists results for only 
ectoparasites collected from individual P. leucopus. 

 chi-squared df p-value 

Whole mammal community 

Leptotrombidium peromysci    
Habitat type 10.19 1 0.01 

Field site 34.54 3 << 0.01 
Isolation 0.01 1 0.93 

Orchopeas leucopus    
Habitat 1.69 1 0.19 

Field site 096 3 0.81 
Isolation 0.51 1 0.48 

Androlaelaps fahrenholzi    
Habitat 9.81 1 0.01 

Field site 5.33 3 0.15 
Isolation 4.89 1 0.03 

Glycyphagus hypudaei    
Habitat 2.70 1 0.10 

Field site 6.52 3 0.09 
Isolation 4.01 1 0.05 

P. leucopus community 

Leptotrombidium peromysci    

Habitat type 2.58 1 0.11 
Field site 42.24 3 << 0.01 
Isolation 0.08 1 0.78 

Orchopeas leucopus    
Habitat 0.001 1 0.8 

Field site 1.47 3 0.69 
Isolation 0.65 1 0.42 

Glycyphagus hypudaei    
Habitat 1.96 1 0.16 

Field site 11.69 3 0.01 
Isolation 3.91 1 0.05 
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Figure 1.Map of field sampling sites. An elevation gradient map representing the location of each 
of the sampling sites located in North Carolina and Georgia, in the foothills of the Southern 

Appalachian Mountains.
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Figure 2. Small mammal community composition among sites and habitats. The Y-axis displays 
the total number of individuals per species captured, and colors represent the 11 different small 

mammal species. 
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Figure 3 Non-metric multidimensional scaling (NMDS) plots for A) small mammal and B) 
ectoparasite communities. In each plot, field sites are coded as points taxonomic identities for 

species contributing to variation are listed as letters. In each plot, taxa are color-coded by 
taxonomic group (Table 3). Habitat classes (meadow and forest) are represented by open 

triangles (forest) and closed triangles (meadow) triangles and colored by field sites. 

A) 

B) 
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Figure 4 Ectoparasite community composition among sites and habitats. The Y-axis displays the 
total number of individuals per species captured, and colors represent the 22 different 

ectoparasite species. 
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Figure 5. Weighted mammal-ectoparasite interaction networks, with link widths representing 
scaled ectoparasite loads on small mammal species. Colors on each network represent the 

different orders of ectoparasites (top) and small mammal families (bottom). A) Mid-elevation 
mammal-parasite network (all field sites combined); B) network for meadow habitats across all 

field sites; C) network for forest habitats across all field sites.
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Figure 6. Total ectoparasite loads (i.e., number of ectoparasite individuals) found on white-
footed mice (Peromyscus leucopus) in each site x habitat combination. Habitat types are colored 

identically for each site. One outlier (an individual with ~87 Leptotrombidium peromysci) 
collected from the Chattahoochee forest habitat was removed for better visualization. Sites on the 
X-axis are labeled using two-letter codes. Asterisks represent the significance between field sites 

based off of a pairwise Mann-Whitney U test. 
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Figure 7 Abundances (individuals per host) plotted against total host species richness for the four 
ectoparasites collected at all field sites. The four figures A-D) represent Androlaelaps 

fahrenholzi, Glycyphagus hypudaei, Orchopeas leucopus, and Leptotrombidium peromysci, 
respectively. Field sites are labeled with two-letter codes. 

A) C) 

D) B) 
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Figure 8 Abundances (individuals per host) plotted against total host species richness for the four 
ectoparasites collected on white-footed mice (Peromyscus leucopus) at all field sites. The three 

figures A-C) represent Leptotrombidium peromysci, Orchopeas leucopus, and Glycyphagus 
hypudaei, respectively. Field sites are labeled with two-letter codes. 


