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Bacillus subtilis is a rod shaped, aerobic, endospore forming gram-positive 

bacterium. B. subtilis is used as a model organism to study cell differentiation 

during sporulation in prokaryotes. When there is inadequate supply of carbon 

resources, B. subtilis undergoes a process of sporulation.The mother cell metabolic 

gene (mmg) operon is expressed at early stages of sporulation. It has six open 

reading frames mmgABCDE and yqiQ. The products of these genes mmg A, B, C, 

D, E and yqiQ in mmg operon share sequence homology with enzymes involved in 

fatty acid metabolism and methyl citric acid cycle. The genes mmgABCD were 

successfully cloned, over expressed and purified. The fatty acid degradation 

enzymes exist, as a complex in E.coli and our hypothesis is that the fatty acid 

degradation proteins may function as a complex as well. We tested this hypothesis 

by cloning and coexpressing all four mmg ABCD in a single strain of E.coli. This 

was accomplished by cloning mmgA with a His-tag for Ni-NTA affinity 

chromatography. If the four proteins formed a complex, the remaining mmgBCD 

would co-purify with the His-tagged mmgA. We observed a ~26 kDa protein 

coeluting with mmgA (which may be mmgB) and also 40-50 kDa protein.(mmgC 

- 40710 Da and mmgD- 41946 Da)
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CHAPTER I 
 

INTRODUCTION 

I.A Sporulation in Bacillus subtilis1 

Bacillus subtilis is an aerobic, gram-positive, endospore forming, rod 

shaped bacterium. It secretes enzymes that are of commercial importance in 

various industries. Hence this organism is extensively studied. The genome of 

this bacterium has around 4000 protein coding sequences, which include 87% of 

the genome sequence.  

Because of its ability to use different carbohydrates, the glycolytic pathway 

along with the TCA cycle is utilized in this organism. It also can grow in 

anaerobic conditions using nitrogen as the electron acceptor. Under dense 

population conditions or during carbon and nitrogen starvation, B. subtilis 

undergoes a developmental pathway where it produces spores. Spores are 

different from vegetative cells as they are more resistant to high temperatures and 

organic solvents. This is the only process that occurs in the stationary phase of the 

B.subtilis culture growth. At the end of exponential phase and the beginning of 

stationary phase morphological changes take place which leads to the formation 
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of dormant endospore and this transition takes place by the involvement of the 

enzymes in the Kreb’s cycle.2 

Sporulation is a complex process that involves the sequential activation 

and regulation of the different σ subunits in RNA polymerase (RNAP) resulting 

in the formation of a larger mother cell and a smaller forespore. The RNAP is a 

large molecule. The core enzyme has 6 different subunits, α2β2σω. The core of 

RNA polymerase is itself capable of synthesizing RNA, but it recognizes the 

specific promoter regions with the binding of the σ subunit.3 Sequential activation 

of the different σ-subunits of RNA polymerase occurs during sporulation. Each σ 

factor is responsible for the gene recognition by RNA polymerase. Morphological 

changes occur in sporulation due to the transcription of particular genes as shown 

in figure 3. 

Spo0A, which is a key regulatory protein, has to be phosphorylated by a 

phosphorelay cascade for spore formation. Phosphorelay is a multistage process, 

which involves the movement of phosphoryl groups of histidine kinases in the 

bacterial signal transduction. The decision to sporulate is taken when there is a 

signal due to nutrient depletion, cell density and DNA damage. These signals are 

used to induce phosphorylation in Spo0A. There are around 3 histidine kinases 

involved in the phosphorylation of Spo0A. These kinases transfer the phosphate 
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group to relay protein Spo0F, from there to Spo0B and then finally to Spo0A. 

Phosphorylation of the Asp residue in the N-terminal domain activates the 

regulator protein Spo0A. Accumulation of this Spo0A ~P is needed to activate 

the transcription of genes that help for the sporulation. This Spo0A ~P activates 

the transcription by binding to the promoters of these genes and operons, which 

acts in conjunction with the σA factor of RNA polymerase in spoIIE and spoIIG 

and σH in spoIIA.4 

 
 
 

 

Figure 1: Phosphorylation and formation of Spo0A~P 
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I.B Stages involved in the Sporulation: 

 

Figure 2: Stages involved in Spore Formation6 

 

 

 

The vegetative cells before entering the sporulation stage are said to be in 

the stage 0.7 DNA replication, axial filament and polar FtsZ ring formation occur 

in this stage.  

Many genes are involved in the sporulation process and are named “spo” 

genes. Activation of the Spo0A is needed for the initiation of the sporulation. 
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Septation of the polar FtsZ rings occurs in stage II. A larger mother cell and a 

small forespore are formed. σA is present in the growing cells in this stage. σH 

directs the transcription of genes whose products are needed in the septum 

formation and in the chromosomal division where one copy of it goes to the 

mother cell and other to the forespore. These σA and σH transcribe operons that 

have σE and σF respectively. These are dormant until the polar septum is formed.  

σF becomes active in the forespore and σE in the mother cell.  After the septum is 

formed, chromosomes are translocated across the septum into the forespore.  

In stage III, a phagocytosis like process occurs where the mother cell engulfs the 

forespore. The septal peptidoglycan starts to degrade from the center to the 

periphery. The rigid structure in between the cells start to dissolve resulting in a 

bulging of the forespore into the mother cell, leading to the migration of 

membrane from the edges to the forespore, forming a double membrane with 

opposite polarity. σF and σE controls the whole process.  

The formation of the spore cortex occurs in Stage IV. Once the septum is 

formed σF transcribes σG in the forespore and σE transcribes σK in the mother cell. 

σG is activated in the engulfed forespore. σF and σG in the forespore govern the σE 

and σK of the mother cell. σE generates signals that help for the synthesis of σG in 

the forespore and its activation. σG and σK are involved in the formation of cortex 

and coat layers in the mother cell to encase the forespore.  
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Coat formation and maturation of the spore occurs in Stage V and VI. The 

inner spore coat protein deposition occurs in the stage V and outer spore coat 

protein deposition in the stage VI. The inner spore coat is multilayered and 

complex. Once the formation of spore coat is completed, the spore develops 

resistance to chemicals and adverse conditions. The spore finally matures in Stage 

VI and is released from the mother cell. 

 

I.C Role of Sigma factors in Sporulation: 

The transcription of the genes, to form products that are responsible for the 

morphological changes in sporulation is controlled by the σ factors in the RNA 

polymerase. This occurs via a complex regulatory network.8 The Spo0A~P is 

important in the regulation. When higher levels of Spo0A~P is accumulated, σA 

that is present in higher amounts in the cell and σH present in minor amounts are 

activated. These help for the partition of the chromosomes to the mother and 

forespore and also the septum formation. σH RNAP transcribes the genes for σF 

and σA for σE. Only after the formation of the septum, the σF is active in the 

forespore and σE in the mother cell. The products of both these genes are used for 

the engulfment process where the forespore with opposite polarity in the 

membrane is formed. The σF is held inactive by the anti-σ factor SpoIIAB. This 

inhibition is reversed by anti-anti-σ factor SpoIIAA, as it binds to the SpoIIAB-
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σF and releases the σF by steric displacement.9 The anti-anti-σ factor SpoIIAA is 

inactive in the phosphorylated state. This is inactivated by SpoIIAB and activated 

by SpoIIE by dephosphorylation. Thus the activation of σF and σG involves the 

release of anti-σ factor SpoIIAB. The pro-protein precursors have to be 

proteolytically processed to activate the sigma factors in the mother cells. σF and 

σG controls the pro-σE and pro-σK respectively. Once the σF is activated this 

causes the activation of σE. The SpoIIR signal from the forespore activates the 

pro-σE via the protease SpoIIGA. Both SpoIIGA and pro-σE are found to be 

expressed in the mother cell. SpoIIGA cleaves the N-terminal pro-sequence of 

the pro-σE activating it to σE in to the mother cell.10 

σF RNAP transcribes for σG and σE RNAP for σK. The products of SpoIIIA 

and SpoIIIJ in the prespore are involved in the activation of σG. σG turns out to be 

active in the forespore that is engulfed. Transcription of the genes that cause the 

protein to condense are activated and also the chromosome is protected here so 

that the spore can be germinated when there are enough nutrients. σK is active in 

the mother cell. σE and σK are needed for the formation of the cortex and coat 

layers in the mother cell to surround the forespore. This σK also directs the 

transcription of genes that help for the lysis of the mother cell and mature spore. 
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Figure 3: Sigma factors at different stages of Sporulation 
 
 
 

I.D The Mother cell Metabolic Gene (mmg) Operon: 

The σE dependent promoters were screened to identify the genes involved 

in the intermediate stages of sporulation. It was found that one of these promoters 

controlled at least 5 open reading frames (ORF). These ORFs were named mmgA 

(393a.a), mmgB (287a.a), mmgC (379a.a), mmgD (371a.a), and mmgE. Later, the 

complete genome sequence revealed that a 6th ORF, yqiQ, was found. The 

products of the first three ORF were similar by sequence to the enzymes involved 

in the fatty acid metabolism and that of the fourth ORF is similar to citrate 
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synthase. The mother cell sigma factor σE is involved in the transcription of these 

genes and hence the name mmg (mother cell metabolic genes) operon.  

 

I.D.1 Transcriptional regulation: 

A 14 base pair sequence mmgO, which is located 22 bps downstream of the 

transcriptional start site of the mmg operon, is found similar to catabolite 

responsive elements (CRE) in other promoter regions. CcpA protein when bound 

to CRE in the presence of glucose, causes a decrease in transcription from 

specific promoters. It was shown that the mmgO and CcpA are needed for the 

glucose repression of mmg promoter activity in the σE -dependent promoters like 

mmg promoter. Thus the mmg operon is activated by σE but can be repressed by 

glucose. 

 
 
  

 

Figure 4: The Mother Cell Metabolic Gene (mmg) Operon.11 
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I.D.2 Functions of different genes: 

The mmgA gene product has 68% similarity and 49% identity to acetyl 

coenzyme A acetyl transferase (thiolase). That of mmgB has 55% identity and 

66% similarity to 3-hydroxybutyryl-CoA dehydrogenase9 and the product of 

mmgC is 52% identical and 68% similar to acyl-CoA dehydrogenase. The citrate 

synthase of Bacillus coagulans is 80% similar and 66% identical to that of the 

mmgD product. The sequence of mmgE is found to be similar to 2-methylcitrate 

dehydratase, and yqiQ to isocitrate lyase. 9,13 This shows that the genes mmgABC 

are homologs of thiolase, 3-hydroxyacyl CoA dehydrogenase and acyl CoA 

dehydrogenase respectively i.e. they are similar to the enzymes in the fatty acid 

metabolism.  

Based on sequence homology, mmgD, mmgE and yqiQ are similar to the 

enzymes involved in propionate metabolism The mmgDE and yqiQ functions as 

the enzymes in methyl citrate cycle, where propionyl-CoA is involved. One of 

the important regulators of the Kreb’s cycle is citrate synthase.  
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I.D.3 Proposed reactions for different genes:  

 
 
 

 

Figure 5: Proposed reactions of the genes mmgA, B and C 

 
 
 
In the citric acid cycle, citrate synthase catalyses the reaction, involving 

acetyl CoA and oxaloacetate with citrate as the product. In the methyl-citric acid 

cycle, propionyl CoA and oxaloacetate are involved resulting in methyl citrate as 

the product. It was found that mmgD-like enzymes in Pseudomonas aeruginosa 

and Salmonella typhimurium are bi-functional.12   
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Figure 6: Condensation of Oxaloacetate and Acetyl-CoA to Yield Citrate;  
Condensation of Oxaloacetate and Propionyl-CoA to yield Methyl citrate  

 
 
 

I.D.3.A Putative pathway suggested for Bacillus subtilis13 
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I.E Fatty acid metabolism:  

In bacteria, phospholipids are the most commonly occurring class of lipids 

forming the major constituent of the cell membranes.14 Phospholipids contain a 

diacylglycerol, a phosphate group and a simple organic molecule like choline. 

Two hydroxy groups of  glycerol are linked to fatty acids via esters, whereas the 

third hydroxy group is linked to a phosphate ester. Hence the properties of the 

phospholipid depend on the distribution of fatty acids in the C1 and C2 positions 

and the nature of the phosphate derivative in the 3rd position. 

 Lysylphosphatidylglycerol are synthesized in high amounts in B.subtilis. 

The fatty acid components adjust the fluidity of phospholipid bilayer. The fatty 

acids involved in the lipid synthesis are divided into 2 categories; Saturated and 

Unsaturated fatty acids. B. subtilis has no poly-unsaturated fatty acids. 

Saturated fatty acids are divided into straight and branched chain fatty 

acids. Palmitic, stearic, linoleic and linolenic acids are the common straight 

carbon chain fatty acids in higher plants and animals and less common in 

Bacillus. The fatty acids in plants and animals are mostly polyunsaturated but the 

ones in bacteria are mostly branched, hydroxylated and rarely poly-unsaturated.  

In Bacillus subtilis, the terminally branched fatty acids like 13-methyl 

tetradeconic acid (iso- C15) and 15-methyl hexadeconic acids (iso- C17),  
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14-methyl pentadeconic acid (iso-C16) and in species of Sarcina the 12-

methyltetradeconic acids (anteiso-C15) were seen . The branched chain fatty acids 

are further divided into even numbered iso, odd numbered iso and anteiso 

depending on their biosynthetic origins. The iso and anteiso constitute about 55-

95% of the total fatty acids in B.subtilis. The anteiso-C15 is more abundant. Iso-

Methyl branched fatty acids have the branch point on the ω-2 carbon 

(penultimate carbon), while anteiso-methyl-branched fatty acids have the branch 

point on the ω-3 carbon (ante-penultimate carbon atom).  

The de novo synthesis of fatty acids, in most of the organisms, occurs by 

the repeated condensation of malonyl-coenzyme A with acetyl-CoA in the 

presence of the palmitic acid synthetases. The end product is palmitic acid and 

NADP is oxidized.  

 

Acetyl-CoA +7 malonyl- CoA +14 NADPH+14H+--------->  

                                            Palmitic acid + 7 CO2 + 14 NADP+   

 

But in Bacillus subtilis, the acyl Co-A esters like isobutyryl, isovaleryl or 

2-methylbutyryl are the chain initiators; malonyl-CoA act as the chain extenders 

and NADPH is the hydrogen donor.  

 



	  15	  

Isobutyryl-CoA + 6 Malonyl Co-A + 12 NADPH + 12 -- 

          Iso-C16 acid + 6CO2 +12 NADP+   

 

I.E.1 β-Oxidation of fatty acids: 

Two carbon units are sequentially removed by the oxidative degradation of 

saturated fatty acids from the molecule in each turn of the cycle to form acetyl 

CoA, which enters the citric acid cycle. The β oxidation occurs initially by 

activation of the fatty acids by coenzyme A to form a fatty acyl thioester, which 

is followed by four repetitive steps, dehydrogenation, hydration, oxidation and 

thiolysis. 

Each round of the cycle results in the formation of acetyl-CoA 

and an acyl-CoA, which is 2 carbons shorter than the starting acyl CoA. The cycle 

is repeated  until the entire molecule is completely degraded into acetyl CoA 

products.  

Dehydrogenation: 

 The β oxidation initiates when two hydrogens are removed from the C-2 and C-3 

by acyl-CoA dehydrogenase to yield an α,β unsaturated acyl CoA. An enoyl CoA 

is formed which transfers the electrons to FAD, which is reduced to FADH2.  
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Hydration: 

The α,β unsaturated acyl CoA reacts with water in this step. The water acts as a 

nucleophile, which adds to the β carbon of the double bond forming an 

intermediate thioester enolate. In the presence of the enzyme enoyl-CoA 

hydratase, 3- hydroxyacyl Co-A is formed.  

Alcohol Oxidation: 

The 3- hydroxyacyl Co-A is oxidized to β keto acyl Co-A. This reaction is 

catalyzed by 3- hydroxyacyl Co-A dehydrogenase. This reaction needs NAD+, 

which is reduced to NADH/H+ as the by-product.  

Chain cleavage/ Thiolysis: 

This reaction is catalyzed by βketoacylCoAThiolase. This reaction takes place 

initially by the nucleophilic addition of the Cys-SH on the enzyme reacting with 

the keto group of β keto acyl-CoA followed by the cleavage of the C2-C3 bond 

resulting in an acetyl CoA enolate ion. This is protonated giving acetyl CoA. The 

attached acyl CoA undergoes nucleophilic acyl substitution with Coenzyme A 

resulting in acyl CoA. This enters another round of β oxidation for further 

degradation.  

If the starting fatty acid had an even number of carbons for example four 

carbons, at the end of the first round of β oxidation 2 acetyl-CoA. Molecules are 

found. If there are more carbons than four the reaction continues until the whole 
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molecule is converted to acetyl CoA. Similar is the case with the fatty acid 

having odd number of carbons in the chain, which would result in several acetyl 

Co-A but also one propionyl Co-A.  

 
 
 

 

 Figure 7: β-Oxidation of Fatty acids15 
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I.E.2 Fatty acid degradation enzyme complex 
 

In E.coli, five enzymes are involved in the long chain fatty acid β- 

Oxidation pathway.  They are acylCoA synthetases, acyl CoA dehydrogenase, 

enoyl CoA hydratase, 3-hydroxy acyl dehydrogenase and keto acyl-CoA 

thiolase16, 17 

These enzymes are also involved in the long chain fatty acid degradation in 

E.coli but the short chain Fatty acid catabolism requires three enzymes, crotonase, 

3-hydroxyacylCoA dehydrogenase and acyl CoA thiolase.16 The catabolism of β 

keto short chain fatty acids requires 2 more enzymes, acetyl CoA transferase and 

acetoacetylCoA thiolase. In E.coli, acetoacetylCoA thiolase and β ketoacylCoA 

thiolase were heat resistant. The molecular mass of acetoacetyl CoA thiolase in 

SDS-PAGE was 41,500 Da.  

It is known that the enzymes exist as a multi enzyme complex in E.coli 

with a molecular weight of 260, 000 Da. When analyzed by SDS PAGE, two types 

of subunits with the molecular weights 78 kDa and 42 kDa were seen by Schulz 

and co workers. The purified complex of fatty acid oxidation in E.coli was found 

to have the 3- hydroxyacyl-coenzyme A epimerase and enoyl CoA isomerase in 

addition to the enoyl CoA hydratase, 3-hydroxy acyl Co A dehydrogenase and 3-

keto acyl CoA thiolase activities.18.19 The genes that code for these enzymes form 

an fad operon. All these three enzymes co-purified as a result of heat treatment.  
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These proteins co-eluted from Sepharose 6B gel filtration column, which 

shows that they associate as a single multi protein complex. However, the acyl 

CoA synthetases and acyl CoA dehydrogenase were not seen in the complex after 

heat treatment.  

In E.coli, the fatty acid β-oxidation pathway is encoded by the fad (fatty 

acid degradation) regulon.20 A tetrameric complex containing 2 copies of FadB 

and FadA catalyses the other steps in β oxidation. FadB has the enoyl CoA 

hydratase and 3 –hydroxy acyl CoA dehydrogenase activity, whereas FadA has 3-

keto acyl CoA thiolase activity. 

The activities of all these complexes were tested with the appropriate 

substrates. The advantages of the β-Oxidation enzymes existing as a complex is 

the greater kinetic efficiency due to the channeling of Fatty acid oxidation 

intermediates from one active site to the next without equilibrating the medium 

and also to prevent accumulation of intermediates.  

Similar complexes were also seen in other organisms like  

Pseudomonas fragi21and, Caulobacter crescentus.20 

In Pseudomonas fragi, the complex exhibited enoyl-CoA hydratase, 3-

hydroxyacyl-CoA dehydrogenase, 3-oxoacyl-CoA thiolase, enoyl-CoA isomerase, 

and 3-hydroxy acyl-CoA epimerase.21 
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In Caulobacter crescentus, the complex exhibited acyl coenzyme A 

synthetases, acyl CoA dehydrogenase, enoyl CoA hydratase, 3-hydroxy acyl 

dehydrogenase and keto acyl-CoA thiolase.20 

The mmgA protein sequence in B.subtilis has 33% identity and 51% 

similarity to fadA of E.coli . Both mmgA and fadA have thiolase activity.  

mmgB protein sequence has 37% identity and 52% similarity to the fadB of 

E.coli. Both mmgB and fadB have 3-hydroxy acyl CoA dehydrogenase activity. 

Clustal W was used as a multiple sequence alignment computer program22, 

here, to identify the conserved sequence regions in mmgA and B of B.subtilis and 

FadA and FadB of E.coli.  
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mmgA of B.subtilis with FadA of E.coli 
 
 
 

 
 
Figure 8: The multiple sequence alignment  of mmgA of B.subtilis with FadA of 
E.coli. In the figure , * refers to identical or  conserved residues in all sequences in 
the alignment, “:”  to conserved substitutions, “.”  Semi-conserved substitutions 
and  “-” indicates a gap inserted by the algorithm 
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mmgB of B.subtilis with FadB of E.coli 
 
 
 

 
 
Figure 9: The multiple sequence alignment  of mmgB of B.subtilis with FadB of 
E.coli. In the figure , * refers to identical or  conserved residues in all sequences in 
the alignment, “:”  to conserved substitutions, “.”  Semi-conserved substitutions 
and  “-” indicates a gap inserted by the algorithm. 
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I.F Methyl citric acid cycle : 

The acetyl Co-A  formed during the β oxidation pathway enter the citric 

acid cycle in combination with oxaloacetate forming citric acid, as shown below.  

 

Acetyl Co-A + Oxaloacetate + H2O  Citrate + CoA 

 

But when propionyl CoA is formed as a result of the β oxidation of odd number 

of carbon chains, it undergoes a different pathway called the methyl citric acid 

cycle where it combines with oxaloacetate forming methyl citrate.23,24 

 

Propionyl Co-A + Oxaloacetate + H2O  2 Methyl citrate + CoA 

 

Methyl citrate synthase, which also have the activity of citrate synthase, 

catalyses this reaction. The methyl citrate so produced isomerizes from cis-2- 

methylaconitase to methyl isocitrate followed by cleavage to pyruvate and 

succinate. Succinate is a citric acid cycle intermediate and is converted to 

oxaloacetate. Pyruvate can be converted to acetyl CoA. Thus the methyl citrate 

cycle catalyses the α oxidation of propionate to pyruvate.  

This whole pathway is found to involve 5 enzymes in E.coli .25 Of these 

only methyl citrate synthase and 2-methylisocitrate lyase are characterized. 
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Figure 10: Methyl-Citrate Cycle :26 MCS- methyl citrate synthase, MCD- methyl 
citrate dehydratase, ACN- Aconitase, MCL- methyl isocitrate lyase, SDH- Succinate 
dehydrogenase, FUM- Fumarase, MQO, malate-quinone oxidoreductase. 
 

 
 

I.G. Overview Of The Previously Done Work 

 
Previously in our lab, work was done to determine the activities of the 

proteins encoded by the genes mmg ABCD. As shown in the table, MmgA11, 

MmgC27and MmgD28 were found to be active. However, our group has had 

difficulty in demonstrating the enzymatic activity of MmgB. MmgA, B, C and D 
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were cloned into a pET-28a vector separately, purified by Ni affinity 

chromatography and enzymatic activities were tested. There is an ongoing work in 

the lab on testing the enzymatic activity of yqiQ and also to establish a system for 

study of mmgE 

 
 

 
GENE CLONED PURIFIED DEMONSTARTED 

ACTIVITY 

mmgA YES YES YES11 

mmgB YES YES ?27 

mmgC YES YES YES27 

mmgD YES YES YES28 

mmgE NO NO NO 

yqiQ YES YES PARTLY29 

Table 1: Summary of the work done in Reddick’s lab 

 
 
 

A major problem we are approaching in this thesis is with mmgB. 

Russell Spencer encountered difficulty inconsistently observing the catalytic 

activity of MmgB towards D or L-β-hydroxybutyrl CoA.  
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We have stated a few hypotheses as to why our mmgB system provides 

inconsistent enzymatic activity.  

1) The presence of C-terminal histidine tag on the mmgB might be interfering 

with the activity.  

2) May be 3-hydroxybutyrylCoA is a wrong substrate 

3) Some of the fatty acid degradation enzymes are known to exist as a 

complex. Likewise, MmgB may also require such a complex to be fully 

functional. 

In this work we are beginning an approach to study the 3rd hypothesis. Towards 

this end we first need to test another hypothesis that Mmg proteins exist as a 

multisubunit complex. 

 
I.G.1 Goals for this research to test the hypothesis: 

 

1) To clone the mmgABCD gene into the pETDuet expression system for  co 

expression.  

2) To test whether or not the mmg fatty acid degradation enzymes form a multi 

subunit complex. 
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CHAPTER II 
 

OVER EXPRESSION AND PURIFICATION OF MMG PROTEIN 

COMPLEX FROM Bacillus subtilis 

II.A Introduction to Molecular Cloning 

Molecular cloning is a procedure where the gene of interest is isolated and 

amplified.  

1) Isolation of the gene of interest 

Isolation of the gene of interest is done by polymerase chain reaction.  

Initially primers are designed and a PCR reaction is conducted. After the 

successful PCR, the isolated gene is inserted into the host vector. Duet vectors 

pETDuet-1 and pACYCDuet are chosen for this work. The genes of interest were 

mmg A, B, C and D. The mmgA was isolated such that the gene will align with the 

sequence in the plasmid that codes for a C-terminal His-Tag. This allows us to 

purify the protein using a Nickel-Nitrilotriacetic Acid (Ni-NTA) column.  

2) Transformation 

The ligated product is transformed into a cloning strain of E.coli and the 

mixture is grown on agar plates with a selected antibiotic. Then the individual 

colonies are picked and screened for the plasmid of interest. 
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3) Screening 

Identifying the cells replicating the gene is important. This is done by DNA 

sequencing and PCR.  

 

II.A.1 pETDuet System 

The pET system is a commercially available system for cloning and 

expression of recombinant protein. The genes of interest are put under the control 

of bacteriophage T7 transcription and translation signals. When the T7 RNA 

polymerase is active and begins to work, all the cell resources are devoted to the 

translation of the desired gene.  

II.A.2 Duet Expression System 

All the Duet vectors have the T7 promoters for the expression of the target 

genes by IPTG induction. It is designed in such a way that 2 different target 

proteins can be co expressed in the E.coli. The vectors pETDuet-1 and pACYC 

Duet are used in my work. These two vectors can be replicated and co-expressed 

in the same host.  

pETDuet-1 has 2 Multiple Cloning Sites (MCS). In the beginning of each 

MCS, there is a T7 promoter/ lac operator and a ribosome-binding site (rbs). The 

plasmid also has pBR 322-derived ColE1 replicon, LacI gene and bla gene for 
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ampicillin resistance. pACYCDuet-1 vector has a similar arrangement but has the 

P15A replicon and cat gene for chloramphenicol resistance.  

The recombinant plasmid so produced is transferred to a host E.coli  strain 

BL21 (DE3), a strain that has the T7 RNA polymerase. “DE3” indicates that the 

host is a lysogen of λ bacteriophage DE3. The E.coli genome and the pETDuet 

plasmid have the lacI gene, which encodes the lac repressor protein. This protein 

prevents the binding of any RNA polymerase to the lac promoter region and hence 

the transcription of the T7 gene doesn’t occur. Once the IPTG is added, the lac 

repressor protein is removed, allowing the E.coli RNA polymerase to transcribe 

the T7 RNA polymerase. The T7 RNA polymerase transcribes the target gene in 

the plasmids in the promoter region, resulting in the production of protein. 

pETDuet-1 vector includes two multiple cloning sites (MCS). Each MCS 

has a T7 promoter, lac operator and ribosome-binding site for the expression of the 

target gene. The promoter is followed by the ribosome binding site and MCS. The 

presence of an optimized ribosome binding sequence on the mRNA aids in 

translation of a protein.  
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Figure 11: Over-expression System28 

 
 
 
II.A.3 Protein Purification:  

The purification of the His-tag protein.is done with nickel nitrilotriacetic acid  

(Ni-NTA) metal affinity chromatography. NTA is a tetradentate chelating 

absorbent. It has 6 ligand binding sites. Of which nickel was bound on the four-

ligand binding sites and a 6xHis tag occupies the remaining two. The His-tag 

securely holds the protein on to the metal chelating surface. 28 
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Figure 12: The interaction of the His-tag and Ni-NTA column28 

 

 
 
The protein as it moves down the Ni-NTA column, binds to the matrix. The 

column is rinsed with low concentration of imidazole to remove unwanted 

proteins in the wash step. The final elution buffer that is added has a high 

concentration of imidazole to elute the desired His-Tagged protein. Due to 

structural similarity, imidazole competes with the histidine of 6xHis tag protein 

and binds to the Ni-NTA on the column. 
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CHAPTER III 
 

RESULTS AND DISCUSSION 

III.A Amplification of mmgA and mmgB 

Mmg A and mmgB were successfully amplified from the Bacillus subtilis 

strain 168 genome by the polymerase chain reaction. In the agarose gel pictures, it 

can be seen that the amplified gene of mmgA falls between 1.0Kb and 1.2 Kb. This 

is consistent with the expected size of 1179bps.    

 
 
 

 

Figure 13: Agarose gel of the PCR reaction product of BS 168. 
Lane 1: Standards. Lane 2: negative control (without the template) of the PCR 
product. Lane 3: PCR product. The expected size of mmgA is 1179 bps  
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As shown in figure 12, the PCR product of mmgB is seen between 

0.7 kb and 0.8 kb and is consistent with its gene length 732bps. 

 
 
 

 

Figure 14: Agarose gel of the PCR of BS 168 genome. 
Lane 1: Standards. Lane 6: PCR product. The expected size of mmgB is 732 bps. 
 
 
 

III.A.1 Cloning mmgA into pETDuet-1 vector 

Restriction digestion and Ligation:  

MmgA and pETDuet-1 were cut with the restriction enzymes BamHI and SalI and 
purified on 1% agarose gel (Figure 13). Each bands was gel extracted and using 
T4-DNA ligase, mmgA was ligated into the vector. The ligation mixture was 
transformed into competent E. coli . Individual colonies were screened for the 
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presence of the plasmid with the insert by PCR. A plasmid that tested positive for 
the insert was transformed into DH5α, sent for sequencing and retransformed into 
E.coli BL21 (DE3). 
 
 
 

 

Figure 15: Agarose gel of the restriction digested plasmid and mmgA. Lane 1: 
Standards. Lane 3: Restriction digested plasmid Lane 5: Restriction digested 
insert. The length of the plasmid vector is 5420 bp and that of the insert mmgA is 
1179 bp. 
 
 
 

After ligation, individual colonies were picked up and screened for the 

plasmid that tested positive for the insert. Here, three individual colonies were 

picked up and tested. The sample that gave the brighter band (in figure 14, the one 

in the fourth lane) was selected for further retransformation and sequence 

submission.  
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Figure 16: Agarose gel showing the screened plasmid samples testing for the insert 
mmgA, by PCR. Lane 1: Standards. Lanes 2: positive control with BS168 genomic 
DNA. Lane 3: negative control. Lane 4, 5, 6: Positive Transformants. 
 
 
 

 

Figure 17: Agarose gel showing plasmid with the insert. 
Lane1: Standards. Lane2: Negative control of the PCR product. Lane 3: Plasmid 
with the insert. The expected length of the vector with the mmgA insert is 6599 bp.  
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III.A.2 Cloning mmgB into pETDuet-1 with mmgA 

 Next mmgB gene was inserted into this vector that already has the mmgA 

gene. To accomplish this, the first step was to cut both mmgB and pETDuet-

1/mmgA with the restriction enzymes NdeI and XhoI. Then they were purified by 

a 1% agarose gel. As shown in figures 16 and 17. Those bands were gel extracted 

and by using T4-DNA ligase  the mmgB gene was ligated into the vector. 

 
 

 

Figure 18: Agarose gel picture showing the insert after restriction digestion. 
Lane1: Standards Lane5: Insert after restriction digestion.  
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Figure 19: Agarose gel picture showing the restriction digested product of the 
pETDuet/mmgA. Lane1: Standards Lane 2: pETDuet-1/mmgA. Lane 4: amplified 
mmgB. The expected length of the plasmid with the insert mmgA is 6599 bp and 
mmgB is 732 bps 
 
 
 

The individual transformants obtained form a mixture screened for the 

presence of the plasmid with the insert by PCR. Five colonies were picked to test 

for the insert and all of them gave a positive result. The sample in the 3rd lane was 

transformed into DH5α, sent for sequencing and retransformed into E.coli BL21 

(DE3). 
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Figure 20: Agarose gel showing the screened plasmid samples testing for the insert 
mmgB using PCR. Lane1: Standards  
Lanes 2: positive control. Lane 8: negative control. Lanes 3, 4, 5, 6, 7: 
Transformants. 
 
 

III.B Amplification of mmgC and mmgD  

III.B.1 Cloning mmgC into pACYCDuet vector 

Restriction digestion and ligation 

MmgC and pACYCDuet were cut with the restriction enzymes PciI and 

NcoI and purified by 1% agarose gel as shown in the figure 19. Those bands were 

gel extracted, and using T4-DNA ligase, mmgC was ligated into the vector. 
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Figure 21: Agarose gel showing PCR product of mmgC and the plasmid 
pACYCDuet after restriction digestion.  
Lane 1: Standards. Lane 4: PCR product (insert) Lane 5: Plasmid after restriction 
digestion. Expected length of the PCR product mmgC is 1134 bp and that of 
pACYCDuet vector is 4008bps. 
 
 
 

Four individual colonies were selected and screened for the presence of the 

plasmid with the insert by PCR as shown in the figure 20. The sample in the 4th 

lane was taken and transformed into DH5α. 
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Figure 22: Agarose gel showing the screened plasmids of pACYCDuet for the 
insert by PCR. Lane1: Ladder Lanes 2: positive control Lane 3: negative control 
Lanes 4, 5, 6, 7: Transformants 
 
 
 

After transformation into E. coli we now have the pACYC vector with 

mmgC gene. This sample was sent for the DNA sequencing and retransformed into 

the E.coli BL21 (DE3). 
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Figure 23: Agarose gel showing the PCR product before sequencing. Lane 1: 
Standards. Lane 2 and 6: PCR product of the sample to be sequenced. The 
expected size of mmgC is 1134 bps. 
 
 
 
III.B.2 Cloning mmgD into pACYCDuet vector containing mmgC 

Restriction digestion and ligation 

We have the mmgC cloned into the vector pACYCDuet. The next step was 

to insert mmgD into the same vector containing mmgC. 
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Figure 24: Agarose gel showing the amplified PCR product of mmgD. 
 Lane 1: Ladder Lane 2: amplified PCR product. Lane 3: Negative control of the 
insert. The expected length of mmgD is 1116 bps. 
 
 
 

mmgD and pACYC were  cut with the restriction enzymes NdeI and XhoI 

and purified on a 1% agarose gel as shown in the figure 23. 
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Figure 25: Agarose gel showing the insert and plasmid after restriction digestion. 
Lane 1: Standards Lane 3, 4: the Insert  
Lanes 6 and 7: Plasmid. Expected length of the insert mmgD is 1116bp and that of 
the pACYCDuet/mmgC is 5142bps. 
 
 
 

The bands obtained from 1% agarose gel were gel extracted and ligated 

with T4-DNA ligase. Three individual colonies were picked up and screened for 

the presence of the plasmid that tested positive for the insert. All the three gave a 

positive result as shown in the figure 26.  
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Figure 26: Agarose gel showing the screened plasmid samples for mmgD. Lane1: 
Standards Lane 2: Positive control Lane 3: negative control Lanes: 4, 5, 6: 
Transformants. 
 
 
 

The colony in the 4th lane was taken as it gave the brightest band and 

transformed into BL21 (DE3). A single colony was picked and tested with PCR 

before sending it for sequencing. It is shown in the figure 27.  
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Figure 27: Agarose gel showing the PCR product before sequencing. Lane 1: 
Standards. Lanes 3, 4: mmgD PCR products. 
 
 
 

Gene 100 % Sequence 
alignment 

No .of base pairs in 
each gene 

   
pETDuet-mmg A Yes  1179 
pETDuet-mmg B Yes 732 

pACYCDeut-mmg C Yes 1134 
pACYCDuet-mmgD Yes 1116 

Table 2: The results of the DNA sequencing of each gene. 
 
 
 
III.C Mmg ABCD Purification:  

 MmgAB/pETDuet was transformed into BL21 (DE3). Then a culture of 

BL21(DE3) /mmgAB/pETDuet was made competent and transformed with 
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pACYCDuet/mmgCD. This resulted in a single strain of E. coli BL21 (DE3) 

containing both plasmids. 

After successful transformation into E.coli BL21 (DE3), the  

mmg ABCD  was over expressed in liquid culture. We incubated the induced 

culture overnight at 37 °C and 25 °C. At 37 °C, SDS-PAGE showed that large 

amounts of protein was produced but couldn’t be purified due to inclusion body 

formation. This was observed by running an SDS gel of the whole cell extract, 

which couldn’t give the appropriate protein band after purification. So in an effort 

to decrease the inclusion body formation and increase in the amount of protein 

production, overnight incubation was done at 18 °C.  

To solve this problem, we also tried inducing with lower concentrations, 

(0.05 mM, 0.2 mM, 1 mM) of IPTG. Samples were collected at different stages of 

the preparation of the protein sample. The expected molecular weights of mmgA 

with the His-Tag is 41,019 Da, mmgB is 26,919 Da, mmgC is 40,710 Da and that 

of mmgD is 41,946 Da. 

 

III.C.1. 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 0.05 

mM IPTG  

The samples were collected at each stage in the preparation of the protein 

sample. In figure 28, a prominent band was seen at 26 KDa until the sample was 
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sonicated and centrifuged. After the centrifugation some of the bands were not 

observed. This could be because of the formation of inclusion bodies.. However, 

bands were seen around 40 KDa.  

 

Figure 28: 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 0.05 
mM IPTG at 18 °C 
(From Right to left) Lane 9: Protein ladder Lane 8: after overnight growth with 
IPTG Lane 7: After centrifugation Lane 6: Supernatant Lane 5: After adding 
Lysozyme Lane 4: After sonication Lane 3: before syringe filter Lane 2:  crude 
extract. Lane 1: Column flow through of the crude extract. 
 
 
 

Figure 29 is a continuation of figure 28. The samples from the column with 

different buffers were collected and analyzed on the SDS gel. In figure 29, the 

bands were not clear in any of the samples. We concluded that 0.05 mM of IPTG 
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is not best for the preparation of protein sample. So, we tried a different 

concentration, 1 mM IPTG. 

 
 

 

Figure 29: 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 0.05 
mM IPTG at 18 °C.(From Right to left) Lane 9: Protein Ladder. Lane 8: 5 mM 
imidazole. Lane 7: 60 mM imidazole. Lanes 3, 4, 5, 6: 1 M imidazole. 
 
 
 
III.C.2. 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 1 mM 

IPTG  

As shown in figures 30, the crude extract had interacting proteins especially 

on the molecular weight range for mmg B. Those bands were not observed after 

the centrifugation step. In figure 31, the bands from the 1 M imidazole were not 
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clear, which could be because of the formation of inclusion bodies and being lost 

due to 1 mM IPTG.  

 
 
 

 

Figure 30: 10 % SDS PAGE gel of BL21(DE3) ABCD protein sample with 1 mM 
IPTG at 18 °C.(From Right to left) Lane 9: Protein ladder Lane 8: after overnight 
growth with IPTG Lane 7: After centrifugation Lane 6: Supernatant Lane 5: After 
adding lysozyme. Lane 4: After sonication Lane 3: before syringe filter. Lane 2:  
crude extract. Lane 1: Column flow through of the crude extract 
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Figure 31: 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with  
1 mM IPTG at 18 °C. 
(From Right to left) Lane 10: Protein Ladder. Lane 9: 5 mM imidazole. sample 
Lane 8: 60 mM imidazole. Lanes 4, 5, 6, 7:  
1 M imidazole. 
 
 
 
III.C.3. 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 0.2 

mM IPTG  

 In figure 32, we see 26 kDa band in all the samples. Bands around 40 kDa 

were seen after sonication in the crude extract and in the column flow through of 

the crude extract.  
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Figure 32: 10% SDS PAGE gel of BL21 (DE3) mmg ABCD protein sample with 
0.2 mM IPTG at 18 °C 
(From Right to left) Lane 11: Protein ladder Lane 10: after overnight growth with 
IPTG. Lane 9: After centrifugation. Lane 8: Supernatant. Lane 7: After adding 
Lysozyme. Lane 6: After sonication but before centrifugation. Lane 5: before 
syringe filter. Lane 4:  crude extract. Lane 3: Column flow through from loading 
crude extract. 
 
 
 

In the figure 33, the column flow through of the 5 mM Imidazole and 

60mM imidazole, bands were seen at 26 kDa and also around 40 kDa. One of the 

bands that was seen with 5 mM imidazole disappeared with 60 mM IPTG. In the 

first and second ml of the 1 M imidazole, bands were seen at the 26kDa and also 

40kDa. 
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Figure 33: 10% SDS PAGE gel of BL21 (DE3) ABCD protein sample with 0.2 
mM IPTG at 18 °C.(From Right to left) Lane 9: Protein Ladder Lane 8: 5mM 
imidazole Lane 7: 60 mM imidazole Lanes 3, 4, 5, 6: 1mM imidazole. 
 
 
 

0.2 mM IPTG was used in the further experiments as it gave good and consistent 

results when compared to that of 0.05 mM and 1 M IPTG.  

 

III.C.4. 10% SDS PAGE gel of BL21 (DE3) AB protein sample with 0.2 mM 

IPTG  

In figure 34, it can be seen that the sample with only AB was run on the 

SDS gel. In the lane 8 we observed a band around 40 kDa. And also in figure 35 

we observed faint bands around 40 kDa, with 1 M imidazole samples.  
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Figure 34: 10% SDS PAGE gel of BL21 (DE3) AB protein sample with 
0.2 mM IPTG at 18 °C. Lane 1: Ladder. Lane 2: After overnight growth with 
IPTG. Lane3: Supernatant after centrifugation. Lane 4: Before adding Lysozyme. 
Lane 5: After adding Lysozyme. Lane 6: After sonication.  
Lane 7: Crude extract before column flow through. Lane 8: Column flow through 
of crude extract. Lane 9: 5 mM imidazole. 
 
 
 

 

Figure 35: 10% SDS PAGE gel of BL21(DE3) AB protein sample with 0.2mM 
IPTG and at 18 °C. Lane 1: Ladder. Lane 2: 60 mM imidazole, Lane 3, 4, 5, 6: 
 1 M imidazole  
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III.C.5. 10% SDS PAGE gel of BL21 (DE3) CD protein sample with 0.2 mM 

IPTG  

In figure 34, we see the gel containing the protein sample of only mmg CD. 

We were able to observe bands in the crude extract after running through the 

column. Protein bands were not seen in the lanes containing 5 mM , 60 mM. A 

band around 25 kDa was seen in the 4th ml of the eluent ie; 1 M imidazole. 

 
Figure 36: 10% SDS PAGE gel of BL21(DE3) CD protein sample with 0.2mM 
IPTG and at 18 °C. Lane 1: Ladder. Lane 2:Column flow through of the Crude 
extract. Lane 3: 5 mM imidazole. Lane4: 60 mM imidazole. Lanes 5, 6, 7, 8, 9: 1 
M imidazole  
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III.C.6 10% SDS PAGE GEL WITH BL21 (DE3) ABCD protein sample with 

0.2mM IPTG . 

Figure 37 shows the gel with bands of the BL21 (DE3) ABCD protein 

sample. We were able to see bands at 26 KDa and around 40 KDa in the crude 

extract and also the column flow through of the crude extract. The sample from 

the 1 M imidazole was not clearly seen but a faint band was seen around 40 KDa. 

           

Figure 37: 10% SDS PAGE gel showing the BL21 (DE3) ABCD protein 
sample with 0.2mM IPTG and at 18 °C. Lane1: Protein Ladder Lane2: crude 
extract Lane 3: Column flow through of the crude extract Lane 4: Binding 
buffer. Lane 5: Wash buffer Lanes 6, 7, 8, 9: Eluent buffer. 
 
 
 
Since we weren’t able to clearly see the bands of the protein in the Eluent 

column flow through of BL21 (DE3) ABCD, the eluents of BL21 (DE3) AB, 

BL21 (CD), and BL21 (DE3) ABCD were concentrated using Centricon® Plus-20 
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Centrifugal Filter devices. These samples were analyzed on the 10 % SDS-PAGE 

gel as shown in the figure 38. 

 
 

  

Figure 38: 10% SDS PAGE gel showing the concentrated Eluent column 
flow through of BL21 (DE3) ABCD protein sample. Lane 1: protein Ladder 
Lane 3: Eluent of BL21 (DE3) CD protein sample, Lane 5: Eluent of BL21 
(DE3) AB protein sample, Lane 7: Eluent of BL21 (De3) ABCD   
 
 

 
 In Figure 38, lane 3 has the BL21 (DE3) CD sample. We observed a band 

around 25 kDa, which we should not have seen since none of the proteins in the 

sample has a His-tag. Thos opens a point for future research. The lane 5 has the 

BL21 (DE3) AB sample. We observed a band around 25 kDa which is suggestive 

of MmgB, but we did not observe a band consistent with MmgA, although we did 
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observe a fuzzy band around 40 kDa. At this point we were expecting to see a 

clear band ~ 40 kDa because MmgA has a His-tag. Lane 7 has the BL21 (DE3) 

ABCD sample. We see a band at ~ 26 kDa which is suggestive of MmgB. We also 

observed a band around 40 kDa which could be MmgA or MmgC. We also 

observed a band at ~ 80 kDa. This protein likely originated from E.coli. MmgA is 

a close homolog of FadA. FadA is known to form a complex with FadB. Therefore 

it is possible that MmgA can likewise form a complex with FadB. Since MmgA 

has a His-tag, there are chances that the FadB protein from E.coli may have 

coeluted with MmgA. 
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CHAPTER IV 

EXPERIMENTAL SECTION 

IV.A Experimental Details:  

IV.A.1: Cloning the mmgABCD genes. 

Genomic DNA from Bacillus subtilis strain 168 (BS168) was isolated using 

the Wizard®Gemomic DNA purification kit. This served as a template for the 

polymerase chain reaction experiments. Primers were designed to amplify the 

gene of interest. 10 µl of Phusion 5xHF buffer, 1 µl of 10mMdNTPs, 2 µl of the 

extracted BS168, 0.5 µl of Phusion polymerase and 1.25 µl each of upstream and 

downstream primers were used.  

The thermo cycler was set up as 1X cycle of 98.0 ºC for 1 min as the 

incubation temperature, followed by the 25X cycle primer extension temperatures 

of 98.0 ºC for 0.05 mins as the denaturation temperature, 45ºC - 70ºC for 30 secs 

to 1 min as the annealing temperature, 72 ºC for 30 sec to 1 min as the extension 

temperature for 30 cycles and 1x cycle of 72 ºC for 10 mins and was held at 

4ºC. The annealing temperature depends on the Tm if the primers.  

The PCR was setup for each gene with a difference in the annealing 

temperatures depending on the lowest Tm among the upstream and downstream 
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primers. The annealing temperature was 62 ºC for mmgA and mmgD and 63ºC for 

mmgB and mmgC 

Primers: 

mmgA:  

• Upstream:     5' GAG GGG ATC CCA TGA GGA AAA CAG T 3'  

BamHI -- restriction site enzyme.  

Tm – 60.7 °C 

• Downstream:  5'CAT GTC GAC ATG AAC CTG CAC TAA GA 3'  

Sal I -- restriction site enzyme. 

Tm – 59.3 °C 

mmgB: 

• Upstream:     5' CGG AGC ATA TGT TGA AAC GGC TGA AG 3'  

XhoI -- restriction site enzyme.  

Tm – 60.0 °C 

• Downstream: 5' AAA CTC GAG TCA GGA AGT CTT CTC CT 3'  

NdeI -- restriction site enzyme. 

Tm – 60.2 °C 
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mmgC: 

• Upstream:      5'GCG GAC ATG TAT GTA ACC CAA GAG C 3'  

PciI -- restriction site enzyme. 

Tm – 59.7 °C 

• Downstream:  5' TTT TGT AAG CTT GGT TCC GCC AAG C 3’  

NcoI -- restriction site enzyme. 

Tm – 60.5 °C 

mmgD: 

• Upstream:     5' GTT GAG CAT ATG GAG GAG AAA CAG CA 3'  

XhoI -- restriction site enzyme. 

Tm – 59.1°C 

• Downstream:  5' TAC CAG CTC GAG TCA TGA TTT TGT TT 3'  

NdeI -- restriction site enzyme.  

Tm – 59.8 °C 

The PCR products were purified using QiaQuick® PCR Purification kit. 

The PCR reactions were analyzed by 1% Agarose gel electrophoresis with 

ethidium bromide.  

The desired restriction enzymes were added to both the target plasmid and 

PCR products. 1% Agarose gel was run to verify the products after the restriction 

digestion. Then the desired fragments were extracted from the gel using 
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QIAquick Gel Extraction Kit and ligated using T4 DNA ligase, into the multiple 

cloning site of pETDuet, in a thermo cycler. The ligation temperatures were 37 ºC 

for 30 mins, 23 ºC for 2 hr 30 mins and held at 16 ºC overnight.  

The gene mmgA was cloned into the pETDuet vector. Then resultant 

ligated product was transformed into DH5α E.coli competent cells and plated on 

LB agar containing ampicillin (50mg/ml). Individual colonies were picked and 

grown in LB medium containing ampicillin. Plasmids from each culture were 

tested for insert by PCR using the cloning primers followed by 1 % Agarose gel 

electrophoresis. Plasmids that tested position for desired insert was retransformed 

into BL21 (DE3) strain and plated on the LB agar plate containing ampicillin. A 

colony was picked and grown in LB broth with ampicillin; plasmid purified and 

sent for sequencing. Also another colony was grown in LB containing ampicillin 

and stored at -80 °C in 10% glycerol. 

The same procedure was followed to clone mmgB into the pETDuet vector 

containing mmgA (pETDuet/mmgA). Similarly mmgC was cloned in to the 

pACYC vector followed by mmgD into pACYC/mmgC vector, but 

chloramphenicol was used instead of ampicillin. 

The resultant plasmid products are pETDuet-mmgAB and pACYCDuet-

mmgCD. 

All the four genes A, B, C, D (Duet system) are to be expressed in a single 
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host. To accomplish that, the BL21 (DE3)/pETDuet-mmgAB was streaked on to 

an LB plate containing ampicillin. A single colony was picked and grown on LB 

for 4-5 hrs. Centrifuged for 5 minutes at maximum speed. The supernatant was 

discarded and the pellet was dissolved in 3 ml of 50mM CaCl2 and incubated on 

ice for 30 minutes. The culture was centrifuged and the pellet was redissolved in 1 

ml of 50mM CaCl2. For the transformation, 1-2 µl of pACYCDuet-mmgCD was 

added to 50 µl of competent cells. Incubated on ice for 30 mins followed by 

incubation at 37 °C for 2 mins and incubated at room temperature for 10 mins. 

One ml of LB was added and incubated at 37 °C for 1-2 hours. Then the cells are 

centrifuged at 8000 rpm for 3-5 mins, 1ml of the supernatant was discarded, and 

the cell pellet was resuspended in the remaining supernatant. Twenty  µl of these 

cells were plated on the LB plates, containing both the antibiotics, 

chloramphenicol and ampicillin, and incubated at 37 °C overnight. Individual 

colonies of this strain BL21 (DE3)/pETDuet-mmgAB/pACYCDuet-mmgCD were 

picked for further cultures. 

 

IV.A.2 Purifying the complex:  

One colony (BL21 (DE3/pETDuet-mmgAB/pACYCDuet-mmgCD) was 

inoculated into 5 ml LB containing 1µl of both the antibiotics, chloramphenicol 

(34mg/ml) and ampicillin (50mg/ml). The following day 2 ml of this starter 
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culture was inoculated into the 1liter LB containing ampicillin and 

chloramphenicol and allowed to grow at 37 °C. Samples were taken every 20 mins 

after 3-4 hrs and measured the absorbance until the optical density at 595 nm was 

0.5-0.6. At this point Isopropyl-ß-D-thiogalactopyranoside (IPTG) (final 

concentration of 1mM) was added and the culture was kept in the shaker at 18 °C 

overnight.  

 The cells from the overnight culture was centrifuged, the following day, at 

6000 rpm for 30 mins at 4 °C. The pellet was washed with the 20ml of binding 

buffer (4M sodium chloride, 160 mM Tris, 40 mM imidazole) pH 7.9 and mixed 

with the magnetic stirrer and was transferred into a beaker and kept on ice. 

Lysozyme was be added and stirred for 15 mins and sonicated for 3 mins and the 

centrifuged at 11000 rpm for 30 mins at 4 °C. The resultant solution was filtered 

using a Corning ® 0.45 micron, 26mm syringe.  

 After lysing the cells, the resultant solution was passed through a Ni-NTA 

column. We slowly increased the concentration of imidazole to remove the 

undesired proteins and to finally elute the mmgA along with the associated 

proteins with high concentration of imidazole. 

 We analyzed this elution mixture by SDS-PAGE. If the mmg proteins do 

not form a complex, then we expect to see only one band in the gel of the His-

tagged mmgA (41019Da). If they form a complex, then we expect to see 
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additional bands matching the molecular weights of the other proteins (mmgB - 

26919.2 Da, mmgC – 40710.9Da and mmgD – 41946.6 Da). 
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CHAPTER V 
 

CONCLUSIONS AND FUTURE WORK 

MmgAB were successfully cloned into pETDuet-1 and mmgCD were also 

cloned pACYCDuet-1. This was confirmed from by DNA sequencing data. All 

these plasmids were established in E.coli strain BL21 (DE3), to give a single 

strain, which can coexpress all four genes.  

The transcription and translation was induced by the addition of IPTG to 

the culture. Because of the presence of an N-terminal His-tag on mmgA, a Ni-NTA 

column was used to purify the protein sample. After trying different 

concentrations of IPTG, 0.2 mM was found to be the best concentration for our 

experiments, as protein bands were seen clearly and consistently by SDS-PAGE 

when this concentration was used. 

We were able to observe proteins with apparent molecular weights of 26 

KDa and ~40 kDa, in the Elution buffer from cultures expressing all the genes. 

This suggests that mmgB may be interacting at least with MmgA. 

In addition to the 26 kDa band (which may be MmgB), protein was also 

detectable in the 40-50 kDa range. Due to the low resolution of SDS-PAGE it is 

unclear whether this protein was comprised of only MmgA or additional proteins 
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with similar molecular weights (MmgC - 40710 Da, and MmgD- 41946 Da). At 

this stage, however, these results are suggestive that the mmg fatty acid 

degradative pathway enzymes indeed interact in a complex. 

We will explore the composition of this protein mixture by MALDI-MS 

experiments that can also offer sequence data.  

The experiments also reveal the identity of the ~80 kDa protein coeluting 

with the potential mmg complex. It is possible this ~80 kDa is the E. coli fatty acid 

metabolism enzyme. In the next steps, the identity of this protein in the coeluting 

with the complex is to be confirmed and measure the activity of the complex. 
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