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The purpose of this study was to examine the viability 

of theories that verbal and musical components when presented 

as singing (combination of verbal and musical components) 

are processed: 

1. using bilateral hemisphere involvement—parallel 

processing of components by both hemispheres; 

2. using single hemisphere involvement—processing 

of both components by one hemisphere. 

Variables were considered that might affect the processing 

of sung stimuli: musical training of subjects and complexity 

of stimulus. 

Two hypotheses served as a basis for investigation: 

1. Subjects with vocal training will process sung 

stimuli differently than subjects with other musical training. 

2. Subjects with formal musical training will process 

variations in complexity of sung stimuli differently than 

subjects with limited musical training. 

Subjects participating in the study had vocal, instru­

mental, or limited musical training. All subjects were 

right-handed. A dichotic listening test using sung stimuli 

was administered. The sung stimuli were varied in complexity 

of presentation. Results of the dichotic test were recorded 

as scores for accuracy of verbal reproduction (word scores) 



and scores for accuracy of musical reproduction (music 
.  j  .  i  

scores). Analysis,of the date was achieved through the 

use of multivariate and univariate ANOVA and a studentized 

range statistic. 

Results from the study provided evidence for single 

hemisphere processing of sung stimuli depending on the 

complexity of the stimulus. However, there was no effect 

on the mode of hemisphere processing based on musical 

training. Therefore, neither hypothesis was statistically 

significant. The major findings were: 

1. Subjects with vocal training did not have signi­

ficantly more accurate word and music scores than subjects 

with instrumental or limited musical training. 

2. Subjects processed verbal components more accurately 

with the left hemisphere than with the right hemisphere. 

3. Processing efficiency for musical components of 

sung stimuli can be influenced by verbal complexity. 

4. Subjects evidenced reversals of single hemisphere 

processing for .both verbal and musical components depending 

on the complexity of stimulus presentation. 

5. Subjects processed the verbal and musical components 

of sung stimuli as one unit, rather than as two different 

elements. 

6. Each hemisphere can process sung stimuli indepen­

dently of the other hemisphere. 
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1 THE PROBLEM 

I! 

Introduction 

The theory that verbal and nonverbal stimuli are pro-
! i 

cessed by different cortical hemispheres has created interest 
. I 

among researchers resulting in numerous studies of asymmetry 

of verbal and nonverbal stimuli. It has been concluded that 

verbal stimuli are .processed by the left hemisphere and non­

verbal stimuli are processed by the right hemisphere (Kimura, 

1961; Kimura and Fqlb, 1968) . Musical stimuli have been 

utilized as examples of nonverbal stimuli processed by the 

right hemisphere. Researchers have used melodies played by 

an instrument (Kimura, 1964), letters and numbers sung to 

melodies (Bartholomeus, 1974a), and musical chords (Gordon, 

1970). 

As a result of the prominence of this theory, research­

ers have questioned the way stimuli are processed (perceived 

and/or produced) that combine the properties of verbal and 

musical stimuli (Critchley, 1972; Dimond, 1972). These 

questions concern the viability of the theory that verbal 

and musical components when presented as singing (combination 

of verbal and musical components) are processed: , 

1. using bilateral hemisphere involvement—parallel 

processing of components by both hemispheres; 
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2. using single hemisphere involvement—processing of 

components by one hjemisphere. 

There is conflicting evidence in the literature that 

appears to support -each of the theories. A summary of the 

studies in support of each theory is discussed in this chap­

ter with hypotheses to be considered in this study in 

resolving the controversy. 

Hemisphere Involvement in Singing 

Evidence of Bilateral Hemisphere Processing 

Although it has been demonstrated by researchers that 

differences exist between the two hemispheres in the control 

of specific behaviors, it has been suggested that each 

hemisphere also has the capacity to work bilaterally in an 

integrated fusion of functions with the other hemisphere 

(Dimond, 1972). This fusion of functions is the result of 

the transporting action of the corpus callosum. As a 

result, complex behaviors may not be described as singular 

responses processed by one hemisphere, but as combined 

responses processed by both hemispheres: parallel proces-

sing of stimuli in the right and left hemispheres (Goodglass 

and Calderon, 1977). 

Singing has been investigated as a behavior involving 

bilateral hemisphere processing. Goodglass and Calderon 

(1977) investigated the processing of verbal and musical 

components in sung stimuli by trained musicians. It was 
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concluded that independent parallel processing may occur in 

the two hemispheres for the specialized components (verbal 
; J 

arid musical) of a qomplex stimulus: the verbal components 

w^re processed by the left hemisphere and the musical com­

ponents were processed by the right hemisphere. 

Support for tljiis conclusion is noted in experiments by 

Bogen and Gordon (1971 and 1974). They anesthetized one 

hemisphere of subjects while the subjects were singing. 

Depending on which hemisphere was anesthetized, the subjects 

would lose control of the melody or lyrics. If the left 

hemisphere was anesthetized the subjects continued to sing 

tH.e melody correctly, but did not sing intelligible words. 

If the right hemisphere was anesthetized the subjects sang 

the words rhythmically correctly, but sang amelodically. If 

the anesthesia was not administered, the subjects sang 

melody and words correctly and intelligibly. It was con­

cluded that with these subjects, singing involved dual 

hemisphere control. 

Evidence of Single Hemisphere Processing 

Critchley (1972) has expressed reservations about the 

duality of brain function as it relates to language and 

music. He hypothesized that singing does not need bilateral 

hemisphere involvement. DamSsio and Damasio (1977) offer 

support for this hypothesis in citing behavioral studies 

of older patients. These behavioral studies of patients 

were described as providing evidence for the association 



of language and music in the left hemisphere. Specifically, 

researchers described forms of amusia localized in the left 

hemisphere (amusia,'is defined as the inability to comprehend 

music as music). It was concluded that music and language 

are processed in the left hemisphere. 

Additional support for one hemisphere processing of 

singing is noted in the summary by Benton and Joynt (1960) 

of behavioral studies of patients with aphasia (inability 

to speak). However, these researchers reported that singing 

was maintained in older subjects whose left hemisphere was 

incapacitated. The quality of melody reproductions and 

articulation of words was normal in the singing of familiar 

songs, contrasting with specific disturbances of speech. '' 

It was concluded that in patients with aphasia the capacity 

for singing can be retained in the right hemisphere. 

Variables to be Considered in 
Resolving the Controversy 

The conclusions cited in these studies, being diametri­

cally opposed, cause confusion as to whether singing is pro­

cessed by both hemispheres or by one hemisphere. One reason 

for the confusion may be the diversity of variables (sub­

jects, procedures, stimuli) employed in the research. 

Recently, researchers have utilized the dichotic aural 

stimulation paradigm of Broadbent (1954) to examine variables 

that might affect the processing of singing: training of 

siibjects and complexity of stimulus. Goodglass and Calderon 



(1977) concluded that (1) with trained musicians the proces­

sing of verbal and musical components of a stimulus is the 
Ij 

result of hemispheric interaction and (2) each hemisphere 

can selectively prdcess that component of a complex stimulus 

for which it is specifically equipped. They argue that the 

musical training of a subject and the complexity of the 

stimulus do not affect the processing of singing—the left 

hemisphere processes the verbal elements of the stimulus 

and the right hemisphere processes the tonal elements of the 

stimulus. However/ results of other laterality studies 

(Sever and Chiarello, 1974; Papcun et al., 1974) concerning 

the effects of musical training and stimulus complexity are 

contradictory. A discussion of these studies follows. 

Training 

Bever and Chiarello (1974) have concluded that musical 

training of a subject may affect which brain hemisphere more 

efficiently processes musical stimuli. Using subjects with 

a minimum of four years of formal musical training, Bever 

and Chiarello demonstrated that trained musicians more 

efficiently processed melodic stimuli in the left hemisphere. 

Subjects with less than three years of musical training de­

monstrated more efficient processing of melodic stimuli in 

the right hemisphere. It was theorized that due to the 
I! 

subjects' musical training, melodies were processed as a 

series of sequential tones and patterns using the analytical 

mode of operation of the left hemisphere. Subjects without 



musical training processed the melodies holistically using 

the mode of operation of the right hemisphere. 

The type of musical training was not controlled by Bever 

and Chiarello. It is assumed that subjects with vocal train­

ing have specialized skills in the processing of sung stimuli. 

Therefore, it may be hypothesized that if musical training 

is important in the processing of sung stimuli, subjects 

with vocal training will process sung stimuli differently 

and more efficiently than subjects with other musical train­

ing. However, the question then becomes: How does training 

affect the ability of subjects to process stimuli? 

Training establishes a system of patterns in memory 

from which new stimuli may be matched, patterned, integrated, 

and recalled (John, 1972). Perception involves an internal 

synthesis of patterns and a comparison of these patterns with 

a new pattern under analysis (Stevens and Halle, 1967). It 

may be assumed that a new auditory pattern, a stimulus, will 

be compared with an existing pattern. As more patterns are 

matched and integrated into memory, the perceiver has the 

increased ability to discriminate among stimuli. When a 

stimulus is matched to an existing pattern, it is labeled as 

meaningful; when a stimulus does not match an existing 

pattern, it is labeled as nonmeaningful (John, 1972). With 

increased integration of patterns, a perceiver with training 

may effect meaning to increasingly complex stimuli that match 

existing patterns in memory (Miller, 1956). If training 



allows a subject to perceive more complex stimuli, then tjie 

results of the Bevefr and Chiarello study may be attributed 

to be the result of the stimulus complexity. If the stimulus 
J i ! ( 

complexity is to be considered, how do variations in stimulus 

complexity affect laterality effects? 

Complexity 

Support for the influence of training on laterality 

effects was demonstrated by Papcun, et al., (1974). Morse 

code signals were presented dichotically to experienced 

Morse code operators and to subjects ignorant of Morse code. 

Experienced Morse code operators demonstrated a consistent 

right ear advantage. Inexperienced subjects also demonstra­

ted a right ear advantage, until the stimuli became longer 

than seven elements (an element was defined as a dot or 

dash). A left ear advantage was demonstrated by inexperi-
t 

enced subjects for 1 stimuli longer than seven elements. It 

was theorized that as the stimuli became more complex, 

inexperienced subjects switched from an analytical and 
i i 

sequential mode of processing to a holistic mode of proces­

sing. The longer stimuli were too complex for analysis by 

the left hemisphere and were processed by the right 

hemisphere. 

A possible explanation of these results is found in a 

study by Bartz, et al., (1967). The researchers investigated 

the perception of stimuli with variances in complexity using 

the dichotic listening technique. It was suggested that 



when dichotic stimuli differ in "attention value," the more 

attentionable stimulus is processed first and the less 

attentionable stimulus is filtered to temporary storage to 

be processed later'. The difficulty in processing stimuli 

causes subjects to develop a strategy of listening to and 

processing stimuli in one ear while a "filter" shunts the 

stimuli of the other ear into a short-term memory storage 

(Broadbent, 1957). Bartz concluded that the more atten­

tionable stimulus is processed more efficiently by the ear 

contralateral to the hemisphere that is specialized for 

processing the stimulus. As the complexity of the stimulus 

increases, ear asymmetry increases in favor of the more 

efficient ear. 

The conclusions of Papcun, et al. (1974) and Bartz, 

et al. (1967) suggest a plateau effect for hemisphere pro­

cessing. This processing plateau is the maximum level of 

processing efficiency of one hemisphere. As the plateau 

is reached in one hemisphere, a switch is made to the other 

hemisphere. The switch in hemisphere processing is theorized 

to be the result of the training of the subject and the 

complexity of the stimulus. By varying the complexity of 

the stimulus, different processing strategies may be 

evidenced for each subject depending on their training and 

the complexity of the stimulus. 

It is assumed that by varying the complexity of a 

musical stimulus, processing strategies will be different 



fd>ir subjects depending on their musical training and the 
i 

complexity of the Stimulus. Therefore, it may be hypothe­

sized that subject^ with musical training will process 
i; 

variations of stimulus complexity differently than 

. I 
subjects with limited musical training. 

Purpose of the Study 

There is conflicting evidence concerning auditory 

laterality effects for sung stimuli. The evidence from 

previous research is contradictory and a theory of bilateral 

hemisphere processing or single hemisphere processing of 

sung stimuli is untenable. 

Subjects may utilize bilateral or single hemisphere 

processing of sung stimuli depending on the training of the 

subject and the complexity of the stimulus. Therefore, the 

purpose of the present study is to test the viability of 

bilateral or single hemsiphere processing of sung stimuli 

as it may relate to the musical training of subjects and 

the complexity of the stimulus. 

Two hypotheses serve as a basis for investigation: 

1. Subjects with vocal training will process sung 

•stimuli differently than subjects with other musical training 

2. Subjects with musical training will process varia­

tions in complexity of sung stimuli differently than subjects 

with limited musical training. 

Results of the study can be used by researchers to 



support and propose models of perception. In addition, 

irtformation about the processing of sung stimuli may be 

used to better understand the singing behavior. 



!; CHAPTER II 

RELATED LITERATURE 

The human brai,n contains two hemispheres which perform 

specific functions, Many specialized functions have often 

been described as belonging to a specific hemisphere. The 

left hemisphere has been described as utilizing a linear 

mode of operation which processes information sequentially, 

analytically, and logically. The right hemisphere has been 

described as utilizing a gestalt mode of operation which 

processes information holistically (Ornstein, 1972, p. 51). 

The difference in hemisphere function is labeled hemisphere 

asymmetry or laterality. 

Recently, researchers have become interested in brain 

hemisphere asymmetry and auditory stimuli. Of particular, 

interest both to music researchers and scientists has been 

the involvement of each hemisphere in the processing of . 

verbal and musical components of singing. The present ! 

chapter contains discussions of (1) major studies in the 

processing of singing by researchers in behavioral abnormali 

ties, EEG assessment, hemisphere depression, and dichotic 

listening, (2) attention and music, and (3) memory and music 
4 

\ :  

Behavioral Abnormalities and Singing 

Since 1894, Hughlings Jackson and other neurologists, 



neurosurgeons, and psychiatrists have presented neurological 

evidence of the differential specialization of the cerebral 
| j 

hemispheres. Of ptiimary importance are case studies of sub­

jects with incapacitated hemispheres due to accident, 

illness, or surgery, (Ornstein, 1972, p. 69). 
i • 

Amusia (incapacity for musical activity) and aphasia 

(incapacity for verbal activity) have been thought to result 

from lesions in the left hemisphere (DamSsio and Damasio, 
; I 

1977). Edgren (1895) described patients with various com­

binations of amusia and aphasia. Most patients had either 

aphasia plus amusia or aphasia without amusia, but very few 

patients had amusia without aphasia. Henschen (1926) also 

believed that musical capacity was similar to verbal capacity 

and exhibited similar pathological forms. However, he also 

supported the hypothesis that the right hemisphere could 

perform some functions of the left hemisphere if the left 

hemisphere were destroyed. An example was given of the 

ability of a patient with left hemispherectomy who could 

sing, but could not speak. 

Additional support for the processing of music and 

language in the left hemisphere is evidenced in the studies 

of patients with amusia (Feuchtwanger, 1930). The patients 

were described as having amusia plus aphasic disturbances. 

Ustvedt (1937), Wisenburg and McBride (1935), and Nielsen 

(1946) also recorded their observations and opinions about 

amusia and aphasia in the left hemisphere. 
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In contrast to these observations is the work of Botez 
11 

and Wertheim (1959) and Wertheim and Botez (1961). Behavior 

al studies of musicians were presented in which musicians 
•• I 

were described as having lost certain musical abilities, but 
ii • i 

language abilities iwere reported to be normal or near normal 

Botez and Wertheim; found problems in an amateur musician 

after right hemispijerectomy in singing intonation and tempo. 

The subject was able to transpose individual sounds an 
I ; 

interval of a fourth or fifth, but could not transpose 

melodies. When accompaniment was played, the subject could 

sing. However, the subject could not accompany singing of 

his instrument, the accordion. 

Benton and Joynt (1960) reported the story of a man 

who had an illness that resulted in paralysis of the right 

side of the body. The man could not speak, but could sing 

certain hymns learned before his illness. Another patient 

was also described that had his left hemisphere removed 

(Smith, 1966). The man could not speak, but could sing 

"America" and "Home on the Range." Additional evidence 

of left hemispherectomy and continued ability to sing is 

reported by Gordon and Bogen (1974, p. 126-136), and Smith 

and Burkland (1966). 

Wertheim (1977) in reviewing behavioral studies and 

music stated that proof of localization for musical activi­

ties was inconclusive. However, he also observed that in 

some case studies lesions of the right hemisphere resulted 
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:. .1 
'  i I  

in instrumental anfl vocal amusia. 

'I 
Behavioral studies of musicians and nonmusicians have 

produced conflicting results concerning the laterality of 
. • I 

singing. Differeri^es in the localization of singing may j 
jl . 

occur from the ability of the neural system to adapt to 

pathological aberrations in normal neural patterns (Henschen, 
I 

1926; John, 1972; Rose, 1973). It should be noted that most 

of the subjects in these studies sang familiar songs. 

EEG Assessment and Singing 

Electroencephalographic (EEG) assessment was first 

used by Berger in the 1920's. He taped a set of recording 

electrodes to a subject's scalp and recorded the continuous 

bursts of electrical activity in the brain. Characteristic 

rhythms were recorded and named: alpha waves, beta waves, 

delta waves and theta waves (Rose, 1973, p. 89-90). 

Infants as young as six months of age were administered 

EEG tests while being held by their mothers. Tape recordings 

of singing were played and the greatest electrical activity 

was measured in this right hemisphere (Gardiner, 1976) . It 

was concluded that lateralization of hemisphere function is 

present at birth (Gardiner and Walter, 1977). 

Herron (1974) investigated laterality of music and 

language for stutterers and nonstutterers using EEG. She 

reported that stutterers and nonstutterers processed a 

speaking task and a singing task differently. This task 
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involved singing the words presented in the speaking task. 

Nonstutterers utilized left hemisphere processing of words 

and right hemisphere processing of melody. Stutterers were 
i j  

inconsistent in verbal and musical processing. Herron con-
!  j  

eluded that stutterers may have a lack of hemisphere domi-

i! 
nance with each hemisphere in competition with the other in 

the processing of words and music. 

Hemisphere Depression and Singing 

When brain surgery is being contemplated for a subject, 

the subject may be injected with a small amount of sodium 

amobarbital into the right or left common carotid artery. 

The result is a temporary depression or anesthetization of 

the corresponding cerebral hemisphere and contralateral hemi-

paralysis. The functions of the depressed hemisphere are 

temporarily lost (Wada and Rasmussen, 1960). 

Bogen and Gordon (1971) were the first to report the 

use of this technique in assessing lateralization of musical 

tasks. After injecting the sodium amobarbital and depres­

sing the right hemisphere, the researchers asked the subjects 

to sing familiar songs, such as "London Bridge" or "Happy 

Birthday." It was requested that subjects avoid using words 

by substituting the consonant-vowel "la." The singing was 

iiiterspersed with other tasks whose function was to deter­

mine the paralysis of the left side of the body. Singing 

wilts affected in all subjects, but speech remained unaffected. 
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I I  ;  ;  
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Although the songsjjwere amelodic, they were recognized by 

the use of correct rhythm. 

During the anesthetization of the left hemisphere, one 

subject evidenced no vocalization for two minutes. Melodic 

singing occurred just before the return of single word repe­

tition (Bogen and Gordon, 1971). Another subject was silent 

for seven minutes, after which singing and speaking returned. 

It was concluded that the contribution of the left hemisphere 

in singing tasks is uncertain. Continued research (Gordon 

and Bogen, 1974) clarified the role of the right hemisphere 

for musical activities and the left hemisphere for verbal 

activities. It was hypothesized that singing is a bilateral 

function requiring the cooperation of both hemispheres. 

The results of these studies appear conclusive: the 

left hemisphere processes words and the right hemisphere 

processes melody during singing tasks. However, it should 

be noted that (1) the singing tasks involved the singing of 

familiar songs and (2) the patients suffered from behavioral 

abnormalities that necessitated their participation in the 

hemisphere depression tests. 

Dichotic Listening and Singing 

The' dichotic listening technique developed by Broadbent 

(1954) has been used extensively in testing brain laterality 

of normal subjects. With the use of prepared tape recordings 

and stereo earphones, different stimuli are simultaneously 
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directed to each ear. The subjects are instructed to 

identify or recall the stimuli. j 

The assumption of the dichotic listening technique is: 

that by presenting contrasting stimuli to both ears dichoti-

cally, stimuli will be processed more efficiently in the 

hemisphere that is specialized for processing those stimuli 

(Broadbent, 1954). 

The dichotic technique has. been used in few tests 

involving sung stimuli. Bartholomeus and others (1973) have 

investigated lateralization of singing. Using melodic stim­

uli performed on a violin or sung to vowels, consonant-vowel 

syllables, or digits, they found no significant differences 

between left and right ear scores on any of the four tasks. 

Additional testing (Bartholomeus, 197 4b) produced no signifi­

cant differences between ears for singing or speaking tasks. 

The stimuli used in the tests were similar except that one 

set of stimuli was spoken and one set of stimuli was sung. 

It is observed that the lack of lateralization may be due 

to the high levels of overall accuracy of report as described 

by the researcher. Steven (1973) also reported that when a 

subject was presented dichotically sung vowels, consonant-

vowel syllables, or digits, there were no demonstrated 

differences in left and right ear scores for the melodic , 

or verbal components of the stimuli. 

Parallel processing of singing stimuli has been demon­

strated when letter sequences were sung (Bartholomeus, 1974). 

i i  
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Different sequences of letters were sung to different 

melodies by different singers. The subjects were required 

to recognize letter sequence, melody, and singer's voice. 

Results indicated a significant right ear superiority for 

letter sequence recognition, a significant left ear superior­

ity for melody recognition, and a significant ear by task 

interaction. No significant differences existed between ears 

for recognition of voices. It was concluded that laterality 

effects in audition are not determined only by stimulus 

characteristics, but also by task requirements. 

Goodglass and Calderon (1977) investigated parallel 

processing of verbal and tonal material in trained musicians, 

who in standard dichotic testing conditions had right ear 

superiority for verbal stimuli and left ear superiority for 

tonal stimuli. Parallel processing was induced by using 

stimuli with variations in complexity: spoken numbers super­

imposed on piano tones and competing digits sung to competing 

tonal patterns. The task requirements were also varied in 

complexity. A right ear advantage for digits and a left 

ear advantage for tones was demonstrated with all stimuli 

and task variations. It was concluded that (1) ta§k require­

ments do not affect the magnitude of left ear advantage for 

tones or*right ear advantage for digits and (2) independent 

parallel processing may occur in the two hemispheres for the 

specialized components (verbal or musical) of a complex 

stimulus. 
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M 
The results of the dichotic tests of singing are 

confusing. By varying testing approaches researchers may ! 

be effecting different processing modes of different sub­

jects. It is noted that the results of these tests appear 

to conflict with the results of Bever and Chiarello (1974) 

concerning the effect of training on the perception of music 

and with the behavioral studies concerning one hemisphere 

processing of singing. It appears that a dichotic test of 
:  i  

singing is needed that utilizes not only a melodic stimulus, 

but also a verbal stimulus that is more representative of 

the singing behavior. Such stimuli might utilize words in 

a sentence format sung to tones in a melodic fragment. By 

using stimuli that are more representative of the singing 

act, a subject may process the singing stimulus as one unit 

rather than as two elements (Morrell, et al., 1967). It may 

be of importance to compare the results of music majors arid 

nonmusic majors using the sung stimuluis approach of Goodglass 

and Calderon (1977) and stimuli more representative of the 

singing behavior. 

Attention and Music 

A person's world is a montage of stimuli that is 

filtered or selected by the sensory systems and processed 

by the brain and central nervous system. It is a function 
;! 

of the sensory systems to filter and select stimuli that 

are important and relevant to a person. The brain and 

j ; 
I": 
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nervous system then process the information from the 

senses into meaningful data. This processing involves 

additional filtering and selecting of stimuli received 

by the senses (Ornstein, 1972 and 1974). The process of 

selection of stimuli has been labeled attention (Masterton 

and Diamond, 1973, p. 433). 

The attending procedure involves a hierarchical relay 

of coded neural information by each neural structure to the 

next higher structure (Ornstein, 1972, p. 32). In the 

auditory system each structure passes neural information 

to the next higher structure in the pathway from the ear to 

the cortex (Figure 1). Each structure in the auditory 

system is known to behave in at least three ways: 

1. Transforms neural input into a neural output 

which always differs from the input 

2. Distributes neural outputs to a variety of non-

auditory structures 

3. Modulates input by efferent fibers that descend 

to lower auditory structures (Masterton and 

Diamond, 1973, p. 428). 

Therefore, in the auditory system each neural structure from 

the cochlear nuculei to the cortical nuculei may be assumed 

to be attending to selected components of a stimulus 

(Masterton and Diamond, 1973, p. 434). 

Most researchers in the attending, procedure of the 

auditory systems have investigated the responses of the 



total auditory system. Broadbent and Gregory (1963) inves­

tigated the ability of the auditory system to selectively :; 

filter auditory stimuli. They concluded that the filtering 

process was attributable to an attention mechanism and that 

attention could be diverted without voluntary effort or 

conscious awareness of a subject. It was assumed that 
• t 

changes in attentipn were the result of monitoring of 

auditory input by ^ high level .of the brain. 

FIGURE 1 

SCHEMATIC SUMMARY OF THE CENTRAL AUDITORY SYSTEM 

Forebrain 

Midbrain 

Hindbrain 

Auditory Cortex 

?N 

Medical Geniculate and 
Posterior Nucleus 

Inferior Colliculus and 
Nucleus of the Lateral Lemniscus 

Superior Olive 

Cochlear Nucleus 

(fasterton and Diamond, 1973) 
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Oswald and others (1960) also concluded that even in 

sleep auditory input is monitored at a high level and that 

when the input is significant, the system responds. Differ­

ent auditory stimuli evoked EEG arousal responses of varying 

magnitude in sleeping subjects, with some sounds and words 

having greater arousal properties than others. It was 

assumed that for most people the attending process involves 
1 : 

involuntary selective filtering by the auditory system. 

A technique used to investigate selective attention of 

auditory stimuli is the dichotic listening test. Simultan­

eous stimuli are presented through stereo earphones to a 

subject who is instructed to respond in a designated manner. 

By examining a subject's responses, the attending process 

may be investigated. It will be assumed that differences 

in ear scores in dichotic tests with musical stimuli are 

the result of attending differences of the auditory system 

for each ear. 

Memory and Music 

Memory is the capacity to store and retrieve experi­

ences. Recently, researchers working in the area of 

physiological bases of memory have attempted to evidence 

some permanent change in neural functioning produced by 

experiences (McGaugh, 1966). The researchers have demon­

strated that experiences may effect permanent neural changes 

(Bennett, et al., 1964), but not necessarily during or 

immediately after tan experience (McGaugh, 1966). 
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Many authorg have noted that the past experience of an 

organism (man) in performing movements and in observing the 

consequences of these movements helps to establish how a 

stimulus is perceived (Held and Freeman, 1963; Mackay, 1951; 

Ornstein, 1972). Miller and others (1951) proposed a model 

of auditory perception in which a catalogue of auditory pat­

terns are matched with a catalogue of articulatory gestures. 

These gestures may have several components, including tactual 

and kinesthetic sensations, motor commands, and feeling 

states. When a stimulus is perceived it activates a number 

of neural centers. A catalogue of relations between auditory 

patterns and articulatory gestures is established at an early 

age. As a child initiates an articulatory gesture, an audi­

tory pattern results from the activity, and an association 

develops between the gesture and the sound. New associations 

are established for new articulatory gestures. This model of 

auditory perception has been described as a theory of 

articulatory reference (Halle and Stevens, 1964; Liberman, 

et al., 1967; Stevens, 1960; Stevens and Halle, 1967). 

Halstead (1967) refers to the perception of experience 

of an individual as a factor of memory—immediate, inter­

mediate, and remote. McGaugh (1966) clarifies memory as a 

three-memory trace system: immediate memory for several 

minutes; short-term memory which develops within a few 

seconds or minutes and lasts for several hours; and long-

term memory which consolidates slowly and lasts indefinitely. 

'i 



Additional research (Barondes and Cohen, 1966; Flexner, et 

al., 1963) substantiates this description and suggests that 
• i 
' i 

each experience activates each memory trace. It appears 

that the three-memory traces utilize the same neural struc-
; »  

tures, but use them differently (John, 1972; Norman, 1968). 

Broadbent (1954) hypothesized that the difference in 

ear reports of dichotic stimuli is the result of memory and 

attention. He proposed a model, of perception that included 

processing of stimuli by the hemisphere specialized for that 

stimuli and storages of other stimuli for later processing. 

The stimuli from one ear were attended and stimuli from the 

other ear were stored. Norman (1968) proposed that a chan­

nel of attention is chosen based on the pertinence or mean-

ingfulness of stimulus. The pertinence of a stimulus is 

based on the expectations of the perceiver which are the 

result of past experiences (Eccles, 1966; Norman, 1968; 

Ornstein, 1972). 

It is assumed that in dichotic listening experiments 

differences in ear reports result from memory traces estab­

lished in a hemisphere that is specialized for a particular 

stimulus (Gazzaniga, 1974). A right ear advantage for 

verbal stimuli is the result of expectations of the left 

hemisphere based on auditory patterns established in memory. 
'j 

A left ear advantage for musical stimuli is the result of 

expectations of the right hemisphere based on auditory 

patterns established in memory. 



If the memory systems utilize the same structures, 

different modes of retrieval are needed for each category 

of memory trace (Norman/ 1968). When a stimulus matches 

patterns in storage^ then the stimulus characteristics are 

anticipated and effectively perceived by the structures 

specialized for that stimulus. When a stimulus does not 

match patterns in storage, then the stimulus is not antici­

pated or effectively perceived.. Due to the rapid decay of 
•  i  

material in immediate memory (Norman, 1966; Waugh and Norman, 

1965), it appears that recall or recognition tasks utilizing 

immediate memory will be biased toward stimuli that are 

meaningful and attended by the structures specialized for 

that material. The memory traces of stimuli that are not 

meaningful may decay before processing (Norman, 1968). 

Material in long-term storage is permanent, but needs 

cues to retrieve it. These cues are established relations 

with the memory trace and are formed from experiences 

(Mandler, 1975, p. 24). When the cues are not activated,. 

then the memory is not retrieved (Snyder, 1974, p. 221). ;• 
• i 

Memory storage and retrieval of memory appear to be 

lateralized. When a subject is performing a task that is 

usually the specialty of one hemisphere, the other hemi- ; 

sphere is not activated (Ornstein, 1972, p. 62; Ornstein 

and Galin, 1974). Confusion and interference in perception 

appear if both hemispheres are activated (Galin, 1974; 

Nelson, 1978; Ornstein, 1972). 
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The result of musical training is that many musical 
,  i  

experiences are stored and accessible in all memory traces. 

•:i 
These memory trace^ are then used as a basis for more effec­

tive perception of;'musical stimuli. There is evidence that 
f»  

as an experience is repeated, it may become habituated with 

the memory traces of the repeated experience lateralized. 

The memory traces may be a function of the right hemisphere 

(Tart, 1975, p. 110). Galin (1.976) hypothesized that memory 

traces reside in both hemispheres, but are activated only by 

the hemisphere that is specialized for that mode of retrieval 

or task utilized in processing. Depending on the task used 

in testing, differences in ear reports in dichotic testing 

can be the result of the task required: sequential proces­

sing and the left hemisphere or holistic processing and the 

right hemisphere. 

Differences in reports of singing using various testing 

techniques described earlier in this chapter appear to be 

the result of activation of different memory traces. Sing­

ing of old songs activates habituated behaviors and perma­

nent memory storage. Singing of melodies and verbal combina­

tions may activate immediate or short-term memory traces and 

require different modes of processing, i.e., sequential or 

holistic. It appears evident that activation of different 

memory traces in the hemispheres is an integral function in 

the processing of singing. 
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CHAPTER III 

; j PROCEDURE 

ii 
Overview 

A dichotic listening test was designed to test the 

following hypotheses: 
'  i 

1. Subjects with vocal training will process sung 

stimuli differently than subjects with other musical 

training. 

2. Subjects with musical training will process the 

variations in complexity of sung stimuli differently than 

subjects with limited musical training. 

To test the hypotheses a three-factor experimental 

design with repeated measures of two factors was used 

(Winer, 1971, p. 571). The three independent variables 

were labeled (1) musical training, (2) ear presentation, 

arid (3) complexity of stimulus presentation. The dependent 

variables were scores for accuracy of verbal reproduction 

(Word scores) and musical reproduction (music scores). 

Subjects 

Subjects for the study were chosen according to type 

of musical training of the subject: 

1. training in vocal music 

2. training in instrumental music 

3. limited training in music 
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Subjects with musical training were defined as junior or 

senior university undergraduate music majors. Students with 

vocal music training were defined as students who have desig-

nated voice as the^.r major instrument concentration. Students 

i t  
with instrumental rjiusic training were defined as students who 

:  i  

have designated piano or an orchestral or band instrument as 

their major instrument concentration. Subjects with limited 

musical training were defined as junior or senior university 

undergraduate students with limited training in music. 

Ten subjects per level were selected as the size of the 

testing sample based on a priori power analysis for alpha = 

.05, large effect size, and power = .80. The total number 

of subjects participating in the experiment was thirty. A 

questionnaire was employed to select and categorize subjects 

by level of musical training (see appendix). The question­

naire assessed formal and informal musical experiences for 

the preceeding eight years. Eight years was chosen as the 

time reference which would include college and secondary 

experiences for most subjects. Formal musical experiences 

were defined as private or class study in singing or playing 

a musical instrument. Informal musical experiences were 

defined as singing or playing an instrument without the aid 

of private or class study. 

Criteria for selection of subjects with vocal music 

training, as indicated on the questionnare, were: 

1. four years or more of formal experiences in voice 
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study during the preceding eight years, with at least j 
! ; ' J 

three years of formal experiences in voice study during 

the preceding four years; 

2. four years or more of participation in an organi­

zation for vocal performance during the preceding eight 

years, with at least three years of experiences in an organi­

zation for vocal performance during the preceding four years; 

3. three years or less of, informal musical experiences 

with an instrument during the preceding eight years; 

4. three years or less of formal study with a musical 

instrument during the preceding eight years; 

5. three years or less of participation in an organi­

zation for instrumental performance during the preceding 

eight years, with no participation during the preceding 

three years. 

Criteria for selection of subjects with instrumental 

music training, as indicated on the questionnaire, were: 

1. four years or more of formal experiences in instru­

ment study during the preceding eight years, with at least 

three years of formal experience in instrument study during 

the preceding four years; 

2. four years or more of participation in an organiza­

tion for instrumental performance during the preceding eight 

years, with at least three years of formal experiences in an 

organization for instrumental performance during the preceding 

four years; 
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3. three years or less of Informal musical experience 

with voice during the preceding eight years; 

4. three years or less of formal study in voice during 

the preceding eight years; 
'•i 

5. three years or less of participation in an organiza­

tion for vocal performance during the preceding eight years, 

with no participation during the preceding three years. 

Criteria for selection of .subjects with limited musical 

training, as indicated on the questionnaire, were: 

1. three years or less of formal experiences in voice 

or musical instrument study during the preceding eight years, 

with no formal experiences in voice or musical instrument 

during the preceding three years; 

2. three years or less of participation in an organiza­

tion for vocal or instrumental performance during the preced­

ing eight years, with no formal experiences in an organization 

for vocal or instrumental performance during the preceding 

three years; 

3. three years or less of informal musical experiences 

with voice or musical instrument during the preceding eight 

years. 

Pilot Study 

A pilot study was conducted at the Brevard Music Center, 

Brevard, North Carolina. Fifteen male and fifteen female 

subjects were chosen based on the criteria previously listed. 
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Subjects were matched across training levels for academic, 

classification and number of years of training. 

Only subjects who indicated on the questionnaire that 

they were right-handed were used in the study. It has been 

suggested (Denckla, 1978, p. 250; Goodglass and Quadfasel, 
!i 

1954) that handedness may be a factor in variability of 
; j 

subject responses in dichotic listening tests. In order to 

control for possible variation .in subject responses, only 

right-handed subjects were selected. 

Subjects with vocal music training averaged 4.2 years 

of vocal training, 2.7 years of instrumental training, and 

6.8 years of participation in a vocal music organization. 

Subjects with instrumental music training averaged 0.7 years 

of vocal training, 5.9 years of instrumental training, and 

6.9 years of participation in an instrumental music organiza­

tion. Subjects with limited musical training averaged 0.3 

years of vocal training, 0.7 years of instrumental training, 

and 1.7 years of participation in an ensemble of either 

instrumental or vocal emphasis. 

Subjects were administered a Sweep Frequency Screening, 

testing pure tone octaves from 50 to 8 kHz at a twenty-

decible level. The purpose of the hearing screen was to 

evaluate hearing efficiency and control for hearing deficien­

cies that might affect the results of the test. All selected 

subjects had normal hearing acuity as defined by the American 

National Standards Institute (ANSI, 1969—see glossary). 



Testing was administered on a Qualitone Acoustic Appraiser 

(met ANSI Hearing Threshold Level) with TDH-39 earphones and 

MX-41/AR cushions in an Industrial Acoustics Company Sound 

Booth. Subjects were asked to reproduce pitches, within the 

range of pitches used in the dichotic test stimuli (C4-G4), 

as sung by the investigator. All subjects correctly repro­

duced each of the pitches. 

The purpose of the pilot study was to demonstrate the 

effectiveness of the dichotic test and to provide results for 

comparison with the main study. 

Main Study 

The main study was conducted at the State University 

College at Fredonia, New York. Fifteen male and fifteen 

female subjects were selected based on the criteria pre­

viously listed. Subjects were matched across training levels 

for academic classification and number of years of training. 

Only subjects who indicated on the questionnaire that they 

were right-handed were used in the study. 

Subjects with vocal music training averaged 5.7 years 

of vocal training, 2.5 years of instrumental training, and 

6.3 years of participation in a vocal music organization. 

Subjects with instrumental music training averaged 0.7 years 

of vocal training, 7.4 years of instrumental training, and 

6.1 years of participation in an instrumental music organiza­

tion. Subjects with limited musical training averaged 0.4 



years of vocal training, 0.8 years of instrumental training, 

and 1.7 years of participation in an ensemble of either 

instrumental or vocial emphasis. 

I ' 
Subjects' heading efficiency was evaluated as described 

1 . 
in the pilot study. Testing was administered on a Grason-

Stadler 1701 Audiometer (met ANSI Hearing Threshold Level 

specifications) with TDH-39 earphones. 

Preparation of Test Tapes 

Test tapes were prepared using a variation of the 

dichotic aural stimulation technique reported by Kimura 

(1964) and Broadbent (1954). This technique is based on 

the assumption that the connection or neural pathway from 

an ear to its contralateral hemisphere is stronger than to 

its ipsilateral hemisphere. By presenting contrasting 

stimuli to both ears dichotically, more efficient processing 
, ( 

will be evidenced By the hemisphere that is specialized for 

those stimuli if the stimuli are presented to the contra­

lateral ear. 

A variation in the procedure was the addition of a 
j! 

recall task for the stimuli. Broadbent and Gregory (1964}' 

have demonstrated that the use of a recall or recognition 

strategy for dichotic tests does not contribute to ear dif­

ferences for accuracy of report of stimuli. The Kimura ' 

paradigm for dichotiic tests containing musical stimuli 

utilized a recognition strategy for musical stimuli. The 
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reason for using the recognition strategy is reported to 

be the difficulty of requiring listeners to reproduce musical 

stimuli. The musical stimuli for this study were controlled 

to aid in the recall procedure: limited range of pitch 

(middle C or C4 through G on the second line of the treble 

clef or G4), limited rhythmic variance (quarter and eighth 

notes), limited starting pitch (C4, E4, G4) and use of 

diatonic pitches only (C^, , ,E^, G^) . 

The second variation in the testing technique was the 

complexity of stimuli presentation. Three levels or classi­

fications of stimuli complexity were utilized: 

1. identical music to each ear with different verbal 

sets to each ear (Figure 2) 

2. different music to each ear with identical verbal 

sets to each ear (Figure 3) 

3. different music to each ear with different verbal 

sets to each ear (Figure 4) 

Satz (1968) demonstrated that ear asymmetry increased 

as the complexity of presentation increased. In the present 

study the complexity was varied by increasing the number of 

verbal and/or musical differences between ear presentations. 

In presentation one the verbal complexity was increased by 

utilizing a different word set to each ear. In presentation 

two the musical complexity was increased by utilizing a dif­

ferent melody to each ear. In presentation three a different 

word set and melody were presented to each ear to produce 
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FIGURE 2 

EXAMPLE OF STIMULI COMPLEXITY 1 

left right 

Buy it from Sears. The band plays well, 

FIGURE 3 

EXAMPLE OF STIMULI COMPLEXITY 2 

left right 

You need to print. You need to print. 

FIGURE 4 

.EXAMPLE OF STIMULI COMPLEXITY 3 

left right 

The weather is cold. Your son sings well. 
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the greatest verbal and musical complexity. 

Forty melodies and forty sentences were composed 
. »  

according to the previously listed criteria. In addition; 

the music was composed using traditional sequences of 

pitches and the woifds were composed using logical sentences. 
I  

For purposes of thijs study it was assumed that the stimuli 

were representative of the singing behavior: salient verbal 

and musical stimuli. Salient verbal stimuli may be defined 
i  

as a series of words that utilize traditional grammatical 

patterns of verbal communication: a sentence. Salient 

musical stimuli may be defined as a series of tones that 

utilize traditional patterns of pitch relationships: a 

melody. 

Ten examples of each of the three stimuli presentations 

were randomly formulated from the sentences and melodies. 

Five examples of each stimuli presentation were randomly 

selected and arranged as Test A (see appendix). The remain­

ing five examples of each stimuli presentation were randomly 

arranged as Test B (see appendix). 

Instructions, Test A, and Test B were recorded by the 

investigator on a TEAC four-channel tape recorder. Copies 

were made on a Kenwood KX 1030 two-channel cassette tape 

recorder for ease in administration. The stimuli were re­

corded at a rate of 60 beats per minute, with each stimulus 

lasting four seconds. Preceding each stimulus was a rhyth­

mic, spoken count (1—2—3—4) recorded on the test tapes. 



After each stimulus, was twelve seconds of silence. The 

paradigm of the teS;t is represented in Figure 5. 
i  

FIGURE 5 

DICHOTIC TEST PARADIGM 

Dichotic 
Spoken Count Stimulus Silence 

4 Seconds 4 Seconds 12 Seconds 

The subjects were required to vocally repeat the 

stimuli during the time interval of twelve seconds. The 

rhythmic, spoken count (1—2—3—4) recorded on the test 

tapes notified the subject that the period of response had 

ended and that a new stimuli set would be presented. 

The prepared tapes consisted of a pretest preparation 

with instructions, examples of test stimuli, and intensity 

level setting (see appendix). The subjects were advised 

in the tape-recorded instructions to vocally repeat in any 
I 

order the stimuli presented to each ear. The subjects were 

advised to repeat as much as possible of each stimulus if,; 
! I 

they were not able to repeat each stimulus in total. 

Administration of Test Tapes j j  

i '  
Test A and Test B each required five minutes and were 

presented with a five-minute interval between tests as a • 1 < 

control for bias effects of test order. Half of the subjects 



were presented Test A before Test B. Half of the subjects 

were presented Test B before Test A. Each subject reversed 

earphones at the end of the first test. Counterbalancing 

procedures to negate tape bias are listed in Figure 6. 

The test tapes were administered with the Kenwood KX 

1030 tape recorder and Koss Pro 4/AAA headphones in a quiet 

room. The intensity level was set at a comfortable level as 

determined by the responses of three subjects not participa­

ting in the study.. A calibration tone was used to insure 

that the equipment remained in calibration from one test 
i  

administration to another. At each test administration, 

the intensity level of the tone was adjusted to the same 

value using a Vu meter. All subject responses (vocal repe­

tition of stimuli) were tape recorded on a separate tape 

recorder for later analysis. 

Each subject's responses from Test A and Test B were 

evaluated as to number of beats correctly reproduced from 

the original stimulus for each stimulus component (verbal 

and musical), for each ear, and for each complexity varia­

tion. Each melodic fragment contained one pitch or two 

repeated pitches on each of the four beats of the stimulus. 
ii 

A beat with repeated pitches on an eighth note rhythm was: 
: i 

labeled a correct response only when both of the pitches 1 

were reproduced. Each word set contained one word, one 

syllable, or two syllables on each of the four beats of the 

stimulus. A beat with two syllables was labeled a correct 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

;j FIGURE 6 

COUNTERBALANCING PROCEDURES 

Test Order Earphone Placement 
iest uraer First Test—Second Test 

A-B Right on Right—Right on Left 
B-A Right on Right—Right on Left 
A-B Right on Left —Right on Right 
B-A Right on Left —Right on Right 
A-B Right on Right—Right on Left 
B-A Right on Right—Right on Left 
A-B Right on Left —Right on Right 
B-A Right on Left —Right on Right 
A-B Right on Right—Right on Left 
B-A Right on Right—Right on Left 

A-•B Right on Left --Right on Right 
B-•A Right on Left --Right on Right 
A-•B Right on Right--Right on Left 
B-•A Right on Right--Right on Left 
A-•B Right on Left --Right on Right 
B-•A Right on Left --Right on Right 
A-•B Right on Right--Right on Left 
B-•A Right on Right--Right on Left 
A-•B Right on Left --Right on Right 
B-•A Right on Left --Right on Right 

A-•B Right on Right--Right on Left 
B-•A Right on Right--Right on Left 
A-•B Right on Left --Right on Right 
B-•A Right on Left --Right on Right 
A-•B Right on Right--Right on Left 
B-•A Right on Right--Right on Left 
A-•B Right on Left --Right on Right 
B-•A Right on Left --Right on Right 
A-•B Right on Right--Right on Left 
B-•A Right on Right--Right on Left 
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response only when both syllables were reproduced correctly. 

Each subject's responses were matched to the original 

stimulus for verbal and musical correctness. Separate 

scores for words and melody were given. A score of "4" for 

words meant that the subject reproduced all words of the 

stimulus correctly. A score of "4" for melody meant that 

the subjject reproduced all pitches of the stimulus correctly. 

The response evaluation is represented schematically in 

Figure 7. 

FIGURE 7 

RESPONSE EVALUATION SCHEMATIC 

Left Ear Right Ear 

Words 
(beats) 01234 01234 

Melody 
(beats) 01234 01234 

An example of a given stimulus, subject response, and 

response evaluation is represented in Figure 8. 

All responses were totaled for each subject and 

entered as raw scores into the appropriate level of the 

statistical design. A 3 x 3 x 2 design for repeated measures 

was used (Winer, 1971, p. 539). Analysis of the data was 

achieved through the use of univariate and multivariate ANOVA 

and the Newman-Keuls procedure for repeated measures. 
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FIGURE 8 

EXAMPLE OF STIMULUS, SUBJECT RESPONSE, 
AND RESPONSE EVALUATION 

Given Stimulus 

Left Ear Right Ear 

I'm not sleep- y. Where is my mom? 

Student Response 

Left Ear Right Ear 

I'm not sleep- ing. Where is my mom? 

Response Evaluation 

Left Ear Right Ear 

A 
(be^ts) 

Melody 
(beats) 

Words 0 1 2(3)4 0123® 

Melody 01230 0 (J) 2  3  4  
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The univariate ANOVA was used for each of the two ; 
' I 

dependent measures: word scores and music scores. In 

addition to the mean and standard deviation for the general 

model, the coefficient of variation was also listed. The 

coefficient of variation is the percentage of variation 

obtained by dividing the standard deviation by the mean. 

The statistic is used to compare the variability of scores 

in different tests. Means for each main effect and inter­

action were also listed. 

Based on F tests for homogeneity of variance, all max 3 • 

tests for main effects and interactions used within-subject 

terms as error terms. All means for each significant main 

effect and two-way interactions were ranked from highest to 

lowest. The Newman-Keuls test for significance was used to 

describe statistical differences between all possible pairs 

of means (Winer, 1971, p. 528). 

Multivariate ANOVA using the Hotelling-Lawley Trace 

Statistic, was also utilized in the analysis of the data. 

The Hotelling-Lawley test described the characteristic root 

vector of the matrix derived from the variances of word 

scores and music scores. 

In multivariate ANOVA the effect of independent 

variables on two or more dependent variables is observed 

simultaneously. The multivariate ANOVA generally contains 

more information about the total effect of the independent 
$ • 

variables than does the univariate ANOVA. In effect, the 



ratio of between-subject variance to the within-subject 

vatiance is maximized. 
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CHAPTER IV 

'i 

11 RESULTS 

Data were obtajined in a pilot study and a main study. 

Analysis of the data for these studies was achieved through 

the use of univariate and multivariate analysis of variance 

for repeated measures. The uniyariate ANOVA was used for 

each of the dependent variables: word scores and music 

scores. Due to the nature of the stimuli—verbal and 

musical elements combined—multivariate ANOVA was also used. 

The Newman-Keuls test for significance of ordered means was 

utilized to provide descriptions of statistical differences 

between all possible pairs of means. 

Abbreviations used in analysis of data are shown in 

Table 1. 

TABLE 1 

ABBREVIATIONS USED IN ANALYSIS OF DATA 
; J 

G Gljoup 
V VOcal Training Group 
I instrumental Training Group 
L Limited Training Group 

E Ear 
LE Left Ear 
RE Right Ear 

C Complexity of Stimuli Presentation ! 

PI Complexity Presentation One 
P2 Complexity Presentation Two 
P3 Complexity Presentation Three 
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Pilot Study 

The mean, standard deviation, and coefficient of 

variation are listed in Table 2. The mean response for 

word scores represented 82% correct. The mean response 

for music scores represented 61.75% correct. While the 

standard deviations were similar for both word and music 

scores, the coefficient of variation indicated that music 

scores had a higher relative variability. The higher co­

efficient of variation for music scores appeared to indicate 
t 

that repetition of;musical elements were more difficult than 

repetition of verbal elements. 

TABLE 2 

MEAN, STANDARD DEVIATION, AND COEFFICIENT 
OF VARIATION: PILOT STUDY 

Mean 
Standard 
Deviation 

Coefficient of 
Variation 

Words 32.8167 5.5792 17.0012% 

Music 24.7000 5.2842 21.7000% 

The analysis of variance for word scores is found in 

Table 3. There were significant differences in the main 

effects of ear and complexity of presentation and in the j 

interactions of group by complexity and complexity by ear> 

There was no significant difference in the group effect. 

In Table 5, it is observed that the right ear score was 

highest and that complexity presentation two was highest. 



The left ear score for complexity of presentation two was 

higher than right ear scores for all presentations (Table 

6 ) .  

TABLE 3 

ANOVA FOR WORDS: PILOT STUDY 

Source df SS F P 

Model : 125 8542.05 2.20 0.0008* 

Error 54 1680.90 

Corrected Total 179 10222.95 

Group 2 421.20 2.48 0.1204 
Error 27 2290.92 

Ear 1 464.01 10.20 0.0036* 
G x E 2 165.64 1.82 0.1812 
Error 27 1227.85 

Complexity 2 1774.03 38.61 0.0001* 
G x C 4 284.67 3.10 0.0228* 
Error 54 1240.63 

C x E 2 505.01 8.11 0.0008* 
G x C x E 4 168.09 1.35 0.2635 
Error 54 1680.90 

*p < .05 

The analysis of variance for music scores is in Table 

4. There were significant differences in the main effects 

of group and complexity of presentation and in the inter­

actions of complexity by ear and group by complexity by ear. 

There was no significant difference for ear effect. In 

Table 5, it is observed that the vocal group scored highest 
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and that complexity presentation one was highest. The 

right ear score for complexity presentation one was greatest 

and the left ear spores were greatest for complexity presen­

tations two and three. 

TABLE 4 

ANOVA FOR MUSIC: PILOT STUDY 

Source df SS 

Model 125 13251.97 

Error 54 1507.83 

Corrected Total 179 14759.80 

3.80 0.0001* 

Group 
Error 

Ear 
G x E 
Error 

Complexity 
G x C 
Error 

C x E 
G x C x E 
Error 

2 
27 

1 
2 

27 

2 
4 

54 

2 
4 

54 

2020.43 
2358.70 

8 0 . 0 0  
126.70 
2023.97 

4932.10 
106.07 
931.50 

325.03 
347.47 

1507.83 

11.56 0.0002* 

1.07 
0.85 

142.96 
1.54 

0.3107 
0.4406 

0.0001* 
0.2045 

5.82 0.0051* 
3.11 0.0224* 

*p < .05 



TABLE 5 
: { 

PILOT STUDY MEANS: MAIN EFFECTS 

Main Effect Word Mean Music Mean 

Group 

V 34.3167 27.9833 

I 33.4167 26.0167 

L 30.7167 20.1000 

Ear 
* 

LE 31.2111 25.3667 

RE 34.4222 24.0333 

Complexity 

PI 31.0000 31.4667 

P2 J 37.2333 23.9167 

P3 30.2167 18.7167 

As shown in Table 8, only the word means for complexity 

presentation two is significantly different. Complexity pre­

sentation two had minimum complexity for words. With maximum 

complexity for words in complexity presentations one and 

three, there were no statistical differences. 

As indicated in Table 9 the word mean for complexity 

presentation two is significantly different for all groups. 

It is also observed that subjects with vocal training per­

formed superior to the other groups for complexity presenta­

tions one and three. 
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TABLE 6 

PILOT STUDY MEANS: TWO-WAY INTERACTIONS 

Interactions Word Mean Music Mean 

Group 

V 

Ear 

LE 

RE 

LE 

RE 

LE 

RE 

Complexity 

PI | 
P2 
P3 !; 

I PI 
P2 
P3 

L PI 
P2 :| 
- 3 .  ; j  

! i 
Complexity X Ear 

Group 

V 

PI 

P2 

P3 

LE 

RE 

LE 

RE 

LE 

RE 

34.0000 
34.6333 

31.5333 
35.3000 

28.1000 

33.3333 

32.9500 
37.5000 
32.5000 

32.1000 
39.6000 
28.5500 

27.9500 
34.6000 
28.6000 

27.9000 
34.1000 

37.9667 
36.5000 

27.7667 
32.6667 

29.6333 
26.333 

26.7667 
25.2667 

19.7000 
20.5000 

33.9500 
2 6 . 6 0 0 0  

23.4000 

33.0500 
25.1500 
19.8500 

27.4000 
20 .0000  

12.9000 

30.2333 
32.7000 

25.5667 
22.2667 

20.3000 
17.1333 



TABLE 7 

PILOT STUDY MEANS: THREE-WAY INTERACTIONS 

Interactions Word Mean Music Mean 

Group 

V 

Complexity X Ear 

PI 

P2 

P3 

LE 

RE 

LE 

RE 

LE 

RE 

31.9000 

34.0000 

38.3000 

36.7000 

31.8000 

33.2000 

35.4000 

32.5000 

27.5000 

25.7000 

26 .0000  

2 0 . 8 0 0 0  

PI 

P2 

P3 

PI 

P2 

P3 

LE 

RE 

LE 

RE 

LE 

RE 

LE 

RE 

LE 

RE 

LE 

RE 

29.5000 

34.7000 

39.6000 

39.5000 

25.5000 

31.6000 

22.3000 

33.6000 

36.0000 

33.2000 

2 6 . 0 0 0 0  

33.2000 

32.6000 

33.5000 

26.4000 

23.9000 

21.3000 

18.4000 

22.7000 

32.1000 

22.8000 

17.2000 

13.6000 

12.2000 
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TABLE 8 

TESTS ON WORD MEANS OF PILOT STUDY USING 
NEWMAN-KEULS PROCEDURE: COMPLEXITY 

Ordered 
Levels P2 PI P3 

SEq.95(r'54) 

Ordered 
Means 37.23 31.00 30.21 

SEq.95(r'54) 

37.23 6.23* .7.02* 3 3.19 

31.00 0.79 2 3.05 

*p < .05 

In Table 10, the left ear presentation two word mean 

is the only left ear word mean that was significantly dif­

ferent from the other means. Right ear complexity presen­

tations were greater than the left ear presentations for 

complexity presentations one and three. 

Music means for each group (see Table 11) indicate 

that subjects with vocal training and subjects with 

instrumental training did not perform significantly 

different. However, both groups performed significantly 

greater than subjects with limited training. 

As shown in Table 12, the music mean for each complex­

ity presentation is significantly different. Presentation 

one (minimum complexity for music) was different from pre-" 

sentations two and three (maximum complexity for music). 



TABLE 9 

TESTS ON WORD MEANS OF PILOT STUDY USING NEWMAN-KEULS 
PROCEDURE: GROUP X COMPLEXITY 

Ordered 
Levels 

IP2 VP2 LP2 VP1 VP3 IP1 LP3 IP3 LP1 
r SE,1.95(R'5L') 

Ordered 
Means 

SE,1.95(R'5L') 
Ordered 
Means 39.60 37.50 3̂ .60 32.95 32.50 32.10 29.60 • 28.50. :27.95 

39.60 2.10 5.00* 6.65* 7.10* 7.50* 10.00* 11.10* 11.65* 9 J+.57 
37.50 2.90 U.55* 5.00* 5.U0* 7.90* 9.00* 9.55* 8 k.kl 

3̂ .50 3.50 5.00* 6.10* 6.65* 7 U.36 
32.95 0.85 3.35* k.k5* 5.00* 6 3.68 
32.50 2.90 U.00* IT. 55* 5 3.52 
32.10 2.50* 3.60* k.15* k 3.31 
29.60 1.65 3 3.00 
28.50 2 2.U9 

*P < .05 



TABLE 10 

TESTS ON WORD MEANS OF PILOT STUDY USING NEWMAN-KEULS 
PROCEDURE: COMPLEXITY X EAR 

SEq.95(r'54) 

37.97 1.47 3.87* 5.30* 10.07* 10.20* 6 4.29 

36.50 2.40 3.83* 8.60* 8.73* 5 4.09 

34.10 1.43 6.20* 6.33* . 4 3.85 

32.67 4.77* 4.90* 3 3.49 

27.90 0.13 2 2.90 

*p < .05 

°Levels P2LE P2RE P1RE P3RE P1LE P3LE 

37.97 36.50 34.10 32.67 " 27.90 27.77 Means 
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TABLE 11 

TESTS ON MUSIC MEANS OF PILOT STUDY USING 
NEWMAN-KEULS PROCEDURE: GROUP 

Ordered 
Levels V I L 

r SEq.95(r'27) 

Ordered 
Means 27.98 26.02 20.10 

SEq.95(r'27) 

27.98 1.96 7.88* 3 5.99 

26.02 5.92* 2 4.95 

*p < .05 

TABLE 12 

TESTS ON MUSIC MEANS OF PILOT STUDY USING 
NEWMAN-KEULS PROCEDURE: COMPLEXITY 

Ordered 
Levels PI P2 P3 

r SEq.95(r'54) SEq.95(r'54) 

Ordered 
Means 31.47 23.92 18.72 

• 

31.47 7.55* 12.75* 3 3.19 

23.92 5.20* 2 3.05 

*p < .05 
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In Table 13, the right ear presentation one is noted 

as the only right ear music mean that is significantly dif­

ferent from any left ear music mean. The presentation three 

left ear mean is noted as being significantly different from 

presentation three right ear mean and indicates left ear 

superiority for music under maximum complexity. 

Multivariate ANOVA using the Hotelling-Lawley Trace 

Statistic for testing the equality of mean vectors for the 

dependent variables of main effects and interactions is 

presented in Table 14. Characteristic roots and F approxima­

tions are given. Significance for an effect not previously 
i 

observed in the univariate analysis of both dependent 

variables (group, ear, group by complexity) may be explained 

as being the result of common variance of the dependent 

variables. 

By using the multivariate ANOVA, the dependent 

measures are considered as a single response. Analysis 
i 
j 

of a single response may contain more information about 

the total effect of the independent variables than would 

a series of responses as considered in the univariate ANOVA. 

Therefore, results of the multivariate ANOVA indicated that 

there was some correlation between the dependent measures. 

When the word and music scores were considered as a single 

response, additional significance was observed for the 

effects of group and ear and the interaction of group by 

complexity. 



TABLE 13 

TESTS ON MUSIC MEANS OF PILOT STUDY USING NEWMAN-KEULS 
PROCEDURE: COMPLEXITY X EAR 

Ordered 
Levels 

PlRE PILE P2LE P2RE P3LE P3RE 

r SEq,95(r'54) 

Ordered 
Means 32.70 30.23 25.57 22.27 20.30 17.13 

SEq,95(r'54) 

32.70 2.47 7.13* 10.43* 12.40* 15.57* 6 4.06 

30.23 4.66* 7.96* 9.93* 13.10* 5 3.88 

25.57 3.30* 5.27* 8.44* 4 3.65 

22.27 1.97 5.14* 3 3.31 

20.30 3.17* 2 2.75 

*p < .05 



TABLE 14 

MULTIVARIATE ANOVA USING THE HOTELLING-LAWLEY 
TRACE STATISTIC: PILOT STUDY 

Variable 
Characteristic 

Root 
Percent F P 

Group 0Lj8872 100.00 5.55 0.0009* 

Ear 0.7993 100.00 10.39 0.0005* 

G x E 0 .-1370 95.38 0.90 0.4725 

Complexity 5.3334 78.90 87.88 0.0001* 

G x C 0.2375 68.43 2.26 0.0289* 

C x E 0.3008 63.34 6.17 0.0002* 

G x C x E 02 3 4 2 96.04 1.58 0.1382 

*p < .05 

Main Study 

Analysis of the results of the main study showed 

general support for the findings of the pilot study. 

Therefore, only the important differences between the two 

studies will be discussed in the data presentation for the 

main study. 

The mean, standard deviation, and coefficient of 

variation for both dependent measures are listed in Table 

15. The mean response for word scores represented 79.40% 

correct. The mean response for music scores represented j 
( i 

59.38% correct. Although both means were less than the j 

corresponding pilot study means (see Table 2), the coeffi­

cient of variation' for music scores was approximately the 

same. However, the coefficient of variation for word 

scores was lower. 
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TABLE 15 

• MEAN, STANDARD DEVIATION, AND COEFFICIENT 
OF VARIATION: MAIN STUDY 

Standard Coefficient of Mean 
Deviation Variation 

Words 31.7611 4.6931 14.7763% 

Music 24.7000 < 
( 

5.2842 21.7000% 

The analysis of variance for word scores is found 
i 

in Table 16. There were significant differences in the 

main effects of ear and complexity of presentation and in 

the interaction of complexity by ear. There was no signi­

ficant difference observed for the interaction effect of 

group by complexity as in the pilot study (see Table 3). 

In Table 17, it is observed that the right ear score was 

higher and that complexity presentation two was highest. 

Table 19 shows that the left ear score for complexity of 

presentation two was higher than right ear scores for all 

presentations. 

The analysis of variance for music scores is presented 

in Table 17. There were significant differences in the main 

effects of group and complexity of presentation and in the 

interaction of complexity by ear. There was no significance 

for the three-way interaction as observed in the pilot study 

(see Table 4). In Table 18, it is observed that the instru­

mental group scored highest whereas the vocal group scored 



TABLE 16 

ANOVA FOR WORDS: MAIN STUDY 

Source df SS F p 

Model 125 10937.36 3.97 0.0001* 

Error 54 1189.37 

Corrected Total 179 10937.36 

Group 2 653.51 2.56 0.0961 

Error 27 3448.38 

Ear 1 956.81 17.27 0.0003* 

G x E 2 107.78 0.97 0.3909 

Error 27 1495.58 

Complexity 
i 

2 2163.21 48.46 0.0001* 

G x C 4 95.76 1.07 0.3792 

Error 54 1205.37 

C x E 2 765.01 17.37 0.0001* 

G x C x E 4 45.96 0.52 0.7202 

Error 54 1189.37 

*p < .05 

highest in the pilot study (see Table 5). A right ear 

trend is also noted in Table 18. 
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TABLE 17 

ANOVA FOR MUSIC: MAIN STUDY 

Source df SS F P 

Model ' 125 13151.65 3.95 0.0001* 

Error ; | _54 1438.10 

Corrected Total 179 14589.75 

Group 2 1313.20 4.76 0.0169* 

Error 27 3723.05 

Ear 1 116.81 1.84 0.1863 

G x E 2 46.98 0.37 0.6943 

Error 2? 1715.05 

Cotnplexity 2 4428.40 88.52 0.0001* 

G x C 4 6.70 0.07 0.9915 

Error 54 1350.90 

C x E • 2 353.64 6.64 0.0026* 

G x C x E 4 96.92 0.91 0.4649 

Error 54 1438.10 

*p < .05 

Comparisons of the means of the pilot study and the 

main study indicated that the left ear scores of subjects 

with vocal training were lower in the main study. Parti­

cularly affected were the left ear scores for complexity 

presentations one and three. The right ear music scores 

of subjects with instrumental and limited training were 

higher for complexity presentation three. 
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i 

TABLE 18 

MAIN STUDY MEANS: MAIN EFFECTS 

Main Effect Word Mean Music Mean 

Group 

V 31.7167 24.0167 

I 34.1167 26.9167 

L 29.4500 20.3167 

Ear • 

LE 29.4556 22.9444 

RE 34.0667 24.5556 

Complexity 

PI 30.6000 30.1167 

P2 36.4667 23.1167 

P3 28.2167 18.0167 
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TABLE 19 

MAIN STUDY MEANS: TWO-WAY INTERACTIONS 

Interactions! \ Word Mean Music Mean 

Group 

V 

X Ear 

LE 

RE 

LE 

RE 

:LE 

RE 

28.6333 

34.8000 

32.8667 

35.3667 

26.8667 

32.0333 

22.8333 

25.2000 

26.8333 

27.0000 

19.1667 

21.4667 

Group X Complexity 

V PI 

'P2 

P3 

I PI 

P2 
! P3 

L PI 

P2 

P3 

30.5500 

37.3000 

27.3000 

32.9000 

39.2000 

30.2500 

28.3500 

32.9000 

27.1000 

30.0500 

23.7000 

18.3000 

33.5000 

26.1500 

21.1000 

2 6 . 8 0 0 0  

19.5000 

14.6500 

Complexity X 

PI 

P2 

P3 

Ear 

LE 

RE 

LE 

RE 

LE 

RE 

26.6333 

34.5667 

37.0667 

35.8667 

2 4. 6 6 6j7 

31.7667 

27.6000 

32.6333 

24.0333 

22 .2000  

17.2000 

18.8333 



63 

TABLE 20 

MAIN STUDY MEANS: THREE-WAY INTERACTIONS 

Interactions i 
! 1 

Word Mean Music Mean 

Group X Complexity 
! !  

X Ear 

V PI LE 25.6000 26.1000 

RE 35.5000 34.0000 

P2 LE 37.6000 24.6000 

RE 1 37.0000 22.8000 

P3 LE 22.7000 17.8000 

RE 31.9000 18.8000 

I PI LE 30.8000 33.1000 

RE 35.0000 33.9000 

P2 LE 40.0000 27.2000 

RE 38.4000 25.1000 

P3 LE 27.8000 20.2000 

RE 32.7000 22.0000 

L PI LE 23.5000 23.6000 

I 
1 RE 33.2000 30.0000 

• P2 • i | LE 33.6000 20.3000 

RE 32.2000 18.7000 

P3 LE 23.5000 13.6000 

RE 30.7000 15.7000 

As shown in Table 21, only the word mean for complexity 

presentation two was significantly different. Complexity 

presentation two had minimum complexity for words. 
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TABLE 21 

TESTS ON WORD MEANS OF MAIN STUDY USING 
NEWMAN-KEULS PROCEDURE: COMPLEXITY 

Ordered 
Levels P2 

: j 
PI P3 

r 
SEq.95)r'54) SEq.95)r'54) 

Ordered 
Means 

36.47 30.60 28.22 

36.47 5.87* . 8.25* 3 3.63 

30.60 2.38 2 3.47 

*p < .05 

In Table 22, the left ear presentation two word mean 

was the only left ear word mean that was significantly dif­

ferent from the other means. Right ear complexity presen­

tations were better than the left ear presentations for 

complexity presentations one and three. 



TABLE 22 

TESTS ON WORD MEANS OF MAIN STUDY USING NEWMAN-KEULS 
PROCEDURE: COMPLEXITY X EAR 

Ordered 
Levels 

P2LE P2RE P1RE P3RE PILE P3LE 

r SE9.95(r'54) 

Ordered 
Means 37.07 35.87 34.57 31.77 26.63 24.67 

SE9.95(r'54) 

37.07 

35.87 

34.57 

31.77 

26.63 

1.20 2.50 

1.30 

5.30* 

4.10* 

2.80* 

10.44* 

9.24* 

7.94* 

5.14* 

12.40* 

11.20* 

9.. 90* 

7.10* 

1.96 

6 

5 

4 

3 

2 

3.61 

3.44 

3.24 

2.94 

2.44 

*p < .05 
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, i 

Music means for each group (see Table 23) indicated 

that subjects with instrumental training performed signi­

ficantly different,than subjects with vocal and limited 
li 

training. There w^js no significant difference between 

vocal and instrumental training groups in the pilot study 

(see Table 11). Analysis of the differences in the results 

indicate that the scores of the vocal group were lower in 

the main study. Instrumental ajid limited group scores 

were approximately the same. 

TABLE 23 

TESTS ON MUSIC MEANS OF MAIN STUDY USING 
NEWMAN-KEULS PROCEDURE: GROUP 

Ordered 
Levels 

I V L 

r sEq.95(r'27) sEq.95(r'27) 

Ordered 
Means 

26.92 24.02 20.32 

26.92 2.90* 6.60* 3 3.31 

24.02 • i 3.70* 2 2.73 

*p .05 

As shown in Table 24, the music mean for each com­

plexity presentation was significantly different. Presen­

tation one with minimum complexity for music was different 

from presentations two and three with maximum complexity 

for music. 
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In Table 25, the presentation on^ right ear mean 
! i '• 

was observed to bejsignificantly different from all means. 
il 

The left ear mean tyas greater than the right ear mean for 
:f 
! ! 

presentation two, pj>ut not for presentation three. As 

shown in Table 13,<a left ear effect for music is observed 

foi: presentation three in the pilot study. 

TABLE 24 

TESTS ON MUSIC MEANS OF MAIN STUDY USING 
NEWMAN-KEULS PROCEDURE: COMPLEXITY 

Ordered 
Levels 

PI P2 P3 

r 
SEq.95(r'54) SEq.95(r'54) 

Ordered 
Means 

30.12 23.12 18.02 

30.12 7.00* 12.10* 3 3.85 

23.12 5.10* 2 3.67 

*p < .05 



TABLE 25 

TESTS ON MUSIC MEANS OF MAIN STUDY USING NEWMAN-KEULS 
PROCEDURE: COMPLEXITY X EAR 

Ordered 
Levels PlRE PILE P2LE P2RE P3RE P3LE 

r SEq.95(r'54) 

Ordered 
Means 32.63 27.60 24.03 22.20 18.83 17.20 

- ; -

32.63 5.03* 8.60* 10.43* 13.80* 15.43* 6 3.97 

27.60 3.57* 5.40* 8.78* 10.40* 5 3.79 

24.03 1.83 5.20* 6.83* 4 3.56 

22.20 3.37* 5.00* 3 3.23 

18.83 1.63 2 2.69 

*p < .05 

en 
oo 



Multivariate jjNOVA using the Hotelling-Lawley Trace 

Statistic for testing the equality of mean vectors for the 

dependent variables of main effects and interactions is in 

Table 26. Characteristic roots and F approximations are 

given. Significant differences are noted for the effects 

of ear, complexity, and complexity by ear. In the pilot 

study significance was also observed for the effects of 

group and group by; complexity. The differences appear to 

be the result of lcjwer variability of word scores for each 

group in the main study. 

TABLE 26 

MULTIVARIATE ANOVA USING THE HOTELLING-LAWLEY 
TRACE STATISTIC: MAIN STUDY 

Variable Characteristic 
Root 

Percent F P 

Group 0.3687 99.48 2.32 0.0700 

Ear 0.8100 100.00 10.53 0.0004* 

G x E 0.0735 96.13 0.48 0.7520 

Complexity 3.2836 65.26 65.41 0.0001* 

G x C 0.0795 95.10 0.54 0.8216 

C x E 0.6434 91.16 9.18 0.0001* 

G x C x E 0.0682 67.69 0.66 0.7295 

*p < .05 
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CHAPTER V 
i 

SUMMARY AND CONCLUSIONS 

! 1 

l| Introduction 
i 

Investigators!(Kiraura, 1961; Shankweiler, 1966) 

have concluded that verbal stimuli are processed by the 

left cerebral hemisphere and musical stimuli are processed 

by the right cerebral hemisphere. Other researchers 

(Critchley, 1972; Dimond, 1972) have questioned the mode 

of cerebral processing of stimuli with combinations of 

verbal and musical components. These questions concern 

the viability of theories that verbal and musical components 

when presented as singing (combination of verbal and musical 

components) are processed: 

1. using bilateral hemisphere involvement—parallel 

processing of components by both hemispheres 

2. using single hemisphere involvement—processing 

of both components by one hemisphere. 

These theories appear to be diametrically opposed. 

Variables have been considered by other researchers that 

might affect the processing of musical stimuli: musical 

training of subjects (Bever and Chiarello, 1974) and 

complexity of the stimulus (Goodglass and Calderon, 1977). 

The present study was designed to test the viability of 

bilateral or single hemisphere processing of sung stimuli 
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as it may be influenced by the musical training of subjects 

and the complexity of the stimulus. 
i 

Two hypotheses served as a basis for investigation: 

1. Subjects with vocal training will process sung 

stimuli differently than subjects with other musical 

training 

2. Subjects v/ith formal musical training will process 

variations in complexity of sung stimuli differently than 

subjects with limited musical training. 

Sung stimuli were presented to subjects with vocal 

training,, instrumental training, or limited musical training. 

All subjects were either college juniors or seniors. Results 

from the study provided evidence for single hemisphere pro­

cessing of sung stimuli depending on the complexity of the 

stimulus. However,, there was no effect on the mode of 

hemisphere processing based on musical training (these 

findings were also supported by a pilot study). Therefore, 

neither hypothesis was statistically significant. 

Results and Discussion 

Subjects were administered a dichotic listening test 

using sung stimuli. Responses were evaluated for accuracy 

of reproduction of the components—verbal and musical—of 

the stimuli. Results were recorded as scores for accuracy 

of verbal reproduction (word scores) and scores for accuracy 

of musical reproduction (music scores). Analysis of the 
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data was achieved through the use of multivariate and 
; i 

univariate ANOVA and a studentized range statistic. A 

discussion of the results are subsequently categorized 

by main effect. 

Group 

Subjects were:assigned to one of three groups, based 

on the musical training of subjects. The three groups of 

musical training wjere entitled vocal, instrumental, and 

limited. Based on multivariate ANOVA, there were no 

significant differences between the word and music scores 

of each group (Table 26). In the multivariate ANOVA the 

word scores and music scores were considered as a single 

response. Results of the univariate ANOVA revealed signifi­

cant differences in the music scores for each group (Table 

17), but not in word scores (Table 16). In the univariate 

ANOVA the word scores and music scores were analyzed indepen­

dently. Subjects with instrumental training had significant­

ly more accurate music scores than subjects with vocal 

training or subjects with limited musical training (Table 

23). Subjects with vocal training had significantly more 

accurate music scores than subjects with limited musical 

training. It was expected that, due to their training, 

subjects with vocal training would have significantly more 

accurate word and music scores than the other subjects in 

the study. 



Results of the' multivariate ANOVA for group effect were 
i ;  

not supported by th6 pilot stJiidy (Table 14). Results from 

the univariate ANOVA revealed that music scores of subjects 

with vocal training were superior to music scores of subjects 

with instrumental training, but not significantly different 

(Table 11). The differences in the pilot study and main 

study can be explained by the fact that more accurate word 

and music scores for subjects with vocal training were 

obtained in the pilot study. Specifically, the verbal and 

musical components of stimuli presented to the left ear of 

subjects with vocal training were more accurately reproduced 

in the pilot study;than in the main study. Comparisons of 

work and music scores for subjects with instrumental and 

limited musical training in the pilot and main studies re­

vealed no corresponding differences in the accuracy of 

reproduction. It appears that if training does effect * i 

differences in the ability to process sung stimuli, it 

affects the processing of stimuli presented to the left ear 

of subjects with vocal training. A plateau effect for 

hemisphere efficiency is suggested as a reason for the dif­

ference in processing accuracy. As a subject receives 

vocal training, the ability of the right hemisphere to 

process sung stimuli is affected. As the efficiency of the 

right hemisphere increases, the processing of sung stimuli 

can switch from the left hemisphere to the right hemisphere. 
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The effect of training on right hemisphere processing 

efficiency is in contrast to the conclusions of Bever and 

Chiarello (1974). They concluded that the processing 

ability of the left hemipshere is affected by training. 

The stimuli used by Bever and Chairello were melodies 

played by an instrument, whereas the stimuli employed in 

this study were sentences sung to melodies. A possible 

explanation for the lack of support for the findings of 

Bever and Chiarello may be that sung stimuli are perceived 

differently than stimuli played by an instrument. The 

combination of verbal and musical components in sung stimuli 

may necessitate different processing strategies than the 

strategies used for stimuli without the verbal component. 

If different processing strategies are utilized, then 

training may affect the hemispheres differently. 

Ear 

Subjects were presented stimuli to both ears simul­

taneously using a dichotic listening technique. The 

assumption of researchers using the technique is that by 

presenting contrasting stimuli to both ears dichotically, 

stimuli will be processed more efficiently in the hemi­

sphere that is specialized for processing those stimuli ,| 

(Broadbent, 1954). Results of tests utilizing the tech­

nique are often given as ear scores and are assumed to 

represent involvement by the contralateral hemisphere. 



Results of thp multivariate ANOVA revealed a signi­

ficant ear effect ;(Table 26) . Treatment of the data using 

!| 
univariate ANOVA snowed significant differences in word 

scores (Table 16), but not in music scores (Table 17). 
. 1 

The right ear effect for words is in agreement with the 
•I 

literature. 

The lack of a significant ear effect for music is in 

contrast to the findings of Goodglass and Calderon (1977). 
i i 
; i 

One reason for thenlack of significance appears to be the 

mediating effect of variations in complexity of stimulus 

presentation. This mediating effect is a statistical 

balance resulting from more accurate music scores for the 

left ear than the right ear for one variation in stimulus 

complexity and more accurate music scores for the right 

ear than the left ear for another variation (stimulus 

complexity is discussed in the next section). Therefore, 

different modes of processing appear to be used for the 

different complexity variations. 

The group by ear interaction was not significant. 

A subject's mode of processing sung stimuli was not signi­

ficantly affected by musical training. 

Complexity 

The complexity of stimulus presentation was varied by 

increasing the number of verbal and/or musical differences 

between ear presentations. Presentation one (PI) utilized 

different words sung to the same melody for each ear. 
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Presentation two (P2) utilized identical words sung to 

different melodies for each ear. Presentation three (P3) 

utilized different words sung to different melodies for 

each ear. 

The complexity effect was significant based on both 

multivariate and univariate ANOVA (Table 26, Table 16, 

and Table 17). Results of the univariate ANOVA for words 

revealed that all subjects reproduced the verbal component 

of the sung stimuli more accurately when the words had 

minimum complexity (P2) than when the words had maximum 

complexity (PI, P3). However, there was not a significant 

difference between word scores for stimuli of maximum 

complexity (PI, P3). 

Results of the univariate ANOVA for music revealed 

that all subjects reproduced the musical component of the 

sting stimuli more accurately when the music had minimum 

complexity (Pi) than when the music had maximum complexity 

(P2, P3). There was a significant difference between 

music scores for stimuli with maximum complexity (P2, P3). 

The difference betv/een the complexity variations P2 and P3 

appear to be the result of interaction with the verbal 

complexity. Therefore, the musical component was processed 

more accurately when presented with minimum verbal complexity 

(P2) than when presented with maximum verbal complexity (P3). 

This finding indicates that processing efficiency for 

musical components of sung stimuli can be influenced by 

verbal complexity. 
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The complexity by ear interaction: was also significant 

based on multivariate and univariate ANOVA and indicated 

single hemisphere processing of both verbal and musical 
! :  

components in sung'!stimuli. However, analysis of the data 

revealed reversals;!of hemisphere processing for both verbal 

and musical components depending on the complexity of 

stimulus presentation (Table 19). When the stimulus presen­

tation had maximum complexity for words and minimum complex­

ity for music (PI), there was a right ear advantage for both 

verbal and musical components. When the stimulus presenta­

tion had minimum complexity for words and maximum complexity 

for music (P2), there was a left ear advantage for both 

verbal and musical components. When the stimulus presenta­

tion had maximum complexity for both words and music (P3), 

there was a right ear advantage for both verbal and musical 

components. However, in the pilot study there was a right 

ear advantage for the verbal component and a left ear 

advantage for the musical component in P3. 

The reversals of ear dominance indicated differences 

in the processing strategies based on the stimulus complex­

ity. In Pi the left hemisphere processed both components 

in the sung stimuli. In P2 the right hemisphere processed 

both components. In P3 the left hemisphere processed both 

components. Subjects appear to have processed the verbal 

and musical components of a sung stimulus as one unit 

rather than as two different elements (John, 1972). 



78 

j 

Based on assuinjptions of the dichotic listening para-
i i  

digm (Broadbent, 19154) , the reversals of ear dominance can 
) : 

be the result of attending differences of the hemispheres. 

Subjects may have attended to that component of the sung 

stimulus with maximum complexity. Therefore, in PI the 

verbal component was more complex than the musical component 

and was more attentionable. In P2 the musical component was 

more complex than the verbal component and was more atten­

tionable. The result of presenting stimuli with variations 

in complexity is that the hemisphere that is more efficient 

for processing the more attentionable component—verbal or 

musical—may become efficient in processing the other 

component. In effect, the stimulus may be processed as a 

unit by the hemisphere that is more efficient for processing 

that component of the stimulus with maximum complexity. 

With maximum complexity for both verbal and musical 

components (P3), the left hemisphere was more efficient for 

both components. With maximum complexity, stimuli may be 

processed according to component priority (Norman, 1968). 

Therefore, verbal components may be more attentionable than 

musical components, given maximum complexity for both 

components. 

The difference in the pilot study for P3 appears to 

be the result of more accurate reproduction of the musical 

component for subjects with vocal training in the pilot 

study. As discussed previously in this chapter, the 
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processing efficiency of a hemisphere (plateau effect) may 

be influenced not only by training, but also by stimulus 

complexity. In effect, subjects with vocal musical train­

ing may utilize bilateral hemisphere processing for verbal 

and musical components in sung stimuli, when presented with 

maximum complexity'. With maximum complexity the left 

hemisphere processes the verbal component and the right 

hemisphere processes the musical component. However, the 
' t 

reason for the mor& accurate reproduction of the musical 

component by subjects with vocal training in the pilot 

study was not evident. 

Conclusions 

Implications for a Theory of Single Hemisphere 
Processing of Sung Stimuli 

The data from the present study render information to 

be considered in support of a theory of processing of sung 

stimuli. The results are incompatible with the theory of 

Goodglass and Caldeiron (1977) of bilateral hemisphere pro­

cessing, which .describes the simultaneous processing of 

verbal components by the left hemisphere and the musical 

components by the right hemisphere. The results of this 

study do support a theory of single hemisphere processing 

of sung stimuli. 

In contrast to previous research (Bartholomeus, 1974b; 

Bogen and Gordon, 1971; Kimura, 1964; Shankweiler, 1966), 
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verbal and musical 'components of sung stimuli can be 

processed by either hemisphere. However, both components 

of a sung stimulus appear to be processed as a single unit 

by one hemisphere, instead of two elements processed by 

opposite hemispheres. In effect, each hemisphere can pro­

cess sung stimuli independently of the other hemisphere. 

This conclusion is in accord with a theory of hemispheric 

interference (Galin, 1974; Nelson, 1978; Ornstein, 1972) 

which proposes that hemispheric interaction produces 

interference in processing and that only one hemisphere 

can be functionally dominant. 

i 

Influence of Training and Complexity of Stimulus 

In contrast to; Bever and Chiarello (1974) who pro­

posed laterality effects for musical stimuli based on 

training, the present study did not reveal significant 

differences in the processing of sung stimuli based on 

musical training. However, the complexity of stimulus 

presentation did affect the processing efficiency of each 

hemisphere. 

As the complexity of stimulus presentation was 

varied, a shift in hemisphere dominance was evidenced. 

Thus, a plateau for the processing efficiency of each 

hemisphere was attained based on the stimulus complexity. 

The result of varying the complexity of the stimulus was 

that one component—verbal or musical—of the sung stimulus 
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became more attentlonable. As the complexity of the 
i 

verbal component was increased, the left hemisphere becanib 

more efficient for.; processing the sung stimulus. As the 

complexity of the jifnusical component was increased, the 

right hemisphere became more efficient. However, when 

complexity for bot;h components was increased the left 

hemisphere became the efficient hemisphere. 

These finding^ may explain the contradictory evidence 

concerning laterality effects for verbal and musical 

stimuli. In studies utilizing separate verbal stimuli and 

musical stimuli (K.imura, 1961; Kimura, 1964; Shankweiler, 

1966), subjects processed verbal stimuli with the left 

hemisphere and musical stimuli with the right hemisphere. 

The present study supports these findings of functional 

lateralization depending on the attentionable components 

of the stimulus. In studies utilizing stimuli that combine 

verbal and musical components (Bartholomeus, 1974b; Bogen 

and Gordon, 1971; Goodglass and Calderon, 1977), the 

findings may be the result of the uniqueness of the combina­

tion of the components. Thus, the verbal and musical 

components are not combined, but presented in parallel. 

Sung vowels, sung syllables, sung digits, and sung conson-

ant-vowels represent unique combinations that allow each 

hemisphere to attend to that component for which it is 

functionally dominant. 
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However, in the present study, the stimuli were 

assumed to be more representative of singing behavior 

than stimuli used in previous studies. Words and melodies 

were composed using sentences and traditional sequences of 

pitches. The result of using more representative stimuli 

is that the stimuli more nearly match past experiences of 

the subject stored in memory. Galin (1976) suggests that 

memory traces can reside in both hemispheres, but are 

activated in a specific hemisphere based on the task re­

quired. The results of this study support that conclusion. 

When the verbal component of a sung stimulus is more 
| 

attentionable than the musical component, the left hemi­

sphere processes the stimuli more efficiently due to its 

processing abilities for speech. When:the musical component 

of a sung stimulus is more attentionable than the verbal 

component, the right hemisphere processes the stimuli more 

efficiently due to its processing abilities for music. 

When the complexity of both components of a sung 

stimulus is increased, the processing mode for speech (left 

hemisphere) is utilized. Given equal complexity for both 

components the verbal component becomes more attentionable. 

The reason for this finding may be the result of a priority 

system of attention based on the number of experiences of a 

subject in memory (Norman, 1968). Therefore, verbal com-: 

ponents may have attention priority over musical components 

given equal complexity for both components. 
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Importance to Music Education 

The results and conclusions of this study concern the 

processing of sung stimuli. It was assumed that the stimuli 

utilized in this study were more representative of singing 
I 

behavior than stimuli used in previous research. The conclu­

sions established in this study would seem to be relevant in 

applications to singing and singing pedagogy. Thus, the 

practice of presenting the word.s separately from the music 

in a song does not 'appear to correlate with the processing 

of verbal and musical components of a sung stimulus as a sin­

gle unit; an audience may perceive words more effectively than 

music in complex vocal music; specific styles of vocal music, 

such as folk music, pop music and country western music, may 

emphasize the verbal content of a song more than the musical 

content and may necessitate a dependence on the clarity of 

the words for perception; specific styles of vocal music, 

such as art song and opera, may emphasize the musical con­

tent of a song more than the verbal content and may neces­

sitate a dependence on musical knowledge for perception; and 

songs presented in a classroom should be selected not only 

for verbal qualities, but also for musical qualities. 

These applications can be used to better educate 

students, teachers, audiences, and performers in the pro­

cessing of singing, as it relates to classroom singing, 

social singing, vocal concerts, popular music, opera, and 

other facets of the singing behaviors. 
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Recommendations 

It is recommended that additional research be conducted 

tO investigate variables affecting left ear scores for sub­

jects wijth vocal training. Differences between the main and 

pilot studies indicated a plateau effect for hemisphere 

processing of sung stimuli by subjects with vocal music 

training. The plateau effect was apparent for right 

hemisphere processing of musical components. If subjects 

with vocal training do process sung stimuli differently 

than other subjects, it may be the result of more efficient 

right hemisphere processing of musical components. 
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TEST SCRIPT 

You are participating in an experiment to assess 

how subjects perceive and produce singing. You will be 

given two five-minute tests in which you will be asked to 

listen to six short examples of melodies with words. 

After listening to two examples you will be asked to 

reproduce the examples within a given time limit. The 

two examples will be given at the same time, one in the 

right ear and one in the left ear. 

For example, you may be given the following in the 

right ear: 

J J 
I sing right ear 

At the same time you will be given another example in the 

left ear: 

j J j ii 
I sing left ear 



The two examples, when given at the same time, will be 

preceded by a count of four and will sound as follows: 

Right 1-2-3-4 
J J *-

I sing right ear 

Left 1-2-3-4 

I sing left ear 

99 

The counts before each set of examples will prepare you 

for the set of examples. After the four counts the 

examples will be given. You are asked to reproduce the 

examples within twelve seconds. To practice, the previous 

example will be presented in the designated format. Please 

respond in the given time interval. 

Right 1-2-3-4 

I sing right ear 

Left 1-2-3-4 

J J J 
I sing left ear 

(12 seconds) 

(12 seconds) 
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There are three different types of example sets: 

1. The words to each ear are identical, but the 

melodies to each ear are different. 

2. The words to each ear are different, but the 

melodies to each ear are identical. 

3. The words to each ear are different, and the 

melodies to each ear are different. 

Please respond during the given time interval with 

some response. If you can not reproduce both examples of 

the set in total, reproduce what you are able to produce. 

Any response is better than no response. Remember, you 

will have only twelve seconds to reproduce each example 

set. 
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QUESTIONNAIRE 

The following questionnaire will be used to classify 

and select subjects to participate in a study of aural 

perception and singing. Selected subjects will be asked to 

listen and respond to a prepared tape: the prepared tape 

will consist of instructions and two five-minute listening 

tests. The listening tests will consist of short melodies 

with words. The subject will be asked to reproduce the 

melodies with words as sung on the prepared tape. Vocal 

quality will not be important: only the ability to repro­

duce the melodies with words will be evaluated. Subjects 

selected to participate in the study will be eligible for 

a ten-dollar remuneration awarded to the best score in 

each category: music majors and nonmusic majors. Subjects 

will be contacted for a time to participate in the listening 

test. 

Steve Mayo 

Brevard Music Center 

Box 592 

Brevard, North Carolina 28712 
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Name 

General Data 

1. Classification: college junior college senior 

2. Sex: male female 

3. Handedness: right left 

4. Major: music-vocal music-instrumental other 

Formal Music Experience 

Formal music experience is defined as private or class 
instruction in music, singing, or in aplying a musical 
instrument. 

5. Number of years of formal study of voice during the pre­

c e d i n g  e i g h t  y e a r s  ( 1 9 7 1 - 7 8 ) :  0 1 2 3 4 5 6 7 8  

last year of study: 

6. Number of years of formal study of an instrument during 

t h e  p r e c e d i n g  e i g h t  y e a r s  ( 1 9 7 1 - 7 8 ) :  0 1 2 3 4 5 6 7 8  

last year of study: 

7. Number of years participation in performing music organi­
zation of a school, church, or community during the pre­

c e d i n g  e i g h t  y e a r s  ( 1 9 7 1 - 7 8 ) :  0 1 2 3 4 5 6 7 8  

last year of participation: 

8. Number of years of formal study of music theory, music 
appreciation, and/or general music during the last eight 

years (1971-78): 012345678 

Informal Music Experience 

Informal music experience is defined as singing or playing 
a musical instrument, or participating in other musical ex­
periences without the aid of private or class lessons. 

9. Number of years of informal music experience with voice 
or an instrument during the last eight years (1971-78): 

0 1 2 3 4 5 6 7 8  

specify: 

10. I go to musical concerts: regularly occasionally never 

11. Have you had a history of hearing disorders: yes no 

12. If selected, will you be willing to participate: yes no 
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SCORING SHEET 

Subject Number : Question: 5. 0 1 2 3 k 5 6 7 8 
6. 0 1 2 3 k 5 6 7 8 

Question: 1. 1 2 7. 0 1 2 3 k 5 6 7 8 
2. 1 2 8. 0 1 2 3 5 6 7 8 
3. 1 2 0 1 2 3 It 5 6 7 8 
h. 1 2 0 1 2 3 It 5 6 7 8 

9. 0 1 2 3 It 5 6 7 8 
10. 0 1 2 3 It 5 6 7 8 

Test A Test B 

Order Pres. Ear: Order Pres. Ear: Order Pres. Order Pres. 

1. 1 M 0 1 2 3 it 0 1 2 3 it 1. 3 H 0 1 2 3 't 0 1 2 3 t  
• W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

2. 1 M 0 1 2 3 it 0 1 2 3 H 2. 2 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

3. 2 M 0 1 2 3 it 0 1 2 3 it 3. 3 M 0 1 2 3 U 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

It. 2 M 0 1 2 3 it 0 1 2 3 it it. 1 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

5. 1 M 0 1 2 3 it 0 1 2 3 H 5- 1 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it VJ 0 1 2 3 it 0 1 2 3 it 

6. 2 M 0 1 2 3 it 0 1 2 3 it 6. 3 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

7. 3 M 0 1 2 3 it 0 1 2 3 it 7. 2 M 0 1 2 3 1+ 0 1 2 3 it 
W 0 1 2 3 U 0 1 2 3 it W 0 1 2 3 H 0 1 2 3 it 

8. 2 M 0 1 2 3 it 0 1 2 3 U 8. 1 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

9. 3 M 0 1 2 3 it 0 1 2 3 it 9. 1 M 0 1 2 3 U 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

10. 1 M 0 1 2 3 it 0 1 2 3 it 10. 1 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 H W 0 1 2 3 it 0 1 2 3 U 

11. 2 M 0 1 2 3 it 0 1 2 3 it 11. 3 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 U 

12. 3 M 0 1 2 3 it 0 1 2 3 it 12. 2 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

13. 3 M 0 1 2 3 it 0 1 2 3 it 13. 2 M 0 1 2 3 it 0 1 2 3 U 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

lit. 3 M 0 1 2 3 it 0 1 2 3 it lit. 2 M 0 1 2 3 1) 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 

15. 1 M 0 1 2 3 it 0 1 2 3 it 15. 3 M 0 1 2 3 it 0 1 2 3 it 
W 0 1 2 3 it 0 1 2 3 it W 0 1 2 3 it 0 1 2 3 it 
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SCORING TABLE 

Presentation 

1 2 3 

A B A B A B 

M-L 

W-R 

W-L 

W-R 
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TEST A 

Buy it from Sears, The band plays well, 

Coffee and sugar, please, I hate boring books, 

You need to print. You need to print. 

It 
—& :w 

is snow­ ing. It is snow­ ing. 

She wears three rings, 

Where are you going. 

What is your name? 

Where are you going. 

i 
Mom went shop- ping. Fire -men are brave, 
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Cook the vegta- bles. Cook the vegta- bles. 

The school-bus is full. How do you do. 

The weather is coK. 

Rock music is loud, 

Your son sings well. f ill. 

Rock music is loud. 

Children have ener—gy. 

Football, players are big, 

j ^ 
Trees blow in the wind. 

C—A—T, spells cat! 

r~i 
1— 

J * ; J •L 

The roof will leak. 

My dog is dead. 

I am not here. 

Where is John- ny? 
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TEST B 

He went to church. 

Big gloves are warm. 

He plays a flute. 

Big gloves are warm. 

Ham- mer the nail. . That man grows corn. 

Mom changed her mind. My mother said no. 

I like atf- pies. 

Your clock is fast, 

i 
New cars smell clean. 

Please pull my tooth. 

am hun­ gry. 

-m 

am hun­ gry. 



Ill 

Sweaters cost mon- -ey. The light is on. 

Make your choice, please. 

Jill loves Jer- -ry. 

Dress more warm- ly. 

n 
The flowers are red. 

My boots are wet. 

Where is my pen? 

Do you feel ill? 

The flowers are red. 

My floor is clean. 

i 

w 

Mon- day is bad. 

I 
Bring it here now. 

My floor is clean. 

Mon- day is bad. 

Your picture is clear. 



112 

GLOSSARY 

Ablation: Surgical destruction of part of the brain 

Afferent: Conveying toward; e.g., of nerve impulses into 
the central nervous system 

Alpha waves: EEG pattern when the brain is "at rest" 
(i.e., not responding to sensory inputs), showing 
regular waves of large amplitude (see Electroencephalo­
gram) 

Amusia: Inability to perceive music 

ANSI (1969): American National Standards Institute's 
Specification for Audiometers (ANSI S3.6—1969); refers 
to standardization of sound pressure levels which 
represent audimetric zero for pure tones and for speech 

Aphasia: General name for psychological disorders of speech 

Ascending reticular activating system: Diffuse net of cells 
in brain stem concerned with attention, sleep and 
wakefulness 

Brain stem: Central core of brain or "stalk" to which 
other structures are attached; includes medulla and 
ascending reticular activating system 

Calibration tone: Tone frequently used to insure that 
experimental equipment remains in calibration from one 
test to another; assures repeatability of the output 
signal levels of the equipment 

Cerebrum: Brain region originating as bilateral swelling 
of forebrain and ultimately forming the cerebral hemi­
spheres, the largest brain structures in mammals, con­
cerned with association and coordination of nerve 
impulses and, in humans, thought and intelligence 

Contralateral: Relating to the opposite side 

Corpus callosum: Sheet of white matter between the cerebral 
hemispheres composed of myelinated fibers crossing from 
one side to the other 
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Cortex: Superficial layer of tissue usually pertaining 
to that part of the cerebrum which is rich in nerve-
cell bodies and synapses 

Efferent: Proceeding away from; e.g., nerves carrying 
impulses from the central nervous system to effectors 

Electroencephalogram (EEG): The recording of electrical 
brain patterns through electrodes placed on the skull; 
records include such characteristic wave forms as alpha, 
delta, etc. 

Evoked potential: Neural activity resulting from applied 
stimulation, e.g., by an implanted electrode 

Gestalt: The perception and the organization of mental 
processes in relation to patterns of sensory stimuli 

Habituation: Gradual adaptation to an irritation which, 
in nerve cells, is signaled by a cessation or reduction 
in the generation of nerve impulses 

Hertz (Hz): Primary measure of stimulus frequency 

Hippocampus: Brain region situated in the temporal lobe 
of the cerebral hemispheres, having a prime, but 
unknown, role in memory formation 

IAC Sound Booth: Prefabricated audiometer test booth 

Ipsilateral: Relating to the same side 

Learning: General term for a category of changes in an 
organism whereby behavior becomes modified, other than 
by drugs or fatigue 

t 
i 

MX-41/AR cughion: Commonly mounted on earphones used in 
experimentation and in audiology clinics; doughnut 
shaped and made of sponge neoprene 

Neuron: A nerve cell 

Plasticity: The phenomenon of brain function and structure 
being changed by experience 

Puretone: Sinusoidal acoustic signal described entirely 
in terms of frequency and intensity 

Reticular formation: See Ascending reticular activating 
system 
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Split brain: A brain divided surgically into right and 
left halves so that each half can be trained and tested 
independently 

Sweep Frequency Screening: Audiometric test for quick 
evaluation of hearing efficiency; subjects administered 
pure tone pulses at an acceptable decible level (20 db) 
and required to identify all tones 

Synapse: The point where neurons communicate 

TDH-39 earphones: Commonly used in psychoacoustic experi­
mentation and in audiometric testing; frequency response 
is usually limited to 6000 Hz 

< 


