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Motivated by the problem of optimizing sensor network covers, we general-

ize the persistent homology of simplicial complexes over a single radial parameter

to the context of multiple radial parameters. The persistent homology of so-called

multiradial (multi)filtrations is identified as a special case of multidimensional per-

sistence. Specifically, we exhibit that the persistent homology of (multi)filtrations

corresponds to both generalized persistence modules of the form ZN
≥0 → ModR

and (multi)graded modules over a polynomial ring. The stability of persistence

barcodes/diagrams of multiradial filtrations is derived, along with explicit bounds

associated to perturbations in both radii and vertex position. A strengthening of

the Vietoris-Rips lemma of [DSG07, p. 346] to the setting of multiple radial param-

eters is obtained. We also use the categorical framework of [BdSS15] to show the

persistent homology modules of multiradial (multi)filtrations are stable.
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CHAPTER I

INTRODUCTION

Topological data analysis combines methods from algebraic topology and statis-

tical theory to associate topological invariants to point cloud data. A typical prob-

lem in data analysis is to classify an unknown space U from a finite point sample

S embedded in an ambient space A. The motivation to infer topological features

comes from the need to learn intrinsic properties of the unknown space U. This

is in contrast to extrinsic geometric properties, such as distance or curvature, that

may have been imposed on S through a topological embedding.

Persistent homology is the masthead of the collection of tools comprising topo-

logical data analysis. Early formalizations of persistence theory can be found in

[Fro92], [FD95], [Rob99], and [ELZ02]. The charm of persistence is in its ability

to associate a system of topological invariants to a dataset in the following sense.

Suppose we have a filtered simplicial complex K = {K•} which is a family of sub-

complexes where Kp is a subcomplex of Kq whenever p ≤ q ∈ P. Assume H is a

homology theory, which can be thought of as a mechanism for transforming topo-

logical spaces into algebraic objects, such as vector spaces, and continuous maps

into homomorphisms, or linear maps. This is made precise using the concept of

functoriality from category theory. Persistent homology captures the homological

structure of a filtration through the direct sum of algebraic objects derived from

topological spaces.
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Figure 1. Simplicial Filtration over a Single Radial Parameter

The applications of persistence theory are widespread over many scientific dis-

ciplines. Examples include: analysis of wireless sensor networks [DSG06], [DSG07],

[AC15], [BGK15]; identification of breast cancer subtypes [NLC11]; preclinical iden-

tification of neurological injury [NPL+15]; analysis of protein folding and confor-

mation [XW15], [CBPC13]; analysis of the cerebral circulatory system [BMM+14].

Persistent homology’s success as an exploratory tool is due to the stable and simple

summaries called persistence barcodes/diagrams which exist in the case
⊕

H(K•)

is singly graded [ZC05]. In addition, there is a robust statistical theory built around

these visual topological summaries [MMH11], [TMMH14], [Bub15], [ACE+15].

The typical persistence pipeline converts a point cloud into a simplicial com-

plex that is filtered along a single radial parameter; see [Ghr08]. Using the alge-

braic and categorical language established in [CZ09] and [BdSS15], we will de-

velop a theoretical framework for computing the persistent homology of a simpl-

cial complex that is filtered over multiple radial parameters. The motivation for

this task comes from the coverage problem for wireless sensor networks, in which

the question is to qualify the extent of domain coverage by a collection of sensing

regions; see [DSG07]. We hope that the concepts developed in this thesis will help
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inform planned implementation for optimizing network covers using computa-

tional commutative algebra.
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Dim 1

Figure 2. Topological Summaries Computed By [TVJA14]

In Chapter II, we provide a review of simplicial homology and the persistent

homology of simplicial filtrations. Our content with simplicial homology is due to

the following theorem.

Theorem 1.1 (Eilenberg-Steenrod Theorem [ES52, pp. 100-101]). Let H and H′ be

two homology theories defined on admissible categories containing all triangulable pairs

and their maps. If H and H′ have isomorphic coefficient groups, then H and H′ are iso-

morphic.
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Figure 3. Illustration of Sensor Network Optimization

By Theorem 1.1, various homology theories populating algebraic topology are iso-

morphic up to triangulable topological spaces. This allows us to favor simplicial

homology since it is the most computationally effective for homology inference

from point clouds.

We devote Chapters III-VI to the development of persistent homology of mul-

tiradial filtrations, that is, the persistent homology of simplicial filtrations of nerve

and flag complexes over multiple radial parameters. We identify the persistence

of multiradial (multi)filtrations with functors from a preordered set to the cat-

egory of modules over a polynomial ring. Further, the persistence of multira-

dial (multi)filtrations is identified with nonnegatively multigraded modules over a
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polynomial ring. This distinguishes the persistent homology of multiradial mulit-

filtrations as a specific case of multidimensional persistent homology [CZ09]. The

stability of the bottleneck distance is established for persistence barcodes/diagrams

summarizing multiradial filtrations along with explicit bounds associated to vertex

and radii perturbations. We generalize the Vietoris-Rips lemma proved in [DSG07,

p. 346] to the case of multiple radial parameters. Finally, we use the categorical

results established in [BdSS15] to prove the stability of the interleaving distance on

persistent homology modules obtained from multiradial (multi)filtrations.
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CHAPTER II

REVIEW OF PERSISTENT HOMOLOGY

This section will provide a brisk review of the persistent homology of simplicial

filtrations and will be devoid of proof. For a more extensive introduction, we direct

the reader to the included appendices. A category C is defined by the following:

(1) a set obj(C) whose elements are referred to as objects;

(2) a set hom(C) consisting of small sets homC(X, Y) of morphisms X → Y;

(3) there exists a binary operation, or composition,

homC(X, Y)× homC(Y, Z)→ homC(X, Z) : ( f , g) 7→ g ◦ f ;

(4) there exists a morphism idX ∈ homC(X, X) for all X ∈ obj(C);

(5) h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all f ∈ homC(W, X), g ∈ homC(X, Y), and

h ∈ homC(Y, Z);

(6) idY ◦ f = f and g ◦ idY = g for each f ∈ homC(X, Y) and g ∈ homC(Y, Z).

Similar to groups and group homomorphisms, we can define a notion of ho-

momorphism between categories. Suppose C and D are categories. A (covariant)

functor from C to D is defined by the following:

(1) A mapping obj(C)→ obj(D); we denote the image of X ∈ C by F(X);
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(2) A mapping homC(X, Y)→ homD(F(X), F(Y)); we denote the image of

f ∈ homC(X, Y) by F( f );

(3) F(g ◦ f ) = F(g) ◦ F( f ) for any f ∈ homC(X, Y) and g ∈ homC(Y, Z);

(4) F(idX) = idF(X) for any X ∈ C.

We can also define a notion of homomorphism between functors. Suppose we

have two functors F, G : C → D. A natural transformation τ : F ⇒ G is a set of

morphisms {τX : F(X) → G(X)}X∈obj(C) of D such that (τY ◦ F( f )) = (G( f ) ◦ τX)

for every morphism f : X → Y in C.

Homology is an algebraic tool that converts abstract simplicial complexes into

algebraic objects and simplicial maps into corresponding homomorphisms. This is

made precise using the machinery of functors, that is, we have a homology functor

(Hn ◦ C•) for each integer n ≥ 0. By way of notation, let AbSimp be the category

of abstract simplicial complexes and ModR be the category of R-modules where R

is a commutative ring with unit.

Proposition 2.1 (Proposition D.12). For all n ∈ Z, (Hn ◦ C•) : AbSimp → ModR

is a functor.

As discussed in the Introduction, persistent homology uses the homology func-

tor to associate an algebraic object to an abstract simplicial complex derived from

a point cloud. Two popular simplicial complexes used in topological data anal-

ysis are the Čech complex and the Vietoris-Rips complex. Suppose U = {Ui}i∈I

is a cover of some topological space X. The Čech complex, or nerve, of U is the

abstract simplicial complex defined by
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Č(U) :=

{Ui0 , Ui1 , . . . , Uin}

∣∣∣∣∣∣
n⋂

j=0

Uij 6= ∅

 .

The Vietoris-Rips, or Rips, complex of U is the abstract simplicial complex de-

fined by

R(U) :=
{
{Ui0 , Ui1 , . . . , Uin}

∣∣∣Uij ∩Uik 6= ∅ for j 6= k and 0 ≤ j, k ≤ n
}

.

Given an abstract simplicial complex K and a preordered set P, a P-filtration of

K is a family {K•} of subcomplexes of K satisfying ι
q
p : Kp ↪→ Kq ∈ {K•} whenever

p ≤ q ∈ P, where ι
q
p is a simplicial inclusion map. The nth persistent homology

module

{
(Hn ◦ C•) (K•), (Hn ◦ C•)

(
ι
q
p
)}

:=
(
{(Hn ◦ C•) (K•)} ,

{
(Hn ◦ C•)

(
ι
q
p
)})

of {K•} is, simply put, the homology of the P-filtration {K•}. When P = ZN
≥0, per-

sistent homology modules can be given the structure of a module over the poly-

nomial ring R[x1, . . . , xN]; see Proposition 3.15. Plainly speaking, persistent ho-

mology modules correspond to an external direct sumHn(K) :=
⊕

(Hn ◦ C•) (K•)

which summarizes the homological structure of a ZN
≥0-filtered simplicial complex.

In the case that the preordered set P = Z≥0, the persistent homology module⊕
(Hn ◦ C•) (K•) is singly-graded. We say that Hn(K) is of finite type provided

each component ofHn(K) is finitely generated and the R-module homomorphisms

(Hn ◦ C•) (ι
q
p0) are R-module isomorphisms for all q ≥ p0 and some p0 ∈ Z≥0.
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Proposition 2.2 (Structure theorem for persistent homology modules of finite type;

see Proposition E.18). Suppose M is a persistent homology module of finite type. Then

M uniquely decomposes as

M ∼=
(

κ0⊕
i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
)

where ξi, ζ j, κ0, κ1 ∈ Z≥0, xdj are homogeneous elements in Rdj [x] with xdj
∣∣ xdj+1 .

The structure theorem for persistent homology modules allows us to define per-

sistence barcodes and persistence diagrams which are multisets of subintervals

of [0,+∞] or points in [0,+∞)× [0,+∞], respectively. Plainly speaking, given the

decomposition provided by the structure theorem, the persistence barcode bcoden

of Hn(K) is defined to be {[ξi,+∞)}κ0
i=0 ∪

{
[ζ j, dj − ζ j)

}κ1
j=0 and the persistence di-

agram dgmn of Hn(K) is defined to be {(ξi,+∞)}κ0
i=0 ∪

{
(ζ j, dj − ζ j)

}κ1
j=0; see Ap-

pendix E. It follows from the structure theorem that persistence barcodes and per-

sistence diagrams are invariants of persistent homology modules derived from

simplicial filtrations; see Proposition E.22 and Corollary E.23.

Persistent homology can be categorified in the following way; see [BdSS15]. As-

sume that P is a preordered set and D is an arbitrary category. A generalized

persistence module is a functor P → D. Due to the following proposition, we

are now capable of considering categories of persistence modules having the form

P→ D.

Proposition 2.3 (Corollary A.15). Suppose P is a preordered set and D is an arbitrary

category. Taking objects to be functors P→ D and morphisms as natural transformations

between said functors forms a functor category denoted by DP.
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CHAPTER III

PERSISTENT HOMOLOGY OF MULTIRADIAL FILTRATIONS

The standard Čech and Vietoris-Rips complexes are a standard tool in persis-

tent homology; see Definition E.4. But, persistence theory has traditionally fo-

cused only on the Čech and Vietoris-Rips complexes derived from covers consist-

ing of balls of a single fixed radius. At this point, we would like to extend the

definitions of the Čech and Vietoris-Rips complexes to the case of covers compris-

ing balls of different radius.

Definition 3.1. Suppose we have a covers X = {Xi}i∈I and Y = {Yj}j∈J of a topo-

logical space Z. We say X is a precise refinement of Y if I = J and Xi ⊆ Yi for all

i ∈ I. Suppose X ⊆ X where (X, d) is some metric space. Take n to be a nonnega-

tive integer. Let εi ∈ R and εi ≤ ε j for all 0 ≤ i ≤ j ≤ n with ε0 = 0. We will denote

the set of functions X → (0, ∞) by R>0
X. With the intuition that we are weighting

the balls in our cover, an element of R>0
X may be called a weight function. Fix-

ing r ∈ R>0
X, we will now consider the cover F = {B̄εnr(x)(x)}x∈X of X. Similar

to Definition E.4, set Fi = {B̄εir(x)(x)}x∈X for 0 ≤ i ≤ n and Fi = Fn whenever

i > n. Clearly, Fi is a precise refinement of Fn. We will call Čεir(X) := ČFi(F) the

multiradial Čech complex of X at scale εir for i ≥ 0. Similarly, Rεir(X) := RFi(F)

is called the multiradial Vietoris-Rips complex of X at scale εir for i ≥ 0. By

Definition C.18,
{

Čεir(X)
}

i∈Z≥0
and {Rεir(X)}i∈Z≥0

are Z≥0-filtrations of Č(F)

and R(F), respectively. We will refer to filtrations of the form
{

Čεir(X)
}

i∈Z≥0
and

{Rεir(X)}i∈Z≥0
as multiradial Z≥0-filtrations.
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Lemma 3.2 (Proposition E.9). Given a Z≥0-filtered oriented abstract simplicial complex

K, the nth persistent homology module Hn(K) ∈ ModR
Z≥0 is a generalized persistence

module.

Proposition 3.3. Suppose K is a multiradial Z≥0-filtered Čech or Vietoris-Rips complex.

ThenHn(K) ∈ ModR
Z≥0 is a generalized persistence module.

Proof. This follows immediately from Lemma 3.2 since multiradial Z≥0-filtered

simplicial complexes are Z≥0-filtered simplicial complexes.

Proposition 3.4. The persistence barcodes/diagrams in BcodesZ2
≥0

and DgmsZ2
≥0

are in-

variants of the isomorphism classes of nth persistent homology modulesHn(K) where K is

a finite multiradial Z≥0-filtered Čech or Vietoris-Rips complex.

Proof. This is a simple consequence of the fact that persistence barcodes/diagrams

are invariants of the isomorphism classes of persistent homology modules derived

from simplicial Z≥0-filtrations. See Proposition E.22, Lemma D.11, and Corollary

E.23 for more details.

We will now introduce the concept of multifiltrations.

Definition 3.5. Let K be an arbitrary abstract simplicial complex. A ZN
≥0-filtration

of K is a family {Kv}v∈ZN
≥0

of subcomplexes of K so that Ku ⊆ Kv whenever

u ≤ v ∈ ZN
≥0. Note that ≤ is the product order of ZN

≥0 where (u1, . . . , uN) ≤

(v1, . . . , vN) if and only if ui ≤ vi for each 0 ≤ i ≤ N.

Lemma 3.6. ZN
≥0-filtering is a functor ZN

≥0 → AbSimp.

Proof. Assume K is a finite ZN
≥0-filtered abstract simplicial complex. We define v 7→

Kv and
(

u ≤−→ v
)
7→
(

Ku(0) ι
↪−→ Kv(0)

)
for any u, v ∈ ZN

≥0. By way of notation, we

11



will denote the inclusion map ι : Ku(0) ↪→ Kv(0) by ιvu for any u, v ∈ ZN
≥0. Suppose

that u, v, w ∈ obj
(

ZN
≥0

)
and take v ∈ Ku(0). Observe

ιwu (v) = v

= ιwv (v)

= (ιwv ◦ ιvu) (v).

Since v ∈ Ku(0) is arbitrary, composition is preserved. Also,

ιuu(v) = v

= idKu(0)(v)

which proves identities are preserved since v ∈ Ku(0).

Next, we will see that multifiltrations allow us to parameterize families of mul-

tiradial Z≥0-filtrations over the individual radii associated to the vertices of an

abstract simplicial complex.

Definition 3.7. Suppose X ⊆ X where (X, d) is some metric space. Suppose that

ru, rv ∈ R≥0
X so that ru(x) ≤ rv(x) ∈ R≥0 for any u ≤ v ∈ ZN

≥0. We will set

Fu :=
{

B̄rv(x)(x)
}

x∈X
for each v ∈ ZN

≥0. For convenience, we will assume there

exists some b ∈ ZN
≥0 so that rv(x) ≤ rb(x) ∈ R≥0 for any v ∈ ZN

≥0 and each

x ∈ X. Set F := {B̄rb(x)}x∈X. Since B̄ru(x)(x) ⊆ B̄rv(x)(x) for each x ∈ X whenever

u ≤ v ∈ ZN
≥0, Fu precisely refines Fv whenever u ≤ v ∈ ZN

≥0. Even further, Fv

precisely refines F given our definition of F.

12



We will call Črv(X) := ČFv(X) the multiradial Čech complex of X at scale

rv for v ∈ ZN
≥0. Similarly, we call Rrv(X) := RFv(X) the Vietoris-Rips complex

of X at scale rv for v ∈ ZN
≥0. Note that

{
Črv(X)

}
v∈ZN

≥0
and {Rrv(X)}v∈ZN

≥0
are

ZN
≥0-filtrations of Č(F) and R(F), respectively. This follows from the fact that{
Črv(X)

}
v∈ZN

≥0
and {Rrv(X)}v∈ZN

≥0
are both families of precise refinements in-

dexed by ZN
≥0; see Definition C.18. We will refer to ZN

≥0-filtrations of the types

just mentioned as multiradial ZN
≥0-filtrations.

We will next identify the homology of multiradial filtrations as both general-

ized persistence modules and multigraded modules.

Definition 3.8. An N-graded ring is a ring R where R is isomorphic to a direct sum

of abelian groups

R ∼=
⊕

v∈ZN
≥0

Rv

such that Ru · Rv ⊆ Ru+v for all u, v ∈ ZN
≥0. We say that the elements of Rv are

homogeneous of degree v. An (nonnegatively) N-graded R-module is a module

M over an N-graded ring R where M is isomorphic to a direct sum decomposition

of abelian groups

M ∼=
⊕

v∈ZN
≥0

Mv

such that Ru ·Mv ⊆ Mu+v for all u, v ∈ ZN
≥0.

13



Example 3.9. Let R[x1, . . . , xN] be the commutative ring of polynomials in N vari-

ables with coefficients in R. We will make use of multidegree notation:

xv := xv1
1 · · · x

vN
N

for any v = (v1, . . . , vN) ∈ ZN
≥0. Set Rv[x1, . . . , xN] := R · xv for v ∈ ZN

≥0. Define

the function ϑ :
⊕

v∈ZN
≥0

Rv[x1, . . . , xN]→ R[x1, . . . , xN] by

ϑ
(
[rvxv]v∈ZN

≥0

)
:= ∑

v∈ZN
≥0

rvxv.

Since ∑
v∈ZN

≥0

rvxv 6= ∑
v∈ZN

≥0

svxv implies [rvxv]v∈ZN
≥0
6= [svxv]v∈ZN

≥0
, it is easy to see ϑ

is well-defined.

Let [rvxv]v∈ZN
≥0

, [svxv]v∈ZN
≥0
∈ ⊕v∈ZN

≥0
Rv[x1, . . . , xN]. Observe

ϑ
(
[rvxv]v∈ZN

≥0
+ [svxv]v∈ZN

≥0

)
= ϑ

(
[(rv + sv)xv]v∈ZN

≥0

)
= ∑

v∈ZN
≥0

(rv + sv) xv

=

 ∑
v∈ZN

≥0

rvxv

+

 ∑
v∈ZN

≥0

svxv


= ϑ

(
[rvxv]v∈ZN

≥0

)
+ ϑ

(
[svxv]v∈ZN

≥0

)
.

Thus ϑ is a group homomorphism.

14



Suppose [rvxv]v∈ZN
≥0
6= [svxv]v∈ZN

≥0
∈ ⊕v∈ZN

≥0
Rv[x1, . . . , xN]. Then there exists

some u ∈ ZN
≥0 such that ru 6= sv. Thus

∑
v∈ZN

≥0

rvxv 6= ∑
v∈ZN

≥0

svxv

and hence ϑ in injective. Now suppose ∑
v∈ZN

≥0

rvxv ∈ R[x1, . . . , xN] is arbitrary.

Then

ϑ
(
[rvxv]v∈ZN

≥0

)
= ∑

v∈ZN
≥0

rvxv

which shows ϑ is surjective. Altogether, we have that ϑ is a group isomorphism

and R[x1, . . . , xN] ∼=
⊕

v∈ZN
≥0

Rv[x1, . . . , xN].

Finally, observe

(rxu) · (sxv) = (rs) · xu+v

∈ Ru+v[x1, . . . , xN].

Altogether, R[x1, . . . , xN] ∼=
⊕

v∈ZN
≥0

Rv[x1, . . . , xN] is an N-graded ring.

The following lemma is needed by technicality. The interested reader can find

more details in Definition A.1.

Lemma 3.10. If X and Y are small sets, then X×Y is a small set.
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Proof. Fix y ∈ Y. It follows that X× {y} ∈ U since the function

X → X× {y} defined by x 7→ (x, y)

is surjective; see Definition A.1(4). Notice
⋃

y∈Y X × {y} = X × Y and therefore

X×Y ∈ U by Definition A.1(2), that is, X×Y is a small set.

Proposition 3.11. Taking objects to be N-graded R-modules and morphisms to be R-

homomorphisms f : M → N satisfying f (Mv) ⊆ Nv for any v ∈ ZN
≥0, we can form the

category ModN
R of N-graded R-modules.

Proof. Notice that composition of morphisms is well-defined because composition

of R-homomorphisms is well-defined. Clearly, idM ∈ homModN
R
(M, M) is just the

identity R-homomorphism on M. Associativity of composition holds since com-

position of R-homomorphisms is associative. Assume f ∈ homModN
R
(M1, M2),

g ∈ homModN
R
(M2, M3), v ∈ ZN

≥0, and take m1 ∈ M1 and m2 ∈ M2. Observe

(idM2 ◦ f ) (m1) = m1

= f (m1)

and

(g ◦ idM2) (m2) = m2

= g(m2).

16



With everything else being routine, we need to prove that homModN
R
(M1, M2) is a

small set where M1, M2 ∈ obj(ModN
R ) are arbitrary. Identifying a function with its

graph, it suffices to show 2X×Y is a small set. By Lemma 3.10, X × Y is a small set

and hence 2X×Y is a small set by Definition A.1(3). Thus

homModN
R
(M1, M2) ⊆ 2X×Y

is a small set by Lemma A.2. Finally, ModN
R is a category.

Definition 3.12. Suppose K is a multifiltered abstract simplicial complex. We de-

fine the N-graded nth persistent homology moduleHN
n (K) by

HN
n (K) :=

{
Hn (Ku) , (Hn ◦ C•)

(
Ku(0) ι

↪−→ Kv(0)
)}

u≤v∈ZN
≥0

.

By way of notation, ιvu : Ku(0) ↪→ Kv(0) is the image of u ≤−→ v under multifiltration.

Also, we define Hu
n (K) := Hn (Ku) for each u ∈ ZN

≥0. Given a commutative ring

R with unit, we will denote the category of R-chain complexes by CompR. For a

review of chain complexes and there homology, see Appendix B.

Lemma 3.13 (Proposition D.12). For all n ∈ Z, (Hn ◦ C•) : AbSimp → ModR is a

functor.

Proposition 3.14. Suppose K is a multiradial ZN
≥0-filtered Čech or Vietoris-Rips complex.

Then the N-graded nth persistent homology moduleHN
n (K) ∈ ModN

R
ZN
≥0 is a generalized

persistence module.

Proof. Recall that ZN
≥0-filtering is a functor ZN

≥0 → AbSimp by Lemma 3.6. Also,

CompR
(Hn◦C•)−−−−→ ModR is a functor for each n ∈ Z≥0 by Lemma 3.13. It follows

17



that HN
n (K) :=

{
Hu

n (K), (Hn ◦ C•) (ιvu)}u≤v∈ZN
≥0

}
is a functor since (covariant)

functors are closed under composition. More precisely, HN
n (K) : ZN

≥0 → ModR

is a functor defined by u
HN

n7−−→ Hu
n (K) and

(
u ≤−→ v

) HN
n7−−→ (Hn ◦ C•) (ιvu) for any

u, v ∈ obj
(

ZN
≥0

)
and each n ∈ Z≥0. The following diagram summarizes the func-

torHN
n :

ZN
≥0 AbSimp CompR ModR

HN
n

Proposition 3.15. Suppose

HN
n (K) := {Hu

n (K) , (Hn ◦ C•) (ιvu)}u≤v∈ZN
≥0

.

Overloading notation, we will set

HN
n (K) :=

⊕
u∈ZN

≥0

Hu
n (K) .

ThenHN
n (K) is a multigraded R[x1, x2, . . . , xN]-module where

(
`

∑
k=0

rkxvk

)
· [γu]u∈ZN

≥0
:=

`

∑
k=0

(
rk · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)
and

sx0 · [γu]u∈ZN
≥0

:=
[
Σ0(s · γu)

]
u∈ZN

≥0
= (s · γu)u∈ZN

≥0

18



for any ∑`
k=0 rkxvk ∈ R[x1, . . . , xN] with ` ≥ 1 an integer, for every s ∈ R, and for any

[γu]u∈ZN
≥0
∈ HN

n (K). Recall Σ( · ) is the shift map on multigrading defined by

[γu]u∈Z≥0

Σv
7−→ [γ′u]u∈Z≥0

where γ′u = 0 whenever u 6≤ v and γ′u = γu−v provided u ≥ v.

Proof. We will start by verifyingHN
n (K) satisfies the definition of an R[x1, . . . , xN]-

module; see Definition B.4. Thus we need to show the following for each x, y ∈

HN
n (K) and r, s ∈ R[x1, . . . , xN]:

(1) r(x + y) = rx + ry;

(2) (r + s)x = rx + sx;

(3) (rs)x = r(sx);

(4) 1Rx = x.

Let us take the following as arbitrary:

`

∑
k=0

ckxvk ,
m

∑
k=0

dkxvk ∈ R[x1, . . . , xN]

and

[γu]u∈ZN
≥0

, [ηu]u∈ZN
≥0
∈ HN

n (K).

(1) (
`

∑
k=0

ckxvk

)
·
(
[γu]u∈ZN

≥0
+ [ηu]u∈ZN

≥0

)
19



=
`

∑
k=0

(
ck · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu + ηu)

]
u∈ZN

≥0

)

=
`

∑
k=0

(
Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ck · γu + ck · ηu)

]
u∈ZN

≥0

)

=
`

∑
k=0

(
Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ck · γu)

]
u∈ZN

≥0

+Σvk
[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ck · ηu)

]
u∈ZN

≥0

)
=

`

∑
k=0

(
Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ck · γu)

]
u∈ZN

≥0

)

+
`

∑
k=0

(
Σu
[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ck · ηu)

]
u∈ZN

≥0

)

=
`

∑
k=0

(
ck · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)

+
`

∑
k=0

(
ck · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(ηu)

]
u∈ZN

≥0

)

=

(
`

∑
k=0

ckxvk

)
· [γu]u∈ZN

≥0
+

(
`

∑
k=0

ckxvk

)
· [ηu]u∈ZN

≥0
.

(2) (
`

∑
k=0

(ckxv
k ) +

m

∑
k=0

(dkxvk)

)
· [γu]u∈ZN

≥0

=

(
max{`,m}

∑
k=0

ckxvk + dkxvk

)
· [γu]u∈ZN

≥0

=

[
max{`,m}

∑
k=0

(ck + dk) xvk

]
· [γu]u∈ZN

≥0

=
max{`,m}

∑
k=0

(
(ck + dk) · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)

=
max{`,m}

∑
k=0

(
ck · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0
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+dk · Σvk
[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)
=

`

∑
k=0

(
ck · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)
+

m

∑
k=0

(
dk · Σvk

[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)

=

(
`

∑
k=0

ckxvk

)
· [γu]u∈ZN

≥0
+

(
m

∑
k=0

dkxvk

)
· [γu]u∈ZN

≥0
.

(3) (
`

∑
k=0

(ckxvk) ·
m

∑
k=0

(dkxvk)

)
· [γu]u∈ZN

≥0
=

[
`+m

∑
q=0

(
q

∑
p=0

cpdq−p

)
xvq

]
· [γu]u∈ZN

≥0

=
`+m

∑
q=0

((
q

∑
p=0

cpdq−p

)
Σvq

[
(Hn ◦ C•)

(
ι
u+vq
u

)
(γu)

]
u∈ZN

≥0

)

=
`+m

∑
q=0

((
q

∑
p=0

cpdq−p

)
Σvp+q−p

[
(Hn ◦ C•)

(
ι
u+vp+q−p
u

)
(γu)

]
u∈ZN

≥0

)

=
`+m

∑
q=0

({(
q

∑
p=0

cpdq−p

)
xvp

}
· Σvq−p

[
(Hn ◦ C•)

(
ι
u+vq−p
u

)
(γu)

]
u∈ZN

≥0

)

=

(
`

∑
k=0

ckxv
k

)
·
(

m

∑
k=0

dk · Σvk
[
(Hn ◦ C•)

(
ι
u+vk
u

)
(γu)

]
u∈ZN

≥0

)

=

(
`

∑
k=0

ckxvk

)
·
((

m

∑
k=0

dkxvk

)
· [γu]u∈ZN

≥0

)
.

(4)

1Rx0 · [γu]u∈ZN
≥0

= Σ0 [1R · γu]u∈ZN
≥0

= [γu]u∈ZN
≥0

.

ThusHn(K) is an R[x1, . . . , xN]-module.
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To prove Hn(K) is ZN
≥0-graded, take rxv ∈ Rv and γ ∈ Hu

n (K) as arbitrary.

Observe

rxv · γ = r · (Hn ◦ C•)
(
ιu+v
u
)
(γ)

= (Hn ◦ C•)
(
ιu+v
u
)
(r · γ)

∈ Hu+v
n (K).

This shows that Rv[x1, . . . , xN] · Hu
n (K) ⊆ Hu+v

n (K) for any u, v ∈ ZN
≥0 and each

n ∈ Z≥0. ThusHN
n (K) is ZN

≥0-graded.

Our overloading of notation for N-graded persistent homology modules is jus-

tified by the following proposition.

Definition 3.16. Suppose C and D are categories and let F : C→ D is a functor. We

say F is faithful provided F( f ) is injective for each f ∈ homC(X, Y) where X, Y ∈

C are arbitrary. Also, we say F is full provided F( f ) is surjective for each f ∈

homC(X, Y) where X, Y ∈ C are arbitrary. The functor F is said to be fully faithful

provided F is both full and faithful. A functor F : C → D is an isomorphism of

categories provided F is fully faithful and F : obj(C) → obj(D) is a set bijection.

Given an isomorphism of categories F : C→ D, we say C and D are isomorphic.

Proposition 3.17 ([Les15, p. 8]). ModR[x1,...,xN ]
ZN
≥0 and ModN

R[x1,...,xN ] are isomorphic

as categories.

Proof. Define the functor f : ModN
R[x1,...,xN ] → ModR

ZN
≥0 by

f(M) = F : ZN
≥0 → M
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and

f
(

M
f−→ N

)
= f |M• = { f |Mv}v∈ZN

≥0

where F(v) = Mv. Let F, G : ZN
≥0 → ModR, u, v ∈ obj

(
ZN
≥0

)
, and m ∈ F(u) be

arbitrary. Also, assume f :
⊕

v∈ZN
≥0

F(v) → ⊕
v∈ZN

≥0
G(v) ∈ hom

(
ModN

R[x1,...,xN ]

)
.

Notice

(fv( f ) ◦ F(u ≤ v)) (m) = f |F≤(v) (F (u ≤ v) (m))

= G (u ≤ v)
(

f |F≤(u)(m)
)

= (G(u ≤ v) ◦fu( f )) (m).

This shows f( f ) is indeed a natural transformation. Now observe

f(g ◦ f ) = (g|M• ◦ f |M•)

= f(g) ◦f( f )

and

f (idM) = id|M•

= id
ModR

ZN
≥0

.

This shows f is well-defined.

Suppose f , g ∈ hom(M, P) for M, P ∈ obj
(

ModN
R[x1,...,xN ]

)
. Thus f (m) 6= g(m)

for some m ∈ M and hence f |Mv 6≡ g|Mv for some v ∈ ZN
≥0. Thus f( f ) 6≡ f(g)
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which shows f is faithful. Now suppose τ : F ⇒ G is a natural transformation for

F, G ∈ obj
(

ModR
ZN
≥0

)
. Define M, P ∈ obj

(
ModN

R[x1,...,xN ]

)
by M =

⊕
v∈ZN

≥0
F(v)

and P =
⊕

v∈ZN
≥0

G(v). Also, define Λ : M → P by Λ(m) = τu(m) where m ∈ Mu

for some u ∈ ZN
≥0. By construction, f(Λ) = τ and hence f is fully faithful. Sup-

pose M 6= P ∈ obj
(

ModN
R[x1,...,xN ]

)
. Then Mv 6= Pv for some v ∈ ZN

≥0. Now sup-

pose F : ZN
≥0 → ModR. Let M ∈ obj

(
ModN

R[x1,...,xN ]

)
be defined by

⊕
v∈ZN

≥0
F(v).

Clearly, f(M) = F. Thus f induces a bijection on obj
(

ModN
R[x1,...,xN ]

)
. Therefore

ModR
ZN
≥0 and ModN

R[x1,...,xN ] are isomorphic as categories.
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CHAPTER IV

STABILITY OF PERSISTENCE DIAGRAMS OF MULTIRADIAL

Z≥0-FILTRATIONS

The stability of persistence diagrams of multiradial filtrations is a special case

of the results described in [CSEH07, p. 108]. The goal of this section is to use the

framework established in Appendix F to provide specific bounds, in terms of ver-

tex position and radial size, for the stability of persistence diagrams summarizing

multiradial filtrations. To this end, we will interpret a multiradial filtration as a

real-valued continuous function.

ε

x0 x1 x2

Figure 4. Illustration of Entry Function
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Definition 4.1. Suppose X ⊆ X where (X, dX) is a metric space. Take r ∈ R>0
X

to be a weight function. With the intuition of enlarging cover sets, we define the

entry function fX,r : X→ R by

fX,r(x) = inf
y∈X

{
d(x, y)

r(y)

}
.

For what follows, we will use the notation f̄X,r to denote the restricted function

fX,r|C where X ⊇ C ⊇ X.

Proposition 4.2. Suppose fX,r is an entry function and ε ≥ 0. Then

f−1
X,r((−∞, ε]) =

⋃
x∈X

B̄εr(x).

Proof. Let ε ∈ R≥0 be arbitrary. Take p ∈ f−1
X,r((−∞, ε]). It follows that

inf
y∈X

{
d (p, y)

r(y)

}
≤ ε.

Thus p ∈ B̄εr(y0) for some y0 ∈ X. Hence

p ∈ B̄εr(y0) ⊆
⋃

y∈X
B̄εr(y).

Now suppose p ∈ ⋃y∈X B̄εr(y). Then p ∈ B̄εr(y0) for some y0 ∈ X. Hence

inf
y∈X

{
d (p, y)

r(y)

}
≤ ε
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which implies p ∈ f−1
X,r((−∞, ε]). By the arbitrariness of p,

f−1
X,r((−∞, ε]) =

⋃
x∈X

B̄εr(x).

Lemma 4.3 (Corollary C.16). If F is a finite collection of closed subsets of a compact

Hausdorff space X such that every nonempty intersection of sets in F is contractible, then

Č(F) ' ⋃D∈F D.

Corollary 4.4. Suppose fX,r is an entry function where X ⊆ X has finite cardinality N

and X is compact. Then

f−1
X,r((−∞, ε]) ' Čεr(X)

for some integer n ≥ 0 and any ε ∈ R≥0.

Proof. Without loss of generality, suppose X = {x1, . . . , xN}. The conclusion fol-

lows immediately from Proposition 4.2 and Lemma 4.3 since

f−1
X,r((−∞, ε]) =

N⋃
i=1

B̄εr(xi).

Lemma 4.5 (Lemma D.11). If K is a finite abstract simplicial complex, then Hn(K) is

finitely generated for each n ∈ Z.
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Proposition 4.6. Suppose fX,r is an entry function for a set X with finite cardinality N.

Then f̄X,r is continuous and tame.

Proof. Recall that metrics X×X → R are continuous real-valued functions. Thus

fX,r is continuous as the composition of a continuous function after a quotient of

continuous functions. Following from Corollary 4.4, fX,r has at most 2N homo-

logical critical values. Now, recall Lemma 4.5, which says the homology of finite

simplicial complexes is finitely generated. Thus, Hn
(

f−1(−∞, ε]
)

is finitely gener-

ated for each ε ∈ R by Corollary 4.4.

With respect to entry functions, we will prove two different versions of stability

under the supremum norm.

ε

x0 x1 x2

Figure 5. Illustration of Weight Stability
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Proposition 4.7 (Weight stability). Suppose X ⊆ X has finite cardinality N. Let r, r′ ∈

R>0
X be weight functions and assume f̄X,r, f̄X,r′ : C → R are entry functions restricted

to a compact set C ⊇ X. Then

‖ f̄X,r − f̄X,r′‖∞ < ε

whenever

‖r− r′‖∞ < δ =
ε ·min {r(x) · r′(x) | x ∈ X}

diam(C)

for every ε > 0.

Proof. It suffices to show that

‖ f̄X,r − f̄X,r′‖∞ ≤
‖r− r′‖∞diam(C)

min{r(x) · r′(x) | x ∈ X} .

To begin,

‖ f̄X,r − f̄X,r′‖∞ = max
y∈C
{| f̄X,r(y)− f̄X,r′(y)|}

since f̄X,r and f̄X,r′ are continuous functions with compact domain. It follows that

there exists some y0 ∈ C such that

‖ f̄X,r − f̄X,r′‖∞ = | f̄X,r(y0)− f̄X,r′(y0)|
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by [Rud76, p. 89, Theorem 4.16]. Then we have

‖ f̄X,r − f̄X,r′‖∞ =

∣∣∣∣min
x∈X

{
dX(x, y0)

r(x)

}
−min

x∈X

{
dX(x, y0)

r′(x)

}∣∣∣∣ .

Since X is a finite set, there exist xj, xk ∈ X so that

∣∣∣∣min
x∈X

{
dX(x, y0)

r(x)

}
−min

x∈X

{
dX(x, y0)

r′(x)

}∣∣∣∣ =
∣∣∣∣∣dX(xj, y0)

r(xj)
− dX(xk, y0)

r′(xk)

∣∣∣∣∣ .

It is either the case that dX(xj, y0)/r(xj) = dX(xk, y0)/r′(xk) or, without loss of

generality, dX(xj, y0)/r(xj) > dX(xk, y0)/r′(xk). If

dX(xj, y0)/r(xj) = dX(xk, y0)/r′(xk),

then ‖ f̄X,r − f̄X,r′‖∞ = 0 and we are done. Now, suppose

dX(xj, y0)/r(xj) > dX(xk, y0)/r′(xk).

Since dX(x, y0)/r(x) ≥ dX(xj, y0)/r(xj) for all x ∈ X, it must hold that

dX(xj, y0)

r(xj)
− dX(xk, y0)

r′(xk)
≤ dX(xk, y0)

r(xk)
− dX(xk, y0)

r′(xk)
.

Therefore

‖ f̄X,r − f̄X,r′‖∞ =

∣∣∣∣∣dX(xj, y0)

r(xj)
− dX(xk, y0)

r′(xk)

∣∣∣∣∣
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≤
∣∣∣∣dX(xk, y0)

r(xk)
− dX(xk, y0)

r′(xk)

∣∣∣∣
=

∣∣∣∣ [r′(xk)− r(xk)] · dX(xk, y0)

r(xk) · r′(xk)

∣∣∣∣ .

Finally,

‖ f̄X,r − f̄X,r′‖∞ ≤
∣∣∣∣ [r′(xk)− r(xk)] · dX(xk, y0)

r(xk) · r′(xk)

∣∣∣∣
≤ ‖r− r′‖∞ · diam(C)

min{r(x) · r′(x) | x ∈ X} ,

as desired.

ε

x0 x1 x2x′0 x′1 x′2

Figure 6. Illustration of Vertex Perturbation Stability
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Proposition 4.8 (Vertex perturbation stability). Suppose X, X′ ⊆ X have finite cardi-

nality N, r : X → (0, ∞), and suppose that η : X′ → X is a set bijection. Let fX′,r◦η be

the entry function on X′ induced by r ◦ η. Also, let f̄X,r, f̄X′,r◦η : C → R be entry func-

tions restricted to a compact set C ⊇ (X ∪ X′). Then ‖ f̄X,r − f̄X′,r◦η‖∞ < ε whenever

maxx∈X′{dX (x, η(x))} < δ = ε ·minx∈X{r(x)} for every ε > 0.

Proof. We will proceed by showing

‖ f̄X,r − f̄X′,r◦η‖∞ ≤
max {dX(x, η(x)) | x ∈ X′}

min {(r ◦ η)(x) | x ∈ X′} .

Since f̄X,r and f̄X′,r′ are continuous functions with compact domain,

‖ f̄X,r − f̄X′,r◦η‖∞ = max
{
| f̄X,r(x)− f̄X′,r◦η(x)|

∣∣∣x ∈ C
}

.

By [Rud76, p. 89, Theorem 4.16], there exists some y0 ∈ C so that

‖ f̄X,r − f̄X′,r◦η‖∞ =

∣∣∣∣min
x∈X

{
dX(x, y0)

r(x)

}
− min

x∈X′

{
dX(x, y0)

(r ◦ η)(x)

}∣∣∣∣ .

The finiteness of X and X′ implies the existence of xj ∈ X and xk ∈ X′ such

that

∣∣∣∣min
x∈X

{
dX(x, y0)

r(x)

}
− min

x∈X′

{
dX(x, y0)

(r ◦ η)(x)

}∣∣∣∣ =
∣∣∣∣∣dX(xj, y0)

r(xj)
− dX(xk, y0)

(r ◦ η)(xk)

∣∣∣∣∣ .

Now it is either the case that dX(xj, y0)/r(xj) = dX(xk, y0)/(r ◦ η)(xk) or, without

loss of generality, dX(xj, y0)/r(xj) > dX(xk, y0)/(r ◦ η)(xk). In the first case, we
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have that ‖ f̄X,r − f̄X′,r◦η‖∞ = 0 and we are done. To continue, suppose that

dX(xj, y0)/r(xj) > dX(xk, y0)/(r ◦ η)(xk).

Since dX(xj, y0)/r(xj) ≤ dX(x, y0)/r(x) for all x ∈ X, it must be the case that

dX(xj, y0)/r(xj) ≤ dX(η(xk), y0)/(r ◦ η)(η(xk)). Therefore

dX(xj, y0)

r(xj)
− dX(xk, y0)

(r ◦ η)(xk)
≤ dX(η(xk), y0)

(r ◦ η)(xk)
− dX(xk, y0)

(r ◦ η)(xk)
.

This implies

‖ f̄X,r − f̄X′,r◦η‖∞ =

∣∣∣∣∣dX(xj, y0)

r(xj)
− dX(xk, y0)

(r ◦ η)(xk)

∣∣∣∣∣
≤
∣∣∣∣dX(η(xk), y0)

(r ◦ η)(xk)
− dX(xk, y0)

(r ◦ η)(xk)

∣∣∣∣
=
|dX(η(xk), y0)− dX(xk, y0)|

(r ◦ η)(xk)

≤ dX(η(xk), xk)

(r ◦ η)(xk)

≤ max{dX(x, η(x)) | x ∈ X′}
min{(r ◦ η)(x) | x ∈ X′}

as desired.

Proposition 4.9 (Combined stability). Suppose X, X′ ⊆ X of common cardinality N,

r : X → (0, ∞) and r′ : X′ → (0, ∞) are weight functions, and η : X′ → X is a

set bijection. Also, let f̄X,r, f̄X′,r′ denote the entry functions restricted to a compact set

C ⊇ (X ∪ X′). Then
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‖ f̄X,r − f̄X′,r′‖∞ < ε

whenever

max
x∈X′
{dX (x, η(x))}+ ‖(r ◦ η)− r′‖∞ < δ

= 2 ·min
{

ε

2
·min

x∈X′
{r(x)}, ε ·min{(r ◦ η)(x) · r′(x) | x ∈ X′}

2 · diam(C)

}

for every ε > 0.

Proof. Let ε > 0. By Proposition 4.7,

‖ f̄X′,r◦η − f̄X′,r′‖∞ <
ε

2

whenever

‖(r ◦ η)− r′‖∞ <
ε ·min{(r ◦ η)(x) · r′(x) | x ∈ X′}

2 · diam(C)
.

Also,

‖ f̄X,r − f̄X′,r◦η‖∞ <
ε

2
whenever max

x∈X′
{dX(x, η(x))} < ε

2
·min

x∈X
{r(x)}

by Proposition 4.8. Therefore, if we require

max
x∈X′
{dX(x, η(x))}+ ‖(r ◦ η)− r′‖∞ < δ

= 2 ·min
{

ε

2
· min

x∈X′
{r(x)}, ε ·min{(r ◦ η)(x) · r′(x) | x ∈ X′}

2 · diam(C)

}
,
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then we have

‖ f̄X,r − f̄X′,r′‖∞ ≤ ‖ f̄X,r − f̄X′,r◦η‖∞ + ‖ f̄X′,r◦η − f̄X′,r′‖∞

<
ε

2
+

ε

2
= ε

and we are done.

Our results on stability of entry functions provides us with corresponding state-

ments for their persistence diagrams. We direct the reader to review the definition

of persistence barcodes bcoden and persistence diagrams dgmn given in Defini-

tion F.5.

Lemma 4.10 (Bottleneck Stability; [CSEH07]; Theorem F.9). Suppose X is a trian-

gulable space and assume f , g : X → R are tame continuous functions. If ( f − g) is

bounded, then

dB (dgmn( f ), dgmn(g)) ≤ ‖ f − g‖∞

where dB is the bottleneck distance for persistence barcodes/diagrams, ‖ · ‖∞ is the supre-

mum norm for bounded real-valued functions and n ≥ 0 is an arbitrary integer.

Corollary 4.11. Suppose X, X′ ⊆ X of common size N,

r : X → (0, ∞) and r′ : X′ → (0, ∞) are weight functions, and η : X′ → X is a set

bijection. Then the following hold
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(1) For every ε > 0 we have

dB(dgmn( f̄X,r), dgmn( f̄X,r′)) < ε

whenever

‖r− r′‖∞ < δ =
ε ·min{r(x) · r′(x) | x ∈ X}

diam(C)

(2) For every ε > 0 we have

dB(dgmn( f̄X,r), dgmn( f̄X′,r◦η)) < ε

whenever

max
x∈X′
{dX (x, η(x))} < δ = ε ·min

x∈X
{r(x)}.

(3) For every ε > 0 we have

dB(dgmn( f̄X,r), dgmn( f̄X′,r′)) < ε

whenever

max
x∈X′
{dX (x, η(x))}+ ‖(r ◦ η)− r′‖∞ < δ

= 2 ·min
{

ε

2
·min

x∈X′
{r(x)}, ε ·minx∈X′{(r ◦ η)(x) · r′(x)}

2 · diam(C)

}
.

Proof. This is an immediate consequence of Lemma 4.10 and Proposition 4.6.

We will close this section by showing a particular case of interpolation between

persistence barcodes/diagrams.
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Lemma 4.12. Let X be a compact metric space. Assume X, Y ⊆ X have finite cardinalities

and suppose r ∈ R≥0
X∪Y is a weight function satisfying the property that r(y) = 0 for

each y ∈ Y. Then Hn
(
Čr(X ∪Y)

) ∼= Hn
(
Čr(X)

)
for each n ≥ 1.

Proof. First, assume Y = {y} ⊆ X. It is either the case y ∈ ⋃
x∈X B̄r(x)(x) or

y /∈ ⋃x∈X B̄r(x)(x). If y ∈ ⋃x∈X B̄r(x)(x), then

⋃
x∈X

B̄r(x)(x) = {y} ∪
⋃

x∈X
B̄r(x)(x)

By Theorem C.16, Proposition 4.2, and Corollary 4.4,

Hn
(
Čr(X ∪Y)

) ∼= Hn

(
{y} ∪

⋃
x∈X

B̄r(x)(x)

)

= Hn

(⋃
x∈X

B̄r(x)(x)

)

= Hn
(
Čr(X)

)

for any n ≥ 0.

Now, if y /∈ ⋃x∈X B̄r(x)(x), then

Hn
(
Čr(X ∪Y)

) ∼= Hn

(
{y} ∪

⋃
x∈X

B̄r(x)(x)

)
∼= Hn

(
Čr(X)

)
⊕ Hn ({y})

∼= Hn
(
Čr(X)

)
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for each n ≥ 1. Thus Hn
(
Čr(X ∪Y)

) ∼= Hn
(
Čr(X)

)
when n ≥ 1 and Y is a

singleton. The conclusion holds by induction on the cardinality of Y.

Proposition 4.13. Let X be a compact metric space. Assume X, Y ⊆ X have finite

cardinalities and suppose r ∈ R>0
X∪Y is a weight function. Let r′ ∈ R>0

X∪Y satisfy

r′(x) = r(x) for each x ∈ X and r′(y) ≤ r(y) for each y ∈ Y. Also, define s ∈ R>0
X∪Y

by s|X ≡ r|X and s′|Y ≡ 0. Then, for every ε > 0 and n ≥ 1, there exists a δ > 0 such

that dB (dgmn ( fX∪Y,s) , dgmn ( fX∪Y,r)) < ε whenever ‖s− r‖∞ < δ.

Proof. Fix an integer n ≥ 1. By Corollary 4.11 (1), there exists a δ0 > 0 for any

ε0 > 0 such that

dB (dgmn ( fX∪Y,r) , dgmn ( fX∪Y,r′)) < ε0

whenever

‖r− r′‖∞ <
δ0

2
.

By Lemma 4.12, there exists a δ1 > 0 for any ε1 > 0 such that

dB (dgmn ( fX∪Y,s) , dgmn ( fX∪Y,r′)) < ε1

whenever

‖s− r′‖∞ <
δ1

2
.

Now, fix an arbitrary ε > 0 and choose ε0, ε1 > 0 so that ε0, ε1 < ε/2. By the

triangle inequality,

dB (dgmn ( fX∪Y,s) , dgmn ( fX∪Y,r)) < ε
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whenever

‖s− r‖∞ < δ.
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CHAPTER V

MULTIRADIAL VIETORIS-RIPS LEMMA

In this section, we prove a stronger version of the Vietoris-Rips lemma stated

in [DSG07, p. 346]. For convenience, we provide the original Vietoris-Rips lemma.

Lemma 5.1 (Vietoris-Rips lemma; [DSG07, p. 346]; Lemma E.5). Suppose we have

that {x0, . . . , xN} = X ⊂ Rd and ε, ε′ > 0. If (ε/ε′) ≥
√

2d/(d + 1), then

Rε′(X) ⊆ Čε(X) ⊆ Rε(X).

In words, we generalize the Vietoris-Rips lemma to the context of Čech and Vietoris-

Rips filtrations over multiple radial parameters. We would like to point out to the

reader that this implies the stability of persistence diagrams of multiradial filtra-

tions of affine Vietoris-Rips complexes by the results of the previous section.

Theorem 5.2 (Multiscale Vietoris-Rips Lemma). Let X ⊆ Rd be of finite cardinality

N. Assume r : X → (0, ∞) is a weight function. Then

Rε′r(X) ⊆ Čεr(X) ⊆ Rεr(X)

whenever ε, ε′ > 0 and ε/ε′ ≥
√

2d/(d + 1).

Proof. The second containment Čεr(X) ⊆ Rεr(X) follows from the fact that the

multiscale Rips complex is the flag complex of the Čech complex. To show that

Rεr(X), we suppose there is some finite collection {xk}`k=0 ⊆ Rd so that ‖xi −
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xj‖2 ≤ ε′(r(xi)− r(xj)) whenever i 6= j. Define a function f : Rd → R by

f (y) = max
0≤j≤`

{
‖xj − y‖2

r(xj)

}
.

Clearly, f is continuous and | f (y)| → ∞ as ‖y‖2 → ∞. Thus f attains a min-

imum on some compact set containing conv({xk}`k=0). It follows that f attains

an absolute minimum, say y0, on Rd. By a reordering of vertices if needed, we

may assume f (y0) =
1

r(xj)
‖xj − y0‖2

2 for some subcollection {xj}n
j=0 ⊆ {xk}`k=0 and

f (y0) > 1
r(xj)
‖xj − y0‖2

2 for {xj}`j=n+1. Let g(y) = max0≤j≤n

{
1

r(xj)
‖xj − y‖2

}
and

h(y) = maxn+1≤j≤`
{

1
r(xj)
‖xj − y‖2

}
.

Now we wish to show that y0 ∈ conv({xj}n
j=0). To this end, we apply Farkas’

lemma; see [HUL12, p. 59]. Either y0 ∈ conv({xj}n
j=0) or there is a v ∈ Rd such

that v · xj ≥ 0 for all 0 ≤ j ≤ n and v · y0 < 0. Thus we need only show that there is

no v ∈ Rd so that v · (xj − y0) > 0 for 0 ≤ j ≤ n. By way of contradiction, suppose

otherwise. Since

‖xj − (y0 + λv)‖2
2 = ‖xi − y0‖2

2 − 2λv · (xj − y0) + λ2‖v‖2
2

for each 0 ≤ j ≤ n, it follows that g(y0 − λv) < f (y0) for all λ ∈ (0, λ1) where

λ1 = min0≤j≤n 2v · (xj − y0)/‖v‖2
2. Since h(y) is continuous and h(y0) < f (y0),

there exists a λ2 so that h(y0 +λv) < f (y0) for λ ∈ [0, λ2). Thus there exists a λ > 0

such that f (y0 + λv) = max {g(y0 + λv), h(y0 + λv)} < f (y0), a contradiction to

the minimality of y0.
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By Carathéodory’s theorem, see [HUL12, p. 29], and reordering of vertices

if necessary, there exists some subcollection of vertices {xi}m
i=0, where 0 < i ≤

min{d, n}, such that y0 is in conv
(
{xi}m

i=0
)
. It is not possible that i = 0. If so, then

y0 = x and f (y0) =
1

r(x0)
‖x0− y0‖2 = 0 and f is identically zero. Since σ contains a

vertex x1 6= x0, it follows that

f (y0) = f (x0) >
1

r(x1)
‖x1 − x0‖2 > 0,

a contradiction.

By way of notation, let x̂j = xj − y0. Note that

‖x̂j‖2
2 = r(xj)

2 f (y0)
2. (5.1)

Take a0, a1, . . . , am ∈ R≥0 so that

m

∑
i=0

ai = 1 and y0 =
m

∑
i=0

aixi.

Then ∑m
i=0 ai x̂i = 0. By relabeling, we may assume that a0r(x0) ≥ r(xi)ai when

i > 0. Then we obtain

x̂0 = −
m

∑
i=1

ai

a0
x̂i,

and so

r(x0)
2 f (y0)

2 = ‖x̂0‖2
2 = −

m

∑
i=1

ai

a0
x̂0 · x̂i.
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Among the indices 1, 2, . . . , m, there is some ι such that

1
d

r(x0)
2 f (y0)

2 ≤ 1
m

r(x0) f (y0)
2 ≤ − aι

a0
x̂0x̂ι.

Putting (1) and (2) together, we find

f (y0)
2
(

r(x0)
2 +

2a0r(x0)
2

aιd
+ r(xι)

2
)
≤ ‖x̂0‖2

2 − 2x̂0x̂ι + ‖x̂ι‖2
2

= ‖x̂0 − x̂ι‖2
2

= ‖x0 − xι‖2
2

≤ (ε′(r(x0) + r(xι)))
2.

We will now show that

(r(x0)
2 + r(xι)2)2

r(x0)2 + 2a0r(x0)2

aιd
+ r(xι)2

≤ 2d
d + 1

.

It suffices to show

(d− 1 + 4
a0

aι
)r(x0)

2 − 2(d + 1)r(x0)r(xι) + (d− 1)r(xι)
2 ≥ 0.

Since a0
aι
≥ r(xι)

r(x0)
, we get

(d− 1 + 4
a0

aι
)r(x0)

2 − 2(d + 1)r(x0)r(xι) + (d− 1)r(xι)
2

≥ (d− 1 + 4
r(xι)

r(x0)
)r(x0)

2 − 2(d + 1)r(x0)r(xι) + (d− 1)r(xι)
2
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= (d− 1)(r(x0)− r(xι))
2

≥ 0

as desired. Our assumption that ε ≥ ε′
√

2d/(d + 1) implies f (y0) ≤ ε and thus

y0 ∈
m⋂

i=0

B̄εr(xi)
(xi).

Therefore σ ∈ Čεr(X) and we are done.
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CHAPTER VI

STABILITY OF N-GRADED PERSISTENT HOMOLOGY MODULES OF

MULTIRADIAL ZN
≥0-FILTRATIONS

This section is devoted to showing the interleaving metric defined in [BdSS15]

is stable on the persistent homology of multiradial ZN
≥0-filtered Čech and Vietoris-

Rips complexes. We will provide a quick review of the necessary results from

[BdSS15].

Definition 6.1. Suppose P = (P,≤) is a preordered set. A translation on (P,≤) is

a function Γ : P → P such that Γ(p) ≤ Γ(q) whenever p ≤ q and p ≤ Γ(p) for any

p, q ∈ P. It can be shown that a translation Γ : P→ P is a functor and there exists a

natural transformation ηΓ : id ⇒ Γ; see [BdSS15, p. 1510]. We denote the set of all

translations on P by TransP. Let Γ, K ∈ TransP and F, G ∈ DP for some category

D. A (Γ, K)-interleaving between F and G is a pair of natural transformations

ϕ : F ⇒ (G ◦ Γ) and ψ : G ⇒ (F ◦ K) such that

(ψ ◦ Γ) ◦ ϕ = F ◦ η(K◦Γ)

and

(ϕ ◦ K) ◦ ψ = G ◦ η(Γ◦K).

We say F and G are (Γ, K)-interleaved provided the existence of a (Γ, K)-interleaving

between F and G. A sublinear projection is a function ω : TransP → [0,+∞]
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satisfying the properties ω(idP) = 0 for the identity translation idP = idP and

ω(Γ0 ◦ Γ1) ≤ ω(Γ0) + ω(Γ1) for any Γ0, Γ1 ∈ TransP.

Let ε ∈ [0,+∞). We say Γ ∈ TransP is an ε-translation provided ω(Γ) ≤ ε.

Generalized persistence modules F, G ∈ dP are ε-interleaved with respect to ω

provided F and G are (Γ, K)-interleaved for some ε-translations Γ, K ∈ TransP. Set

ΥF,G := {ε ∈ [0,+∞) | F and G are ε-interleaved with respect to ω}

The interleaving distance d := dω : obj
(
DP)× obj

(
DP)→ [0,+∞] is defined by

d(F, G) :=


inf ΥF,G if ΥF,G 6= ∅

+∞ if ΥF,G = ∅
.

Theorem 6.2 ([BdSS15, p. 1516]). The interleaving distance d := dω is an extended

pseudometric on obj
(
DP) for any sublinear projection ω : TransP → [0,+∞].

We are finally ready to state the relevant stability theorem from [BdSS15]. The

following theorem says that the interleaving metric is 1-Lipschitz.

Theorem 6.3 ([BdSS15, p. 1517]). Suppose P is a preordered set, F, G ∈ obj
(
DP),

ω : TransP → [0,+∞] is a sublinear projection, and H : D → E is an arbitrary functor.

Then d ((H ◦ F), (H ◦ G)) ≤ d(F, G).

The next definition will yield our primary source of sublinear projections.

Definition 6.4. A Lawvere metric space is a pair (P, dP) where P is a set and

dP : P × P → [0,+∞] satisfies dP(p, p) = 0 and dP(p, r) ≤ dP(p, q) + dP(q, r)

for any p, q, r ∈ P.
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Proposition 6.5 ([BdSS15, p. 1518]). Suppose P = (P,≤) is a preordered set and

(P, dP) is a Lawvere metric space. Then ω := ωdP : TransP → [0,+∞] defined by

ωdP(Γ) = sup
p∈P
{dP(p, Γ(p))}

is a sublinear projection.

Definition 6.6. Assume K is a multiradial ZN
≥0-filtered Čech or Vietoris-Rips com-

plex. Referencing Lemma 3.6, we will denote the ZN
≥0-filtration of K as a functor

K• : ZN
≥0 → AbSimp.

Proposition 6.7. Suppose K and L are both multiradial ZN
≥0-filtered Čech or Vietoris-Rips

complexes and take dZN
≥0

to be the metric induced by the standard euclidean norm restricted

to ZN
≥0. Then the interleaving distance d: DP → [0,+∞] is an extended pseudometric

and

d
(
HN

n (K),HN
n (L)

)
≤ d(K, L).

Proof. By Proposition 6.5, ω := ωd
ZN
≥0

: TransZN
≥0
→ [0,+∞] defined by

ωd
ZN
≥0
(Γ) = sup

v∈ZN
≥0

{
dZN

≥0
(v, Γ(v))

}

is a sublinear projection. It follows that d := dω is an extended pseudometric on

obj
(

AbSimpZN
≥0

)
. Recall that (Hn ◦ C•) : AbSimp → ModR is a functor for any

n ∈ Z≥0; see Lemma 3.13. Using the convention in Definition 6.6, we can say
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K•, L• : ZN
≥0 → AbSimp are arbitrary functors in obj

(
AbSimpZN

≥0

)
. Thus, with

d := dω,

d
(
HN

n (K),HN
n (L)

)
= d ((Hn ◦ C•) ◦ K•, (Hn ◦ C•) ◦ L•)

≤ d(K, L)

for any n ∈ Z≥0 by Theorem 6.3.

Therefore N-graded persistent homology modules of multiradial filtrations are 1-

Lipschitz.
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CHAPTER VII

CONCLUSION AND FUTURE DIRECTIONS

This thesis has been devoted to building a vocabulary for the persistent ho-

mology of simplicial filtrations of nerve complexes, and their flag complexes, with

multiple radial parameters. We have identified the persistent homology of mul-

tiradial filtrations as a specific case of multidimensional persistent homology, es-

tablished various stability results for the persistence diagrams and (multiparame-

ter) persistent homology modules summarizing multiradial (multi)filtrations, and

generalized the Vietoris-Rips lemma of [DSG07, p. 346].

Now that we have established a parlance, we have several directions for future

research. With reference to Proposition 4.13, we intend to develop implementation

for exploratory data analysis using weighted persistence barcodes/diagrams. More

precisely, we wish to develop software based around the functionality of com-

puting persistence barcodes/diagrams with respect to different weight functions,

either customized directly by a client or by a client-provided density function de-

fined on the dataset. A goal would be to provide tools to carry out significance

testing for a collection of weighted barcodes derived from a single dataset. We

have had premature success in computing these weighted barcodes by retrofitting

JavaPlex [TVJA14].

Another objective would be to generalize our multiradial Vietoris-Rips lemma.

Currently, the original and multiradial versions of the Vietoris-Rips lemma specify

that the Čech and Vietoris-Rips complexes are affine. In other words, the Vietoris-
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Rips lemma only applies to Čech and Vietoris-Rips complexes having vertex sets

in euclidean space. We would like to broaden this hypothesis to the case of nerve

and flag complexes of covers over arbitrary compact metric spaces; see Corollary

C.16.

The last direction we will mention is our original goal for developing imple-

mentation for sensor network covers. Recalling Definition 3.7, suppose we have

X = {x1, . . . , xN} ⊆ X, r ∈ R>0
X is a weight function, and take v =

N
∑

i=1
projei

(v) ∈

ZN
≥0, where, of course, projei

(v) := v•ei
ei•ei
· ei. Define rv(xi) = r(xi) · ‖projei

(v)‖2 for

each 0 ≤ i ≤ N. Note that

ru(xi) ≤ rv(xi)

whenever

u ≤ v ∈ ZN
≥0

for each 0 ≤ i ≤ N. For coverage optimization, we would like to consider multifil-

tered complexes Čr(X) :=
{

Črv(X)
}

v∈ZN
≥0

and Rr(X) := {Rrv(X)}v∈ZN
≥0

.

With respect to the weight functions described in the previous paragraph, the

N-graded persistent homology modules HN
n
(
Čr(X)

)
=
⊕

v∈ZN
≥0

Hn
(
Črv(X)

)
and

HN
n (Rr(X)) =

⊕
v∈ZN

≥0
Hn (Rrv(X)) for n = 0, 1 would summarize all homolog-

ical configurations for a planar sensor network. Our aim is to provide imple-

mentation for optimizing a given network cover, probably using [AB]. Conceptu-

ally, we would like to choose an optimal multigraded component Hn

(
Rrv0

(X)
)

of

HN
n (Rr(X)) which minimizes a cost function Cost(v) given for a particular sensor

network. Friis transmission equation suggests Cost(v) be quadratic, or polynomial
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at least, in the radii of the sensing regions; see [BTB+06], [BIV16], and [Sha13].

We also point out that the fixed weight function r can be interpreted as a setting

of fixed radial increments for the sensors in X. Provided we can select an optimal

component Hn

(
Rrv0

(X)
)

for fixed weight function r, it is worthwhile to investi-

gate the possibility of a continuum solution as r(xi)→ 0 for each 0 ≤ i ≤ N.
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APPENDIX A

CATEGORY THEORY

We will make light use of category theoretic concepts to motivate the develop-

ment of persistent homology. Again, this is done with the intuition that we can

replace a topological description of a space with an algebraic one. We will pri-

marily base our discussion on [Bor94]. To avoid potential pathologies of the size

of sets, we include the following definitions and axioms. This is done merely for

completeness; see [Bor94, chapter 1] for more information.

Definition A.1. A Grothendieck universe is a set U satisfying:

(1) if x ∈ y and y ∈ U, then x ∈ U;

(2) if I ∈ U and xi ∈ U for every i ∈ I, then
⋃

i∈I xi ∈ U;

(3) if x ∈ U, then 2x ∈ U where 2x denotes the power set of x;

(4) if x ∈ U and f : x → y is surjective, then y ∈ U;

(5) N = {0, 1, 2, . . .} ∈ U.

Lemma A.2. If y ∈ U and x ⊆ y, then x ∈ U.

Proof. By Definition A.1 (5), ∅ = 0 ∈ N and N ∈ U. This implies ∅ ∈ U. Now,

suppose ∅ 6= x ⊆ y and y ∈ U. Take an arbitrary p ∈ x. Define the set function

f : y→ x by

f (t) =


t if t ∈ x

p if t /∈ x
.
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It is easy to see that f is surjective. By Definition A.1 (4), x ∈ U as desired.

We will axiomatically guarantee the existence of Grothendieck universes.

Axiom 1. For every set x, there exists some universe U such that x ∈ U.

Definition A.3. For a fixed universe U, elements of U will be called small sets and

subsets of U are called sets.

Without dwelling on pathology, we move on to categories.

Definition A.4. A category C is defined by the following:

(1) a set obj(C) whose elements are referred to as objects;

(2) a set hom(C) consisting of small sets homC(X, Y) of morphisms X → Y;

(3) there exists a binary operation, or composition,

homC(X, Y)× homC(Y, Z)→ homC(X, Z) : ( f , g) 7→ g ◦ f ;

(4) there exists a morphism idX ∈ homC(X, X) for all X ∈ obj(C);

(5) h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all f ∈ homC(W, X), g ∈ homC(X, Y), and

h ∈ homC(Y, Z);

(6) idY ◦ f = f and g ◦ idY = g for any f ∈ homC(X, Y) and g ∈ homC(Y, Z).

Intuitively, we can think of categories as a collection of diagrams with some sort of

restriction on the shapes presented by the diagrams. We summarize (3) by saying

the following diagram commutes:
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X Y Z
f

g◦ f

g

We extend this by saying a diagram commutes or is commutative if any com-

posites sharing the same source and target are equal. With this convention, (5)

gives us the following commutative diagram:

W X Y Z
f

g◦ f

g

h◦g

h

Lastly, we say C is a small category if obj(C) is a small set.

Example A.5. A preordered set (P,≤), or proset, is a set P with a binary relation

≤ that is both reflexive and transitive. Familiar examples are the integers Z and

real numbers R with the standard total ordering. We can simultaneously view P

as a category P; let obj(P) = P and define p ≤−→ q = p → q ∈ homP(p, q) if and

only if p ≤ q. The reflexivity of ≤ implies the existence of identity p id−→ p = p →

p ∈ homP(p, p) for all p ∈ obj(P). The transitivity of ≤ guarantees a well-defined

composition between morphisms: if p → q and q → r are morphisms in P then

p ≤ q and q ≤ r which implies p ≤ r; thus p→ r ∈ homP(p, r).

For associativity, suppose p, q, r, s ∈ obj(P) are arbitrary with p ≤ q ≤ r ≤ s.

Then

(p ≤−→ q ≤−→ r) ≤−→ s = p ≤−→ (q ≤−→ r ≤−→ s),

which gives us associativity of composition. Finally, we have
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p ≤−→ q id−→ q = p ≤−→ q

and

q id−→ q ≤−→ r = q ≤−→ r

for p, q, r ∈ obj(P) with p ≤ q ≤ r. Thinking of n = {0, 1, . . . , n− 1}, Z, and R as

preordered sets with the standard total ordering, we will notate their categorical

counterparts as n, Z, and R. Another relevant preordered set is (Rd,≤) where

(a1, a2, . . . , ad) ≤ (b1, b2, . . . , bd) if and only if ai ≤ bi for each 0 ≤ i ≤ d. The

preorder ≤ is reflexive and transitive.

• Note ai ≤ ai for all 0 ≤ i ≤ d which implies (a1, a2, . . . , ad) ≤ (a1, a2, . . . , ad)

for all (a1, a2, . . . , ad) ∈ Rd. This shows ≤ is reflexive since (a1, a2, . . . , ad) is

arbitrary in Rd.

• Suppose (a1, a2, . . . , ad) ≤ (b1, b2, . . . , bd) and (b1, b2, . . . , bd) ≤ (c1, c2, . . . , cd).

This implies ai ≤ bi ≤ ci for all 0 ≤ i ≤ d. In particular, ai ≤ ci for all

0 ≤ i ≤ d and thus (a1, a2, . . . , ad) ≤ (c1, c2, . . . , cd). This shows≤ is transitive

since (a1, a2, . . . , ad), (b1, b2, . . . , bd), (c1, c2, . . . , cd) ∈ Rd are arbitrary.

In this context, we call≤ the product order. Given the preordered sets (Rd,≤) and

Zd,≤ where ≤ is product order, we notate the associated categories by Rd and Zd.

Notice that

⋃
p∈obj(P)

homP(p, p) =
⋃

p∈obj(P)

{idp}

60



is a small set by Definition A.1 (2). It is easy to see that the set function

⋃
p∈obj(P)

{idp} → P : idp 7→ p

is surjective. Thus P is a small set. Therefore, any preordered set is a small category.

We will quickly list other friendly examples of categories.

Example A.6. (1) The category Set of sets with morphisms being set functions.

(2) The category VectF of vector spaces over the field F with morphisms being

linear mappings.

(3) The category Grp of groups with morphisms being group homomorphisms.

(4) The category Top of topological spaces with morphisms being continuous

mappings.

Now given categories, we can define a sort of homomorphism between them.

Definition A.7. Suppose C and D are categories. A (covariant) functor from C to

D is defined by the following:

(1) A mapping obj(C)→ obj(D); we denote the image of X ∈ C by F(X);

(2) A mapping homC(X, Y)→ homD(F(X), F(Y)); we denote the image of

f ∈ homC(X, Y) by F( f );

(3) F(g ◦ f ) = F(g) ◦ F( f ) for any f ∈ homC(X, Y) and g ∈ homC(Y, Z);

(4) F(idX) = idF(X) for any X ∈ C.
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Intuitively, a functor C → D is a mapping between categories that takes objects to

objects and morphisms to morphisms in a way that respects the categorical struc-

ture, that is, preserves composition and identity morphisms. In some sense, the

diagrams of the source category C are mapped to diagrams in D in a way that

preserves diagrammatic shape.

Example A.8. If C is a category, we define the identity functor id : C → C by

id(c) = c and id( f ) = f for every c ∈ obj(C) and every morphism f . It is easy to

check this satisfies Definition A.7.

Example A.9. Suppose F : C→ D and G : D→ E are functors. By pointwise com-

position, it is obvious (G ◦ F) : C → E provides us with a well-defined mapping

of objects and morphisms. Let f ∈ homC(X, Y) and g ∈ homC(Y, Z) be arbitrary

morphisms. Notice that

(G ◦ F)(g ◦ f ) = G(F(g) ◦ F( f ))

= (G ◦ F)(g) ◦ (G ◦ F)( f ).

Also,

(G ◦ F)(idX) = G(idF(X))

= id(G◦F)(X).

Thus the composition of (covariant) functors is closed.

Example A.10. The forgetful functor z : Top → Set assigns to each X ∈ obj(Top)

the underlying set X without its topological structure. For each continuous map
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f ∈ homTop(X, Y), z assigns the corresponding set function that evaluates identi-

cally to f . Let us check (3) and (4) of Definition A.7.

(3) Suppose f : X → Y and g : Y → Z are arbitrary continuous maps. Then

z(g ◦ f ) = g ◦ f = z(g) ◦z( f ).

(4) Suppose X ∈ Top is arbitrary. Then

z(idX) = idX = idz(X)

where idX denotes the identity map on X. There are similar forgetful functors

Grp→ Set and VectF → Set.

Example A.11. Suppose f : X → Y is a set function. Define the direct image mapping

f̃ : 2X → 2Y by

f̃ (S) = { f (x) | x ∈ X}.

We obtain a functor ℘ : Set → Set by mapping X to 2X and f : X → Y to f̃ : 2X →

2Y for any X, Y ∈ obj(Set) and each f ∈ homSet(X, Y). The functor ℘ is called the

power set functor.

Given two functors with the same source and target, we can define a sort of

morphism between them that preserves the structure of the underlying categories.

Definition A.12. Suppose we have two functors F, G : C → D. A natural trans-

formation τ : F ⇒ G is a set of morphisms {τX : F(X)→ G(X)}X∈obj(C) of D such
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that (τY ◦ F( f )) = (G( f ) ◦ τX) for every morphism f : X → Y in C. This means

diagram (1.1)

F(X) F(Y)

G(X) G(Y)

F( f )

τX τY

G( f )

(1.1)

commutes for every C-morphism f : X → Y. In some sense, τ maps the D-

morphisms determined by F to D-morphisms determined by G in a way that re-

spects both C and D.

Example A.13. With reference to the identity functor and the power set functor de-

fined in Examples A.8 and A.11, we define the family of functions {ςX : X → 2X}X∈Set

by

ςX(x) = {x}.

Notice that, for any sets X and Y and any set function f : X → Y,

(ςY ◦ id( f ))(x) = {x}

= id( f̃ )({x})

= (id( f̃ ) ◦ ςX)(x).

Thus ς : id⇒ ℘ is a natural transformation.
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If we are careful, natural transformations actually take on the role of morphisms

in so-called functor categories.

Proposition A.14. Suppose C is a small category and D is an arbitrary category. Taking

objects to be functors C → D and morphisms as natural transformations between said

functors forms a functor category denoted by DC.

Proof. Recall that a natural transformation τ : F ⇒ G is a set of D-morphisms

{τX}X∈C. It is easy to see that

τ ⊆ H :=
⋃

X∈C
homD (F(X), G(X)) .

for any X ∈ C and natural transformation τ : F ⇒ G. By Definition A.1 (2), H is a

small set since C is a small category. It follows from Definition A.1 (3) that 2H is a

small set. Since τ ∈ 2H for any natural transformation τ : F ⇒ G,

homDC(F, G) ⊆ 2H

and hence homDC(F, G) is a small set by Definition A.1 (1). Thus hom(DC) is

well-defined.

We define composition of natural transformations by vertical composition:

(υ ◦ τ)X := υX ◦ τX where X ∈ C, τ : F ⇒ G and υ : G ⇒ H are natural trans-

formations, and F, G, H : C→ D are functors. It is easy to see the vertical composi-

tion is well-defined and associative as a point-wise composition of D-morphisms.

Clearly, the identity morphism idF : F ⇒ F is the natural transformation consisting

of {idF(X) : F(X)→ F(X)}X∈C. Altogether, DC is a category.
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Corollary A.15. Suppose P is a preordered set and D is an arbitrary category. Taking

objects to be functors P → D and morphisms as natural transformations between said

functors forms a functor category denoted by DP.

Proof. By Example A.5, P is a small category. Thus DP is a functor category by

Proposition A.14.

In Appendix E, we will develop persistent homology modules as objects in a par-

ticular kind of functor category.
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APPENDIX B

MODULES AND CHAIN COMPLEXES

We will need to recall some basic module theory for our development of per-

sistent homology. Our discussion is primarily based on [Rot02, DF04]. For what

follows, we will assume that (R,+, ·) is a nonzero commutative ring with unit 1R

and identity 0R. By way of notation, we will let∼= denote isomorphisms of groups,

modules, et cetera,'will denote homotopy equivalence, and≈will denote home-

omorphism equivlence.

Definition B.1. Recall that an ideal in R is an additive subgroup I such that ra ∈ I

whenever a ∈ I and r ∈ R. Suppose A = {s1, s2, . . . , sn} ⊆ R. The set

AR := {r1s1 + r2s2 + · · ·+ rnsn | ri ∈ R}

is an ideal in R called the ideal AR generated by A ⊆ R. An ideal (a) := aR

generated by a ∈ R is called a principal ideal. R is a principal ideal domain, or

PID, if R is an integral domain in which every ideal in R is a principal ideal.

Example B.2. Let us mention some trivial ideals. The trivial subgroup {0R} is an

ideal of R since 0Rr = 0R ∈ {0R} for all r ∈ R. Also, R is an ideal in itself since

sr ∈ R for all r, s ∈ R by closure of R under multiplication as a ring. It is easy to

see that {0R} is principal since 0r = 0 for all r ∈ R.

Example B.3. Consider the ring R[x] of polynomials over a single indeterminate

with coefficients in R. Let I be a nonzero ideal in R[x] and take p ∈ I to be a

nonzero monic polynomial of minimal degree. Given any f ∈ I, f = qp + r where
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r = 0 or deg(r) < deg(p) and q, r ∈ I by the division algorithm; see [Rot02, p.

132]. Thus r = f − qp ∈ I since I is an ideal. However, this means r = 0 since

deg(r) < deg(p) is a contradiction to our choice of p otherwise. Thus g = qp ∈ (p)

for all g ∈ I. Therefore all ideals of R[x] are principal and have the form (xk) for

some k ≥ 0. This shows R[x] is a PID.

With the intuition of a vector space over a field of scalars, we can think of a

module as a vector space over a ring of scalars:

Definition B.4. An R-module is an abelian group (M,+) equipped with an oper-

ation R×M→ M such that the following hold for all r, s ∈ R and x, y ∈ M:

(1) r(x + y) = rx + ry;

(2) (r + s)x = rx + sx;

(3) (rs)x = r(sx);

(4) 1Rx = x.

Suppose M is an R-module and x ∈ M. A submodule N of M is a subgroup N

of M satisfying rn ∈ N for any r ∈ R. We define the cyclic submodule generated

by x to be 〈x〉 := {rx | r ∈ R}. More generally, if X ⊆ M, then we define the

submodule generated by X to be

〈X〉 :=

{
n

∑
i=1

rixi

∣∣∣∣∣ ri ∈ R, xi ∈ X, 0 ≤ n < +∞

}
.

A module M is finitely generated if there exists a finite subset X ⊆ M with

M = 〈X〉. Suppose N is a submodule of an R-module M. We can define the
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quotient module M/N to be the quotient group M/N equipped with the scalar

multiplication

r(m + N) = rm + N

where r ∈ R and m ∈ M. For completeness, let us recall the notion of a free R-

module. Suppose M is an R-module and N ⊆ M. We say M is free on B ⊆ M

if m = ∑i∈I ribi where ri ∈ R and bi ∈ B ⊆ M are unique for some at most finite

index set I and all 0 6= m ∈ M. We say that the rank of M is rk(M) := |B| and call

B a basis for M. We will also write M = 〈B〉.

Take I 6= ∅ to be an indexing set and assume Mi is an R-module for every i ∈ I.

The direct sum of modules
⊕

i∈I Mi over I is the R-module defined as follows:

∏
i∈I
{mi} ∈

⊕
i∈I

Mi

with the action (2.1)

r ·∏
i∈I
{mi} := ∏

i∈I
{r ·mi}

for any r ∈ R and mi ∈ Mi with the stipulation that mi = 0Mi for all but finitely

many i ∈ I. Note that (2.1) indicates the direct sum of the abelian groups Mi.

This does define an R-module indeed; observe the following where r, s ∈ R and

(mi)i∈I , (ni)i∈I ∈
⊕

i∈I Mi.

(1)

r ·
[
(mi)i∈I + (ni)i∈I

]
i∈I = r · (mi + ni)i∈I

= (r · [mi + ni])i∈I
= (r ·mi + r · ni)i∈I
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= (r ·mi)i∈I + (r · ni)i∈I
= r · (mi)i∈I + r · (ni)i∈I .

(2)

(r + s) · (mi)i∈I = ([r + s] ·mi)i∈I
= (r ·mi + s ·mi)i∈I

= (r ·mi)i∈I + (s ·mi)i∈I

= r · (mi)i∈I + s · (ni)i∈I .

(3)

(rs) · (mi)i∈I = ([rs] ·mi)i∈I

= (r · [s ·mi])i∈I

= r · (s ·mi)i∈I

= r · [s · (mi)i∈I ] .

(4)

1R · (mi)i∈I = (1R ·mi)i∈I

= (mi)i∈I .

Lemma B.5. If M is free and |rk(M)| < ∞, then M is finitely generated.

Proof. Since M is free and has finite rank, there exists some B = {bi}n
i=0 ⊆ M such

that ∑n
i=0 ribi for all 0 6= m ∈ M. Hence M = 〈B〉 and therefore M is finitely

generated.

Lemma B.6. If N is a submodule of a finitely generated module M, then N is finitely

generated.

Proof. Let Y ⊆ M be a finite set and assume M = 〈Y〉. Since N is a submodule of

M, there is some set X ⊆ Y such that N = 〈X〉. Hence X ⊆ M is a finite set and

therefore N is finitely generated.
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Lemma B.7. If N is a submodule of a finitely generated module M, then M/N is finitely

generated.

Proof. By Lemma B.6, M = 〈Y〉 and N = 〈X〉 for some finite sets X ⊆ Y ⊆ M. Say

X = {xi}n
i=0 and Y = {xi}m

i=0 with m < n and define

Y′ := {xi + N |m < i ≤ n}.

In the case that m = n, M/N = {0} is trivial. Obviously, 〈Y′〉 is finitely generated.

Take an arbitrary element of 〈X〉, say ∑n
i=m+1 ri · (xi + N) ∈ 〈X〉. Then

n

∑
i=m+1

ri · (xi + N) =
n

∑
i=m+1

(rix + N) ∈ M/N

and hence 〈Y′〉 ⊆ M/N.

Now, take an arbitrary m+ N ∈ M/N and n ∈ N. It follows that m = ∑n
i=m+1 rixi

where ri ∈ R are arbitrary. Observe

m + n =

(
n

∑
i=m+1

rixi

)
+ n

= (rm+1xm+1 + n) +

(
n

∑
i=m+2

rixi

)

= (rm+1xm+1 + n) +

(
n

∑
i=m+2

rixi + 0N

)
∈ 〈Y′〉.

Since n ∈ N was arbitrary, M/N = 〈Y′〉. Therefore M/N is finitely generated.

Example B.8. As before, let R be a commutative ring. Then R is an R-module since

for p, q, r, s ∈ R
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(1) r(x + y) = rx + ry holds by left distributivity of R;

(2) (r + s)x holds by right distributivity of R;

(3) (rs)x = r(sx) holds by associativity of multiplication in R;

(4) 1Rx = x since R has a multiplicative identity by definition.

Example B.9. Clearly, any vector space over a field F is an F-module.

Definition B.10. Suppose M and N are are R-modules. A function f : M→ N is

an R-homomorphism if, for all x, y ∈ M and all r ∈ R, the following are satisfied:

(1) f (x + y) = f (x) + f (y);

(2) f (rx) = r f (x).

We say f is an R-isomorphism and write M ∼= N if f is also a bijection. We respec-

tively define the kernel of f and image of f by

ker( f ) := {x ∈ M | f (x) = 0}

and

im( f ) := f (M) = {y ∈ N | f (x) = y for some x ∈ M}.

Example B.11. Suppose M is an R-module. The identity map idM : M → M is an

R-homomorphism. Take arbitrary x, y ∈ M and r ∈ R. Note that

idM(x + y) = x + y = idM(x) + idM(y).
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Also,

idM(rx) = rx = r · idM(x).

Example B.12. Suppose f : X → Y and g : Y → Z are R-homomorphisms and take

x, y ∈ X and r ∈ R. Note the following:

(1)

(g ◦ f )(x + y) = g( f (x) + f (y)) = g( f (x)) + g( f (y))

= (g ◦ f )(x) + (g ◦ f )(y);

(2) (g ◦ f )(rx) = g(r f (x)) = rg( f (x)) = r(g ◦ f )(x).

By arbitrariness of x, y ∈ X and r ∈ R, (g ◦ f ) is an R-homomorphism.

Example B.13. Suppose f : V → W is an R-homomorphism. Then ker( f ) is a

submodule of V and im( f ) is a submodule of W.

Example B.14. Let f : V →W be a linear map between vector spaces over the field

F. Then f is an F-homomorphism.

Example B.15. Taking objects to be R-modules and morphisms to be R-homomorphisms,

we can form the category of R-modules ModR. By the previous example, compo-

sition of morphisms is well-defined. Associativity follows from associativity of

composition and the identity morphism is just the identity map from Example

B.11.
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In Appendix E, we shall see that persistent homology can be understood through

the structure of graded finitely generated modules.

Definition B.16. A (nonnegatively) graded ring R is a ring with a direct sum de-

composition of abelian groups

R ∼=
⊕

i∈Z≥0

Ri

such that RiRj ⊆ Ri+j for all i, j ∈ Z≥0. We say the elements of Ri are homoge-

neous of degree i.

Example B.17. Of particular interest for us in Appendix E, we can grade the poly-

nomial ring R[x] by degree. Setting Ri[x] := Rxi for all i ≥ 0, we have that

rxi · sxj = (rs)xi+j ∈ Ri+j[x] := Rxi+j.

for any homogeneous elements rxi ∈ Rxi and sxj ∈ Rxj. This gives the following

decomposition:

R[x] ∼=
⊕

i∈Z≥0

Rxi.

Definition B.18. A (nonnegatively) graded module is an R-module M, R is a

graded ring, with a direct sum decomposition of abelian groups

M ∼=
⊕

i∈Z≥0

Mi
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such that Ri Mj ⊆ Mi+j.

The standard structure theorem for finitely generated modules over PIDs pro-

vides us with a factorization of modules up to isomorphism.

Theorem B.19 (Structure theorem for finitely generated modules). Suppose R is a

PID. Then every finitely generated R-module M decomposes uniquely into a direct sum of

cyclic R-modules

M ∼= R f ⊕
(

m⊕
i=0

R/riR

)

for some f , m ∈ Z≥0 and ri ∈ R satisfying ri | ri+1.

Theorem B.19 says that every finitely generated module over a PID R decomposes

uniquely, up to isomorphism, into the direct sum of a finitely generated free module

and a finitely generated torsion module. The interested reader can find the proof

for Theorem B.19 in [DF04, p. 463] or [Row06, p. 68].

There is also a structure theorem for graded finitely generated modules. For

the proof, we recall the first isomorphism theorem for modules:

Theorem B.20 (First isomorphism theorem for modules). Let M and N be R-modules

and suppose f : M → N is an R-module homomorphism. Then ker( f ) is a submodule of

M, f (M) is a submodule of N, and M/ker( f ) ∼= f (M).

Proof. Consider M and N as abelian groups. By the first isomorphism theorem for

groups, ker( f ) is a subgroup of M, f (M) is a subgroup of N, and both M/ker( f )

and f (M) are isomorphic as abelian groups. This is summarized by the following

commutative diagram:
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M M/ker( f )

N

π

f
ϕ

Take x ∈ ker( f ); then

f (rx) = r f (x) = r0M = 0

for all r ∈ R which implies f (rx) ∈ ker( f ). Hence x ∈ ker( f ) is a submodule of

M. Let y ∈ f (M); then y = f (x) for some x ∈ M and

ry = r f (x) = f (rx) ∈ f (M)

for all r ∈ R. Thus f (M) is a submodule of N. Since f is an R-homomorphism,

ϕ(r(x + ker( f ))) = ϕ(rx + ker( f )) = f (rx)

r f (x) = rϕ(x + ker( f ));

this shows ϕ is an R-homomorphism. Thus M/ker( f ) ∼= f (M) as R-modules.

We would like to note that the proof for the following theorem is quite similar to

the proof in the ungraded case; see [DF04].

Theorem B.21 (Structure theorem for graded finitely generated modules). Suppose

M is a graded finitely generated module over a graded PID R. Then M is isomorphic to a
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direct sum of the form:

(
κ0⊕

i=0

Σξi R

)
⊕

 κ1⊕
j=0

Σζ j R
/ (

dj
)

where ξi, ζ j, κ0, κ1 ∈ Z≥0, (dj) := djR are homogeneous elements so that dj | dj+1. The

map Σk gives a k-shift upward in grading for k ∈ Z≥0, that is to say,

(ηi)i∈Z≥0

Σk
7−→

(
η′i
)

i∈Z≥0

where η′i = 0 whenever i < k and η′i = ηi−k for each i ≥ k.

Proof. Suppose {mi}n
i=0 is a set of generators for M of minimal cardinality n ≥ 0.

Let Rn+1 be the free R-module of rank (n + 1) with basis {bi}n
i=0. Define the map-

ping f : Rn+1 → M by f (bi) = mi for all 0 ≤ i ≤ n. Extending by linearity, we

obtain an R-module homomorphism; this means we set

f

(
n

∑
i=0

ribi

)
=

n

∑
i=0

ri f (bi)

for all ri ∈ R. By the first isomorphism theorem for modules,

Rn+1/ ker( f ) ∼= M.

By [DF04, p. 60, Theorem 4], we can choose another basis {yi}n
i=0 of Rn+1 so that

{aiyi}m
i=0 is a basis of ker( f ) for some {ai}m

i=0 ⊆ R with a0 | a1 | · · · | am and 0 ≤
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m ≤ n. This implies

M ∼= Rn+1/ ker( f )

∼=
(

n⊕
i=0

Ryi

)/(
m⊕

i=0

Raiyi

)
.

We will use the first isomorphism theorem for modules to identify the last quo-

tient module above. Define the surjective R-module homomorphism

π :
n⊕

i=0

Ryi →
(

n⊕
m+1

Σdeg(yi)R

)
⊕
(

m⊕
0

Σdeg(yi)R/(ai)

)

defined by

π((α0y0, α1y1, . . . , αnyn)) = (α0 mod(a0), α1 mod(a1), . . . , αn mod(an))

where deg(yi) is the degree induced by the grading of R. By definition of π,

ker(π) ∼=
m⊕

i=0

Raiyi

∼= ker( f ).

Thus, by the first isomorphism theorem, im(π) ∼= M, that is,

M ∼=
(

n⊕
i=m+1

Σdeg(yi)R

)
⊕
(

m⊕
i=0

Σdeg(yi)R/(ai)

)
,

as desired.
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The next well-known proposition is included for completeness and will become

relevant in Appendix D.

Proposition B.22. Suppose R is a PID and let f : M → N be an R-module homomor-

phism between free R-modules M and N with rank n and m, respectively. Assume that

f is described by an m× n matrix A. Then there exists invertible matrices P and Q such

that

PAQ = D

=



d1 0 0 · · · 0 · · · 0

0 d2 0 · · · 0 · · · 0
...

... . . . . . . ... . . . 0

0 0 · · · dk 0 · · · 0

0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0



where d1, . . . , dk ∈ R satisfy d1 | d2 | · · · | dk.

The matrix D is said to be the Smith normal form of A. Proposition B.22 guar-

antees that any matrix representation of an R-module homomorphism can be re-

duced to a Smith normal form using row and column reduction operations. The

proof of Proposition B.22 can be found in [Row06, p. 66]. Even though it is in the

context of free abelian groups, [Mun84, s. 1.11] gives an accessible account of this

result as well.

We will use sequences of R-modules in our treatment of persistent homology.
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Definition B.23. An R-chain complex (C•, ∂•) is a sequence of R-modules and R-

homomorphisms

· · · ∂n←− Cn
∂n+1←−− Cn+1

∂n+2←−− Cn+2
∂n+3←−− · · ·

where (∂n ◦ ∂n+1) ≡ 0 for n ∈ Z. The R-homomorphism ∂n is called the nth

boundary map. Using less structure, we note other treatments will define chain

complexes as sequences of abelian groups with group homomorphisms; see [Rot98,

c. 5] or [Mun84, s. 1.5].

Example B.24. A trivial example of a chain complex is the zero complex {0•, ∂•}

where the R-modules {0} and R-homomorphisms ∂• : {0} → {0} are trivial. In

this case, (∂n ◦ ∂n−1)(0) = ∂n(∂n−1(0)) = 0.

Next, we will define the proper morphisms between R-chain complexes.

Definition B.25. Suppose (C•, ∂•) and (C′•, ∂′•) are chain complexes. A chain map

f• : (C•, ∂•)→ (C′•, ∂′•)

is a sequence of maps fn : Cn → C′n making the following diagram commute for all

n ∈ Z:

· · · Cn+1 Cn Cn−1 · · ·

· · · C′n+1 C′n C′n−1 · · ·

∂n+1

fn+1

∂n

fn fn−1

∂n+1 ∂n
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If we define composition componentwise

{g•} ◦ { f•} := {g• ◦ f•},

then we can construct the category CompR of R-chain complexes with morphisms

being chain maps. Associativity of morphisms follows from associativity of com-

position and the identity morphism is the sequence {id•} of identity maps.

Using sequences of modules, we can construct homology modules in a general

setting.

Definition B.26. Suppose the (C•, ∂•) is a chain complex. Then the R-module of n-

cycles Zn(C•) := ker(∂n) and the R-module of n-boundaries Bn(C•) := im(∂n+1).

We define the nth homology R-module of (C•, ∂•) to be

Hn(C•) := Zn(C•)/Bn(C•).

The nth Betti number βn of (C•, ∂•) is rk(Hn(C•)).

Example B.27. Suppose f : M → N is an R-homomorphism. We can construct a

chain complex (C•, ∂•) by setting C0 = N, C1 = M, ∂1 = f , and letting Ci = {0}

and ∂i : {0} → {0} be trivial for all i 6= 1. Cancellation of boundary maps is

satisfied since

(∂0 ◦ ∂1)(x) = ∂0(∂1(x)) = 0

and

(∂1 ◦ ∂2)(0) = ∂1(∂2(0)) = 0
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for all x ∈ M and all other compositions are trivial. If n = 1, then

Hn(C•) = Zn(C•)/Bn(C•) = ker( f )/{0}

= ker( f ).

If n 6= 0, then

Hn(C•) = Zn(C•)/Bn(C•) = ker(∂0)/im( f )

= N/im( f ).

If n 6= 0, 1, then

Hn(C•) = Zn(C•)/Bn(C•) = {0}/{0}

= {0}.

In this case, we can say with certainty that βn = 0 for all n 6= 0, 1.

Proposition B.28. For all n ∈ Z, Hn : CompR → ModR is a functor.

Proof. Suppose (C•, ∂•) is an R-chain complex. By definition, Hn maps (C•, ∂•)

to Hn(C•). Let f• : (C•, ∂•) → (C′•, ∂′•) be a chain map and for morphisms define

Hn( f•) : Hn(C•)→ Hn(C′•) by

Hn( f•)([z]) = Hn( f•)(z + Bn(C•))

= fn(z) + Bn(C′•)
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for any [z] ∈ Hn(C•). We will show Hn is well-defined on chain maps; we will

need to show fn(z) ∈ Zn(C′•) and that fn(z) is independent of the choice of rep-

resentative z ∈ Zn(C•). Note that the following diagram commutes since f• is a

chain complex:

· · · Cn+1 Cn Cn−1 · · ·

· · · C′n+1 C′n C′n−1 · · ·

∂n+1

f n+1

∂n

fn fn−1

∂n+1 ∂n

(2.2)

If z ∈ Zn(C•), then ∂n(z) = 0Cn−1 by definition of Zn(C•). Given the commutativity

of diagram of the diagram above,

(∂′n ◦ fn)(z) = ( fn−1 ◦ ∂n)(z) = fn−1(0)

= 0.

Thus fn(z) ∈ Zn(C′•) for any z ∈ Zn(C•).

Next, assume that z − y ∈ Bn(C•), that is, z and y are homologous, meaning

they are representatives of the same homology class. This means z− y = ∂n+1(c)

for some c ∈ Cn+1. Thus,

fn(z− y) = fn(∂n+1(c))

= (∂n+1 ◦ fn+1)(c) ∈ Bn(C•)
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by commutativity. Assume f• : (C•, ∂•)→ (C′•, ∂′•) and g• : (C′•, ∂′•)→ (C′′• , ∂′′• ) are

chain maps with a well-defined composition (g• ◦ f•). Then, for any [z] ∈ Hn(C•),

Hn(g• ◦ f•)([z]) = (gn ◦ fn)(z) + Bn(C′′• )

= Hn(g•)( fn(z) + Bn(C′•)

= Hn(g•)Hn( f•)([z]).

Lastly, it is clear that Hn

(
id(C•,∂•)

)
= id(C•,∂•) is the identity. Therefore Hn is a

functor between CompR and ModR.
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APPENDIX C

SIMPLICIAL COMPLEXES

As mentioned in the introduction, we are looking to approximate complicated

topological spaces with simpler ones. Simplicial complexes are a standard tool

used for this purpose as they are built up by incidence relations between sim-

ple discrete pieces. In most cases, we will be interested in purely combinatorial

abstract simplicial complexes. However, we will establish intuition by first dis-

cussing simplicial complexes embedded in euclidean space. Our treatment is mo-

tivated largely by [Rot98].

Definition C.1. Suppose A ⊆ Rd. We say A is affine if (1− t)p + tq ∈ A for any

p, q ∈ A and any t ∈ R. Assume S = {x0, x1, . . . , xn} ⊆ Rd and let A be the affine

set they span, that is, for all q ∈ A, q = (1− t)xi + txj for some t ∈ R and xi, xj ∈ S.

A function f : A→ Rd is affine provided

f

(
n

∑
i=0

ti pi

)
=

n

∑
i=0

ti f (pi)

for t0, t1, . . . , tn ∈ R with ∑n
i=0 ti = 1. We define an affine combination of the

points x0, x1, . . . , xn to be a point p = ∑n
i=0 tixi where ∑n

i=0 ti = 1. A convex com-

bination of x0, x1, . . . , xn ∈ Rd is an affine combination p = ∑n
i=0 tixi where ti ≥ 0

for each 0 ≤ i ≤ n. The convex hull of S = {x0, x1, . . . , xn} is defined by

conv(S) :=
{

p ∈ Rd
∣∣∣p is a convex combination of x0, x1, . . . , xn

}
.
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We say S is affinely independent if the set {xi − x0|1 ≤ i ≤ n} ⊆ Rd is linearly

independent. The restriction f |conv(S) of an affine map f : A → Rd will also be

referred to as an affine map.

The following proposition is useful when dealing with convex hulls.

Proposition C.2. Let S = {x0, x1, . . . , xn} ⊆ Rd be affinely independent. For any point

p ∈ conv(S), p is uniquely expressible as a convex combination of the points in S.

Proof. Take p ∈ conv(S) and suppose

p =
n

∑
i=0

tixi =
n

∑
i=0

t′ixi

where ∑n
i=0 ti = 1 = ∑n

i=0 t′i, and ti, t′i ≥ 0 for each 0 ≤ i ≤ n. Consequently,

n

∑
i=0

(ti − t′i) = 0 =
n

∑
i=0

(ti − t′i)xi.

This allows the following manipulation:

n

∑
i=1

(ti − t′i)(xi − x0) =

(
n

∑
i=1

(ti − t′i)xi

)
−
(

n

∑
i=1

(ti − t′i)x0

)

= −x0

n

∑
i=1

(ti − t′i)

= 0.
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Affine independence of S gives us the linear independence of {xi − x0}n
i=1, and

thus ti = t′i for each 1 ≤ i ≤ n. Hence,

0 =
n

∑
i=0

(ti − t′i)xi

= (t0 − t′0)x0

and thus t0 = t′0. Therefore the weights ti are unique for each 0 ≤ i ≤ n and for

any p ∈ conv(S).

Definition C.3. Suppose that S = {x0, x1, . . . , xn} ⊂ Rd is affinely independent.

We define the n-simplex (x0, x1, . . . , xn) with vertices x0, x1, . . . , xn to be the convex

hull of S and say that σ is spanned by S. If σ ⊂ Rd is an n-simplex, we denote its

vertices by vert(σ). A k-face of σ is a k-simplex τ where vert(τ) ⊆ vert(σ) and

0 ≤ k ≤ n. The dimension of σ is dim(σ) := |vert(σ)|. Note that we retrieve a

total ordering of vert(σ) if we define xi �σ xj if and only if i ≤ j for all xi, xj ∈

vert(σ). Thus the total ordering �σ allows us to distinguish n-simplices sharing

the same vertex set. Suppose σ is an n-simplex and τ = (y0, . . . , ym) is an m-

simplex with 0 ≤ m ≤ n. If yi ∈ vert(σ) for each 0 ≤ i ≤ m and yi �σ yj whenever

0 ≤ i ≤ j ≤ m, then we call τ an m-face of σ. Similarly, we say that σ is an n-coface

of τ.

With restrictions on incidence relations, simplices are combined to build more

complicated structures.

Definition C.4. Suppose K is a collection of simplices in Rd. We say K is a (affine)

simplicial complex if the following are satisfied:
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(1) if σ ∈ K, then τ �σ σ implies τ ∈ K;

(2) if σ, τ ∈ K, then either σ ∩ τ = ∅ or σ ∩ τ �τ τ and σ ∩ τ �σ σ.

A subcomplex of K is a simplicial complex L where L ⊆ K. The dimension of a

simplicial complex is dim(K) := supσ∈K(dim(σ)). Let K be a simplicial complex.

Then the j-skeleton K(j) of K is defined by σ ∈ K(j) when σ ∈ K and dim(σ) ≤ j for

j ≥ −1. In particular, notice K(−1) = ∅. We will say that a simplicial complex K is

finite provided |K(0)| < ∞; otherwise, K is infinite. If K and L are simplicial com-

plexes, then f : K(0) → L(0) is a simplicial map provided { f (x0), f (x1), . . . , f (xn)}

spans a simplex in L whenever {x0, x1, . . . , xn} spans a simplex in K.

Using simplicial maps as morphisms, we can form a category of affine simpli-

cial complexes denoted by Simp.

Proposition C.5. Taking objects to be affine simplicial complexes and morphisms to be

simplicial maps, we can form the category of affine simplcial complexes Simp.

Proof. This is simple to check. Composition of morphisms is given by composition

of simplicial maps as set functions. Associativity of morphisms is due to associa-

tivity of simplicial maps. Finally, the identity morphism is just the identity map

id : K(0) → K(0) for any K ∈ obj(Simp).

In practice, simplicial complexes are useful as discrete approximations of topo-

logical spaces. It is possible to associate an underlying topological space to arbi-

trary simplicial complexes; see the discussion of CW-topology in [MS82, pp. 289-

290]. With an eye towards computation, we will restrict ourselves to finite simpli-

cial complexes. With this in mind, we will discuss obj(Simp) as containing only

finite simplicial complexes without any change in notation.
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Definition C.6. Suppose K is a finite simplicial complex in Rd and X is a topologi-

cal space. We call the set

|K| :=
⋃

σ∈K
σ ⊆ Rd

the underlying space of K. The space X is said to be a polyhedron or triangulable

if there exists a homeomorphism f : |L| → X for some simplicial complex L. We

will say that (L, f ) provides a triangulation of X.

Underlying gives us a tool for associating diagrams involving simplicial and topo-

logical objects.

Proposition C.7. Underlying defines a functor | · | : Simp→ Top.

Proof. With respect to objects, let underlying map K to |K|. We will need to take

some care with the mapping of morphisms. Suppose we have a simplical map

f : K(0) → L(0) and take an arbitrary σ = (x0, x1, . . . , xn) ∈ K. Consider the

restricted map f |vert(σ) : {x0, x1, . . . , xn} → { f (x0), f (x1), . . . , f (xn)}. By the def-

inition of simplicial map, { f (x0), f (x1), . . . , f (xn)} spans a unique affine simplex

τ ∈ L. This gives us a well-defined map

f̃σ : {x0, x1, . . . , xn} → |L| : f̃σ(xi) = (ι|L| ◦ f |vert(σ))(xi)

where ι|L| is the inclusion map into |L|.
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Now we define an affine map Tσ : σ→ |L| by

Tσ

(
n

∑
i=0

tixi

)
=

n

∑
i=0

ti f̃σ(xi)

where ∑n
i=0 tixi is a convex combination in σ. Take note that Tσ(xi) = f̃σ(xi) for

each 0 ≤ i ≤ n; by Proposition C.2, Tσ is the unique affine function with this

property. Suppose σ0 and σ1 are arbitrary simplices in K satisfying σ0 ∩ σ1 6= ∅.

Then, by definition of simplicial complex, σ0 ∩ σ1 ∈ K and, as above, we have a

unique affine function Tσ0∩σ1 that agrees with f̃σ on the vertices of the face σ0 ∩ σ1.

The uniqueness of Tσ0∩σ1 guarantees that Tσ0 and Tσ1 agree on overlaps, that is,

Tσ0 |σ0∩σ1 = Tσ1 |σ0∩σ1 .

By [Rot98, p. 14, Lemma 1.1], there exists a unique continuous map |K| → |L|

which we will denote by | f |. The map | f | will be defined as the image of the

morphism f with respect to the underlying functor and is referred to as piecewise

linear.

It is easy to see that, for simplicial maps f : K → L and g : L→ M,

(̃g ◦ f )σ = ι|M| ◦ (g ◦ f )|vert(σ)

= ι|M| ◦ g|vert( f (σ)) ◦ ι|L||vert( f (σ)) ◦ f |vert(σ)

= g̃ f (σ) ◦ f̃σ.
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This implies

n

∑
i=0

ti (̃g ◦ f )σ(xi) =
n

∑
i=0

ti(g̃ f (σ) ◦ f̃σ)(xi)

where ∑n
i=0 tixi is a convex combination in σ. Hence |g ◦ f | = |g| ◦ | f |. Now con-

sider the identity simplicial map idK : K → K. Notice that

f̃σ = ι|K| ◦ idvert(σ)

= idvert(σ)

and thus Tσ = idσ for each σ ∈ K. Therefore |idK| = id|K|. Altogether underlying

is a functor from Simp into Top.

Quite often, it is convenient to work with a purely combinatorial description of

a simplicial complex. In some sense, one can worry about realizing it as a topologi-

cal space when the need arises.

Definition C.8. Suppose V is a set. An abstract simplicial complex K is a collection

of finite empty subsets of V satisfying

(1) if v ∈ V, then {v} ∈ K;

(2) if σ ∈ K and τ ⊆ σ, then τ ∈ K.

We say K is finite when V is finite; we say K is infinite otherwise. We will naturally

set vert(K) := V and call σ ∈ K an n-simplex whenever |vert(σ)| = n + 1. We also

say dim(σ) = n in this case. In the context that K and L are abstract simplicial

complexes, a simplicial map is a function f : K(0) → L(0) satisfying the property
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that { f (v0), f (v1), . . . , f (vn)} ∈ L whenever {v0, v1, . . . , vn} ∈ vert(K). As in the

affine case, the dimension of σ is dim(σ) := |vert(σ)|. We also extend Definitions

C.3-C.4 to the case of abstract simplicial complexes.

As with affine simplicial complexes, we can form a category of abstract simpli-

cial complexes.

Proposition C.9. Abstract simplicial complexes and simplicial maps between them forms

a category AbSimp.

Proof. This is another routine check. Composition of morphisms is given by com-

position of simplicial maps as set functions. Associativity of morphisms is due to

associativity of simplicial maps. Finally, the identity morphism is just the identity

map id : K(0) → K(0) for any K ∈ obj(AbSimp).

It should be clear that every affine simplicial complex K determines an ab-

stract simplicial complex K′: take {x0, x1, . . . , xn} ∈ K′ and collect the vertices

x0, x1, . . . , xn ∈ vert(K′) for each simplex (x0, x1, . . . , xn) ∈ K. As mentioned ear-

lier, it is possible to reverse this correspondence and realize an arbitrary abstract

simplicial complex. Again, we will favor intuition and limit ourselves to finite ab-

stract simplicial complexes, even in the context of AbSimp, but we encourage the

reader to investigate the general construction found in [Rot98, p. 197] or [MS82, p.

290]. Our approach is sufficient for the computation of simplicial homology using

finite-dimensional linear algebra.

Definition C.10. We define the standard n-simplex ∆n := (e1, e2, . . . , en+1) ⊆

Rn+1 where ei ∈ Rn+1 is the ith standard basis vector. Let K be a finite abstract
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simplicial complex and define

|{vi0 , vi1 , . . . , vin}| :=
(
ei0 , ei1 , . . . , ein

)

for {vi0 , vi1 , . . . , vin} ∈ K. We let the standard geometric realization of K be the

topological subspace

|K| :=
⋃

σ∈K
|σ|

in ambient euclidean space. Further, a geometric realization of K is any topologi-

cal space L ≈ |K|. We will denote any geometric realization of K by |K|.

Proposition C.11. The construction of standard geometric realization provides a functor

| · | : AbSimp→ Simp.

Proof. Given the construction of the standard geometric realization, it is easy to

see that |K| is a subcomplex of ∆n where K is an abstract simplicial complex with

dim(K) = n + 1. Thus the mapping of objects K 7→ |K| is well-defined. Suppose

that f : K(0) → L(0) is a simplicial mapping of abstract simplicial complexes where

K(0) = {ui}m
i=0 and L(0) = {vj}n

j=0. Define | f | : |K|(0) → |L|(0) by

| f |(ei) = ej whenever f (ui) = vj

where |K|(0) = {ei}m
i=0 and |L|(0) = {ej}n

j=0. The mapping of morphisms is well-

defined as a consequence of the total ordering of vertices in K and L.
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Suppose f : K → L and g : L → M are simplicial maps with K(0) = {ui}
p
i=0,

L(0) = {vj}
q
j=0, and M(0) = {wk}r

k=0. Notice that

(|g| ◦ | f |) (ei) = |g|(ej)

= ek

= |g ◦ f |(ei)

provided (g ◦ f )(ui) = g(vj) = wk. It follows that |g ◦ f | = |g| ◦ | f |. Also, it is clear

that |idK| = ei = id|K|(ei) for any 0 ≤ i ≤ p. Thus |idK| = id|K|. This proves the

functoriality of geometric realization.

In practice, it is typical to not distinguish between abstract simplicial complexes

and affine counterparts. Proposition C.11 quickly gives us the following corollary.

Corollary C.12. Composition of underlying after geometric realization provides a functor

‖ · ‖ : AbSimp→ Top.

Proof. This follows immediately from functoriality of both underlying and stan-

dard geometric realization and Example A.9.

Next, we will provide some important examples of abstract simplicial com-

plexes. Let X be a topological space. Recall that a cover of a subspace X ⊆ X is an

indexed family of subsets {Xi}i∈I of X such that X ⊆ ⋃
i∈I Xi. We will say that a

cover is closed provided all sets in the cover are closed.

Definition C.13. We say a cover is good if each nonempty intersection of members

of the cover is contractible. Suppose U = {Ui}i∈I is a cover of some topological
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space X. The Čech complex, or nerve, of U is the abstract simplicial complex

defined by

Č(U) :=

{Ui0 , Ui1 , . . . , Uin}

∣∣∣∣∣∣
n⋂

j=0

Uij 6= ∅

 .

Figure 7. Picture of Nerve of a Closed Cover

The following result is of great importance.

Theorem C.14 (Čech theorem or nerve lemma). If G is an open cover of a paracompact

Hausdorff space X such that every nonempty intersection of cover sets in G is contractible,

then Č(G) has the homotopy type of X.

The nerve lemma tells us we can approximate a paracompact Hausdorff space

with an abstract simplicial complex constructed from a good cover. For proof, see
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[Hat02, p. 459, Corollary 4G.3] or [Koz07, p. 269, Theorem 15.21]. We note that

both proofs omit showing the existence of a partition of unity for paracompact

spaces; this is done in [MS82, p. 325] and [Dug66, p. 170]. However, we are

interested in using closed covers for our treatment of persistent homology. That

leads us to reformulate Theorem C.14.

Theorem C.15. If F is a finite closed cover of a compact Hausdorff space X such that every

nonempty intersection of cover sets in F is contractible, then Č(F) has the homotopy type

of X.

Corollary C.16. If F is a finite collection of closed subsets of a compact Hausdorff space X

such that every nonempty intersection of sets in F is contractible, then Č(F) ' ⋃D∈F D.

These reformulations follow from the nerve lemma and proof can be found in

[Flo57, pp. 319, 332]. For a short discussion of the nerve lemma in the combi-

natorial context, we welcome the reader to [Bjo95, s. 10].

Suppose F = {Xi}i∈I is a cover of a topological space X. The Vietoris-Rips, or

Rips, complex of F is the abstract simplicial complex defined by

R(F) :=
{
{Xi0 , Xi1 , . . . , Xin}

∣∣∣Xij ∩ Xik 6= ∅ for j 6= k and 0 ≤ j, k ≤ n
}

.

It follows immediately by definition that the Vietoris-Rips complex is an example

of a flag complex:

Definition C.17. An abstract simplicial complex K with vertex set V is a flag com-

plex provided

{v0, v1, . . . , vn} ∈ K if and only if {vi, vj} ∈ K
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for any v0, v1, . . . , vn ∈ V and 0 ≤ i, j ≤ n with i 6= j.

We can use the concept of precise refinements to construct subcomplexes of the

Čech and Vietoris-Rips complexes.

Definition C.18. Suppose we have a covers X = {Xi}i∈I and Y = {Yj}j∈J of a

topological space Z. We say X is a precise refinement of Y if I = J and Xi ⊆ Yi for

all i ∈ I. So, in the case X is a precise refinement of Y, we can define the following

subcomplex of Č(Y):

ČX(Y) :=

{Yi0 , . . . , Yin}

∣∣∣∣∣∣
n⋂

j=0

Xij 6= ∅

 .

We can also define a similar subcomplex of R(Y):

RX(Y) :=
{
{Yi0 , . . . , Yin}

∣∣∣Xij ∩ Xik 6= ∅ for j 6= k and 0 ≤ j, k ≤ n
}

.

The fact nonempty intersection of cover sets in X implies nonempty intersection

of cover sets in Y guarantees ČX(Y) ⊆ Č(Y) and RX(Y) ⊆ R(Y) are well-defined

subcomplexes.

Suppose S = {Si}i∈I is a collection of nonempty subsets of some metric space

(X, d). The Voronoi cell Vi of the set Si is the set

Vi := {p ∈ X |d(Si, p) ≤ d(Sj, p) for any Sj ∈ S with Si 6= Sj}.

where d(Si, p) := infq∈S{q, p}. We call the set of cells V = {Vi}i∈I the Voronoi

diagram of S. The Delaunay complex D(V) of V is defined to be the nerve Č(V),
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that is,

D(V) :=

{Vi0 , Vi1 , . . . , Vin}

∣∣∣∣∣∣
n⋂

j=0

Vij 6= ∅

 .

Our definitions are based on the treatment given in [Zom07, Koz07]. Delaunay

complexes satisfy precise minimal roughness and volume properties; see [Rip90,

Pow92, DS89]. These allow Delaunay complexes to provide heuristically favor-

able triangulations of polygonal regions and finite point sets. Discussion of algo-

rithms for computing Voronoi diagrams and Delaunay Complexes can be found in

[dBCvKO08, cc. 7, 9].
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APPENDIX D

SIMPLICIAL HOMOLOGY

In this section, we will develop the homology theory of abstract simplicial com-

plexes. This will allow us to infer the homology of triangulable topological spaces

through finite point samples. The primary reference for this section is [Rot98, c. 7].

Definition D.1. Suppose K is an abstract simplicial complex and � is a partial

ordering of vert(K). We say (K,�) is an oriented abstract simplicial complex

provided � is a total ordering when restricted to vert(σ) for any σ ∈ K. We

will define the orientation of σ =
{

vi0 , . . . , vin
}
∈ K to be the equivalence class

[σ] =
[
vi0 , . . . , vin

]
:=
[{

vi0 , . . . , vin
}]

given by
{

vi0 , . . . , vin
}
∼
{

viπ(0)
, . . . , viπ(n)

}
if

and only if sgn(π) = 1 where π is a permutation of {0, . . . , n}.

Suppose K is an oriented abstract simplicial complex. Define

alt
(

K(n) \ K(n−1)
)

:=
{
[viπ(0)

, . . . , viπ(n)
] ∈

(
K(n) \ K(n−1)

)
/∼

∣∣∣ sgn(π) = +1
}

.

The nth simplicial chain module Cn(K, R) of K is the free R-module with basis

alt
(

K(n) \ K(n−1)
)

where n ≥ 0. In this context, we define

[viπ(0)
, . . . , viπ(n)

] := sgn(π)[vi0 , . . . , vin ] = −[vi0 , . . . , vin ]

where π is an odd permutation of {0, 1, . . . , n}. We will typically abbreviate Cn(K, R)

as Cn(K) when R is understood. An element of c ∈ Cn(K, R) has the form c =

∑i ri[σi] where ri ∈ R and each σi is an n-simplex. We call the elements of Cn(K)
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simplicial n-chains. Our development of simplicial chains is based on free mod-

ules; for a group theoretic treatment, see [Rot98, p. 143].

Note that n-chains are just formal R-linear combinations of oriented n-simplices.

Next we define the simplicial boundary maps as operators that map an oriented

(n + 1)-simplex to an R-linear combination of oriented n-simplices. For what fol-

lows, assume K is an oriented abstract simplicial complex.

Definition D.2. Define the nth simplicial boundary map ∂n : Cn(K) → Cn−1(K)

by

∂n
([

vj0 , . . . , vjn
])

:=
n

∑
i=0

(−1)i[σ]ı̂ :=
n

∑
i=0

(−1)i [vj0 , . . . , v̂ji , . . . , vjn
]

and

∂n

(
0Cn(K)

)
:= 0Cn−1(K)

where [σ] =
[
vj0 , . . . , vjn

]
∈ alt

(
K(n) \ K(n−1)

)
, n ≥ 1, and v̂ji indicates the absence

of vji from the (n− 1)-simplex. For an n-chain c = ∑i ri[σi] ∈ Cn(K) we extend ∂n

linearly, that is,

∂n(c) = ∑
i

ri∂n([σi]).

We will use the notation [σ]ı̂0,...,ı̂m to indicate the absence of multiple vertices.

Simplicial boundary maps satisfy the cancellation property mentioned in Defi-

nition B.23.

Lemma D.3. (∂n−1 ◦ ∂n)(c) = 0 for any n ≥ 2 and c ∈ Cn(K).
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Proof. Recall that Cn(K) is generated by alt
(

K(n) \ K(n−1)
)

for each n ≥ 1. More-

over, ∂n was extended linearly on alt
(

K(n) \ K(n−1)
)

by definition. Thus, it suffices

to show (∂n−1 ◦ ∂n)(σ) = 0 for every [σ] ∈ alt
(

K(n) \ K(n−1)
)

for each n ≥ 2. Ob-

serve

(∂n−1 ◦ ∂n)([σ]) = ∂n−1

(
n

∑
i=0

(−1)i[σ]ı̂
)

=
n

∑
i=0

(−1)i

[
i−1

∑
j=0

(−1)j[σ]ı̂, ̂ +
n

∑
j=i+1

(−1)j[σ]ı̂, ̂
]

=
n

∑
i=0

(−1)i

[
i−1

∑
j=0

(−1)j[σ]ı̂, ̂ +
n−1

∑
j=i

(−1)j+1[σ]ı̂, ̂
]

=
n

∑
i=0

i−1

∑
j=0

(−1)i+j[σ]ı̂, ̂ +
n

∑
i=0

n−1

∑
j=i

(−1)i+j[σ]ı̂, ̂

= ∑
0≤j≤i−1

0≤i≤n

(−1)i+j[σ]ı̂, ̂ + ∑
0≤i≤j−1
i+1≤j≤n

[σ]ı̂, ̂. (4.1)

In the last equality above, all pairs (i, j) ∈ n× n occur in both sums with opposite

signs (−1)i+j and (−1)i+j+1 where 0 ≤ i 6= j ≤ n. Thus (∂n−1 ◦ ∂n)([σ]) = 0 for

any oriented [σ] ∈ alt
(

K(n) \ K(n−1)
)

as desired.

From Lemma D.3, we immediately have the following:

Corollary D.4. im(∂n) ⊆ ker(∂n−1) for all n ≥ 2.

Making the stipulation that Cn(K) = {0} and ∂n ≡ 0 for all n ≤ 0, we see that

(C•(K), ∂•) is a chain complex.

Corollary D.5. Suppose K is an oriented abstract simplicial complex. Take Cn(K) = {0}

for all n ≤ −1 and ∂n ≡ 0 for all n ≤ 0. Then (C•(K), ∂•) is an R-chain complex.
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Proof. By Lemma D.3, (∂n−1 ◦ ∂n) ≡ 0 for each n ≥ 2. Moreover, (∂n−1 ◦ ∂n) ≡ 0

for each n ≤ 1 since ∂n ≡ 0 for all n ≤ 0. Therefore (C•(K), ∂•) is an R-chain

complex.

Definition D.6. We will call the chain complex discussed in Corollary D.5 a sim-

plicial R-chain complex. It is worth demonstrating the existence of chain maps

between simplicial chain complexes. Much of the effort put into defining Cn(K)

was to guarantee simplicial chain maps are well-defined. If f : K(0) → L(0) is a

simplicial map between oriented simplicial complexes, define f• : C•(K)→ C•(L)

to be the sequence of maps fn : Cn(K)→ Cn(L) defined by, for each n ≥ 0 and

[vi0 , . . . , vin ] ∈ alt
(

K(n) \ K(n−1)
)

,

fn
([

vi0 , . . . , vin
])

:=


[

f
(
vi0
)

, . . . , f (vin)
]

if f
(
vik
)
6= f

(
vi`
)

for each k 6= `

0Cn(L) if f (vik) = f (vi`) for some k 6= `

where 0 ≤ k, ` ≤ n. We extend fn linearly over Cn(K) for each n ≥ 0. Of course,

we will define fn ≡ 0 for every n ≤ −1. We will call f• a simplicial chain map and

we prove f• is indeed a chain map in the next lemma.

Lemma D.7. If f : K(0) → L(0) is a simplicial map between oriented simplicial complexes,

then f• : C•(K)→ C•(L) is a chain map.

Proof. It suffices to show ( fn ◦ ∂n) ≡ (∂n ◦ fn−1) for each n ∈ Z and for every[
vj0 , . . . , vjn

]
∈ alt

(
K(n) \ K(n−1)

)
. If f

(
vjk
)
6= f

(
vj`
)

for each 0 ≤ k 6= ` ≤ n,
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then

( fn ◦ ∂n)
([

vj0 , . . . , vjn
])

= fn

(
n

∑
i=0

(−1)i [vj0 , . . . , v̂ji , . . . , vjn
])

=
n

∑
i=0

(−1)i fn
([

vj0 , . . . , v̂ji , . . . , vjn
])

=
n

∑
i=0

(−1)i
[

f
(
vj0
)

, . . . , f̂
(
vji
)
, . . . , f

(
vjn
)]

= ∂n
([

f
(
vj0
)

, . . . , f
(
vji
)

, . . . , f
(
vjn
)])

= (∂n ◦ fn)
([

vj0 , . . . , vji , . . . , vjn
])

.

If f
(
vjk
)
= f

(
vj`
)

for some 0 ≤ k 6= ` ≤ n, then

( fn ◦ ∂n)
([

vj0 , . . . , vjn
])

= fn

(
n

∑
i=0

(−1)i [vj0 , . . . , v̂ji , . . . , vjn
])

=
n

∑
i=0

(−1)i fn
([

vj0 , . . . , v̂ji , . . . , vjn
])

=
n

∑
i=0

(−1)i · 0Cn−1(L)

= 0Cn−1(L)

= ∂n

(
0Cn(L)

)
= (∂n ◦ fn)

([
vj0 , . . . , vji , . . . , vjn

])
.

Since
[
vj0 , . . . , vjn

]
∈ alt

(
K(n) \ K(n−1)

)
was arbitrary, we are done.

Proposition D.8. C•( · ) : AbSimp→ CompR is a functor.
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Proof. Suppose K, L, M ∈ obj(AbSimp), f ∈ hom(K, L), and g ∈ hom(L, M) are

arbitrary. We define K C•7−→ C•(K) and f C•7−→ f•. For preservation of composition,

it is sufficient to show (g ◦ f )n ≡ (gn ◦ fn) on alt
(

K(n) \ K(n−1)
)

for each n ∈ Z.

Take σ =
[
vi0 , . . . , vin

]
∈ alt

(
K(n) \ K(n−1)

)
. Notice

(g ◦ f )n
([

vi0 , . . . , vin
])

=
[
(g ◦ f )

(
vi0
)

, . . . , (g ◦ f ) (vin)
]

= gn
([

f
(
vi0
)

, . . . , f (vin)
])

= (gn ◦ fn)
([

vi0 , . . . , vin
])

.

Since
[
vi0 , . . . , vin

]
∈ alt

(
K(n) \ K(n−1)

)
is arbitrary, C• preserves composition. Ob-

serve that

idn
([

vi0 , . . . , vin
])

=
[
idK

(
vi0
)

, . . . , idK (vin)
]

=
[
vi0 , . . . , vin

]
= idCn(K)

([
vi0 , . . . , vin

])
.

Again, σ ∈ alt
(

K(n) \ K(n−1)
)

is arbitrary, so identity morphisms are preserved.

Altogether, AbSimp C•−→ CompR is a functor.

Given (C•, K) is a chain complex for every oriented abstract simplicial complex

K, we can define simplicial versions of the cycle, boundary, and homology modules

from Definition B.26.

Definition D.9. Given the simplicial chain complex (C•(K), ∂•), we have the sim-

plicial R-module of n-cycles Zn(K) := Zn(C•(K)) := ker(∂n) and the simplicial
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R-module of n-boundaries Bn(K) := Bn(C•(K)) := im(∂n+1). We define the nth

simplicial homology R-module of (C•, ∂•) to be

Hn(K) := Hn(C•(K)) := Zn(C•(K))/Bn(C•(K)).

The nth simplicial Betti number βn of (C•(K), ∂•) is rk (Hn(K)).

Lemma D.10. If K is a finite oriented abstract simplicial complex, then Cn(K) is finitely

generated for each n ∈ Z.

Proof. Since vert(K) is a finite set,
∣∣∣K(n) \ K(n−1)

∣∣∣ < ∞. Since every permutation

of {0, 1, . . . , n} is either even or odd,
(

K(n) \ K(n−1)
)

/∼ is a finite set. Moreover,

alt
(

K(n) \ K(n−1)
)

is a finite set. Hence Cn(K) has finite rank and is finitely gener-

ated by Lemma B.5.

Lemma D.11. If K is a finite oriented abstract simplicial complex, then Hn(K) is finitely

generated for each n ∈ Z.

Proof. By Lemma D.10, Cn(K) in finitely generated. Note that Zn(C•(K)) is a sub-

module of Cn(K) and hence Zn(C•(K)) is finitely generated by Lemma B.6. Us-

ing Lemma D.4, it follows that Bn(C•(K)) is a submodule of Zn(C•(K)). Thus

Bn(C•(K)) is finitely generated by Lemma B.6. Therefore the quotient module

Hn(K) := Zn(C•(K))/Bn(C•(K)) is finitely generated by Lemma B.7.

Next, we will prove the homology of abstract simplicial complexes is functorial.

Due to [ES52, pp. 100-101], it is worth noticing that the simplicial homology of an

abstract simplicial complex K is isomorphic to the singular homology of |K|; see
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[Rot98, c. 4]. Ultimately, simplicial homology is independent of the orientation

imposed on abstract simplicial complexes.

Proposition D.12. For all n ∈ Z, (Hn ◦ C•) : AbSimp→ ModR is a functor.

Proof. Since AbSimp C•−→ CompR and CompR
Hn−→ ModR are functors for any in-

teger n ∈ Z, their composition AbSimp
(Hn◦C•)−−−−→ ModR is a functor; see Example

A.9, Proposition B.28, and Proposition D.8.
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APPENDIX E

PERSISTENT HOMOLOGY

Persistent homology parameterizes Betti numbers on a preordered index set

P, producing a function βn : P → Z≥0. Homology only computes the number of

homology classes, or holes, in a topological space or simplicial complex. Persistent

homology is stronger in the sense that a size or persistence is associated to homology

classes. Naively, a persistent homology module is a family M =
{

Mi, ϕi}
i∈P of

R-modules Mi where ϕi : Mi → Mi+1 are R-module homomorphisms. We will

settle our discussion inside the categorical framework formalized in [BdSS15]. The

primary references for this section are [ZC05, ELZ02, CZ09].

Definition E.1. Recall Corollary A.15. Let P be a preordered set and D be an arbi-

trary category. A generalized persistence module is a functorM ∈ DP. For our

development of persistent homology, P will be taken to be Z≥0.

Using the concept of filtrations, we can fromalize the parameterization of Betti

numbers on Z≥0.

Definition E.2. Given an abstract simplicial complex K, a Z≥0-filtration
{

Ki}
i∈Z≥0

of K is a sequence of subcomplexes of K, that is, Ki ⊆ K j for all i ≤ j. In this

context, we say K is Z≥0-filtered.

Lemma E.3. Z≥0-Filtering provides a functor Z≥0 → AbSimp.

Proof. Suppose K is a Z≥0-filtered abstract simplicial complex. We define i 7→ Ki

and
(

i ≤−→ j
)
7→
(

Ki(0) ι
↪−→ K j(0)

)
for any i, j ∈ obj (Z≥0). By way of notation, we

will denote the inclusion map ι : Ki(0) ↪→ K j(0) by ι
j
i for any i, j ∈ Z≥0. Suppose

that i, j, k ∈ obj (Z≥0) and take v ∈ Ki(0). Observe
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ιki (v) = v

= ιkj (v)

=
(

ιkj ◦ ι
j
i

)
(v).

Since v ∈ Ki(0) is arbitrary, composition is preserved. Also,

ιii(v) = v

= id
Ki(0)(v)

which proves identities are preserved since v ∈ Ki(0).

Definition E.4. We will describe two standard Z≥0-filtrations that are used in topo-

logical data analysis. These Z≥0-filtrations make use of the precise refinement con-

cept discussed in Example C.18 and are parameterized by radial distance. Suppose

X ⊆ X where (X, d) is some metric space. Take an integer n ≥ 0. We will as-

sume εi ∈ R and εi ≤ ε j for all 0 ≤ i ≤ j ≤ n with ε0 = 0. Consider the cover

F = {B̄εn(x)}x∈X of X. Let Fi = {B̄εi(x)}x∈X for 0 ≤ i ≤ n and Fi = Fn when i > n.

It is clear that Fi is a precise refinement of Fn. We will refer to Čεi(X) := ČFi(F)

as the Čech complex of X at scale εi for i ≥ 0. Similarly, Rεi(X) := RFi(F) is

the Vietoris-Rips complex of X at scale εi. Thus, by the discussion in Example

C.18, {Čεi(X)}i∈Z≥0 and {Rεi(X)}i∈Z≥0 are Z≥0-filtrations of Č(F) and R(F), re-

spectively. Filtrations of the type just described will be referred to as radial Z≥0-

filtrations.

Čech complexes constructed on finite point sets are expensive to compute. For

a simplex {v0, . . . , vn} and scale ε > 0, one would have to check the containment
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of the vertices v0, . . . , vn−1 and vn in a minimum enclosing ball of radius at least ε.

For containment in the corresponding Vietoris-Rips complex, one would only have

to check containment of pairs of vertices vi and vj in a minimum enclosing ball of

radius at least ε for 0 ≤ i 6= j ≤ n. The next lemma tells us that the Vietoris-Rips

complex is a good approximation of the Čech complex.

Lemma E.5 (Vietoris-Rips lemma). Suppose {x0, . . . , xN} = X ⊂ Rd and ε, ε′ > 0. If

(ε/ε′) ≥
√

2d/(d + 1), then

Rε′(X) ⊆ Čε(X) ⊆ Rε(X).

The proof of the Vietoris-Rips lemma can be found in [DSG07, p. 346]. The special

case when X ⊆ R2 is proven in [DSG06, p. 1207]. We will prove a stronger version

of the Vietoris-Rips lemma in chapter V.

Given a Z≥0-filtration {Ki}i∈Z≥0 , we can associate a simplicial R-chain complex

to each Ki. Thus we also can talk about the cycle, boundary, and homology R-

modules of Ki.

Definition E.6. Suppose we have a Z≥0-filtration {Ki}i∈Z≥0 of K. Then we utilize

the notation

(Ci
•(K), ∂i

•) := (C•(Ki), ∂•), Zi
n(K) := Zn(Ki),

Bi
n(K) := Bn(Ki), Hi

n(K) := Hn(Ki),

and βi
n := rk(Hn(Ki)).
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By filtering an abstract simplicial complex, we can use functoriality to encode the

persistence of different homology classes over the filtration indices. For what fol-

lows, assume K is a filtered oriented abstract simplicial complex.

Proposition E.7. Constructing chain complexes over a Z≥0-filtered abstract simplicial

complex provides a functor Z≥0 → CompR :
{

Ki}
i∈Z≥0

7→
{

C•
(
Ki)}

i∈Z≥0
.

Proof. Z≥0-Filtering an abstract simplicial complex is a functor Z≥0 → AbSimp

by Lemma E.3 and AbSimp C•−→ CompR is a functor by Proposition A.9. It follows

that their composition is a functor Z≥0 → AbSimp→ CompR; see Example D.8.

Definition E.8. We define the nth persistent homology module

Hn(K) :=
{

Hi
n(K),

(
Hn ◦ f i

n

)}
i∈Z

of K to be the family of nth simplicial homology R-modules of {Ci
•(K), ∂i

•}i∈Z

along with the collection of R-module homomorphisms

(
Hn ◦ f i

n

)
: Hi

n(K)→ Hi+1
n (K).

We say that Hn(K) is of finite type if each R-module Hi
n(K) is finitely generated

and the R-module homomorphisms
(

Hn ◦ f i
n
)

are R-module isomorphisms for all

i ≥ j and some j ∈ Z≥0. For nonnegative integers j > i, the i,j-persistent nth

homology module of K is

Hi,j
n (K) := im

(
Hn ◦ f i,j

n

)
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where
(

Hn ◦ f i,j
n

)
: Hi

n(K)→ Hi+j
n (K) is the R-homomorphism induced by the in-

clusion map Ki(0) ι−→ K j(0). Specifically,
(

Hn ◦ f i,j
n

)
is the image of the inclusion

map ι under the functor from Proposition D.12. The i,j-persistent nth Betti num-

ber of K is defined to be β
i,j
n := rk

(
Hi,j

n (K)
)

. Informally, the homology classes of

Hi,j
n (K) represent the n-dimensional holes present in the simplicial subcomplexes{
Kk}j

k=i that initially appear in the simplical complex Ki. The Betti number β
i,j
n

simply counts the homology classes, or holes, generating Hi,j
n (K).

Proposition E.9. Given a Z≥0-filtered oriented abstract simplicial complex K, the nth

persistent homology moduleHn(K) ∈ ModR
Z≥0 is a generalized persistence module.

Proof. Recall that CompR
(Hn◦C•)−−−−→ ModR is a functor for each n ∈ Z≥0 by Propo-

sition D.12. It follows that Hn(K) :=
{

Hi
n(K),

(
Hn ◦ f i

n
)}

i∈Z
is a functor since (co-

variant) functors are closed under composition. More precisely, we are composing

(Hn ◦ C•) after the functor from Proposition E.7. Thus Hn(K) : Z≥0 → ModR is

a functor defined by i Hn7−→ Hi
n(K) and

(
i ≤−→ j

) Hn7−→
(

Hn ◦ f i,j
n

)
for any i and j in

obj (Z≥0) and each n ∈ Z≥0. The following diagram summarizes the functorHn:

Z≥0 AbSimp CompR ModR

Hn

Next we will show that finite type persistent homology modules can be en-

dowed with a graded R[x]-module structure. Using the structure theorem for
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graded finitely generated modules, we will show that persistent homology mod-

ules encapsulate all the i,j-persistent homology modules. Thus the nth persistent

homology module provides a complete summary of the changes in the nth homol-

ogy of a filtered simplicial complex. For brevity, we direct the reader to [ZC05, pp.

258-259] for a discussion of the persistence complex, which provides a single R[x]-

module whose homology is identical to the collection of all nth persistent homol-

ogy modules. In other words, the persistence complex eliminates the parameter

n.

Definition E.10. Consider the R-modules Hi
n(K) for i ≥ 0. With respect to the

abelian groups of homology classes, we will overload notation by defining

Hn(K) :=
⊕

i∈Z≥0

Hi
n(K). (5.1)

Take the polynomial ring R[x] to be graded by degree.

Proposition E.11. If Hn(K) is of finite type, then Hn(K) is a graded finitely generated

R[x]-module where

(
`

∑
k=0

rkxk

)
· (γi)i∈Z≥0 :=

`

∑
k=0

[
rk ·
(

Σk
(

Hn ◦ f i,i+k
n

)
(γi)

)
i∈Z≥0

]
and

sx0 · (γi)i∈Z≥0 :=
(

Σ0(s · γi)
)

i∈Z≥0
= (s · γi)i∈Z≥0
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for any ∑`
k=0 rkxk ∈ R[x] with ` ≥ 1, every s ∈ R, and any (γi)i∈Z≥0 ∈ Hn(K). Recall

Σ( · ) is the shift map on grading.

Proof. We will start by verifyingHn(K) satisfies Definition B.4. Let us take the fol-

lowing as arbitrary: ∑`
k=0 ckxk, ∑m

k=0 dkxk ∈ R[x] and (γi)i∈Z≥0 , (ηi)i∈Z≥0 ∈ Hn(K).

(1) (
`

∑
k=0

ckxk

)
·
[
(γi)i∈Z≥0 + (ηi)i∈Z≥0

]
=

`

∑
k=0

[
ck · Σk

((
Hn ◦ f i,i+k

n

)
(γi + ηi)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
((

Hn ◦ f i,i+k
n

)
(ck · γi + ck · ηi)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
((

Hn ◦ f i,i+k
n

)
(ck · γi)

)
i∈Z≥0

+ Σk
((

Hn ◦ f i,i+k
n

)
(ck · ηi)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
((

Hn ◦ f i,i+k
n

)
(ck · γi)

)
i∈Z≥0

]

+
`

∑
k=0

[
Σk
((

Hn ◦ f i,i+k
n

)
(ck · ηi)

)
i∈Z≥0

]

=
`

∑
k=0

[
ck · Σk

((
Hn ◦ f i,i+k

n

)
(γi)

)
i∈Z≥0

]

+
`

∑
k=0

[
ck · Σk

((
Hn ◦ f i,i+k

n

)
(ηi)

)
i∈Z≥0

]

=

(
`

∑
k=0

ckxk

)
· (γi)i∈Z≥0 +

(
`

∑
k=0

ckxk

)
· (ηi)i∈Z≥0 .

(2) [
`

∑
k=0

(
ckxk

)
+

m

∑
k=0

(
dkxk

)]
· (γi)i∈Z≥0
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=

(
max{`,m}

∑
k=0

ckxk + dkxk

)
· (γi)i∈Z≥0

=

[
max{`,m}

∑
k=0

(ck + dk) xk

]
· (γi)i∈Z≥0

=
max{`,m}

∑
k=0

[
(ck + dk) · Σk

((
Hn ◦ f i,i+k

n

)
(γi)

)
i∈Z≥0

]

=
max{`,m}

∑
k=0

ck · Σk
((

Hn ◦ f i,i+k
n

)
(γi)

)
i∈Z≥0

+dk · Σk
((

Hn ◦ f i,i+k
n

)
(γi)

)
i∈Z≥0

=
`

∑
k=0

[
ck · Σk

((
Hn ◦ f i,i+k

n

)
(γi)

)
i∈Z≥0

]
+

m

∑
k=0

[
dk · Σk

((
Hn ◦ f i,i+k

n

)
(γi)

)
i∈Z≥0

]

=

(
`

∑
k=0

ckxk

)
· (γi)i∈Z≥0

+

(
m

∑
k=0

dkxk

)
· (γi)i∈Z≥0

.

(3) (
`

∑
k=0

(
ckxk

)
·

m

∑
k=0

(
dkxk

))
· (γi)i∈Z≥0 =

[
`+m

∑
q=0

(
q

∑
p=0

cpdq−p

)
xq

]
· (γi)i∈Z≥0

=
`+m

∑
q=0

[(
q

∑
p=0

cpdq−p

)
Σq
((

Hn ◦ f i,i+q
n

)
(γi)

)
i∈Z≥0

]

=
`+m

∑
q=0

[(
q

∑
p=0

cpdq−p

)
Σp+q−p

((
Hn ◦ f i,i+p+q−p

n

)
(γi)

)
i∈Z≥0

]

=
`+m

∑
q=0

[{(
q

∑
p=0

cpdq−p

)
xp

}
Σq−p

((
Hn ◦ f i,i+q−p

n

)
(γi)

)
i∈Z≥0

]

=

(
`

∑
k=0

(
ckxk

))
·
[

m

∑
k=0

dk · Σk
((

Hn ◦ f i,i+k
n

)
(γi)

)
i∈Z≥0

]

=

(
`

∑
k=0

(
ckxk

))
·
[(

m

∑
k=0

dkxk

)
· (γi)i∈Z≥0

]
.
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(4)

1Rx0 · (γi)i∈Z≥0
= Σ0 (1Rγi)i∈Z≥0

= (γi)i∈Z≥0
.

ThusHn(K) is an R[x]-module.

Since Hn(K) is of finite type, Hi
n(K) is finitely generated for each i ≥ 0. Take

Γi =
{

γp
}q(i)

p=0 to be the finite generating set of Hi
n(K). By way of notation, let(

γ
δij
i

)r

i∈Z≥0
be the sequence (γi)i∈Z≥0

with γi = 0Hi
n(K)

for all i 6= j and γi = γr ∈ Γj

whenever i = j where 0 ≤ r ≤ q(j) and j ≥ 0. We also define

Γ̂s :=
⋃

0≤r≤q(s)

{(
γ

δis
i

)r

i∈Z≥0

}

for each s ≥ 0. It is easy to see that

〈Γ̂i〉 ∼= 〈Γi〉

∼= Hi
n(K)

as abelian groups for each i ≥ 0.

Since Hn(K) has finite type, there exists some B ≥ 0 such that HB
n (K) ∼= Hi

n(K)

for each i ≥ B. Let Γ̂ =
⋃B

i=0 Γ̂i. Note that Γ̂ has finite cardinality as a finite union

of finite sets. Thus 〈Γ̂〉 is finitely generated submodule of Hn(K). By means of

showing Hn(K) is finitely generated, it suffices to show that (ηi)i∈Z≥0
∈ 〈Γ̂〉 when
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there exists some finitely many indices B < i0 < i1 < · · · < im so that

ηi` =
q(i`)

∑
p=0

[(
t

∑
s=0

ri`
s xd

i`
s

)
· γp

]
6= 0

H
i`
n (K)

for 0 ≤ ` ≤ m. By induction on B, we see that, whenever ηi = 0HB
n (K) for each

i > B,

(ηi)i∈Z≥0
=

B

∑
j=0

[
q(j)

∑
p=0

f j
p

(
γ

δij
i

)
i∈Z≥0

]

with f j
p ∈ R[x]. Since Hi`

n (K) ∼= HB
n (K) for each 0 ≤ ` ≤ m, induction on i` implies

that

(ηi)i∈Z≥0

=
B

∑
j=0

[
q(j)

∑
p=0

f j
p

(
γ

δij
i

)
i∈Z≥0

]
+

m

∑
`=0

q(B)

∑
p=0

 ti`

∑
s=0

ri`
s xd

i`
s +i`−B

 · (γ
δiB
i

)p

i∈Z≥0


∈ 〈Γ̂〉.

ThusHn(K) is finitely generated by Γ̂.

To prove Hn(K) is graded, take rx` ∈ R`[x] and γ ∈ Hm
n (K) as arbitrary. Ob-

serve

rx` · γ = r
(

Hn ◦ f m+`
n

)
(γ)

=
(

Hn ◦ f m+`
n

)
(r · γ)
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∈ Hm+`
n (K).

This shows that R`[x]Hm
n (K) ⊆ Hm+`

n (K) for any `, m, n ∈ Z≥0. Thus Hn(K) is

graded. Altogether,Hn(K) is a graded finitely generated R[x]-module.

Proposition E.11 allows us to identify Hn(K) as a graded finitely generated

R[x]-module. It follows thatHn(K) can be described uniquely, up to isomorphism,

using the structure theorem for graded finitely generated modules.

Proposition E.12 (Structure theorem for nth persistent homology modules of finite

type). SupposeHn(K) is of finite type. ThenHn(K) uniquely decomposes as

Hn(K) ∼=
(

κ0⊕
i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
)

where ξi, ζ j, κ0, κ1 ∈ Z≥0, xdj are homogeneous elements in Rdj [x] with xdj
∣∣ xdj+1 .

Proof. By Proposition E.11,Hn(K) is a graded finitely generated R[x]-module. The

conclusion follows immediately from Theorem B.21.

The decomposition of persistent homology modules is very compelling. It al-

lows us to define simple visual summaries that have become very popular for clas-

sification purposes in topological data analysis.

Definition E.13. A multiset is a pair (S, µS) where S is an arbitrary set and

µS : S→ Z̄≥0 = Z≥0 ∪ {+∞}
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is a set function. A persistence interval is a half-open interval [b, d) ⊆ R̄≥0 with

b < d where R̄≥0 = R≥0 ∪ {+∞}. Suppose m ≥ 0 is an arbitrary integer and

P = {[bi, di)}m
i=0 ⊆ 2R̄≥0

is a finite collection of persistence intervals. We call a multiset (P, µP) a persis-

tence barcode provided ∑p∈P µP (p) < +∞ and denote the set of all persistence

barcodes by Bcodes. We will let BcodesZ̄2
≥0

denote the set of persistence barcodes

(P, µP) such that P = {[bi, di)}m
i=0 where 0 ≤ bi < di ∈ Z̄≥0 for each 0 ≤ i ≤ m.

Now suppose Q ⊆ R≥0 × R̄≥0 with the stipulations that

∆ := {(c, c) | c ∈ R≥0} ⊆ Q,

|Q \ ∆| < +∞, and if (b, d) ∈ Q \ ∆, then 0 ≤ b < d ∈ R̄≥0. We say that
(
Q, µQ

)
is a persistence diagram provided ∑q∈Q\∆ µQ(q) < +∞ and µQ(q) = +∞ when-

ever q ∈ ∆. We denote the set of all persistence diagrams by Dgms. Similar to

BcodesZ̄2
≥0

, we will let DgmsZ̄2
≥0

denote the set of persistence diagrams (Q, µQ)

such that Q \ ∆ = {(bi, di)}m
i=0 where 0 ≤ bi < di ∈ Z̄≥0 for each 0 ≤ i ≤ m. As a

matter of fact, Bcodes and Dgms are isomorphic as sets.

Proposition E.14. There exists a set bijection dgm: Bcodes→ Dgms.

Proof. Define dgm( · ) : Bcodes→ Dgms by

dgm ((P, µP)) = (Q, µQ)
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for P = {[bi, di)}m
i=0 where Q \ ∆ = {(bi, di)}m

i=0, and µP ([bi, di)) = µQ ((bi, di)) for

each 0 ≤ i ≤ m. Suppose (P, µP), (P′, µP′) ∈ Bcodes and

dgm ((P, µP)) = (Q, µQ) 6= dgm
(
(Q, µQ)

)
= (Q′, µQ′) ∈ Dgms.

Then either Q 6= Q′ or µQ ((bi, di)) 6= µQ′ ((bi, di)) for some (bi, di) ∈ Q, Q′. This

implies that P 6= P′ or µP ([bi, di)) 6= µP′ ([bi, di)) for some [bi, di) ∈ P, P′. Thus

(P, µP) 6= (P′, µP′). By arbitrariness of (P, µP), (P′, µP′) ∈ Bcodes, dgm is injective.

Now assume (Q, µQ) ∈ Dgms and Q \ ∆ = {(bi, di)}m
i=0. Clearly,

dgm ((P, µP)) = (Q, µQ)

where P = {[bi, di)}m
i=0. Hence dgm is surjective by the arbitrariness of (Q, µQ).

Therefore the function dgm: Bcodes → Dgms is a bijection. We will use the nota-

tion bcode := dgm−1 when appropriate.

Corollary E.15. The restricted set function dgm|Bcodes
Z̄2
≥0
( · ) : BcodesZ̄2

≥0
→ DgmsZ̄2

≥0

is a bijection.

Proof. Take (Q, µQ) ∈ dgm
(

BcodesZ̄2
≥0

)
. Then there exists some persistence bar-

code (P, µP) ∈ BcodesZ̄2
≥0

such that dgm((P, µP)) = (Q, µQ) and P = {[bi, di)}m
i=0

with 0 ≤ bi < di ∈ Z̄≥0 for each 0 ≤ i ≤ m. It follows that Q \ ∆ = {(bi, di)}m
i=0

with 0 ≤ bi < di ∈ Z̄≥0 for each 0 ≤ i ≤ m. Hence (Q, µQ) ∈ DgmZ̄2
≥0

and

therefore dgm
(

BcodesZ̄2
≥0

)
⊆ DgmsZ̄2

≥0
by arbitrariness of (Q, µQ). Now take

(Q, µQ) ∈ DgmsZ̄2
≥0

where Q \ ∆ = {(bi, di)}m
i=0 for some arbitrary integer m ≥ 0.

Take (P, µP) ∈ BcodesZ̄2
≥0

so that P = {[bi, di)}m
i=0. Then dgm(P, µP) = (Q, µQ).
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Thus dgm
(

BcodesZ̄2
≥0

)
⊇ DgmsZ̄2

≥0
by arbitrariness of (Q, µQ) ∈ DgmsZ̄2

≥0
. There-

fore dgm
(

BcodesZ̄2
≥0

)
= DgmsZ̄2

≥0
. The fact that dgm|Bcodes

Z̄2
≥0

is a bijection fol-

lows from Proposition E.15.

Definition E.16. Let R be an arbitrary graded ring. Generalizing Definition E.8,

we say a persistent homology R-module of finite type is a family {Mi, f i}i∈Z of

R-modules with R-module homomorphisms f i : Mi → Mi−1 where Mi = {0} and

f i ≡ 0 for each i < 0, Mi is finitely generated for each i ∈ Z, and there exists some

i ≥ 0 such that f j are R-module isomorphisms for all j ≥ i. We define H to be the

set of persistent homology R[x]-modules of finite type; we emphasize that H is

not a small set. Suppose M is a persistent homology R[x]-module of finite type.

Overloading notation, define

M :=
⊕

i∈Z≥0

Mi

and

f i+j
i := ( f i+j ◦ f i+j−1 ◦ · · · ◦ f i)

for i < j ∈ Z≥0. This allows us to generalize Proposition E.11.

Proposition E.17. If M is a persistent homology module of finite type, then M is a graded

finitely generated R[x]-module where

(
`

∑
k=0

rkxk

)
· (mi)i∈Z≥0 :=

`

∑
k=0

[
rk ·
(

Σk f i+k
i (mi)

)
i∈Z≥0

]
and
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sx0 · (mi)i∈Z≥0 :=
(

Σ0(s ·mi)
)

i∈Z≥0
= (s ·mi)i∈Z≥0

for any ∑`
k=0 rkxk ∈ R[x] with ` ≥ 1, every s ∈ R, and any (mi)i∈Z≥0 ∈ M. Recall Σ( · )

is the shift map on grading.

Proof. We begin by verifying M satisfies Definition B.4. Let us take the following

as arbitrary: ∑`
k=0 ckxk, ∑m

k=0 dkxk ∈ R[x] and (mi)i∈Z≥0 , (ni)i∈Z≥0 ∈ M.

(1)

(
`

∑
k=0

ckxk

)
·
[
(mi)i∈Z≥0 + (ni)i∈Z≥0

]
=

`

∑
k=0

[
ck · Σk

(
f i+k
i (mi + ni)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
(

f i+k
i (ck ·mi + ck · ni)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
(

f i+k
i (ck ·mi)

)
i∈Z≥0

+ Σk
(

f i+k
i (ck · ni)

)
i∈Z≥0

]

=
`

∑
k=0

[
Σk
(

f i+k
i (ck ·mi)

)
i∈Z≥0

]
+

`

∑
k=0

[
Σk
(

f i+k
i (ck · ni)

)
i∈Z≥0

]

=
`

∑
k=0

[
ck · Σk

(
f i+k
i (mi)

)
i∈Z≥0

]
+

`

∑
k=0

[
ck · Σk

(
f i+k
i (ni)

)
i∈Z≥0

]

=

(
`

∑
k=0

ckxk

)
· (mi)i∈Z≥0 +

(
`

∑
k=0

ckxk

)
· (ni)i∈Z≥0 .

(2)

[
`

∑
k=0

(
ckxk

)
+

m

∑
k=0

(
dkxk

)]
· (mi)i∈Z≥0
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=

(
max{`,m}

∑
k=0

ckxk + dkxk

)
· (mi)i∈Z≥0

=

[
max{`,m}

∑
k=0

(ck + dk) xk

]
· (mi)i∈Z≥0

=
max{`,m}

∑
k=0

[
(ck + dk) · Σk

(
f i+k
i (mi)

)
i∈Z≥0

]

=
max{`,m}

∑
k=0

ck · Σk
(

f i+k
i (mi)

)
i∈Z≥0

+ dk · Σk
(

f i+k
i (mi)

)
i∈Z≥0

=
`

∑
k=0

[
ck · Σk

(
f i+k
i (mi)

)
i∈Z≥0

]
+

m

∑
k=0

[
dk · Σk

(
f i+k
i (mi)

)
i∈Z≥0

]

=

(
`

∑
k=0

ckxk

)
·
(

mi
)

i∈Z≥0
+

(
m

∑
k=0

dkxk

)
·
(

mi
)

i∈Z≥0
.

(3)

(
`

∑
k=0

(
ckxk

)
·

m

∑
k=0

(
dkxk

))
· (mi)i∈Z≥0 =

[
`+m

∑
q=0

(
q

∑
p=0

cpdq−p

)
xq

]
· (mi)i∈Z≥0

=
`+m

∑
q=0

[(
q

∑
p=0

cpdq−p

)
Σq
(

f i+q
i (mi)

)
i∈Z≥0

]

=
`+m

∑
q=0

[(
q

∑
p=0

cpdq−p

)
Σp+q−p

(
f i+p+q−p
i (mi)

)
i∈Z≥0

]

=
`+m

∑
q=0

[{(
q

∑
p=0

cpdq−p

)
xp

}
Σq−p

(
f i+q−p
i (mi)

)
i∈Z≥0

]

=

(
`

∑
k=0

(
ckxk

))
·
[

m

∑
k=0

dk · Σk
(

f i+k
i (mi)

)
i∈Z≥0

]

=

(
`

∑
k=0

(
ckxk

))
·
[(

m

∑
k=0

dkxk

)
·
(

mi
)

i∈Z≥0

]
.
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(4)

1Rx0 ·
(

mi
)

i∈Z≥0
= Σ0

(
1Rmi

)
i∈Z≥0

=
(

mi
)

i∈Z≥0
.

Thus M is an R[x]-module.

Since M is of finite type, Mi is finitely generated for each i ≥ 0. We will

take Γi = {mp}q(i)
p=0 to be the finite generating set of Mi. By way of notation, let(

miδij
)r

i∈Z≥0
be the sequence

(
mi)

i∈Z≥0
with mi = 0Mi for all i 6= j and mi = mr ∈ Γj

whenever i = j where 0 ≤ r ≤ q(j) and j ≥ 0. We also define

Γ̂s :=
⋃

0≤r≤q(s)

{(
miδis

)r

i∈Z≥0

}

for each s ≥ 0. It is easy to see that

〈Γ̂i〉 ∼= 〈Γi〉

∼= Mi

as abelian groups for each i ≥ 0.

Since M has finite type, there exists some B ≥ 0 such that MB ∼= Mi for each

i ≥ B. Let Γ̂ =
⋃B

i=0 Γ̂i. Note that Γ̂ has finite cardinality as a finite union of finite

sets. Thus 〈Γ̂〉 is finitely generated submodule of M. By means of showing M is

finitely generated, it suffices to show that
(
ni)

i∈Z≥0
∈ 〈Γ̂〉 when there exists some
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finitely many indices B < i0 < i1 < · · · < iα so that

ni` =
q(i`)

∑
p=0

[(
t

∑
s=0

ri`
s xd

i`
s

)
·mp

]
6= 0

H
i`
n (K)

for 0 ≤ ` ≤ α. By induction on B, we see that, whenever ni = 0MB for each i > B,

(
ni
)

i∈Z≥0
=

B

∑
j=0

[
q(j)

∑
p=0

ϕ
j
p

(
miδij

)
i∈Z≥0

]

with ϕ
j
p ∈ R[x]. Since Mi` ∼= MB for each 0 ≤ ` ≤ α, induction on i` implies that

(
ni
)

i∈Z≥0
=

B

∑
j=0

[
q(j)

∑
p=0

ϕ
j
p

(
miδij

)
i∈Z≥0

]

+
α

∑
`=0

q(B)

∑
p=0

 ti`

∑
s=0

ri`
s xd

i`
s +i`−B

 · (miδiB
)p

i∈Z≥0


∈ 〈Γ̂〉.

Thus M is finitely generated by Γ̂.

To prove M is graded, take rxk ∈ Rk[x] and m ∈ M` as arbitrary. Observe

rxk ·m = r · f `+k(m)

= f `+k(r ·m)

∈ M`+k.
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This shows that Rk[x]M` ⊆ Mk+` for any k, ` ∈ Z≥0. Thus M is graded. Alto-

gether, M is a graded finitely generated R[x]-module.

By Proposition E.17, persistent homology modules can be described uniquely,

up to isomorphism, using the structure theorem for graded finitely generated mod-

ules.

Proposition E.18 (Structure theorem for persistent homology modules of finite

type). Suppose M is a persistent homology module of finite type. Then M uniquely de-

composes as

M ∼=
(

κ0⊕
i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
)

where ξi, ζ j, κ0, κ1 ∈ Z≥0, xdj are homogeneous elements in Rdj [x] with xdj
∣∣ xdj+1 .

Proof. By Proposition E.17, M is a graded finitely generated R[x]-module. The

conclusion follows immediately from Theorem B.21.

We would like to point out to the reader that Propositions E.11 and E.12 now

follow as corollaries to Propositions E.17 and E.18.

Definition E.19. Suppose M ∈ H is a persistent homology module and consider

the unique decomposition

M ∼=
(

κ0⊕
i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
)
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from Proposition E.18. Overloading notation, define the set function

bcode( · ) : H → Bcodes

by

bcode(M) := {[ξi,+∞)}κ0
i=0 ∪

{
[ζ j, dj − ζ j)

}κ1
j=0 .

The function bcode is well-defined because of the uniqueness of the decomposition

guaranteed by Proposition E.18. Making use of the previously defined function

dgm: Bcodes→ Dgms, we define the set function

dgm( · ) : H bcode−−−→ Bcodes
dgm−−→ Dgms

by

dgm(M) := (dgm ◦ bcode)(M).

Lemma E.20. The set functionH
bcode|Bcodes

Z̄2
≥0−−−−−−−−→ BcodesZ̄2

≥0
is surjective.

Proof. Take an arbitrary (P, µP) ∈ BcodesZ̄2
≥0

. Without loss of generality, we will

assume

P = {[ξi,+∞)}κ0
i=0 ∪

{
[ζ j, dj − ζ j)

}κ1
j=0
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where ξi, ζ j, κ0, κ1 ∈ Z≥0, and dj ≤ dj + 1 for each 0 ≤ i ≤ κ0 and each 0 ≤ j ≤ κ1.

Let

M =

(
κ0⊕

i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
) .

Fixing an integer α ≥ 0, we define the sets

ξα := {ξi | α ≥ ξi and 0 ≤ i ≤ κ0}

and

ζα :=
{

ζ j
∣∣ ζ j ≤ α ≤ (dj − ζ j) and 0 ≤ j ≤ κ1

}
.

Now for any β ∈ Z, let

Mβ :=


〈ξβ ∪ ζβ〉 if β ≥ 0

{0} if β < 0
.

If β > 0, then define f β : Mβ → Mβ−1 by

f β(m) =


m if m ∈

(
ξβ−1 ∪ ζβ−1

)
∩
(
ξβ ∪ ζβ

)
0Mβ−1 if m /∈

(
ξβ−1 ∪ ζβ−1

)
∩
(
ξβ ∪ ζβ

)
and extending by linearity. If β ≤ 0, then we define f β ≡ 0Mβ−1 . Thus, with burden

on notation, M := {Mβ, f β}β∈Z is a persistent homology module of finite type
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and, by construction, bcode|Bcodes
Z̄2
≥0
(M) = (P, µP). Therefore bcode|Bcodes

Z̄2
≥0

is

surjective.

Definition E.21. With respect to module isomorphism, it is easy to check that ∼= is

an equivalence relation on H. Let H/∼= represent the quotient set of isomorphism

classes of persistent homology R[x]-modules. Let H q∼=−→ H/∼= be the surjective

map induced by the equivalence relation ∼=. We will let H/∼= b̃code−−−→ BcodesZ̄2
≥0

be

the induced injective set function defined by

b̃code(JMK) = bcode|Bcodes
Z̄2
≥0
(M)

where JMK is the equivalence class of M ∈ H. We diagrammatically summarize

the situation below:

H H/∼=

BcodesZ̄2
≥0

q∼=

bcode|Bcodes
Z̄2
≥0

b̃code

Proposition E.22. The quotient mapH/∼= b̃code−−−→ BcodesZ̄2
≥0

is a set bijection.

Proof. Fix an arbitrary (P, µP) ∈ BcodesZ̄2
≥0

. By Lemma E.20, there exists an M ∈ H

such that bcode|Bcode
Z̄2
≥0
(M) = (P, µP). This implies that b̃code(JMK) = (P, µP)

and thus b̃code is surjective. Now suppose

JMK, JNK ∈ H/∼=

and
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b̃code(JMK) = b̃code(JNK).

Without loss of generality, assume

b̃code(JMK) = (P, µP) = b̃code(JNK)

where

P = {[ξi,+∞)}κ0
i=0 ∪

{
[ζ j, dj − ζ j)

}κ1
j=0

with ξi, ζ j, κ0, κ1 ∈ Z≥0 and dj ≤ dj + 1. By definition of the set function bcode,

M ∼=
(

κ0⊕
i=0

Σξi R[x]

)
⊕

 κ1⊕
j=0

Σζ j R[x]
/(

xdj
) ∼= N

and hence JMK = JNK. Thus b̃code is injective by arbitrariness of JMK and JNK.

Therefore b̃code is a bijection.

Corollary E.23. The set functionH/∼=

(
dgm|

Z̄2
≥0
◦b̃code

)
−−−−−−−−−−→ DgmsZ̄2

≥0
is a set bijection.

Proof. Recall Corollary E.15. The set function
(

dgm|Z̄2
≥0
◦ b̃code

)
is a bijection

since set bijections are closed under composition.

Proposition E.22 and Corollary E.23 say that persistence barcodes in BcodesZ̄2
≥0

and persistence diagrams in DgmsZ̄2
≥0

are invariants of the isomorphism classes of

persistent homology modules of finite type. In the persistence literature, this is

typically rephrased by describing the persistence barcode/diagram as a complete

discrete invariant; see [CZ09, p. 74]. A more geometric explanation for persistence
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barcode/diagrams being correct summaries of nth persistent homology modules

comes from the construction of persistence triangles.

Definition E.24. Suppose (Q, µQ) is a multiset and define the total multiplicity of

(Q, µQ) by

](Q, µp) := ∑
q∈Q

µQ(q) ≤ +∞.

If (Q, µQ) ∈ Dgms and (i, j) ∈ Q \ ∆, let the, possibly unbounded, convex set

∠(i, j) := ((0, i), (j, 0), (i, j− i)) \ ((i, j− i), (j, 0)) ⊆ R2
≥0 × R̄2

≥0

be called a persistence triangle and let ∠Q be the set of Q-persistence trian-

gles. We will define ∠(Q, µQ) := (∠Q, µ∠Q) to be the multiset of Q persistence-

triangles where µ∠Q : ∠Q→ Z≥0 is defined by

µ∠Q(∠(i, j)) := ]
(
({(i, j)}, µQ|{(i,j)})

)
.

Lemma E.25 (k-triangle lemma). Suppose Hk(K) is a persistent homology module for

some k ≥ 0 and consider (Q, µq) = dgm(Hk(K)). Assume (i, j) ∈ Z2
≥0 and 0 ≤ i < j.

Let T ⊆ ∠Q denote the set of Q-persistence triangles containing the point (i, j), that is,

t ∈ T if and only if (i, j) ∈ t. Then

β
i,j
k = ∑

t∈T
µ∠Q(t).
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The proof of the k-triangle lemma can be found in [ELZ02, pp. 520-521]. We

close this section with some examples.
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APPENDIX F

STABILITY OF PERSISTENCE DIAGRAMS

The persistence barcodes/diagrams introduced in Appendix Appendix E are

useful for classification of triangulable spaces that have been replaced with filtered

triangulations. In this section we will define the bottleneck distance dB which pro-

vides a metric on persistence barcodes/diagrams. This allows us to apply analyti-

cal methods to persistence barcodes/diagrams and estimate the persistent homol-

ogy of filtered abstract simplicial complexes. Due to time, the scope of this section

will not exceed a quick summary of [CSEH07]. In [CSEH07, pp. 105, 107-108],

Cohen-Steiner et al. identify Z≥0-filtrations of simplicial complexes as a special

case of Morse functions on Whitney-stratified spaces; see [GM88, Part 1, c. 1]. Us-

ing this framework, Cohen-Steiner et al. generalize persistent homology to tame

functions and show that persistence barcodes/diagrams are stable with respect to

dB.

Definition F.1. Suppose f : X → R is a continuous function on a topological

space X and let Hn(X) denote the nth singular homology module. Limited by

time we direct the curious reader to [Rot98, c. 4] for a group theoretic intro-

duction; it is a fairly simple exercise to translate this to the setting of modules.

For this section, little more is needed than knowing singular homology provides

a functor Top → ModR and, by [ES52, pp. 100-101], singular homology and

simplicial homology modules are isomorphic up to triangulable spaces. Since

f−1((−∞, x]) ⊆ f−1((−∞, y]) whenever x ≤ y ∈ R, the sublevel sets of f pro-

vide an R-filtration of X. In the context of the continuous map f : X→ R, we will

say X is R-filtered.
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Lemma F.2. If f : X → R is a continuous map and x < y ∈ R, then there exists

an induced R-module homomorphism Hn
(

f−1(−∞, x]
)
→ Hn

(
f−1(−∞, y]

)
for each

n ≥ 0.

Proof. This is just the evaluation of the singular homology functor having the form

R ≤−→ Top Hn−→ ModR.

Definition F.3. An nth homological critical value of f is a constant c ∈ R such

that the induced R-module homomorphism

Hn( f−1(−∞, c− ε])→ Hn( f−1(−∞, c + ε])

is not an isomorphism for some ε > 0 and n ≥ 0. We say f is tame if it has at most

finitely many homological critical values and Hn( f−1(−∞, x]) are finitely gener-

ated for all n ≥ 0 and x ∈ R. Clearly, this provides a generalization of nth persis-

tent homology modules of finite type. By way of notation, Fx
n := Hn( f−1(−∞, x])

and f x,y
n : Fx → Fy is the R-module homomorphism induced by functoriality, that

is, by the inequality x ≤ y ∈ R. We will also write Fx,y
n := im( f x,y

n ) and maintain

the convention that Fx,y
n = {0} whenever x = ±∞ ∈ R̄ or y = ±∞ ∈ R̄. We call

Fx,y
n the x, y-persistent nth homology module of f . The nth persistent homology

module Hn( f ) of f is the family
{

Fx
n , f x,y

n
}

x<y∈R̄
. A persistent homology module

is of finite type if f : X → R is tame. In the case of a filtered simplicial complex,

the previous definitions generalize those of Definition E.8. For tame functions, we

define the x, y-persistent nth Betti number to be β
x,y
n := rk(Fx,y

n ) for all x ≤ y in R̄.

In some sense, homological critical points divide the preimage of f into seg-

ments in which the homology of the sublevel set is unchanged.
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Lemma F.4 (Critical value lemma; [CSEH07]). If [x, y] ⊆ R contains no homological

critical values for some function f : X→ R, then f x,y
n is an R-module isomorphism for all

n ≥ 0.

Proof. Set m−2 := x, m−1 := y, and m0 := (x + y)/2. Then f x,y
n ≡ ( f m0,y

n ◦ f x,m0
n )

by functoriality, that is, by the fact functors preserve compositions. By way of

contradiction, suppose f x,y
n is not an isomorphism. It follows that either f x,m0

n

or f m0,y
n is not an isomorphism since R-module isomorphisms are closed under

composition. If f x,m0
n is not an isomorphism, then set m1 := (x + m0)/2. Other-

wise, we set m1 := (m0 + y)/2. Continuing inductively, we construct a sequence

{[mi, mj]}i,j∈Z≥−2 . By [Rud76, p. 38, Theorem 2.38]

⋂
i,j∈Z≥−2

[mi, mj] 6= ∅.

Hence there exists some critical point c ∈ ⋂i,j∈Z≥−2
[mi, mj], a contradiction. There-

fore f x,y
n is an R-module isomorphism for each n ≥ 0.

We will now generalize the definition of persistence barcodes/diagrams to be

summaries of the persistent homology of the sublevel sets of tame functions.

Definition F.5. Assume (ci)
k
i=1 lists the nth homological critical points of the tame

function f such that ci < ci+1 and let (di)
k
i=0 be chosen so that di−1 < ci < di.

The sequence (di)
k
i=0 is said to be interleaved. We will set d−1 = c0 = −∞ and

dk+1 = ck+1 = +∞. The multiplicity of the persistence interval [ci, cj) is defined

by

µ
(
[ci, cj)

)
:=
(

β
ci,cj−1
n − β

ci,cj
n

)
−
(

β
ci−1,cj−1
n − β

ci−1,cj
n

)
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for 0 ≤ i < j ≤ k + 1. Notice that if x, x′ ∈ (ci, ci+1) and y, y′ ∈ (cj−1, cj), then

Fx,y
n
∼= Fx′,y′

n by the Lemma F.4. Hence β
x,y
n = β

x′,y′
n and thus

µ([x, y)) = µ([x′, y′)),

that is, µ is well-defined.

This leads us to define bcoden( f ) := (P, µP := µ) ∈ Bcodes to be the nth

persistence barcode of the R-filtered topological space X, where

P =
{
[ci, cj)

∣∣ 0 ≤ i < j ≤ k + 1
}

.

The nth persistence diagram of f is dgmn( f ) := dgm (bcoden( f )) ∈ Dgms. Let-

ting Quady
x denote the infinite quadrant [−∞, x]× [y, ∞], we can prove a general-

ization of the k-triangle lemma; see Lemma E.25.

Lemma F.6 (k-Triangle Lemma; [CSEH07]). Suppose that f : X → R is a tame func-

tion with critical points (ci)
k+1
i=0 and interleaved sequence (di)

k+1
i=−1. Also, we will set

(Q, µQ) := dgmn( f ) for some integer n ≥ 0. If x < y are not homological critical

points, then

]
((

(Q \ ∆) ∩Quady
x, µQ|(Q\∆)∩Quady

x

))
= β

x,y
n .
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Proof. Without loss of generality, we may assume that x = di and y = dj−1 for

0 ≤ i < j ≤ k + 1 by Lemma F.4. Also, we will set

{(cp, cq)}0≤p<q≤k+1 := (Q \ ∆) ∩Quady
x.

Observe

]
((

(Q \ ∆) ∩Quady
x, µQ|(Q\∆)∩Quady

x

))
= ∑

0≤p<q≤k+1
µQ
(
[cp, cq)

)
= ∑

0≤p<q≤k+1

(
β

dp,dq−1
n − β

dp,dq
n

)
−
(

β
dp−1,dq−1
n − β

dp−1,dq
n

)
= ∑

0≤p<q≤k+1
β

dp−1,dq
n − β

dp,dq
n + β

dp,dq−1
n − β

dp−1,dq−1
n

= β
d−1,dk+1
n − β

di,dk+1
n + β

di,dj−1
n − β

d−1,dj−1
n

= β
di,dj−1
n

= β
x,y
n .

Notice that the last two equalities above are due, respectively, to telescoping sum

and the fact Fx,y
n := {0} whenever x or y is infinite.

Proposition F.7. Suppose Hk(K) is a persistent homology module of a Z≥0-filtered ab-

stract simplicial complex and consider (Q, µQ) := dgm (Hk(K)). Assume (i, j) ∈ Z≥0

and 0 ≤ i < j. Let T ⊆ ∠Q denote the set of Q-persistence triangles containing the point

(i, j). It follows that

]
((

(Q \ ∆) ∩Quady
x, µQ|(Q\∆)∩Quady

x

))
= ∑

t∈T
µ∠Q(t).
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Proof. It suffices to show that (i, j) ∈ ∠(p, q) ∈ T if and only if (p, q) ∈ Quadj
i for

any ∠(p, q) ∈ T. If (i, j) ∈ ∠(p, q) ∈ T, then 0 ≤ p ≤ i and 0 ≤ j ≤ q. This implies

that (p, q) ∈ Quadj
i . Now assume (p, q) ∈ Quadj

i for some arbitrary ∠(p, q) ∈ T.

Consequently, 0 ≤ p ≤ i and 0 ≤ j ≤ q. Thus (i, j) ∈ ∠(p, q) ∈ T.

The previous proposition and the k-triangle lemma together prove the correctness

of the generalization of β
i,j
n to β

x,y
n .

Definition F.8. Suppose (P, µP) and (Q, µQ) are multisets of points in euclidean

space. We define the bottleneck distance between (P, µP) and (Q, µQ) by

dB
(
(P, µP), (Q, µQ)

)
:= inf

η : P
∼−→Q

{
sup
x∈X
{‖x− η(x)‖∞}

}

where the infimum is taken over all multiset bijections between P and Q. It is not

a hard exercise to show this is a metric on Dgms.

The main result of [CSEH07] is the stability of persistence diagrams under dB.

Theorem F.9 (Bottleneck Stability; [CSEH07]). Suppose X is a triangulable space and

assume f , g : X→ R are tame continuous functions. If ( f − g) is bounded, then

dB (dgmn( f ), dgmn(g)) ≤ ‖ f − g‖∞

where ‖ · ‖∞ is the supremum norm for bounded real-valued functions and n ≥ 0 is an

arbitrary integer.
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For the proof, we direct the reader to [CSEH07, pp. 113-116]. We will use Theorem

F.9 in chapter IV to prove the stability of persistence diagrams that are produced

from multiradial filtrations.
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NOTATION

(Ci
•(K), ∂i

•), 109

(C•, ∂•), 80

(x0, x1, . . . , xn), 87

Bn(C•(K)), 105

Bn(C•), 81

Bi
n(K), 109

Cn(K, R), 99

Fx
n , 133

Fx,y
n , 133

Hn(C•), 81, 105

Hu
n (K), 17

Hi
n(K), 109

Hi,j
n (K), 110

K(j), 88

R(F), 8, 96

R[x1, . . . , xN], 14

Rrv(X), 13

Rεir(X), 10

Rεi(X), 108

Zn(C•(K)), 104

Zn(C•), 81

Zi
n(K), 109

[σ]ı̂0,...,ı̂m , 100

∆n, 92

Γi, 115, 123

Σk, 77

Σ( · ), 19

∠(i, j), 130

∠Q, 130

∠(Q, µQ), 130

≈, 67

R̄≥0, 118

Z̄≥0, 117

f̄X,r, 26

βi
n, 109

βn, 81, 105

β
i,j
n , 111⊕

i∈I Mi, 69

Č(U), 7, 95

Črv(X), 13

Čεir(X), 10

Čεi(X), 108

∼=, 67

Γ̂s, 115, 123

ιvu, 17

〈B〉, 69

〈X〉, 68(
γ

δij
i

)r

i∈Z≥0
, 115(

miδij
)r

i∈Z≥0
, 123

|K|, 89, 93

|σ|, 93

H, 120

Hn(K), 110

HN
n (K), 17

bcode, 126

dgm, 126

Bcodes, 118

BcodesZ̄2
≥0

, 118

Dgms, 118

DgmsZ̄2
≥0

, 118

Quady
x, 135

AbSimp, 92

CompR, 81

Grp, 61

ModR, 73

R, 60
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Rd, 60

Set, 61

Simp, 88

Top, 61

TransP, 45

VectF, 61

Z, 60

Zd, 60

n, 60

bcode, 119

bcoden( f ), 135

conv(V), 85

dgm, 118

dgmn( f ), 135

dim(K), 88

dim(σ), 87, 91, 92

homC(X, Y), 58

rk(M), 69

vert(K), 91

vert(σ), 87

∂n, 80, 100

](Q, µp), 130

', 67

b̃code, 128

f•, 80

f x,y
n , 133

fX,r, 26

xv, 14

R>0
X, 10

H/∼=, 128

alt
(

K(n) \ K(n−1)
)

, 99
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INDEX

affine combination, 85

affine map, 85, 86

affine set, 85

affinely independent,

86

bottleneck distance,

137

category, 6, 58

small, 59

Čech complex, 7, 95

Čech complex of X at

scale εi, 108

Čech theorem or nerve

lemma, 95

chain complex, 80

n-boundaries, 81

n-cycles, 81

boundary maps,

80

chain map, 80

homology, 81, 105

commutative diagram,

59

convex combination,

85

convex hull, 85

cover, 94

closed, 94

good, 94

Critical value lemma,

134

Delaunay complex, 97

direct sum of modules

over I, 69

entry function, 26

ε-interleaved, 46

ε-translation, 46

Extending by linearity,

77

filtration

radial, 108

First isomorphism

theorem for

modules, 75

flag complex, 96

functor, 6, 61

faithful, 22

full, 22

fully faithful, 22

functor category, 65

generalized

persistence

module, 107

geometric realization,

93

graded ring, 74

homogeneous

element, 74

Grothendieck

universe, 57

set, 58

small set, 58
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homogeneous

elements, 13

homological critical

value, 133

homologous, 83

i,j-persistent nth

homology

module, 110

i,j-persistent nth

homology

module of K,

111

ideal, 67

generated by A, 67

principal, 67

interleaved sequence,

134

interleaving, 45

interleaving distance,

46

isomorphism of

categories, 22

Lawvere metric space,

46

module, 68

cyclic submodule,

68

finitely generated,

68

free, 69

basis, 69

graded module, 74

rank, 69

submodule, 68

submodule

generated by

X, 68

multidegree, 14

multigraded module,

13

multigraded ring, 13

multiplicity of the

persistence

interval, 134

multiradial Čech

complex at

scale εir, 10

multiradial

Vietoris-Rips

complex at

scale εir, 10

multiradial

Z≥0-filtrations,

10

multiradial

ZN
≥0-filtrations,

13

multiset, 117

multiset of Q

persistence-

triangles,

130

N-graded nth

persistent

homology

module, 17

natural transforma-

tion, 7,

63
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vertical

composition,

65

nth Betti number, 81

nth persistence

barcode of f ,

135

nth persistence

diagram of f ,

135

nth persistent

homology

module, 133

nth persistent

homology

module K, 110

nth persistent

homology

R-module

nth persistent

homology

Rmodule

finite type, 110,

133

nth simplicial Betti

number, 105

persistence diagram,

118

persistence interval,

118

persistence triangle,

130

persistent homology

R-module of

finite type, 120

piecewise linear map,

90

polyhedron, 89

precise refinement, 10,

97

preordered set, 59

principal ideal

domain, 67

product order, 60

R-homomorphism, 72

image, 72

kernel, 72

R-isomorphism, 72

set of all persistence

barcodes, 118

set of all persistence

diagrams, 118

set of persistent

homology

R[x]-modules

of finite type,

120

simplex, 87

dimension, 87, 92

face, 87

simplicial

boundary map,

100

chain complex, 102

n-boundaries,

105

n-cycles, 104

chain map, 102

chain module, 99

n-chains, 100

coface, 87

complex
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abstract, 91

affine, 87

dimension, 88

finite, 88, 91

infinite, 88, 91

skeleton, 88

subcomplex, 88

face, 87

map, 88, 91

simplex, 91

Smith normal form, 79

standard n-simplex, 92

Standard geometric

realization, 93

Structure theorem for

finitely

generated

modules, 75

Structure theorem for

graded finitely

generated

modules, 76

Structure theorem for

nth persistent

homology

modules of

finite type, 117

Structure theorem for

persistent

homology

modules of

finite type, 125

sublinear projection,

45

tame function, 133

total multiplicity, 130

translation, 45

triangulable, 89

triangulation, 89

underlying space, 89

Vietoris-Rips complex,

8, 96

Vietoris-Rips complex

of X at scale εi,

108

Vietoris-Rips lemma,

109

Voronoi

cell, 97

diagram, 97

weight function, 10

x, y-persistent nth

homology

module, 133

x, y-persistent nth

Betti number,

133

Z≥0-filtration, 107

ZN
≥0-filtration, 11
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