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biomolecules. Phase I of the research focused on a bimetallic nanostructured (nanoslit) 

film to aid in improving the sensitivity in comparison to pure gold films. Phase II of the 

research investigated nanoledge structures (stair-step features) for their ability to trap 

biomolecules and aid in surface plasmon resonance sensing. Phase III of the research 

examined how to produce a fluidic dam, a microstructure with an overcut sidewall 

profile, which could aid in separating biological entities from the proteins of interest. 

Phase IV of the research assessed the use of the fluidic dam and nanoledge structures for 

detection of Troponin T, a biomarker used in the diagnosis of heart attacks. Phase V of 

the research focused on the design and microfabrication of a plasmonic device, which 

could study how surface plasmon resonance influences a photocurrent generated by 

immobilizing photosystem I in a nanoslit structure.  
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CHAPTER I 

 
INTRODUCTION 

 

 Decreasing the size of a chemical or biological sensor (biosensors) can show 

analogous improvements to those that have revolutionized the semiconductor industry. In 

a decade of time we have moved from large, tabletop computers to a world where the 

majority of Americans own a smart phone that fits in the palm of the hand. Similarly, 

chemical sensing has relied on large benchtop instruments for years, but moving to 

sensors that can fit in the hand offer several benefits when compared to their large, 

benchtop counterparts. Point-of-care analysis, in which the “lab” is brought to the 

patient’s bedside as opposed to collecting a sample and transporting the sample to a 

centralized laboratory, is the primary benefit to the patient.  

 The overarching theme of my research is in the fabrication and study of portable, 

handheld biosensors. My area of interest and focus within this large area is in micro- and 

nanofabrication and surface plasmon resonance (introduced below) bio-detection. Below 

I account an introduction to the background material and at the end of this chapter I give 

a brief introduction to the work in each chapter. 

Analytical Instrumentation and Biosensing Technology 

The world’s analytical instrumentation market is currently around $12 billion and 

less than 0.1% are small biosensors.1 Consequently, there is a vast market growth 
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potential and need, as point of care (POC) analysis would solve many of the 

shortcomings with large benchtop instruments. Speed, cost, portability, throughput, 

versatility, selectivity, and sensitivity are all factors that analytical instruments are 

evaluated on. Simply shrinking the size of the instrument can enhance the first 3 metrics. 

Common techniques to detect analytes in low concentration are electrical, optical or mass 

based.2,3 Electrochemical methods are easy to shrink down to a point of care sensor and 

are cheap to fabricate, but need a power supply and rely on redox chemistry, which gets 

complicated for large protein molecules. Most optical techniques, like fluorescence, 

require the addition of a label or dye to the molecule of interest. This can be a lengthy 

process that requires some technical ability.  Mass spectrometry (MS) is a common mass 

sensing technique and is considered the gold standard for chemical analysis. MS does 

have drawbacks. The technique excels with small molecule assays but becomes 

increasingly difficult for protein analysis, which are the analyte of interest in disease 

diagnostics. The instruments are quite expensive, large, and elaborate to operate and 

maintain. Table 1.1 compares a large benchtop instruments to smaller, point of care 

devices on the basis of cost, speed, portability, solvents used, waste generated, repair cost 

and limit of detection (LOD). The POC device triumphs on every metric in the table 

except the LOD.4 The primary shortcoming of the POC biosensor is due to low 

sensitivity, which results in a high limit of detection. None of the previous mentioned 

techniques have found their way into a point of care (POC) sensor. A POC device 

capable of label-free, real time analysis that is sensitive, portable, cheap, and in complex 
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media is of high interest. The optical technique of surface plasmon resonance (SPR) 

shows the most promise in achieving that goal.5  

 
Table 1.1 
 
Comparison of Large Bench Top Instruments to Point-of-care Biosensors.4,6 
 

Metric	 Large Instrument	 POC Biosensor	

Initial Cost	 $.25 Million	 $2 Thousand	

Analysis Time	 Weeks	 Minutes	

Portability	 No (100 lbs.)	 Yes (< 5 lbs.)	

Solvents	 1000 X	 1 X	

Waste	 1000 X	 1 X	

Repair	 Costly	 Disposable Devices	

Limit of Detection	 fM (10-15 M)	 pM (10-12 M)	
 
 

Surface Plasmon Resonance (SPR) 

 Surface plasmons, by definition, are quanta of collective surface charge 

oscillations.7 Surface plasmons (SP) can be thought of as a density wave of electrons at 

the interface of a metal and dielectric. These surface charge oscillations are induced by 

electromagnetic (EM) radiation with an appropriate coupler.7 When the incident EM field 

has a frequency matching that of the plasmons, those electrons resonate, increase in 

intensity and emit detectable radiation. SPs are very sensitive to the local refractive index 

and are effective at measuring binding events. Therefore, they make up the technique 

known as surface plasmon resonance (SPR). SPR is a label-free technique that can 
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monitor, in real-time, very low concentrations of many analytes at once (multiplexing).8 

It is a resourceful technique as it gives concentration and kinetic information about the 

binding events.7 Traditional surface plasmon resonance is known as the Kretschmann 

configuration (Figure 1.1B) and uses total internal reflection (TIR) to couple the incident 

light into surface plasmon polaritons (SPPs).7 SPPs are propagating waves of electron 

density, whereas non-propagating plasmons are termed localized surface plasmon 

resonance (LSPR). 

  

 

Figure 1.1. Schematic of LSPR and SPR with Y Shaped Ligands on the Gold Surface and 
Red Circular Analytes Flowing Over. EM Field Intensity Gradient Shows the Intensity of 
the Evanescent Wave with Color Change; Red as High and Blue as Low EM Field. (A) 
LSPR Effect Where the Nanostructure Dimension is Far Smaller Than the Wavelength of 
Light. Probe Depth (Ld) is on the Order of 10’s of nm. (B) Total Internal Reflection SPR 
(Kretschmann Configuration). The Electrons Oscillate Perpendicular to the Metal Film 
after Total Internal Reflection of the Incident Laser Light. The SPPs Propagate Parallel to 
the Surface and over a Distance of Micros. The Evanescent Field (Probe Depth) is Much 
Longer Than in LSPR. Ld for SPR is on the Order of 100’s of nm.9 
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 LSPR occurs when metallic structures, smaller than the incident wavelength, 

interact with light to give a plasmon that oscillates locally (Figure 1.1A).8 LSPR ensues 

when the incident photon frequency (ωlight) matches that of the frequency for the 

conduction band electrons in the metal structure (ωmetal). Many structures have been 

studied: nanoparticles, nanotriangles, core-shell particles, etc.4,10 LSPR is a non-

propagating mode and has several benefits over TIR SPR.8 As Table 1.2 shows, both 

techniques are label-free with multiplex capabilities and real-time detection, but LSPR 

shines due to the short probe distance (provides LSPR with increases sensitivity), lack of 

required temperature control, portability, major reduction in cost, and low spatial 

resolution.8 The low cost and lack of temperature control make LSRP better suited for 

POC applications over SPR. The instrumental design in LSPR becomes simplified over 

the total internal reflection (TIR) design, which requires a laser, polarizer, moveable 

mirrors, and temperature control). One alarm is the third metric in Table 1.2, the 

refractive index (RI) sensitivity. The overall sensitivity of LSPR is actually comparable 

to SPR due to the short probe depth of LSPR.9 Governed by Equation 1.1, the overall 

response of SPR or LSPR can be monitored with a shift in wavelength. When comparing 

SPR to LSPR via Equation 1.1, there are only two variables to note, m (RI sensitivity) 

and Ld (the probe depth). LSPR affords the ability to shrink the instrumentation by losing 

the bulky optics, prism, and mirrors found in SPR. The portability is of prime interest to 

afford point of care (POC) analysis. This significantly affects the cost, turnaround time, 

shipping requirements, and locations at which testing can be done. POC testing allows for 
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immediate, on-site results as opposed to drawing blood, shipping to a centralized 

laboratory, and waiting weeks for the test results. The immediate results, lower cost, and 

elimination of refrigerated shipments of biological samples are benefits of POC testing. 

The low cost, label-free and real-time analysis, ease of use, and portability united with 

the sensitivity and versatility of LSPR make it a strong candidate for POC biosensing and 

are strong attributes over the current technology. 

 
∆λmax = m∆n(1 – exp(–2d/ld)) 

 
Equation 1.1. Overall Response of SPR or LSPR Measured as a Wavelength Shift (Δλ). 
The Other Variables Include: m as the Refractive Index Sensitivity, Δn as the Change in 
Refractive Index after Analyte Absorption, d Represents the Effective Adsorbate Layer 
Thickness, and ld is the EM Field Decay Length or the Probe Depth of the EM Wave.8  
 
 
Table 1.2 
 
Comparison between SPR and LSPR11 
  

Feature/characteristic	 SPR	 LSPR	

Label-free detection	 Yes	 Yes	

Distance dependence	 ~1000 nm	 ~30 nm (size tunable)	

Refractive index sensitivity	 2 x 106 nm/RIU	 2 x 102 nm/RIU	

Modes 
	

angle shift 
wavelength shift 
imaging	

extinction 
scattering 
imaging	

Requires temperature control	 yes	 no	

Field portability	 no	 yes	

Cost	 $150,000 – $300,000	 $5,000	
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Table 1.2 
 
Cont. 
 

Feature/characteristic	 SPR	 LSPR	

Spatial resolution	 ~ 10 x 10 µm	 nanoparticle	

Real-time detection	 time scale = 10-1 – 103 s	 time scale = 10-1 – 103 s	

Multiplexed capabilities	 yes	 yes	

Small molecule sensitivity	 good	 better	

 

Excitation of Surface Plasmon Polaritons 

 There are several ways to excite SPPs. The earliest method was to use a beam of 

electrons. While this method worked, it is not feasible for POC analysis. Excitation of 

SPPs using light is much more economical and portable. Most methods of SPP excitation 

with light relies on a narrow bandwidth fixed wavelength, i.e., a laser. The devices would 

be cheaper and simpler if broadband white light was used, as the bulky optics could be 

removed. Light cannot directly excite a SP due to the momentum mismatch between the 

massless photon and the natural frequency of the electronic oscillation. As Figure 1.2 

shows, the dispersion relation gives some insight into how to excite a SPP. The light line 

(light blue in Figure 1.2) shows the energy/momentum relationship for incident light in 

air. By increasing the wavevector, and thus the momentum (Figure 1.2, purple line), we 

can excite SPPs.  
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Figure 1.2. The Dispersion Relation for Frequency (ω) vs. the Wavevector (κ). The 
Wavevector is Directly Proportional to the Momentum of the Incident Light and 
Indirectly Proportional to the λ.  Light Blue Light is Governed by the Bottom Left 
Equation and is the Dispersion Relation for Light Propagating through Air. The Purple 
Line is the Dispersion Relation for Light Propagating through a Prism or Scattered Via a 
Grating or Nanostructures. The Dark Blue Line is the Dispersion Relation for Surface 
Plasmon Polaritons (SPPs) On a Thin Metallic Film. SPPs Follow the Equation on the 
Bottom Right of the Plot. Figure Redrawn from Reference.7 
 

 Figure 1.3 shows the four methods to excite a SPP with light. A high refractive 

index prism acts by shortening the wavelength, increasing the wavevector, which 

increases the momentum, giving a momentum matching condition. The two prism 

coupling methods (Figure 1.3A, 1.3B) are efficient couplers but require extensive optical 

instrumentation. Other ways to shift the light line is by scattering affects.  Figure 1.3C 

shows a grating coupler which matches the momentum due to scattering, but have an 

incident angle dependence for the exciting light and low signal to noise ratio. Figure 1.3D 

represents subwavelength nanostructures as the coupler and is our proposed method due 

to the small footprint and incident angle independence. 
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Figure 1.3. The Four Methods to Excite SPPs with Photons. (A) Kretschmann Prism 
Configuration, (B) Otto Prism Configuration, (C) Grating, (D) Subwavelength 
Nanostructures.  
 

 Emphasis through the entire dissertation will be placed on nanostructured films, 

as opposed to free nanoparticles. This is because patterned films are easily incorporated 

into microfluidic systems. This is critical for the design of a point-of-care biosensor. 

Additionally, nanostructured films afford access to both localized resonance (LSPR) and 

a propagating surface plasmon polariton (SPP). Nanostructuring a metal film has 

displayed enhanced sensitivity and afforded inexpensive, portable sensing devices.12 

Extraordinary Optical Transmission (EOT) 

 Extraordinary optical transmission (EOT) is the enhanced transmission of light 

through apertures.13 Classically these subwavelength apertures are not expected to 

transmit in the visible wavelength regime. The periodic arrangement of these apertures 

allows for several orders of magnitude increase in the far-field transmission. The effect is 

due to surface plasmons and constructive interference of the oscillating charge density 

waves. In 1998 Ebbensen’s group found that much more light gets through a periodic 

array of subwavelength apertures than classically predicted by Bethe’s theory.14,15 

Ebbensen’s group used a square array of 150 nm holes milled into a 200 nm thick silver 
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film (Figure 1.4A). Their results, now corroborated by other groups, showed strong 

enhancement of the transmitted light due to coupling to surface plasmons in the metal 

film. This seminal publication spawned a lot of research in the EOT area.16,17,18,19 A few 

years later the same group investigated a bulls-eye nanostructure (Figure 1.4B) and 

showed a 10 fold improvement in the transmission compared to the nanoholes alone, 

further demonstrating that tailoring the structure alters the transmission properties.20 The 

EOT effect was used by Brolo et al. for the use in biosensing for the first time in 2004.21 

They changed the spacing between the nanoholes from 510 nm to 618 nm with 200 nm 

diameter holes. It is now well known that the EOT effect has a strong dependence on the 

nanostructure shape, size and periodicity. These parameters are defined in the fabrication 

process and can lead to control over the transmission and the resonant peak location. 

 

 
 
Figure 1.4. Ebbensen’s Group (A) Square Array of Nanoholes from the Seminal Paper in 
1998 and (B) Bulls-eye Array from the Later Work in 2001.15, 20, 22 
 

 EOT is directly applicable to transmission SPR (tSPR) using a broad band light 

source and measuring a shift in the resonant peak’s wavelength after a RI change, due to 

binding events (Figure 1.5B). Transmission mode SPR affords a much simpler 
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instrumental design (Figure 1.5A) and allows for a POC system via ease of 

miniaturization. The other benefit of using tSPR is that we can attain two modes of SPs.  

The propagating surface plasmon polariton (SPP) mode and the local surface plasmon 

resonance (LSPR) mode.  

 

 
                      
Figure 1.5. (A) Instrumental Setup with Incident Broadband Light from Underneath the 
Substrate Exciting Surface Plasmons in the Nanohole and Nanoslit Arrays and the 
Collected Light is Measuring with a Spectrophotometer. (B) The Principle of Wavelength 
Shift SPR. The Gold Surface is Covered with Ligands (Blue Triangles). After a Binding 
Event (Black Circles) the Refractive Index of the Surface Changes and Yields a Shift in 
Resonant Wavelength.22 

 

Nanostructured Substrate Designs 

 One of the primary goals of the research was to investigate and vary the type of 

nanostructure shape, the nanostructure spacing (periodicity), alloy composition, and the 

nanostructure pore size. The numerical modeling method of finite difference time domain 

(FDTD) served as a means for rapid design and simulation. FDTD is a versatile modeling 

technique that solves Maxwell’s equations to attain the plasmonic modes for SPR. FDTD 

is a time-domain technique where a single simulation can provide results from a wide 
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range of frequencies and wavelengths. This is beneficial as the resonant frequency and 

primary SP peak are unknown when faced with many variables such as slit width, period, 

material composition, bimetallic ratio, etc. FDTD provides fundamental understanding of 

the EM waves and SP modes along with movies and images of how the EM modes 

evolve over time. Lastly, FDTD provides a quick way for the experimentalist to gain 

some insight into what devices to fabricate and further investigate. Nanostructures of 

interest are the nanoslit and the nanoledge (Figure 1.6). In chapter two we will be 

introduced to the work on bimetallic devices. The bimetallic devices will be compared to 

the control device (Ag chip) on the basis of sensitivity. In chapter three we will be 

introduced to a novel design, a nanoledge. This is a stair-step feature. This design has a 

large pore opening of 280 nm and an inner slit of 50 nm in width. The primary benefit of 

this design is in the fact that the large pore opening (280 nm in width) is large enough to 

easily allow the entry of charge analytes, such as proteins in an aqueous solution. These 

charged analytes form an electrical double layer in solution. The overlap of this charged 

layer within the nano-sized aperture opening becomes an issue when trying to 

accommodate charged analytes. The 50 nm slit is needed because researchers have found 

that slits with a width less than 100 nm provide strong SPR signals.23 

 
    
Figure 1.6. Gold Nanoslit, Bimetallic Nanoslit, and Gold Nanoledge. 
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Instrumentation Setup 

 Figure 1.7A shows the instrumentation used for the optical measurements in 

transmission mode SPR. The simplicity of the instrumentation allows for ease of 

miniaturization and portability. The instrument consists of a miniature light source, 

fabricated biosensor ship, and a spectrometer, all of which is connected with fiber optic 

cables. Figure 1.7B displays the method of spectral sensing. White light consisting of all 

wavelengths is incident on the nanostructured thin film. The surface plasmons are 

activated and give the extraordinary optical transmission (EOT) and a resonant peak 

(Figure 1.7B). This process is governed by the mathematics in Equation 1.2.24  

 

 
                     
Figure 1.7. Instrumentation and Setup for Sensing in Transmission SPR. (A) The 
Instrumentation Consists of a Portable Light Source (Ocean Optics LS-1) with Tungsten 
Bulb, Fabricated Chip with Flow Cell, Fiber Optic Cables and Spectrophotometer (Ocean 
Optics USB2000). (B) Drawing of the Setup Shows White Light (All Wavelengths) 
Incident on Metal Film. Due to the Plasmons and Constructive Interference, the EOT 
Effect is Achieved. Governed by Equation 1.2, a Resonant Peak is Detected (Light Blue 
Line). 
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Equation 1.2. The Resonant Surface Plasmon Wavelength is Governed by the Above 
Equation. λ is the Resonant Wavelength, P is the Periodicity of the Nanostructures, εm is 
the Dielectric Constant of the Metal, εd is the Dielectric Constant of Sensing Area (the 
Aqueous Media above the Metal), and n is the Refractive Index.24  
 
 

Brief Introduction of Each Chapter 

 The following chapters are all in the area of surface plasmon resonance bio-

detection, microfabrication, and/or nanofabrication. A brief introduction to each chapter 

is outlined below. 

 A bimetallic (Ag/Au) thin film substrate with nanoslits was examined in chapter 

two for an increase in sensitivity over a gold nanoslit device. To address this point, 

devices were made with a 100 nm film thickness and milled with nanoslits either 50 nm 

or 100 nm in size. Devices were also made with various periodicities (spacing between 

each slit). Experimental optical transmission data and FDTD simulation data was 

compared on the basis of nanoslit period to corresponding peak wavelength value. The 

stability of the bimetallic system was investigated for any inter-diffusion between the 

gold and silver layers. The effect of temperature and age was also investigated. To 

compare the sensitivity the bimetallic chips and the gold chips were compared on the 

basis of their peak wavelength shift with solutions of increasing glycerol content, and 

thus increasing refractive index. Finally, a self-assembled monolayer was used to gain 

insight on the SPR performance of the bimetallic chip in comparison to the gold chip. 
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 A novel nanoledge design was used in chapter three to examine its ability to allow 

entry and trapping of protein molecules. TIRF (Total internal reflection fluorescence) 

microscopy was used to investigate if fluorophore labeled proteins can actually make 

entry into the nanostructures. A SiO2 capping layer was introduced in order to promote 

the binding of SAMs and thus the bio-detection of proteins within the slit and not on the 

planar upper portion of the thin film. Finally, a monoclonal antibody for free-prostate 

specific antigen (f-PSA) was attached to the surface and the nanoledge structure was 

probed for its detection capabilities. 

 Chapter IV is a technical chapter that addresses the microfabrication of a flow-

over fluidic dam. A flow-over fluidic dam was suggested for its ability to decrease 

diffusion times of analytes to the sensing area. Flow-through fluidic structures have been 

suggested in the past. Their primary downfall is their ability to clog when working with 

solutions with “sticky” biological such as large red blood cells. Several microfabrication 

approaches are discussed and non-traditional fabrication techniques such as multi-layered 

resist structure formation are discussed. 

 Biosensing for troponin T, a myocardial infarction biomarker, is investigated in 

Chapter V. The flow-over fluidic dams with nanoledge structures milled in the top are 

assessed with confocal microscopy for their ability to allow microspheres (similar in size 

to red blood cells) to pass over the fluidic dams. A DNA aptamer specific for troponin T 

was attached to the sensor surface via SAM chemistry. SPR resonant peak shifts were 
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studied for troponin T binding to the DNA aptamer. This was compared to control 

solutions of IL-6 protein without troponin T.  

 Chapter VI is titled “Fabrication of a Plasmonic Photocurrent Device.” This 

chapter focused on how surface plasmon resonance can influence the photocurrent 

generating abilities of photosystem I (PSI), a photoactive protein. A device with novel 

design was needed in order to immobilize PSI into a nanocavity on a gold chip. My 

contribution was in regards to the design, lithography, etching, and nanofabrication of 

said device. 
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CHAPTER II 

 
BIMETALLIC FILMS FOR ENHANCED SENSITIVITY 

 
 

This chapter has been published as: Taylor Mabe, Zheng Zeng, Bhawna Bagra, 
James Ryan, Jianjun Wei. “Surface plasmon resonance of a bimetallic 
nanostructured film for enhanced optical sensitivity.” Chemistry Select. 2018, 
3(11), 3018-3023. 

 

Overview 

 A bimetallic (Ag/Au) nanoslit film is reported on surface plasmon (SP) generation 

and refractive index (RI) sensitivity. These were compared to gold devices in 

transmission surface plasmon resonance (tSPR). The bimetallic films have a primary 

resonant peak that shifts with periodicity and correlates well with Finite-Difference 

Time-Domain (FDTD) simulation studies. The SPR of bimetallic nanoslit structures is 

analyzed via a semi-analytical model. The model enables decomposition and quantitative 

analysis of SP generation at the aperture under plane-wave illumination. The 

nanostructured, metallic, thin films provide flexibility to integrate with microfluidics, 

allowing for simplified instrumentation and alignment. Calculation and experimentation 

demonstrate that bimetallic films afford an increase in RI sensitivity due to the addition 

of silver along with the biocompatibility of gold. The Ag/Au films were found to be non-

diffusing, long-term stable (over several months), and provided an increase in sensitivity 

(about 53/RIU) over gold equivalents.  
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Introduction 

Greatly enhanced transmission of light through a subwavelength aperture in a 

patterned metallic film with a regularly repeating periodic structure underlines the 

physics of the extraordinary transmission (EOT) phenomena,1 which results in a variety 

of applications, such as bio-detection and biosensing schemes.2 Nanostructures and 

nanostructured metal thin films can utilize the phenomena of surface plasmon resonance 

(SPR) to detect binding events of biomolecules by monitoring a refractive index (RI) 

change. SPR comes in two forms, a localized mode and a propagating mode. Localized 

surface plasmon resonance (LSPR) is where electrons oscillate back and forth inside of a 

nanoscale structure,3 such as nanoparticles,4 nanotriangles,5 nanostars,6 nanohole arrays,7 

nanotriangle arrays,7 and other shapes.4, 8 Another form is surface plasmon polariton 

(SPP) occurred at the interface of a metal and a dielectric. Some techniques are used to 

accomplish SPP generation with light (photons), including end-fire coupling,9 high RI 

prisms,10 gratings,10 or nanostructures.11 A nanostructured planar film has an additional 

benefit of allowing for transmission mode SPR, which can be easily integrated into 

microfluidics.12 Nanostructures in gold planar films have been investigated previously,13 

such as nanohole, nanocircle, and nanoslit arrays. In regards to sensitivity to RI changes 

near the surfaces, it was found that the nanoslit array was the most sensitive; 16% higher 

than the nanohole arrays and 5% higher than the nanocircle arrays.13 

Metals are the materials of choice in plasmonics, since surface plasmons can 

couple light strongly to the metal surface and thereby greatly enhance light-matter 
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interactions.14 Other materials being investigated for their plasmonic potential include the 

alkali metals,15 transparent conducting oxides,15 and graphene.15-16 A desirable plasmonic 

material has a large plasma frequency, high conductivity, high polarizability (large −ε’), 

low ohmic loss (small ε”), ability to fabricate nanostructures in the material.14 Only a few 

materials are effective at generating surface plasmons.17 Copper has interband transitions 

below 600 nm and oxidizes. Aluminum is good in the UV region but also forms oxides. 

Silver has the highest conductivity, longest SPP propagation distances, and the highest 

quality factor in the visible region. Gold has interband transitions below 480 nm18 and is 

the workhorse of SPR due to its chemical inertness. Compared to gold, silver has higher 

electromagnetic (EM) fields in the sensing area and less attenuation of its SPP generation. 

Silver has an added benefit of being shifted to longer wavelengths, into the window of 

0.6 µm-1.2 µm. This region is outside of the biological auto-fluorescence region and 

therefore has an advantage of free of biological interference. A single metal does not 

possess all of the traits of a high quality plasmonic material, but a bimetallic chip 

potentially could. A device composed of silver and gold could incorporate the optical and 

electrical properties of silver underneath an inert layer of gold. 

The bimetallic nanostructures provide composition-tunable plasmonic resonances 

for plasmon-based sensing and surface field-enhanced spectroscopy,19 and various 

structures such as core-shell nanoparticles,20 nanoholes,21 and nanorods.22 Du et al. 

performed a theoretical investigation of a planar bimetallic SPR chip and found a 20% 

increase in the evanescent field strength and an 80% increase in the sensitivity compared 



	

 
23 

to the gold control chip.19a Sharma et. al. presented a theoretical study of bimetallic 

nanoparticles and found that the sensitivity was tunable with metal ratio and that Ag/Au 

had the highest sensitivity of the alloys.19c The Sohn group found that a bimetallic device 

was twice as accurate as gold equivalents, with peak widths half that of the gold.19d They 

also showed a two-fold increase in sensitivity and a six-fold improvement in limit of 

detection (LOD).19e Ong et al. discerned that a bimetallic film had a two-fold 

improvement in sensitivity over gold.19f Multilayer of gold–silver array of prisms show 

SPR enhanced near-field fluorescence from quantum dots deposited at the surface of 

these platforms.19h Murray-Me´thot et al. experimentally demonstrated the improved 

optical properties of Au/Ag bimetallic nanohole arrays over pure Au or Ag nanohole 

arrays and found the dependence of excitation wavelength, the RI sensitivity, and the 

transmission full width at half-maximum (FWHM) on the metal compositions.21 Kim et 

al. reported the tunability of surface plasmon by composition variation in nanorod 

structures and investigated the metallic composite impact on both the far-field and near-

field scattering spectra.22 

The efficiency of surface plasmon (SP) generation of bimetallic systems and its 

effect on the sensitivity are rarely explored. This study presents an investigation of 

bimetallic (Ag/Au) nanoslit films with a focus on optical properties and RI sensitivity as 

a comparison to pure gold nanoslit films in light transmission measurements. A semi-

analytical analysis and a Finite-Difference Time-Domain (FDTD) simulation were used 

to estimate the SP generation and optical response, respectively, for providing a 
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fundamental understanding of the dielectric sensitivity of these devices. The findings in 

this work show that bimetallic nanostructures can be attuned to enhance the sensitivity in 

surface plasmon resonance. 

Results and Discussion 

Metallic Nanoslit Film and Characterization 

Metallic nanoslit films in Au and Ag/Au bimetallic were designed and fabricated. 

Figure 2.1 shows the structure and scanning electron microscopy (SEM) images for 

various periodicities (550 nm, 600 nm, 650 nm, and 700 nm) at 50 nm slit widths. The 

metal film was 100 nm thick. The SEM images clearly show straight nanoslit arrays in 

metallic films. 

 Stability of the bimetallic layers is important for this research. It is documented 

that silver and gold readily diffuse into one another in liquid and solid states.23 Secondary 

ion mass spectrometry (SIMS) was used to investigate grain boundary diffusion of silver 

into gold in these bimetallic films. SIMS samples consisted of a range of Ag:Au ratios 

and covered a range of ages over a period of 10 months. Figure 2.1 shows that little inter-

diffusion was observed for any of these films. The results of the SIMS analyses support 

the hypothesis that there is a distinct bimetallic interface and that the bimetallic film does 

not change over time. A clean, distinct bimetallic interface also helped simplify the 

simulation studies and experiments. 
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Figure 2.1. A Schematic Drawing of (a) Gold Nanoslit Structure and (b) Bimetallic 
Nanoslit Structure. SEM Images of a Representative Ag/Au Bimetallic Nanoslit Array 
with 50 nm Width and a Periodicity of (c) 550 nm (d) 600 nm (e) 650 nm (f) 700 nm. 
Results of SIMS Analysis for Two Ag/Au Bimetallic Devices (g) 9 Months after 
Fabrication and (h) 10 Months after Fabrication. (SEM Images of Au Nanoslit Devices in 
Figure A1, Appendix A.) 
 

Transmission SPR Spectra  

 The bimetallic substrates showed a strong correlation between nanoslit period and 

transmission peak wavelength (Figure 2.2a). This is consistent with the FDTD results 

(Figure 2.2b). The primary resonant peak wavelength values were plotted as a function of 
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nanoslit period for FDTD results and experimental results (Figure 2.2c). There is a linear 

relationship between the nanoslit period and the primary resonant peak wavelength, 

which can be explained by the following Equation:13 

 , (Eq. 1) 

where λSP is the resonant surface plasmon wavelength, P is the periodicity between the 

nanostructures, εm is the dielectric constant of the metal, εd is the dielectric constant of the 

liquid dielectric (the sensing area), and n is the RI.24 The aqueous media above the metal 

makes up εd. Hence, increasing the periodicity will result in increased primary resonant 

peak wavelength. 

 The EOT of a thin film nanostructure is important for SPR-based sensing. To 

verify that age would not adversely affect the optical properties of the bimetallic nanoslit 

films, transmission SPR (tSPR) spectra were collected in air over a 3-week period with 

no notable shift in the primary resonant peak wavelength. Furthermore, the tSPR spectra 

were collected in wavelength shift mode, which is temperature independent, as verified in 

Figure 2.2e. Ethanol-water mixtures were passed over a chip with 50 nm slits and a 550 

nm periodicity for the temperature investigation. The temperature was altered with a heat 

gun and monitored by two thermocouples, with one placed on the chip and a second 

measuring the atmospheric temperature inside of an enclosed experimental box. The 

primary peak at 856 nm does not have an obvious shift between 27 °C and 38 °C, 
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indicating its good stability at about 30 °C. In addition, the heating is primarily applied to 

the metallic film and not the flowing ethanol-water solution. Coupled with the SIMS 

results above, the bimetallic nanoslit films showed non-diffusing and long-term stable 

properties. 

 

 

Figure 2.2. (a) Experimental and (b) FDTD Simulation Results Showing the Correlation 
of Resonant Peak Position with Nanoslit Period for 450 nm, 500 nm, and 550 nm Period 
Arrays. (c) Correlation of the Primary Resonant Peak Wavelength with Nanoslit Period 
for FDTD Simulation and Experimental Data. (d) Transmission Spectrum of a Bimetallic 
Chip with 50 nm Slits Collected in Air for Investigation of Optical Stability over Time. 
(e) The Effect of Temperature on Spectral Output Using 50 nm Slits in an Ethanol-Water 
Solution. 
 

SP Generation Analysis of Metallic Nanoslit Films  

 It is important to study the SP generation of the metallic nanoslit films with 

respect to tuning the optical transmission and its sensitivity to the dielectric environment. 
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There are several parameters that can be adjusted to enhance the RI sensitivity in surface 

plasmon resonance.25 Regarding the geometric diffraction with the bounded SPP modes 

launching on the flat interfaces surrounding the slits, a mechanistic description for SP 

generation is needed, especially the SPP scattering coefficients and efficiencies at the slit 

apertures. Note that SP generation efficiency is defined as the rate of SPP launching, 

propagation and scattering by matching the continuous electromagnetic fields quantities 

at the interface.26 The schematic (Figure 2.3a,b) illustrates the parameters for the nanoslit 

structure and SP generation by a plane wave at normal incidence. 

 The w represents the slit widths, and the α-
(top), α+

(top), α-
(Ag), α+

(Ag), α-
(Au), α+

(Au) 

represent the SP generation coefficients at the two interfaces (red and blue arrows, 

respectively) with inverse propagation directions. The refractive indexes inside the slits 

and at the outer slits are presented by nair of 1, and that for the SiO2 is presented by nSiO2 

of 1.41.27 Note that we focus on the SP generation at the flat metal/medium interfaces 

upon light excitation without considering subwavelength thickness of the metallic film. 

 The SP generation efficiency values (e) at the Ag–SiO2 and Au–SiO2 interfaces 

are plotted as a function of wavelength λ and scaled width w’ from the visible to near-

infrared (600-1200 nm) obtained by the semi-analytical model, with Ag–SiO2 interface as 

e(Ag)=|α-
(Ag)(w/2)|2=|α+

(Ag)(w/2)|2 (Figure 2.3c), Au–SiO2 interface as e(Au)= 

|α-
(Au)(w/2)|2=|α+

(Au)(w/2)|2 (Figure 2.3d), the e(top) as the same for both two nanoslit 

structures (Figure A2, Appendix A). 
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Figure 2.3. Semi-Analytical Analysis of SP Generation and FDTD Simulation of Nanoslit 
Array. (a)-(b) The Schematic Illustrates the Parameters for the Nanoslit Structure and 
Surface Plasmon Generation by a Plane Wave at Normal Incidence. (a) Bimetallic 
Nanoslit Structure. (b) Au Nanoslit Structure. (c) - (d) The SP Generation Efficiencies e 
at the Ag–SiO2 and Au–SiO2 Interfaces are Plotted as a Function of Wavelength λ and 
Scaled Width w’ Obtained by the Semi-analytical Model. (e) - (f) FDTD Simulation of 
Transverse Electro-magnetic Field Intensity for the 50-450 nm Bimetallic Nanoslit 
Structure and 100-450 nm Bimetallic Nanoslit Structure with Hot Spots as White Arrows 
Shown. (e) Transverse Electric Field Intensities of 50-450 nm Nanoslit Structure (top) 
and 100-450 nm Nanoslit Structure (Bottom). (f) Transverse Magnetic Field Intensity of 
50-450 nm Nanoslit Structure (Top) and 100-450 nm Nanoslit Structure (Bottom). 
 

 The SP generation is efficient at visible frequencies while e rapidly decreases with 

the increase of wavelength. Moreover, at a visible wavelength of 600 nm, the SP 

generation efficiencies are 0.372 at Ag–SiO2 interface, 0.457 at Au-SiO2 interface for 50 

nm slit width and 0.346 at Ag–SiO2 interface, 0.429 at Au-SiO2 interface for 100 nm slit 

width. However, with the increase of wavelength, the SP generation efficiencies for 50 
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nm slit width are smaller than those for 100 nm slit width. It is expected that the total SP 

generation efficiency (e) will result from a “superposition” of the SPP arising from all the 

interfaces of the nanoslit structure. The maximum e is calculated as 0.603 (50 nm slit 

width) and 0.569 (100 nm slit width) for the bimetallic nanoslit structure with the 

incident wavelength of 600 nm. In contrast, FDTD simulation of transverse electro-

magnetic field intensity for the 50-450 nm bimetallic nanoslit structure and 100-450 nm 

bimetallic nanoslit structure with hot spots were plotted as Figure 2.3e,f. Compared to 

gold nanoslit structure (Figure A3), the electro-magnetic field distributions reveal that the 

plasmonic excitations arise from the Ag-SiO2 interface and the Au/air interfaces with the 

strength of Ag-SiO2>Au-air, which is consistent with the results of the semi-analytical 

model for SP generation efficiencies of eAg > etop for the bimetallic nanoslit structure. 

Responses to Refractive Index Changes 

 To compare the bulk sensitivity between gold and bimetallic devices, a series of 

glycerol-water solutions (0%-20%) were made, since glycerol-water mixtures have a 

linear relationship between RI and increasing glycerol percentage.  The results for 50 nm 

slit, 450 nm period devices are shown for gold (Figure 2.4a) and for bimetallic (Figure 

2.4b) chips. The slope of the plots in Figure 2.4c and 2.4d show that the gold chip had a 

sensitivity of 473 nm/RIU while the bimetallic was 526 nm/RIU, which agrees with the 

reports of bimetallic layer vs. single gold layer for fiber-optic or waveguide SPR 

sensors.19f, 19g And the sensitivity of bimetallic nanoslit array here is much higher than 

that obtained by the bimetallic nanohole array (269 nm/RIU) for tSPR sensors.21 
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Figure 2.4. Transmission Spectra of (a) Au and (b) Ag/Au Devices in Glycerol/Water 
Solutions. Sensitivity Determination for (c) Au and (d) Ag/Au Devices.  
 

 The surface sensitivity was further investigated by use of self-assembly. A clean 

nanoslit device (Figure 2.5a) was then exposed to 16-mercaptohexadecanoic acid (16-

MHDA) which was used as a self-assembled monolayer (SAM). A schematic of a 

nanoslit device with bound SAM is shown in Figure 2.5b. The binding event was 

monitored by a shift in the resonant peak wavelength and the gold chip had a peak 

wavelength shift of 2.5 nm while the bimetallic was 6.5 nm (Figure 2.5c). Note that 5 

mM of the thiol, in ethanol, was flushed over the chip with a syringe pump. The total SP 

generation efficiency change has the similar dependence on the bulk media RI changes as 

the EOT peak shift. Considering that the RI near the metallic surfaces is increased inside 

the bimetallic nanoslit structure due to the addition of SAM induced RI change, the red 
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shift of the optical transmission after SAM formation is correlated to the decreased SP 

generation efficiency from 0.603 to 0.537.28 

 

 

Figure 2.5. Schematic of the Nanoslit Device (a) Before Binding of the SAM and (b) 
After the SAM Formation. (c) Detection of SAM at the Au and Ag/Au Devices. 
 

Conclusion 

 SPR on a silver/gold bimetallic substrate was shown to be stable without obvious 

inter-diffusion. The primary resonant peak was tunable with nanoslit periodicity. 

Increasing the period increased the resonant peak wavelength. The period to resonant 

peak wavelength behavior mirrored that of the FDTD simulations studies. The bulk 

sensitivity and surface sensitivity to RI changes were increased with the bimetallic 

devices as compared to the gold devices. Alkanethiols self-assembled and afforded a 

peak shift by the EOT spectra, by which the binding event was monitored. The bimetallic 

sensor devices were shown to be stable over time, with an improvement in sensitivity 



	

 
33 

over the gold control devices. The bimetallic substrate afforded the sensitivity of silver 

along with the chemical stability of gold.  
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PROTEIN SENSING IN NANOLEDGE STRUCTURES 
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Smith, A. W., & Wei, J. (2017). Protein Trapping in Plasmonic Nanoslit and 
Nanoledge Cavities: The Behavior and Sensing. Analytical Chemistry, 89(10), 
5221-5229.   # Equal contribution.     

 
 

Overview 

 A novel plasmonic nanoledge device was presented to explore the geometry-

induced trapping of nanoscale biomolecules and examine a generation of surface plasmon 

resonance (SPR) for plasmonic sensing. To design an optimal plasmonic device, a semi-

analytical model was implemented for a quantitative analysis of SPR under plane-wave 

illumination and a finite-difference time-domain (FDTD) simulation was used to study 

the optical transmission and refractive index (RI) sensitivity. In addition, total internal 

reflection fluorescence (TIRF) imaging was used to visualize the migration of 

fluorescently labeled bovine serum albumin (BSA) into the nanoslits; and fluorescence 

correlation spectroscopy (FCS) was further used to investigate the diffusion of BSA in 

the nanoslits. Transmission SPR measurements of free prostate specific antigen (f-PSA), 

which is similar in size to BSA, were performed to validate the trapping of the molecules 

via specific binding reactions in the nanoledge cavities. The present study may facilitate 
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further development of single nanomolecule detection and new nano-microfluidic arrays 

for effective detection of multiple biomarkers in clinical biofluids.  

Introduction 

 The latest advances in manipulation, trapping, alignment, and separation of 

molecules embrace fields as diverse as quantum optics, soft condensed-matter physics, 

biophysics and clinical medicine.1,2 Many technologies, whether active techniques 

(external fields) or passive ones (hydrodynamic interactions or inertial effects),3-7 have 

been developed to counter and trap the Brownian motion of small molecules in solution. 

However, confinement of nanomolecules in the absence of external fields and visualizing 

the dynamics of nanomolecules in the nanometric-sized objects remain challenging. Total 

internal reflection fluorescence (TIRF) imaging could be a potential solution to these 

challenges, since the incident light creates a thin surface electromagnetic field (around 

100 nm) enabling the detection of only the labeled fluorophores that are within the 

nanometric depth. In addition, fluorescence correlation spectroscopy (FCS), a time-

resolved fluorescence method, could analyze the temporal fluctuations due to diffusion of 

fluorophores in and out of a nanostructure. This is done by utilizing a confocal laser beam 

with ~0.2 fL of volume to detect the diffusion of particles crossing the laser focus.8-11 The 

recorded fluorescence fluctuations are then correlated for analysis, directly yielding 

information about the mobility of the diffusing particles.12 Recently, FCS has been 

applied to measure tracer diffusion in nanofluids13 and to investigate membrane dynamics 

through nanoapertures.14 
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For practical purposes, stable nanomolecule trapping and detection have received 

intense attention because of the focus on in-vitro detection of target molecules. This 

approach makes use of the versatility of optical sensing and also the convenience of 

nanoplasmonic-chip-based device integration with different nanostructures, including 

pores, channels and slits.15-18 The useful phenomenon, which underlies the ability of such 

nanoapertures to light with high efficiency, is transmission surface plasmon resonance 

(T-SPR), which has sparked an interest in deeply understanding the fundamentals of T-

SPR physics,19-21 and encouraged researchers to explore new ways for nanoscale 

molecule trapping, and creating novel, robust nanoscale sensors.22-25. It has been recently 

understood that nanoplasmonic devices, with strong plasmon excitation and stable 

convective trapping of nanomolecules, can be especially suitable for applications if they 

incorporate real metals with a finite conductivity,26 sufficiently high intensity of light 

scattering,27 extraordinary optical transmission (EOT),28,29 high refractive index (RI) 

sensitivity at the perforated metal films,30 and a single nanometer-scale pore for single 

molecule thermodynamics and kinetics.31 

Here, we present and investigate novel nanoledge aperture structures for 

convective molecular trapping and implement a quantitative analysis of surface plasmon 

(SP) generation using an earlier developed semi-analytical model.32 In addition, we 

perform numerical simulations using a finite-difference time-domain (FDTD) method to 

model optical transmission spectra and RI sensitivity as a function of the nanoledge 

device geometrical parameters.33 Experimentally, we used the techniques of TIRF to 
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visualize the migration of Texas Red-labeled bovine serum albumin (TxR-BSA) 

molecules into the nanoslits and FCS to detect its dynamics in nanoslits with different 

widths. Later, the molecular trapping and sensing in the nanoledge structure were 

validated using a fabricated sub-wavelength gold-film nanoledge device which was 

integrated with a microfluidic channel allowing us to measure the SPR induced optical 

transmission, RI sensitivity, and detect the specific binding events of free prostate 

specific antigen (f-PSA) biomarkers to the gold surfaces functionalized with antibody of 

f-PSA in the nanoslit cavities.  

Methods and Materials 

Semi-analytical Analysis of SP Generation and FDTD Simulations 

 The SP scattering coefficients and efficiencies at the slit apertures can be 

determined from the analysis of diffraction of bounded SP modes originated on the flat 

interfaces surrounding the slits in order to study nanoledge geometries that are of interest 

in practice and consider the geometric diffraction with the bounded SP modes launching 

on the flat interfaces surrounding the slits. Moreover, FDTD simulations reiterated the 

previous study by adding additional 10 nm SiO2 film at the top of Au layer.32 Refractive 

index of the SiO2 film used in calculations was equal to 1.41. More details of the semi-

analytical model analysis applied to the SiO2 film topped nanoledge devices and results 

are provided in Appendix B. 
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Fabrication of Ledged Flow-through Nanoplasmonic Device 

 Standard photolithography was used to pattern soda lime glass slides (75x25 mm, 

Globe Scientific). Slides were fully covered with a 600 nm layer of aluminum by DC 

sputtering (PVD 75, Kurt Lesker). A dark field mask was designed in AutoCAD and 

printed on a transparency film using a 25400 dpi printer. The mask design, shown in 

Figure B5 in Appendix B, consisted of a flow channel with two dam structures, each of 

which was 30 µm wide. Shipley 1827 positive photoresist was applied to 

hexamethyldisilazane (HMDS) treated glass slides by spin coating. The slides were then 

exposed with deep UV using an OAI 8800 mask aligner and developed with Microposit 

MF-321 developer. The aluminum layer was wet etched using Aluminum Etchant Type 

A (Transene Company) and the glass was then wet or dry etched to yield an isotropic or 

anisotropic dam structure, respectively. This process is fully outlined in Figure B6. The 

patterned glass slides were covered with 2 nm Ti, 150 nm Au, and 10 nm of SiO2 by 

electron beam evaporation (PVD75, Kurt Lesker). Focused ion beam milling (Zeiss, 

Auriga) was used to introduce the nanoledge structures atop the 30 µm dams. A slit, 50 

nm wide, was milled completely through the SiO2 and gold layers, followed by a 280 nm 

wide ledge that was milled through the SiO2 and partially though the gold layer. The 

nanoledge channel was completely aligned with the direction of microchannels. The 

device was then enclosed using a poly(dimethylsiloxane) (PDMS) flow channel, which 

was also fabricated using standard lithographic techniques.34  
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Total Internal Reflection Fluorescence (TIRF) Imaging 

 Nanoslits were fabricated by FIB on a glass coverslip. The coverslip soaked in 

detergent solution and IPA/water (50:50) accordingly. The coverslip was rinsed with 

excess Type I water and dried under nitrogen stream. Ozone plasma was used to further 

clean the surface of the coverslip. The coverslip was assembled in the AttoFluor sample 

chamber. TIRF imaging was recorded on a Nikon Eclipse Ti inverted microscope 

equipped with a 2 mW 488 nm diode laser (85-BCD-020-115, Melles Griot) and 100X 

TIRF objective (NA 1.47 oil, Nikon Corp., Tokyo, Japan). Fluorescence signal was 

collected by an EM-CCD camera (Evolve 512, Photometrics) with frame rate of 12 

frames per second. The raw images were processed by ImageJ and the Mosaic Particle 

Tracker plugin for ImageJ was used to perform background subtraction and 

deconvolution of the raw images. 

Fluorescence Correlation Spectroscopy (FCS) 

 FCS measurements were performed on a customized Nikon Eclipse Ti inverted 

microscope. Briefly, a 561 nm laser beam was picked out by 561 nm ± 20 nm dichroic 

mirror from a pulsed continuum white light laser (9.7 MHz, SuperK NKT Photonics). 

And the beam was focused on the sample through a 100X TIRF objective (oil, NA 1.49, 

Nikon). The laser beam was carefully placed at the nanoslit position. The emitted photons 

were collected through the same objective and directed a single photon avalanche diode 

(SPAD) detector (Micro Photon Devices). Photons collected by the detector were 

recorded with a time-correlated single photon counting (TCSPC) card (Picoharp 300) 
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which was synchronized with the white light laser source. Five times of 30 second 

measurements were performed at the same spot of each nanoslit and were averaged in the 

correlation analysis. Correlation analysis was then performed on a computer with a 

custom-written Matlab script. 

Preparation of Immobilized mAb Detector at Nanoplasmonic Gold Surfaces 

 The approach, combining a self-assembled monolayer (SAM) and a crosslink 

reaction, was used for the immobilization of a monoclonal antibody (mAb) of f-PSA.35 

The gold coated chips were first cleaned with O2 plasma (South Bay Technologies 

PC2000 Plasma Cleaner) for 15 minutes. Then, the chips were processed overnight by a 

SAM using incubation in a mixture of 1 mM 11-mercaptodecanoic acid (HSC10COOH, 

Aldrich) and 8-mercapto-octanol (HSC8OH, Aldrich) in absolute ethanol solution with 

1:2 mole ratio. After that, the SAM was activated by incubation in a 10 mM phosphate 

buffer solution (pH 7.0) with 0.5 mM of EDC/NHS for 2 hours. The activated SAM was 

rinsed with 10 mM PBS and immediately moved to a freshly prepared 10 mM PBS 

containing 10 µg/mL of the detector mAb for a subsequent 4 hours incubation. Then, the 

chip was rinsed with the PBS again and was dipped into a 0.2 M glycine PBS solution for 

10 minutes in order to deactivate the remaining active sites at the SAM. The immobilized 

mAb was then ready for f-PSA binding. 

Experimental Setup for Flow Control 

 A New Era pump system (NE-300) was used to control the flow rate to inject the 

sample solution to the microfluidic channel where the nanoledge array located in the 
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center of the channel. Figure 3.1 shows the device sketch and an image of actual device 

topped with a PDMS microfluidic channel and connection with the syringe pump for 

flow sample injection and flow rate control. 

 

 

Figure 3.1. (a) Schematic Illustration of the Interface between the Nanoledge Array at the 
Quartz Chip and PDMS Microfluidic Channel, (b) Side View of the Micro-channel and, 
(c) a SEM Image of the Nanoledge Array. (d) Microfluidic Syringe Pump Connected to 
the PDMS Microfluidic Channel to Control the Flow Rates for Sample Delivery. (e) 
Bright Field Image of the Nanoledge Array Cross the “Dam” with a 60x Objective. 
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Results and Discussions 

 Two types of nanoledge structures, as shown in Figure 3.2a and 3.2b, were 

investigated. One nanoledge structure has an exposed gold surface and the other has a 

SiO2 film (~10 nm thickness) coated atop the gold. The nanoledge array will allow for 

geometry induced nanoscale particle (e.g. proteins) trapping and plasmonic sensing using 

the metal film in the nanoledge cavity via T-SPR measurements. It is expected that the 

device, with the additional SiO2 film, will allow for in-cavity detection with enhanced 

sensitivity.36,37 The in-plane nanoledge array platform is different from the well-

recognized EOT nanohole flow-through pattern38,39 in which the sample flow direction is 

parallel to the incident light and normal to the chip plane. The nanoledge platform offers 

a solution-flow that is parallel to the chip plane and perpendicular to the incident light for 

plasmonic transmission in sensing applications. Hence, when used in clinical 

applications, like protein detection in whole blood or tissue lysates, it potentially provides 

a simple way to integrate with the microfluidic channels for nanometric-sized protein 

delivery to the nanoledge cavities, while larger particles (e.g. cells, or bio-fragments) 

simply flow over top of the nanoledge array. This allows for minimizing or avoiding the 

interference from non-specific bindings of cells or biofragments.  

Semi-analytical Analysis of SP Generation and FDTD Simulation 

 Based on our recent fundamental work32 and the SP generation results of the open 

nanoledge structure, the optimal geometry of the plasmonic nanoledge slit has 280-300 

nm open width and 50 nm bottom slit width. To develop the nanoledge structure for 
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investigating the trapping of molecules by the T-SPR measurement, we performed a 

proof-of-principle calculation of the SP generation at the flat interface of the nanoledge 

structures with and without the SiO2 layer using a semi-analytical approach.32,40 A 

comparison of the semi-analytical decomposition analysis of SP generation efficiency, 

which is defined as the rate of surface plasmon polariton (SPP) launching, propagation 

and scattering by matching the continuous electromagnetic fields quantities at the 

interface,26,32 between the two different nanoledge structures are shown in Figure 3.2a, b. 

Predicted SP generation efficiencies e were calculated as functions of the nanoledge 

widths (top 280 nm and bottom 50 nm) and RIs (n1=1.41, n2=n3= bulk media RI, n4= 

stochastic RI) caused by a plane light wave (λ=600 nm) scattering at normal incidence to 

the nanoledge structure (details in SI). We found that when the RI of bulk media changed 

from 1.0 to 1.2, the absolute value of the total SP generation efficiency, Δ(e1+e2+e3), 

decreased from 0.08 for the nanoledge structure with SiO2 to the value of 0.06 for the 

nanoledge structure without SiO2. 

It has been found that the EOT peak shift, due to a weakened SP generation 

efficiency, correlates with a red shift of the optical transmission peak resulted from a 

coupling of dielectric changes with nanoledge geometry parameters.32 The in-gap 

surfaces of the nanoledge structure have a larger RI sensitivity than the top-of-gap 

surface mode; therefore the nanoledge structure with SiO2 demonstrates higher sensitivity 

to the binding events when the molecule is trapped into the nanoledge gap. As the RI of 

the surrounding media is increased up to 1.5, this effect is further elucidated by an almost 
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three-fold decrease of the total SP generation efficiency. This value decreases from 0.16 

to 0.06 for nanoledge structures with and without SiO2 atop, respectively (Figure 3.2c, d). 

 

 

Figure 3.2. The SP Generation Efficiency Change, Δ(e1+e2+e3), for the Nanoledge 
Geometry of 280-50 nm with on-top SiO2 layer (a) and without on-top SiO2 Layer (b) for 
the Bulk Media RI Ranging from 1.0 to 1.2. The SP Generation Efficiency for the 
Nanoledge with on-top SiO2 layer (c) and without on-top SiO2 layer (d) as the 
Surrounding Medium RI Increases from 1.1 to 1.5. The Calculated Transmission Spectra 
with on-top SiO2 Layer (e) and without on-top SiO2 Layer (f) as the Surrounding Medium 
RI Increases from 1.1 to 1.5. The TE Field Distribution (g) and TM Field Distribution (h) 
of the 280-50 nm Nanoledge with on-top SiO2 Layer. 
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In concert with the semi-analytical analysis, Figure 3.2e-f summarizes the 

transmission spectra computed by a numerical 3D FDTD method for two selected 

nanoledges for RIs of a variety of surrounding medium from 1.1 to 1.5. Note that the 

setup of the FDTD method was similar to that of a previous study32,33 except the topped 

10 nm SiO2 surface layer. The peak wavelength shift of the nanoledge structure with SiO2 

(ca. 595 nm/RIU, Figure B1, Appendix B) was obtained and larger than that of the 

nanoledge structure without SiO2 (ca. 556 nm/RIU32). 

We calculated the transverse electric (TE) and transverse magnetic (TM) modes 

for the nanoledge structure topped with SiO2 (Figure 3.2g, h). Using a Drude dielectric 

function for bulk Au,33,41 we analyzed Au interfaces with quartz, air and SiO2. It was 

found that the enhanced electromagnetic fields were located near in-gap surfaces for all 

three interfaces and those fields were higher in magnitude than in the nanoledge structure 

without SiO2. This finding was further confirmed by computing the TE wave propagation 

through the simulation volume of 280-50 nm nanoledge system with SiO2, as shown in 

Figure B2. The simulation results prove the higher SP generation, and enhanced 

sensitivity of the nanoledge structure topped with SiO2 for detection of RI changes in the 

nanoledge gap area.  

TIRF and FCS Studies of Protein Behavior 

 To study the diffusion of nanomolecules in the nanoledge structure, two kinds of 

nanoslit array chips were fabricated. These had slit widths of 100 nm or 300 nm and both 

had a period of 5.4 µm, as Figure B3. The 100 nm array can be located and observed with 
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reflection interference contrast microscopy (RICM) and transmitted light microscopy 

(TLM) (Figure 3.3 a, b). Since the size of the nanoslits is below the wavelength of visible 

light, diffracted features of the nanoslits were obtained. Once the nanoslits were located, 

a 561 nm laser was sent through the objective to allow TIRF imaging of the TxR-BSA 

molecules in the nanoslits. Note that the TIRF incident laser generates an evanescent 

excitation field, which decays exponentially from the substrate interface and penetrates to 

a depth of approximately 100 nm into the sample medium. Because the height of the 

nanoslits was 150 nm, the fluorescent signals picked up by TIRF imaging would be only 

due to the emission of fluorophores within the nanoslits (Figure 3.3 left panel). At first, 

the nanoslits appear to be totally non-fluorescent under TIRF imaging. Upon adding 

TxR-BSA to the medium, weak fluorescent signal was detected at the location of the 

nanoslits after 24 seconds (Figure 3.3c), indicating that TxR-BSA molecules entered the 

nanoslits. The fluorescent signal increased with longer observation time (Figure 3.3d, e) 

and finally reached a steady state. The TIRF imaging observation clearly demonstrates 

that TxR-BSA can diffuse into the 100 nm nanoslits. The gradual increase of the 

fluorescent signal suggests that the diffusion is driven by a concentration gradient and 

short-range energetic interactions at higher confinement grades.  
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Figure 3.3. Left: Schematic Diagram of TIRF Imaging. TIRF Incident Laser Creates an 
Evanescent Wave That Only Excites Fluorophores within 100 nm Range from the Glass 
Substrate. With a Slit Depth of 150 nm, Only Those Fluorophores That Enter the Nanoslit 
Will be Excited and Observed. Right: (a) RICM and (b) TLM Image of 100 nm 
Nanoslits. (c-e) TIRF Images of TxR-BSA Diffusion into the Nanoslits at Time Points of 
24 s, 31 s, and 40 s, Respectively. The Density and Intensity of Fluorescence Increase 
Along with Time, Indicating That TxR-BSA Molecule Can Diffuse into the Nanoslits. A 
Video Clip of the Process is Available in the SI. The Positions of Nanoslits Were 
Indicated by White Boxes. All Scale Bars are 1 µm.  
 

The diffusion of TxR-BSA molecules was further studied by FCS (Figure 3.4a), 

which collects time-resolved fluorescence fluctuation caused by diffusion of fluorophores 

in and out of a confocal laser beam.42 The detection volume of the laser beam is 

diffraction limited, about 1.2 femtoliter, which makes FCS a single molecule sensitive 

method. The information of the diffusion of the molecules, which is concealed in the 

fluorescence fluctuation can be extracted by correlation:43,44 
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 𝐺(𝜏) = 〈𝛿𝐹(𝑡 + 𝜏)𝛿𝐹(𝑡)〉/〈𝐹(𝑡)〉^2 (Eq. 1) 

where 〈 〉 stands for a time average, F(t) is fluorescence intensity at time t, and 𝛿𝐹(𝑡) =

𝐹(𝑡)− 〈𝐹(𝑡)〉. The infliction point of the resulted auto-correlation function (ACF) curve 

represents the average dwell time (𝜏_𝐷) of the diffusive molecule (Figure 3.4b). The 

𝜏_𝐷of three-dimensional diffusion can be obtained by fitting the ACF curve with the 

three-dimensional diffusion model: 

 𝐺(𝜏) = 𝐺(0)1/((1+ □(𝜏/𝜏_𝐷)))1/√(1+〖(𝜔_0/𝑧_0)〗^2𝜏/𝜏_𝐷) (Eq. 2) 

where 𝜔_0 ⁄ 𝑧_0 is the ration of lateral and axial waist of the detection volume. The term 

𝜔_0 ⁄ 𝑧_0 is used to allow to float in the fitting process and only affects the fitting at the 

end of the decay. Uncertainty in ω0⁄z0 does not bias τD by more than a couple of percent. 

Once 𝜏_𝐷and 𝜔_0 are calibrated, the diffusion coefficient (D, typically reported in µm2/s) 

of the molecule can be calculated using 

 𝜏_𝐷 = (𝜔_0^2)/4𝐷 (Eq. 3) 

As illustrated in Figure 3.4a, the confocal laser beam was sent through the 

nanoslits to excite and detect fluorophores in the nanoslits. Since the size of the nanoslits 

is smaller than the diffraction limited laser beam, the actual detection volume is limited 

by the geometry of the nanoslits. A three-dimensional model is not perfectly fit for a slit 

structure to obtain the exact shape and size of the detection volume where the molecule is 

laterally confined, however, a standard method using a molecule with known diffusion 
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coefficient can be used to estimate the so-called effective detection volume. In order to 

quantify the lateral detection area, a standard dye molecule, fluorescein, with known D 

(430 µm2/s) was used.45 By measuring the average dwell time (𝜏_𝐷) of fluorescein in the 

nanoslits, the effective detection area (𝐴_𝑒𝑓𝑓) can be estimated using 

 𝜏_𝐷 = 𝐴_𝑒𝑓𝑓/𝐷 (Eq. 4) 

 

 
 
Figure 3.4. (a) Diagram of FCS Setup for Measuring Protein Diffusion in the Nanoslits. 
The Effective Detection Area, which is Defined by the size of the Nanoslits, is Smaller 
Than the diffraction Limited Confocal Detection Area (Laser Focus). Sample ACF curves 
of Fluorescein and TxR-BSA Diffusion in the 300 nm Nanoslits (b) and in the 100 nm 
Nanoslits (c).  The Inflection Point of the ACF Curve Indicates the Average Dwell Time 
(𝜏_𝐷) of Fluorescent Molecules within the Detection Volume. 
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The calibrated 𝐴_𝑒𝑓𝑓 was then used for D calculation for BSA diffusion with the 

𝜏_𝐷 extracted from ACF curve. Figure 3.4b, c show examples of ACF curves of 

fluorescein motion in 300 nm and 100 nm nanoslits. The average dwell time (𝜏_𝐷) of 

fluorescein in the 300 nm and 100 nm nanoslits is 0.052 ms and 0.028 ms, respectively. 

Based on the 𝜏_𝐷, the calculated 𝐴_𝑒𝑓𝑓 for 300 nm and 100 nm nanoslits is 0.0224 µm2 

and 0.0120 µm2. The data were summarized in Table 3.1. 

 
Table 3.1 
 
Results Obtained from FCS Measurements  
 

 fluorescien  
𝜏_𝐷 (ms)	

 
Aeff (µm2)	

TxR-BSA 
𝜏_𝐷 (ms)	

TxR-BSA 
D (µm2/s)	

300 nm nanoslits	 0.052±0.002	 0.0224±0.001	 0.320±0.006	 69.9±1.3	

100 nm nanoslits	 0.028±0.006	 0.0120±0.003	 0.180±0.001	 66.9±0.4	
 

 
The diffusion of TxR-BSA was measured by FCS as well. As expected, the larger 

BSA molecule has a slower motion than the fluorescein molecule does. As shown in 

Figure 3.4b, c, the ACF curves of TxR-BSA motion shift towards the longer time 

domain. The 𝜏_𝐷 extracted from the ACF curve is 0.320 ms and 0.180 ms for 300 nm and 

100 nm nanoslits respectively, and the 𝜏_𝐷 of TxR-BSA is one magnitude larger than that 

of fluorescein. Obviously, The D of TxR-BSA in 300 nm and 100 nm nano-slit are both 

around 70 µm2/s (Table 3.1). Based on Stokes-Einstein equation:46 

 𝐷 = 𝑘𝑇/(6𝜋𝑟_ℎ𝜂), (Eq. 5) 
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where k is Boltzmann’s constant, T is the temperature, rh is the hydrodynamic radius, and 

η is the viscosity of the solvent. TxR-BSA molecules have a hydrodynamic radius of ~3 

nm, which agrees with the reported size of BSA protein.47 This result indicates that the 

diffusion of TxR-BSA within the two different sized nanoslits is Brownian motion with 

the same mobility. Combined with TIRF imaging results, the FCS measurements clearly 

demonstrate that TxR-BSA molecules can diffuse into the nanoslits via concentration 

gradient and short-range energetic interactions. 

Protein f-PSA in Nanoledge Cavities and Sensing 

 Next, we performed a preliminary study to use the nanoledge structure for 

plasmonic sensing. We choose f-PSA biomarker for this performance due to its similar 

protein size with BSA. To detect such nanomolecule trapping experimentally, we 

employed a technique based on T-SPR spectrum measurements. A setup for flow-through 

nanoledge array, shown in Figure 3.1, was established to test the sample at the flow rate 

of 10 µL/min. Note that the detection of T-SPR is under the condition of steady state of 

full-flow in the nanoledge slits. In this way, the nanoledge array was functioning as the 

nano-micro-fluidics that can direct sample delivery of analytes to the plasmonic sensing 

area by nanomolecule migration. The transmission spectra of the nanoledge array chip 

were measured in air and confirmed the SAM formation and mAb of f-PSA attachment to 

the nanoplasmonic sensing area in the gap.35 Figure B4 displays the transmission spectra 

of the blank, alkanethiol SAM with carboxylic groups, and after mAb immobilization. 

The later peaks of the transmission were normalized to the maximum transmission of the 
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primary peak, as shown in Figure 3.5b. The primary peaks of the three spectra were 

located at 725.4 nm, 731.1 nm, and 746.5 nm for blank, SAM only, and SAM plus mAb, 

respectively. 

 

 

Figure 3.5. (a) An Illustration of the Immobilization of the Detection Antibody (mAb) at 
the SAM for f-PSA Binding. (b) Normalized Transmission Spectra of the Nanoledge 
Device at the Primary Peak. (c) FDTD Calculated Peak Wavelength for a Nanoledge 
Device in which the SAM was Located on the Walls within the Nanochannel for Varying 
Thickness Values of the SAM as the RI Index Varied from 1.33 (Water) to 1.6 (Protein 
SAM). (d) The Normalized Spectra of the Primary Peaks with Different Concentration of 
f-PSA in Buffer Solution.  
 

 The red shifts of the primary peak were 5.7 nm for SAM and 15.4 nm for mAb 

immobilization. Based on SPR sensing principle, it has been established to determine the 
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relationship between the peak wavelength and the thickness of added layer using the 

following equation:48,49 

 , (Eq. 6) 

where Δλ is defined as the peak wavelength shift after the addition of molecule layer to 

the precedent step modification, m is the RIU sensitivity, dE is the effective thickness of 

the existing layer, ld is the decay length of surface plasmon mode into the dielectric with 

110 nm for the nanoledge dimension, and refractive indices of organic layer is taken to be 

1.5 and that of air is 1.0.50 

Assuming the SAM is packed well at the surface with thickness of 1.1 nm, one is 

able to estimate the equivalent molecular thickness of mAb according to the following 

equation: 

  (Eq. 7) 

According to our measured average Δλ, the calculated equivalent thickness of mAb was 

found to be 1.9 nm. Moreover, the sensitivity was calculated as 576 nm/RIU, which 

agrees with the FDTD result above. To obtain a more realistic understanding of the 

device sensitivity to biological interactions through adsorption onto a SAM, a series of 

FDTD simulations were conducted in which the sidewall RI was changed while the 

background RI in the channel remained at 1.33. As we have seen from Figure 3.5c with 
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the nanoledge device, changing the thickness of organic layer on the sidewalls of the 

device resulted in marked red-shifts of peak wavelengths, since overall thickness of the 

organic layer increased, the magnitude of the RI increased as well. 

In the end, we moved to the validation of f-PSA, with the same hydrodynamic 

radius of ~3 nm as BSA,51 trapping in the nanoledge gap and binding to the surface in the 

nanoledge cavities by measuring the peak wavelength shift using T-SPR sensing scheme. 

It was addressed by the transmission spectra of a series of f-PSA solutions of different 

concentrations, which were prepared for the f-PSA binding events at the SAM-mAb 

immobilized at the cavity gold surfaces, starting with incubation of buffer solution and 

increasing f-PSA concentration from 0.1 pg/mL to 10 pg/mL. Figure 3.5d shows the 

primary peak also has a red shift consistently within the concentration range of 0.1-10 

pg/mL, which proves the trapping of f-PSA into the nanoledge structure array and 

plasmonic detection.  

In this study, the nanoledge structure topped with SiO2, which uses transmission 

SPR light signal transduction for sensing, provides a few advantages over traditional thin 

film SPR sensors that are based on total internal reflection of light with a prism. 

Specifically, the SiO2-topped nanoledge offers a highly sensitive in-cavity detection 

mode,37 and meanwhile avoid the nonspecific binding at the top surfaces. Even though 

the apparent bulk RI sensitivity (576 nm/RIU for the nanoledge) is smaller than that of 

traditional thin film SPR (usually thousands nm/RIU), the actual measurable sensitivity 

for affinity sensing is comparable or higher. This is because the evanescent field of LSPR 
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in the nanoledge has a much shorter decay and stronger near field enhancement than that 

of the propagating SPR along the thin film, greatly enhancing the sensitivity in detecting 

RI changes at the sensing vicinity of the metal/dielectric interface.52-54 In order to have 

strong SPR induced optical transmission for sensing, narrowed nanoslit (<100 nm) is 

necessary;37 however it limits charged analytes (e.g. proteins) diffusion into the nanoslit 

due to the overlap of electric double layer effect in the nanochannel.55,56 The nanoledge 

structure, by combining narrow slit at the bottom and the wide open top, not only 

generates strongly coupled SPR induced optical transmission, but also overcomes the 

limit of small (<100 nm) nanochannels for migration of protein analytes into the channel, 

as shown in the results presented above. Moreover, it is expected that the SiO2 topped 

nanoledge structure would not allow large biological species, e.g. cells, transporting into 

the ledge sensing area when it is used for protein detection from whole blood or serum 

samples. This research is underway and some preliminary results have been obtained. 

Conclusions 

 In summary, we presented a new SiO2 topped nanoledge aperture structure for 

nanometric-sized protein trapping and sensing. For the nanoledge structures, we applied 

the decomposition and quantitative analysis of SP generation by a semi-analytical model, 

and numerical simulation of optical transmission spectra and RI sensitivity by a FDTD 

method, which certificated that nanoledge structure with on-top SiO2 layer had the 

potential to be effectively applied in T-SPR for protein detection. Experimentally, TIRF 

imaging showed that proteins can diffuse into the nanoledge structures (with 280 nm 
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open gap) by using similar size straight nanoslits (100 nm and 300 nm) to investigate the 

protein migration behavior. The diffusion of the labeled BSA into the nano-structure was 

measured by FCS with the results indicating that BSA molecules undergo Brownian 

motion and have a diffusion coefficient of approximately 70 µm2/s in the nanoslit cavity, 

which agrees with its hydrodynamic radius of 3 nm. Further studies of the protein 

trapping and potential sensing applications were provided by fabricating a subwavelength 

nanoledge device and testing the SPR optical transmission shift and RI sensitivity for 

determining the binding events between the mAb and a cancer biomarker f-PSA in buffer 

solutions.  
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CHAPTER IV 

 
MICROFABRICATION OF A FLOW-OVER FLUIDIC DAM 

 
 

Overview 

 A flow-over type dam is needed in fluidic channels for a variety of reasons. Those 

reasons include: forcing analytes to move towards an area of interest (a detection area) 

within a flow channel, to decrease diffusion times of analytes, and not clogging like flow-

through systems have the potential to do. This chapter will serve as a technical chapter on 

the microfabrication of a flow-over fluidic dam. Standard photolithography, etching, and 

multi-layered resist will be addressed. The use of long pass wavelength filter to reduce T 

topping in SU-8 microstructures is also examined. Additionally, the close of the chapter 

will take readers through the microfabrication techniques that were attempted. 

Introduction 

 Microfabrication processes used in the semiconductor industry have become 

widely used for the fabrication of biosensing devices. These devices often are made up of 

micro- and nanostructures. The ability to fabricate these small structures with complete 

control is paramount in making a functioning device. Having tunability of the spatial 

dimensions, spacing (pitch) between each structure, any curvature, and sidewall angles of 

a microstructure is needed to overcome problems that arise when devices are used for 

real-world biosensing, such as with whole blood samples. The “Holy Grail” for 
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biosensing devices would be the use of whole blood sample without any previous sample 

pretreatment. Scientists have tried to use whole blood in biosensors without much avail. 

The major issue lies in the “stickiness” of red blood cells, which leads to non-specific 

binding. Another issue is their large size compared to the protein biomolecules of 

interest. The large size provides a problem when researchers design and use flow-through 

systems which have the potential to clog. One concept is to perform in-line or on-chip 

separation of the blood cells from the protein biomarkers. A fluidic dam is one such 

mechanism. This chapter is a technical chapter and centers around the microfabrication 

approach to building a fluidic dam microstructure that is suitable for delivering proteins 

to the sensing area while excluding particles several microns in size. The devices, 

structures, and fluidic dams discussed are all in relation to a plasmonic biosensor. 

Flow-over vs. Flow-through Sensing 

 A flow-through fluidic system is one in which the analytes are forced to flow 

through porous structures. In a plasmonic sensor that uses nanostructures for surface 

plasmon polariton coupling, not only are the nanostructures used for surface plasmon 

resonance (SPR), they are also used for conduits for fluid flow. A flow-through type 

system is shown in Figure 4.1. In a fluidic flow channel not all of the analytes in the 

sample diffuse to the surface. This is especially true when the channel height is the 

micrometers or millimeter range. Compared to the size of a typical 3 nm protein, a flow 

channel of 200 µm is extremely large. In such a channel, the protein or biomarker of 

interest has a long way to diffuse to the surface. It helps to put these numbers in 
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perspective; the distance from Washington DC to Philadelphia, PA is 126 miles. This 

distance, compared to a 6-foot tall man, is the same size correlation for the channel height 

to protein. This is a very long way for a protein to diffuse to the detection area. Flow-

through sensing (Figure 4.1) utilizes nanoholes for sensing, but also as channels for fluid 

flow.1,2 This removes the diffusion bottleneck found with traditional fluidic sensors. With 

the flow-through setup, the analytes are forced through the metal surface, shortening the 

diffusion time. This can afford an order of magnitude increase in sensing rate. The 

surface ligand can also capture more analyte in a flow-through arrangement. The benefits 

of flow-through sensing are the following: the diffusion times become short, the Ka 

increases by a factor of 6 (Figure 4.1C), the sensitivity is increased as analytes go through 

the holes where there is maximum EM field confinement, and the limit of detection for 

the flow-through device is improved.2,3 

 

 
 
Figure 4.1. (A) Flow-over vs. (B) Flow-through Sensing with Red Balls Representing 
Analytes. (C) The Graph Shows the Peak Shift Per Unit Time. The Ka (Rate Constant) for 
the Flow-through is 6 Times Greater Than That of the Flow-over.2 
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 Flow-through sensing requires several additional microfabrication steps in order 

to use nanostructures for their plasmonic ability and for conduits for fluid flow. When 

applying this type of system to a real-world sample, like whole blood, a major issue 

arises—large red blood cells several microns in size cannot pass through the nano-

dimensioned structures, which causes clogging. 

 Analytes that typically would not bind in a standard flow channel do bind in a 

flow-through system because they are forced to flow within a few nanometers from the 

bound surface ligand in the flow-through setup. This makes binding a more likely event 

with the flow-through setup. Taking advantage of the flow-through system while 

avoiding the clogging issue would be a great advantage for plasmonic sensors that wish 

to use real-world samples without sample pretreatment. This can be accomplished by 

narrowing the channel in a flow-over system. 

 A flow-over system could show the benefits of the flow-through system by simply 

narrowing the flow channel by making a fluidic dam microstructure. Figure 4.2A presents 

a standard flow channel in cross section. Figure 4.2B shows a linear flow channel with 

raised isle, which we call a flow-over fluidic dam. Narrowing the top to bottom distance 

of the flow channel constricts the flow. This effect along with a laminar flow friction 

differential results in a net downward force on the particle, driving the analyte into the slit 

cavity. These factors along with diffusion, Brownian motion, and kon and koff of the 

analyte/ligand pair should afford sufficient force to drive the analytes to the slits.  
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 A flow-over fluidic system with a nanostructured plasmonic detection platform 

(Figure 4.2B) is presented here. The flow-over fluidic dam needs to be made of a 

transparent material because it is intended for use in an optical system. Forming the flow-

over dam out of patterning a glass substrate or by SU-8 photoresist is considered below.  

 

 
 (A) (B) 
  
Figure 4.2. (A) Standard Gold Surface and Flow Channel. (B) Gold Surface with Linear 
Flow Channel Showing a Flow-over Dam (Raised Isle) with Gold Nanoslit Array.  
 

Flow-over Dam Design 

 A schematic of a substrate with a single flow-over dam is shown in Figure 4.3. 

The insert shows a magnified view of the dam. The flow channel (shown in blue) is 

composed of either soda lime glass or quartz, while the top portion (shown in green) is 

the enclosed flow chamber made out of polyethylene. The fluidic dam has a gold film 

evaporated on top of the flow-over dam. The gold film is then nanostructured with a 

reference window and an array of nanostructures. 
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Figure 4.3. (A) Schematic of Chip with a Magnification on the Fluidic Dam. (B) a Cross 
section Schematic Showing a Flow-over Fluidic Dam with a Gold Thin Film on Top. A 
Reference Window and an Array of Nanostructures are Shown Milled into the Gold Thin 
Film. 
 

 A logical way to make a microstructure, such as a fluidic dam, is with lithography 

and etching. Figure 4.4 shows this sequence. A computer-aided design (CAD) software is 

used to make several designs (Figure 4.4A). One of more of these patterns are transferred 

to a quartz and chrome substrate or simply printed on a transparency film to generate a 

photomask. A substrate such as a glass wafer is cleaned and dehydrated (Figure 4.4B). 

Photoresist is spin applied to this cleaned substrate (Figure 4.4C). The photomask with 

the design of choice is then transferred onto the photoresist covered substrate via 

lithography (Figure 4.4D). The device is then etched to afford a three-dimensional 

structure into the glass substrate (Figure 4.4E). In order for the device to have plasmonic 

capability it needs a thin film of metal, such as gold. Considering the primary focus of 

this dissertation is in regards to plasmonic devices, we will continue with metal 

deposition here. The device is then covered with metal by evaporation (Figure 4.4F). The 

final step before nanostructuring the substrate would be oxide deposition. As previously 
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mentioned, the nanostructured oxide layer provides small proteins entry into the sensing 

area while excluding larger molecules.  

 

 
 
Figure 4.4. Fabrication Process Overview for a Fluidic Dam: (A) Mask Designed in CAD 
Software, (B) Glass Substrate Cleaned and Dehydrated, (C) Spin Apply Photoresist, (D) 
Lithography, (E) Etching, (F) Metal Deposition, and (G) Oxide Deposition. 
 

Flow-over Dam Sidewall Profiles 

 The use of nanostructured thin metal films for surface plasmon polariton (SPP) 

coupling, as opposed to a prism, has a benefit of a linear, transmission arrangement (see 

introductory chapter). This linear alignment simplifies the optics and allows for use in 

point-of-care systems. In transmission surface plasmon resonance (tSPR) light is passed 

through nanostructures. When planar metal films are used, the majority of the film is 

largely opaque due to the metal coating. Metals films approximately 50 nm to 300 nm in 

thickness are then nanostructured. The addition of a fluidic dam to the tSPR system 

provides a hurdle that must be overcome—light escaping from the sidewalls of the fluidic 

dam. This is due to the sidewall angle of the fluidic dam structure. 
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 The sidewalls of a microstructure made with lithography typically take on one of 

four shapes: straight 90° sidewalls, undercut trapezoid, T topped, or overcut trapezoid. 

These are shown in Figure 4.5, in cross-section.  

 

 
 
Figure 4.5. Cross Section Sidewall Profiles in Patterned Photoresist Include (A) Straight 
Sidewalls, (B) Undercut Trapezoid, (C) T Topped Profile, and (D) Overcut Trapezoid. 
 

 The first three sidewall profiles (straight, undercut, and T topped) all have an 

issue in regards to tSPR. The issue for these shapes lies in their use in optical devices in 

transmission mode. In a transmission arrangement, light escapes from the sidewalls 

because the sidewalls would not be coated with metal during the evaporation of gold. 

Figure 4.6 shows a glass substrate with two fluidic dam structures with undercut 

sidewalls. The figure clearly shows that after metal deposition, there would be metal on 

the top of the dams, but there would be no metal on the sidewalls. This is because gold 

deposition by evaporation is a line-of-sight deposition technique. For the straight 

sidewalls and T topped sidewalls this also applies. 

 

 
 
Figure 4.6. Glass Substrate with Two Fluidic Dams with Undercut Sidewalls. The 
Sidewalls Are Not Coated with Gold during Evaporation.  
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 Nanostructures are milled into the top of the fluidic dam. Their function is to 

couple light into a surface plasmon. This plasmonic effect is diminished if the majority of 

the light escapes from the sidewalls of the fluidic dam. This is shown in Figure 4.7. When 

a light source is placed underneath a substrate that is transparent due to lack of metal on 

the sidewalls there is an issue. For an undercut, T topped, or straight sidewall profile this 

is the case. 

 The undercut shape was realized when using proximity printing. In proximity 

printing an exposure gap is placed between the photomask and the resist covered 

substrate. Doing so has the benefit of preserving the lifetime of the photomask and not 

pressing on the pristine photoresist surface. The T topped shape was realized when the 

exposure of the photoresist was performed in contact mode. In contact mode the 

photomask and the resist covered substrate come into contact. This significantly cuts 

down on the light diffraction through the photomask apertures. However, contact 

exposure yields a T topping effect (more on how to resolve this later in this chapter). 

Achieving the desired overcut profile with SU-8 was not achieved using as simple, single 

layer lithography. The methods that were considered to achieve an overcut profile were 

gray scale lithography and a multi-layered resist (MLR) method. MLR is discussed in the 

following experimental section. 
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Figure 4.7. An Undercut Sidewall Made of Transparent Photoresist Will Be Transparent 
to Light When a Light Source is Placed Underneath the Substrate. With No Metal 
Coverage the Sidewalls Light Not Only Comes through the Intended Nanostructures, But 
It Also Escapes out of the Sidewalls, Dramatically Affecting the SPR Signal.  

 

Materials and Methods 

Optical Transmission Microscopy 

 Substrates with fluidic dams were set up in an Olympus BX41 microscope. An 

external light source (Ocean Optics, LS-1) was used to illuminate the underside of the 

substrate. Images were captured in reflection mode and in transmission mode. As shown 

in Figure 4.8A, the reflection image shows a fluidic dam structure covered in gold except 

for a reference window measuring 75 µm x 25 µm. In this area the gold was removed by 

focused ion beam milling, leaving a transparent window. The transmission image (Figure 

4.8B) shows the external light source illuminating and exiting the reference window. 

Moreover, one can see the light escaping from the sidewalls of the fluidic dam structure. 

This is due to an undercut sidewall profile not being covered with metal during metal 

deposition. 
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Figure 4.8. (A) Reflection Image of a Fluidic Dam with a 75 µm x 25 µm Reference Box 
Milled into the Dam. (B) Transmission Image of a Fluidic Dam with Light Exiting the 75 
µm x 25 µm Box. Additionally, One Can See the Light Escaping from the Sidewalls. This 
is Due to an Undercut Sidewall Profile Not Being Covered with Metal during Metal 
Deposition. 
 

 Fluidic dams with an undercut profile, T topped profile, and an overcut sidewall 

profiles were investigated for light escaping from the sidewalls during transmission 

microscopy. Figure 4.9A shows a reflection microscope image of a 50 µm flow-over 

dam. The dam is located 7 µm above the base of the flow channel floor. In Figure 4.9B, a 

transmission image is captured for a fluid dam with undercut sidewalls with 122.9 

degrees. Light is seen being transmitted through the transparent sidewalls. Figure 4.9C, 

shows a T topped sidewall. This T topped shaped was achieved by contact exposure of 

the photoresist. This afforded a microstructure with sidewalls with much less slope than 

the undercut dam (103.2° as opposed to 122.9° sidewalls). The transmission image still 

shows light escaping from the sidewalls. Figure 4.9D shows the flow-over dam without 

nanostructures with the light source on. This optical image is completely dark because the 

overcut sidewalls are opaque due to their 4 nm titanium and 250 nm gold coating. Figure 

4.9E shows a reflection image of a flow-over dam with an array of milled nanostructures. 
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The nanostructures were milled so that they completely spanned the width of the fluidic 

dam. A transmission image of a fluidic dam with undercut sidewalls is seen in Figure 

4.9F. 

 

 
 
Figure 4.9. (A) Reflection Microscope Image of a Fluidic Dam without Nanostructures 
Milled into the Dam. Transmission Microscope Images Showing (B) Light Escaping 
from the Transparent Sidewalls of an Undercut Dam, (C) Light Escaping from the 
Transparent Sidewalls of a T Topped Dam, and (D) Opaque Sidewalls of an Overcut 
Dam. (E) Reflection Microscope Image of a Fluidic Dam with a Milled Nanostructure 
Array Measuring 25 µm x 50 µm. Transmission Microscope Images Showing (F) the 
Majority of Light Escaping through the Sidewall as Opposed to the Milled 
Nanostructures in an Undercut Dam, (G) a Portion of the Light Escaping the Sidewalls of 
a T Topped Dam, and (H) All of the Light Passing through the Milled Nanostructures in 
an Overcut Dam. 
 

 Similar to the case in Figure 4.9B, light is seen escaping from the sidewalls, 

which lack a metal coating. It should be noted that the nanostructures were milled the 

span the width of the fluidic dam. It looks as if the nanostructured array is smaller than 

the array in Figure 4.9E. This is not the case. The light escaping from the sidewalls 

affects the amount of light that passes through the nanostructured array. Figure 4.9G 
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shows the case where a fluid dam has an array of nanostructures milled into the top of the 

dam. The majority of the light passes through the nanostructures, but there is some light 

bleed from the sidewalls. Figure 4.9H shows the case of nanostructures milled into a 

fluidic dam with an overcut sidewall profile. Akin to Figure 4.9D, no light is visible 

through the sidewalls. All of the light passes through the nanostructured array.  

 Figure 4.9E shows a reflection image of a flow-over dam with an array of milled 

nanostructures. The nanostructures were milled so that they completely spanned the 

width of the fluidic dam. A transmission image of a fluidic dam with undercut sidewalls 

is seen in Figure 4.9F. Similar to the case in Figure 4.9B, light is seen escaping from the 

sidewalls, which lack a metal coating. It should be noted that the nanostructures were 

milled the span the width of the fluidic dam. It looks as if the nanostructured array is 

smaller than the array in Figure 4.9E. This is not the case. The light escaping from the 

sidewalls affects the amount of light that passes through the nanostructured array. Figure 

4.9G shows the case where a fluid dam has an array of nanostructures milled into the top 

of the dam. The majority of the light passes through the nanostructures, but there is some 

light bleed from the sidewalls. Figure 4.9H shows the case of nanostructures milled into a 

fluidic dam with an overcut sidewall profile. Akin to Figure 4.9D, no light is visible 

through the sidewalls. All of the light passes through the nanostructured array. 

T Topping 

 To create a fluidic dam that has a depth on the order of several micrometers, the 

exposure method (proximity vs. contact mode) and exposure wavelengths became 
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critical. Thick layers (more than a few microns) of SU-8 photoresist show unusual effects 

when wavelengths 365 nm and shorter are used for exposing the photoresist. An OAI 

8008 mask aligner with a 1000-watt DUV-1000 Xenon Hg Arc lamp from Advanced 

Radiation Corporation was used for the exposure. Spectral lines of 436 (g-line), 405 (h-

line), 365 (i-line), and 248 nm were generated. The issue of exposing SU-8 with shorter 

wavelength is that an effect, known as T topping, becomes evident. T topping is well 

documented and is when a microstructure takes on a T shape in cross section (Figure 

4.5C).10-17 Yang and Wang best described T topping when they stated the following: 

 
As the light beam penetrates the SU-8 resist layer from the top to the bottom, the 
light intensity drops gradually as the light is absorbed. As the result, the top part 
of SU-8 resist absorbs higher dosage than that at the bottom part, and frequently 
leads to over-dosage at the top and under-dosage at the bottom. This is one of the 
major reasons that inexperienced operator often produces mushroom types of 
microstructures in UV-lithography of SU-8.9 

 

T topping of an SU-8 structure is shown in the SEM image in Figure 4.10. The cross-

section image of the SU-8 structure shown in Figure 4.10 was created using contact 

exposure with a Xenon Hg Arc lamp without any wavelength filtering. The resultant T 

topping is evident. 
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Figure 4.10. SEM Cross-section Image Showing a T Topped Photoresist. When 
Wavelengths Equal to 365 nm and Below Were Used to Expose SU-8 a T Topping Effect 
was Observed. 
 

 In the experiments reported in this dissertation, the Xenon Hg Arc lamp was used 

without a filter and with various filters in order to reduce the T topping effect found in 

SU-8 lithography. Wavelength filters, such as glass or PMMA, have been used in the 

past.9 We attempted to use several wavelength filters as long-pass filters in order to 

remove the wavelengths of 365 nm and shorter during the exposure of SU-8. Pieces of 

substrate that measured between 2 and 4 mm in thickness were investigated for their 

ability to filter out wavelengths 365 nm and shorter. A Varian Cary 6000i UV-Vis 

Spectrophotometer was used to investigate each substrate’s ability to act as an optical 

filter and reduce T topping. The optical transmission spectrum of each filter is shown in 

Figure 4.11. Polystyrene did not start significantly attenuating the transmission until 290 

nm and gave approximately 70% transmission at 365 nm. Soda lime glass showed 80% 

transmission at 365 nm. A filtering device purchased from Omega Filters (PL-360LP) 

was investigated showed 50% transmission at 365 nm. Acrylic and UV acrylic sheets 
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completely removed the majority of transmitted light at 365 nm. Polycarbonate showed a 

27% transmission to the h-line (405 nm) and completely attenuated the i-line. Cross-

linked SU-8 was also investigated as a potential long pass filter. SU-8 showed 21% 

transmission at 405 nm and 1% transmission at 365 nm. The Omega filter and the UV 

acrylic filter were the two filters of high interest after the results from the optical 

transmission test. The Omega filter allowed in some light at 365 nm while the UV acrylic 

completely removed this component. The UV acrylic sheet showed the biggest reduction 

in T topping while staying close in value to the original (unfiltered exposure) dose. The 

UV acrylic filter both filtered out most of the light components at and below the i-line.  

 

 
 
Figure 4.11. A Transmission Spectrum Showing Various Filters for Their Ability to Act 
as Long Pass Wavelength Filters. Removing Wavelengths Below 365 nm When 
Exposing SU-8 Reduces the T Topping Effect.  
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 Out of all seven of the wavelength filters, the UV acrylic showed the most 

improvement in T topping while not having to drastically alter the exposure dose and 

recipe. This product was purchased from A&C Plastics (Optix 0001 Clear Acrylic, 

0.60”). Therefore, the UV acrylic sheet was used as a wavelength filter for all of the 

experiments. Figure 4.12 shows the difference between a non-filtered SU-8 exposure and 

an exposure that was filtered using the UV acrylic. Figure 4.12A clearly shows the T 

topping effect. It is noticeable on both the left and right upper portions of the cross-

section SEM image. However, in Figure 4.12 the SEM image shows a dramatic reduction 

in T topping.  

 

 
 

Figure 4.12. SEM Images Showing Cross-sections of Photoresist Structures. (A) T 
Topping is Noticed When the Photoresist is Exposed without a Longpass Wavelength 
Filter. (B) T Topping is Significantly Reduced When a Long Pass Exposure Filter is 
Used. 
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Device Fabrication (MLR) 

 Fluidic dams with overcut sidewalls were fabricated using SU-8 photoresist with 

a multi-layered resist (MLR) approach. SU-8 3005 was chosen because a DRIE tool was 

not available to etch deep trenches into glass substrates and SU-8 3005 had the following 

properties: optically transparent, easily etched with a standard RIE, a high refractive 

index material, good adhesion to SiO2 and gold, thick layers could be patterned, and that 

SU-8 has been well documented as a structural layer.18-22 Using the MLR approach 

allowed for sidewalls to have slopes between 50° and 70°. Values in the range to be 

coated when using a line-of-sight deposition technique like e-beam evaporation. Positive 

tone photoresists do have overcut profiles, but the slopes are typically closer to 85°. Also, 

no positive tone photoresist met all of the needs listed above for SU-8 3005. 

 The MLR fabrication process is shown in Figure 4.13. Photomask designs were 

devised in CAD software. Each design contained fluidic dams of either 30 µm, 40 µm, 50 

µm, or 75 µm widths. Glass substrates were thoroughly cleaned by immersion in a 

piranha bath (H2SO4 and H2O2), rinsed with H2O, dried with a stream of N2, and then 

further cleaned with O2 plasma. The cleaned substrates were then dehydrated at 170°C on 

a hot plate for 10 minutes to evaporate off any H2O. Adhesion promoter, HMDS 

(Microchem MCC Primer 80/20), was then coated on the substrate. SU-8 3050 

(Microchem Corp.) was spin applied at 3000 rpm, which afforded a thickness of 35 µm, 

confirmed with a profilometer. This layer of SU-8 acted as a structural layer, which could 

be easily etched with a standard reactive ion etcher (RIE), as an ICP or DRIE system was 
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not available. The edge bead of the SU-8 was then removed. The substrate was then soft 

baked at 95°C on a hot plate for 20 minutes and ramped down to 30°C at a rate of at 

5°C/min. Using an OAI 8008 mask aligner the substrate was flood exposed (no 

photomask) using a piece of UV acrylic as a long-pass wavelength filter to remove 

wavelengths 365 nm and below. The exposure was performed at a dose of 450 mJ/cm2 

(29.35 seconds at 15.33 mW/cm2).  A post exposure bake (PEB) was performed 

immediately after exposure. A hot plate was set to 95 °C for 8 minutes. The PEB time 

suggested on by the photoresist manufacturer was lengthened to provide optimal results. 

The PEB process was ramp down at 5°C/min and the substrate was removed at 30°C.  A 

layer of 100 nm of SiO2 was deposited by physical vapor deposition (Kurt Lesker 

PVD75). The substrate was then O2 plasma cleaned. A second layer of photoresist (JSR 

Chemicals, NFR 016D2) was spin applied at 3000 rpm to yield a 3.5 µm thickness, 

confirmed with profilometer. A soft bake step ensued at 90°C on hot plate for 90 seconds. 

This was followed by exposure through the CAD designed photomask. A dose of 100 

mJ/cm2 (6.52 seconds with an intensity of 15.33 mW/cm2) was used to expose the 

photoresist. The optimal dose of 100 mJ/cm2 was found after doing an exposure dose 

matrix and checking the dimensions with an optical microscope and profilometer. A PEB 

was performed on a hot plate at 90°C for 90 seconds. Develop ensued in PD523AD 

developer for 60 seconds. This was followed by immersion into a DI H2O bath, rinsing 

with DI H2O stream, and blown dry with N2 gas. A reactive ion etcher (LAM Rainbow 

4400) used CF4 with 10% O2 to etch the SiO2 layer using the patterned JSR NFR resist as 
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an etch mask. The etch gases were then changed to purely O2, which was used to etch the 

SU-8 layer. During the O2 dry etch, the remaining JSR NFR resist was removed and the 

remaining SiO2 layer acted as an etch mask for SU-8. This process yielded a fluidic dam 

with overcut sidewalls of 80° or less. Sidewalls with angles less than 80° are easily 

coated with a PVD process. The next step was metal deposition by evaporation. Titanium 

(4 nm), gold (250 nm), titanium (4 nm), and SiO2 (100 nm) were deposited atop the 

substrate. 

 

 
 
Figure 4.13. Fabrication Process for the Flow-over Fluidic Dam with Overcut Sidewall 
Profile Using a Multi-layered Resist (MLR) Method. (A) Spin Apply SU-8 Photoresist 
and Soft Bake, (B) Flood Expose and Post Exposure Bake the SU-8, (C) Deposit 100 nm 
of SiO2 Atop the Cross-linked SU-8 Structural Layer, (D) Spin Apply JSR NFR 016D2 
Photoresist, (E) Expose the JSR NFR Photoresist through the Photomask with Design of 
the Flow-over Dam, (F) Post Exposure Bake and Develop the JSR NFR, (G) Dry Etch the 
SiO2 Layer with a CF4/O2 Plasma, (H) Dry Etch the SU-8 Layer with an O2 Plasma, (I) 
Deposit 4 nm Ti, 250 nm Au, 4 nm Ti, and 100 nm SiO2. 
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Optical Microscopy of Overcut Sidewalls 

 After the MLR method was employed, optical and electron microscopy was 

performed to visualize the structure and gain insight into the slope sidewalls. Figure 

4.14A shows an optical microscope image (top-down view) of a fluidic dam made with 

the 50 µm mask. This fluidic dam was etched to a depth of 25 µm. This image clearly 

shows that the bottom portion of the fluidic dam is wider than the top. Figure 4.14B 

shows a cross-section SEM image of a fluidic dam. This fluidic dam was made with the 

75 µm photomask design. The dam in this image was etch to a depth of 7.5 µm. The 

optical image in Figure 4.14C shows a top-down view of a fluidic dam made with a 75 

µm photomask. This optical image shows a top dam width of 68.55 µm and a base of 

89.59 µm. This dam was etched to a depth of 23 µm. Using a right triangle with the 

hypotenuse as 23.0 µm and one side with a length of 10.52 µm, the sidewall slope was 

calculated to be 62.78°. Figure 4.14D shows an optical image with the focus on the top 

portion of the dam. The image was then colored. This made it easy to see the in focus 

upper plane of the dam and the out of focus lower portion of the dam. The top portion of 

this dam measured 42.37 µm and the bottom portion measured 69.89 µm. This dam was 

also etched to a depth of 23 µm. Using another right triangle with the hypotenuse as 23.0 

µm and one side with a length of 13.76 µm, the sidewall slope was calculated to be 

53.25°. 

 After performing the MLR method, the device consists of a glass substrate with 

SU-8 and SiO2 deposited (Figure 4.15A). Therefore, it is completely transparent. Only 
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after metal deposition does the substrate become opaque (Figure 4.15B). The metal 

deposition consists of a 4 nm Ti adhesion layer, 250 nm of Au, a second 4 nm Ti 

adhesion layer, and then a 100 nm SiO2 layer, which functions to prevent non-specific 

binding to the surface. At this point, nanostructures are milled through the top layer of 

SiO2 and through the metal layers.  

 

 
 
Figure 4.14. (A) Optical Microscope Image Showing an Overcut Fluidic Dam. (B) SEM 
Cross-section Image Showing the Overcut Sidewall Profile. Dimensions of Dam are 75 
µm Wide x 7.5 µm Tall. (C) Optical Microscope Image Showing an Overcut Fluidic 
Dam. The Fluidic Dam Dimensions are 68.55 µm Wide at the Top of the Dam and 89.59 
µm Wide at the Base of the Dam. (D) A Colored Optical Microscope Image Showing an 
Overcut Fluidic Dam. The Fluidic Dam Dimensions are 42.37 µm Wide at the Top of the 
Dam and 69.89 µm Wide at the Base of the Dam. 
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Figure 4.15. Photograph of a Glass Substrate (A) after Lithography with Clear SU-8 
Forming Two Flow-over Dams on the Substrate and (B) after Metal Deposition. 
 

Nanostructuring the Substrate 

 Focused ion beam (Zeiss, Auriga) milling was used to manufacture nanostructures 

into the planar top of the flow-over dam. Nanoledge structures (stair step features) were 

milled into substrates with and without a SiO2 capping layer (Figure 4.16). First, a 280 

nm wide ledge was milled 100 nm into the gold film. A 50 nm slit was milled into the 

center of the 280 nm step and was milled completely through the remaining gold film. 

The pair, 280 nm step with 50 nm slit, made a complete nanoledge. An array of these 

single nanoledge structures consisted of 100 nanoledges, evenly spaced 600 nm apart. 

The 280 nm ledge and the 50 nm inner slit were chosen as optimized structures. See our 

lab group’s previous work (Chapter III) for details.23 
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Figure 4.16. Schematic of FIB Milled Structure (A) with SiO2 Capping Layer and (B) 
without SiO2 Capping Layer. 
 

Charge Accumulation When Nanostructuring Insulating Layers 

 Irradiation of an insulating layer, such as a SiO2 capping layer (Figure 4.16A), 

with an ion beam can lead to some undesired effects. Ion beam are typically made of Ga+ 

ions. Therefore, the ion beams create a buildup of positive charge on the sample surface 

during milling. Charge from the ion beam accumulates on the dielectric layer. Without a 

path to ground, this accumulation of charge can cause a deflection of the ion beam. This 

leads to a drift in the milled structure. To showcase this, a rectangular design (Figure 

4.17A) was entered into the focused ion beam patterning software. This shape was milled 

into a substrate with a SiO2 capping layer. SEM microscopy was used to visualize the 

milled substrate. The SEM image (Figure 4.17B) shows a slanted rectangle that was 

milled with the ion beam. The drifting from charge accumulation is clearly evident. 

Figure 4.17C shows the resultant structure for ease of comparison to Figure 4.17A. 
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Figure 4.17. (A) A Schematic Showing the Rectangular Design That Was Entered into 
the Focused Ion Beam Patterning Software. (B) A SEM Image Showing a Nanoslit 
Structure That Was Milled into a Substrate with a SiO2 Capping Layer. The Ends of the 
Rectangle Show a Slant Due to Charge Accumulation Which Caused Drifting. (C) A 
Schematic Showing the Resultant Slanted Rectangle. 
 

 Milling structures into an electrically conductive substrate, such as a metal 

substrate (Figure 4.16B), is preferred over substrates with insulating layers (Figure 

4.16A) due to this charging effect and thus drifting of the structure. Typically, insulating 

layers are coated with a metal during a sputter coating that precedes ion beam milling. 

For optical devices this metal coating must be removed. It is not ideal to sputter coat the 

substrate and at a later time be required to fully remove the coating. Removal of a metal 

coating is time consuming and it becomes difficult to completely remove the metal layer. 

In light of this, a new method was formulated. In place of the metal coating, a metal foil 

is used to encase the substrate. The sample with SiO2 capping layer was wrapped with a 

thin foil of aluminum (Figure 4.18), a small window cut in the foil near the area of 
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interest, and then FIB milling ensued. This drastically improves the charge accumulation 

and thus the drifting effect when milling structures. 

 

 

Figure 4.18. A Photograph of a Chip after the Microfabrication of the Fluidic Dam, Metal 
Deposition, and SiO2 Deposition. The Chip is Wrapped with a Foil of Aluminum and a 
Small Window is Cut around the Area of Interest (the Fluidic Dam). The Foil Functions 
to Displace Charging and Minimize Drift during Milling without the Need for Sputter 
Coating the Chip. 

 

 Figure 4.19 shows a device with an SiO2 capping layer that was milled using a 

foil wrap. Notice that on the left side of the flow-over dam a large box (100 µm x 75 µm) 

was milled into the dam. The edges and lines of the box are sharp and the box does not 

slant. On the right side of this SEM image is an array of 100 nanoledges, which are also 

straight with no slant. Figure 4.20 is a FIB image which shows a magnified view of the 

nanoledge array from Figure 4.19. The FIB image shows good contrast between the 

nanoledges (exposed gold) and the SiO2 topped areas (areas that were not 
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nanostructured). The areas with exposed gold show up as bright while the areas covered 

in SiO2 show up as darker in the FIB image. 

 

 

Figure 4.19. A SEM Image Showing a Flow-over Fluidic Dam with a Reference Window 
Milled on the Left Side and an Array of Nanostructures Milled on the Right Side of the 
Dam. 
 

 

Figure 4.20. A FIB Image Showing a Flow-over Fluidic Dam with an Array of 
Nanoledge Structures Milled into the Dam. 

 

Conclusion 

 Flow-over fluidic dams were fabricated for use in plasmonic biosensors. Fluidic 

dams had a range of sidewall angles, between 50° and 123°. The undercut and T topped 
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sidewalls were problematic for plasmonic biosensing due to their transparent sidewalls 

after metal deposition. A significant reduction is T topping was observed by using UV 

acrylic as a long pass wavelength filter during photoresist exposure. Overcut sidewalls 

(angles between 50° and 70°) were needed to yield opaque sidewalls after metal 

deposition. This was achieved with a multi-layered resist (MLR) approach. 

Nanostructuring on a dielectric (SiO2) topped substrate was achieved without a sputter 

coating by wrapping the device in a foil of aluminum and cutting a small window in the 

foil around the area of interest. With the foil wrap and without a metal coating, no 

charging or drifting was noticed during the nanostructuring of the SiO2 capped substrates.  

Discussion of Techniques 

Why Use the Multi-Layered Resist (MLR) Method? 

 Several traditional microfabrication techniques were pursued before attempted the 

MLR method. Access to only a standard reactive ion etcher (RIE) was the reason some of 

the techniques below were unsuccessful. The experience of attempting these techniques is 

written here to benefit those in a similar setting and who lack access to a RIE with a 

powerful plasma, such as an ICP-RIE or DRIE system. The techniques that were 

originally pursued include the following: (a) wet etching with a photoresist etch mask, (b) 

dry etching with a photoresist etch mask, (c) dry etching with metal etch mask, (d) dry 

etching with SU-8 etch mask, (e) the use of polymeric substrates, and (f) backside 

exposure of photoresist. Brief descriptions of each process are outlined below. 
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 Wet etching with a photoresist etch mask. A glass substrate was thoroughly 

cleaned (piranha solution, O2 plasma), dehydrated, and then adhesion promoter (HMDS, 

hexamethyldisilazane) was spin applied. Shipley 1827 photoresist was spin applied, 

baked, exposed through a photomask with a fluidic dam structure, developed, and hard 

baked. The photoresist was to serve as an etch mask. The device was wet etched with a 

6:1 BOE (Transene, buffered oxide etchant) solution. The photoresist was stripped and 

the substrate was inspected by optical and electron microscopy. 

 An electron microscope image of the dam structure is shown in Figure 4.21. The 

fluidic dam shows rough sidewalls, likely due to under etching due to poor photoresist 

adhesion. To remedy this problem, another adhesion promoter (Microchem Corp., MCC 

Primer 80/20) was attempted but to no avail.  

 
 
Figure 4.21. SEM Image Showing a Flow-over Dam with a Rough Surface Due to Under 
Etching and a Non-planar Top to the Dam.  
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 Several other photoresist were attempted, yet the situation did not improve 

dramatically. A second issue, also apparent from the SEM image (Figure 4.21), is that 

wet etching removed the planar top portion of the dam. This became an issue because it 

was very difficult to perform focused ion beam (FIB) milling on a non-planar substrate. 

 Dry etching with a photoresist etch mask. Using the same protocol that is 

outlined above in wet etching with a photoresist etch mask, the substrate was dry etched 

as opposed to wet etched. A LAM Rainbow 4400 reactive ion etcher (RIE) was used to 

transfer the pattern of the photoresist into the glass substrate. The etch selectivity between 

the soft photoresist etch mask and the glass substrate led to a problematic situation. The 

photoresist etch mask was completely removed and etched away before the glass 

substrate was etched vertically to a sufficient depth. The glass was only etched to a depth 

of a few hundred nanometers before the photoresist etch mask was removed. 

 Dry etching with a metal etch mask. In order to solve the issue in dry etching 

with a photoresist etch mask and increase the etch selectivity between the etch mask and 

the substrate, a metal etch mask was used. The process for obtaining a metal etch mask 

on the glass substrate is outlined in Figure 4.22. Briefly a glass slide was cleaned and a 

metal (Al or Ni) was evaporated onto the substrate. A photoresist was applied and 

patterned. The metal layer was wet etched using the photoresist as a wet etch masking 

layer. The photoresist layer was stripped and what remained was patterned metal on a 

glass substrate.  
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Figure 4.22. Process for Making a Metal Etch Mask. 
 

 A very rough surface was observed with SEM (Figure 4.23). A micro-masking 

effect was observed. Micro-masking is when small pieces of the metal etch mask are 

lifted during the dry etch process. They are then re-deposited on the glass portion of the 

substrate. This leads to a situation where metal micro-particles act as etch masks on areas 

of the device that were intended to be metal free. This leads to a very rough surface. 
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Figure 4.23. SEM Image Showing a Rough Surface. The Roughness is Due to Micro-
masking When Reactive Ion Etching a Glass Substrate with a Metal (Al, Ni) Etch Mask. 
  

 Dry etching with SU-8 etch mask. It is well documented that SU-8 photoresist 

(Microchem Corp) has high etch selectivity when compared to other photoresists. 

Therefore, SU-8 photoresist was patterned onto a glass substrate and was to be used as an 

etch mask. A SU-8 etch mask was thought to have high etch selectivity (similar to the 

metals above) but would not cause micro-masking. No micro-masking was observed and 

SU-8 provided good etch selectivity. The primary issue with this method was that the 

LAM Rainbow 4400 did not have the plasma power to etch the glass substrate to a 

micron level depth in a reasonable about of time. Figure 4.24 shows a profilometry scan 

of a glass substrate after dry etching for 1.5 hours. The etch depth achieved was 180 nm 

in this time. Therefore, it would take 58.3 hours to reach the desired depth of 7 µm.  
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Figure 4.24. Profilometry Scan Showing an Etch Depth of 180 nm after a 1.5-hour Dry 
Etch. 
 

 The use of polymeric substrates. Polymers are easily etched in an O2 plasma 

while glass substrates are difficult to etch to a micron depth without a high-powered 

plasma. Thus, several polymeric substrates were considered. Acrylic, polystyrene, and 

polycarbonate substrates were investigated to replace the glass substrates, which were 

proving very difficult to etch. Most all of the photoresists used were found to be 

compatible with the polymeric substrates. A major issue was in the development step. 

During the development of the exposed photoresist, the developer solution etched away 

at the polymer substrates. This is clearly shown in the photograph in Figure 4.25. 
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Figure 4.25. (A) A Photograph Image of a Polymeric Substrate; the Center Region Shows 
a Ripple Effect from the Developer Solution Dissolving the Polymer Substrate, (B) An 
Optical Microscope Image of a Polymeric Substrate with Patterned Photoresist Shown in 
Red. The Fluidic Dam is Shown with the Arrow. There is a Clear Reaction between the 
Substrate and the Developer Solution. The Substrate Starts to Wrinkle/Ripple in Certain 
Areas. This is Unacceptable, Especially for an Optical Device That Requires That Light 
Pass through the Substrate. 
  

 Backside exposure of photoresist. Topside exposure of SU-8 photoresist affords 

sidewalls that have an undercut profile. In theory, if one were to expose the photoresist 

from the backside (through-the-wafer), then an overcut profile could potentially be 

achieved with SU-8. This was attempted by exposing SU-8 from the top side with an air 

gap, from the topside in soft contact mode, and from the backside in soft contact mode. 

Figure 4.26 shows a schematic of the various types of exposure with resultant photoresist 

sidewall profile.  

 Cross-section SEM images showed the resultant sidewall angles for each type of 

exposure. Figure 4.27A shows a sidewall angle of 122.9° for the device exposed through 

the topside with an exposure gap of 1 mm. Figure 4.27B shows a sidewall angle of 98.7° 

for the device exposed through the topside with no gap (soft contact mode). Finally, the 

device that was exposed though-the-wafer (backside) in soft contact mode did improve 
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the sidewall angles. The sidewalls were 89.1°, as shown in Figure 4.27C. These straight 

sidewalls could not be coated when metal was evaporated onto the substrate. 

 

 
 
Figure 4.26. Schematics Showing Topside and Backside Exposure of a Photoresist 
through a Photomask and the Resultant Shape of Patterned Photoresist. Glass Substrate is 
Shown in Blue, Photoresist in Red, Cross-linked Photoresist in Orange, and the 
Photomask in Black. (A) Topside Exposure through an Exposure Gap Results in a 
Structure with Significant Undercut on the Photoresist Sidewalls. (B) Topside, Soft 
Contact Exposure Results in a Slight Undercut. (C) In Theory a Backside (Through-the-
Wafer) Exposure in Soft Contact Mode Should Result in an Overcut Profile. (D) But in 
Reality, Backside Exposure in Soft Contact Mode Results in a Structure That Has 89.1° 
Sidewalls. 
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Figure 4.27. SEM Cross-section Image of a Photoresist Exposed from the (A) Topside 
with an Exposure Gap Yielded a Sidewall Angle of 122.9° (Undercut Profile), (B) 
Topside in Soft Contact Mode Yielded a Sidewall Angle of 98.7° (Undercut Profile), (C) 
Backside in Soft Contact Mode Yielded a Sidewall Angle of 89.1° (Straight Sidewall 
Profile). 

(A)	

(B)	

(C)	
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CHAPTER V 

 
TROPONIN T BIOSENSING 

 

Overview 

Nanostructured metal films were studied for biosensing of Troponin T protein 

using a DNA aptamer with localized surface plasmon resonance (LSPR) in wavelength 

shift mode. Here, we account a device with a microstructured, fluidic, flow-over dam 

with nanoledge (stair-step) features milled into the top of the dam. Fluorescent 

microspheres were shown to hang up on flow-over dams with undercut sidewall angles 

and pass over top of the dams with overcut sidewall angles.  Arrays of nanoledge 

structures were used in the detection of Troponin T, one of the biomarkers for acute 

myocardial infarction (MI) or a heart attack.  

Introduction 

Myocardial infarction (MI), also known as a heart attack, is a condition that is one 

of the leading causes of death for both men and women.1 Each year approximately 

735,000 Americans suffer from a heart attack.2 Chest pains are one of the early symptoms 

of a MI. In the United States approximately 7 million patients visit the emergency 

department with a complaint of chest pain.3 An estimated 50-70 % of patients presenting 

with chest pain in the emergency department will be placed in observation or admitted to 

the hospital. Approximately $10 billion are spent annually to evaluate chest pain.4 Almost 
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100% of these patients are treated by first responders and are transported to hospitals in 

an ambulance.5 Emergency calls in regards to chest pains are one of the leading calls 

placed into 911 services and emergency care services. First responders are only equipped 

with an EKG, which is instrumentation that gives them insight into the electrical activity 

of the heart.6 An EKG (electrocardiogram) diagnoses an MI as either a STEMI or 

NSTEMI.7 For the STEMI (ST-elevation myocardial infarction) cases there is a ST wave 

elevation that is visible on the instrument read out.7 This makes diagnosing a STEMI 

more straightforward than a NSTEMI. In contrast to the STEMI, a NSTEMI (non-ST-

elevation myocardial infarction) shows no visible ST wave elevation.7 With the NSTEMI 

cases, which make up approximately 30% of heart attacks, using electrical activity to 

diagnose a heart attack becomes problematic.8 If first responders had a point-of-care 

(POC) device that could definitively diagnose the STEMI and NSTEMI cases then there 

would be a huge benefit to the patient. Pre-hospital biomarker measurements for MI 

would allow for smarter triage decisions and thus faster diagnosis and treatment. There 

would be faster routing of patients to a facility with appropriate care. Patients with a 

positive troponin assay could be quickly prioritized to facilities that are equipped with a 

cardiac catheterization lab, which is an on-site catheterization lab. Patients with a 

negative troponin and a negative EKG could be monitored but not prioritized like a 

patient with a positive result. The time during travel to a hospital could be used to 

perform a biomarker (i.e. Troponin) assays. Biomarker assays in a pre-hospital 

environment would allow for the assignment of degrees of urgency to patients. 
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 Lab-on-a-chip (LOC) technology and microfluidics provide key advantages over 

more traditional technologies. These advantages include small sample requirements, fast 

reaction times, multiplexing (multiple samples at one time), compact instrumentation, 

and portability.9 LOC devices with channels and dimensions on the micro- and nanoscale 

can be manufactured with standard lithographic techniques and therefore can be mass-

produced, yielding inexpensive devices.9 

 Surface plasmon resonance (SPR) is a detection method that is gaining popularity 

due to its label-free and real-time detection coupled with the ability to handle complex 

samples.10 SPR has been reported to handle samples in complex matrices, including 

serum samples without sample pretreatment.10 SPR that makes use of nanostructures 

and/or nanostructured metal films are of further interest owing to their ability to simplify 

the instrumentation.10 This type of detection platforms makes a likely candidate for 

creating a point-of-care (POC) sensor that is easy to use, reliable, and sensitive enough to 

measure low concentrations of protein targets. SPR detection coupled with microfluidics 

and LOC technology could afford a handheld device that is capable of measuring protein 

biomarkers in many settings, such as a pre-hospital setting. 

 Surface plasmons are very sensitive to a change in refractive index (dielectric 

constant) and thus are well suited to detecting binding events that occur between a bound 

ligand and a free protein biomarker.11 Localized surface plasmon resonance (LSPR) is a 

phenomenon that occurs when the metal structures are smaller than the wavelength of 

light.12 LSPR is caused by waves of electrons (plasmons) which are “localized” within 
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the nanostructure.12 Nanostructures such as nanoparticles and other shapes have been 

studied.12 In addition, nanostructured metal films have also been studied.13 These 

nanostructured films contain nanostructures milled directly into the metal film. Shapes 

milled into the metal films include circles, lines, and rings.14 Metal films perforated with 

subwavelength structures make use of a phenomenon called extraordinary optical 

transmission (EOT).15 Researchers found that arrays of nanostructures fashioned in a 

periodic arrangement would transmit far more light than expected by classical theory at 

certain wavelengths.16 Nanostructured metal films also allow for a linear alignment of 

light source and detector. This type of SPR, transmission SPR (tSPR), is of interest to 

researchers in the field of POC sensing devices. The linear alignment and the sensitivity 

due to the EOT and LSPR effects could allow for a new LOC technology. Additionally, 

avoiding the prism, precisions optics, and temperature control, which are common to total 

internal reflection SPR, further adds to the applicability of tSPR based sensor into a 

compact, handheld format.  

 In the work outlined here, we report on a chip (Figure 5.1) with a nanostructured 

metal film in transmission SPR mode amidst a flow-over fluidic dam structure for 

detection of troponin T protein. The flow-over dam (Figure 5.1) was fabricated with 

various lithographic techniques to yield a range of sidewalls angles. Confocal microscopy 

of florescent beads gave insight into the ability of the micron-sized beads to pass over top 

of the fluidic dam. Self-assembled monolayers (SAMs) were formed on exposed gold 

surfaces. This allowed for easy linkage of aminated DNA aptamers to the surface. Then 
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troponin T protein was monitored by a wavelength shift after binding between the DNA 

aptamer and troponin T protein ensued. 

 

 
 (A) (B) (C) 
 
Figure 5.1. (A) Scanning Electron Microscope (SEM) Image of an Actual Flow-over, 
Fluidic Dam with Nanostructures Milled into the Top of the Dam; the Dam Measures 45 
µm in Width and is 7 µm in Height, (B) A Plasmonic Chip with Enclosed Polyethylene 
Flow Chamber; the Penny is for a Scale/Size Comparison, (C) A Drawing of the Cross-
section View of a Dam with Gold Thin Film atop the Dam; Into the Gold Film are a 
Reference Window and an Array Nanostructures. 

 

Experimental 

Device Fabrication 

Devices were fabricated using lithography and focused ion beam (FIB) milling. A 

multi-layered resist (MLR) method was used in order to achieve sidewalls sloped in the 

desired direction. Several photomask designs were devised in a CAD software. Each 

design contained fluidic dams of either 30 µm, 50 µm, or 75 µm widths. Glass substrates 

were thoroughly cleaned by immersion in a piranha bath (H2SO4 and H2O2), rinsed with 

H2O, dried with a stream of N2, and then further cleaned with an O2 plasma. The cleaned 

substrates were then dehydrated at 170°C on a hot plate for 10 minutes to evaporate off 



	

 
108 

any H2O. Adhesion promoter, HMDS (Microchem MCC Primer 80/20), was then coated 

on the substrate. SU-8 3050 (Microchem Corp.) was spin applied at 3000 rpm, which 

afforded a thickness of 35 µm, confirmed with a profilometer. This layer of SU-8 acted as 

a structural layer, which could be easily etched with a standard reactive ion etcher (RIE), 

as an ICP or DRIE system was not available. The edge bead of the SU-8 was then 

removed. The substrate was then soft baked at 95°C on a hot plate for 20 minutes and 

ramped down to 30°C at a rate of at 5°C/min. Using an OAI 8008 mask aligner the 

substrate was flood exposed (no photomask) at a dose of 450 mJ/cm2 (29.35 seconds at 

15.33 mW/cm2).  A post exposure bake (PEB) was performed immediately after 

exposure. A hot plate was set to 95 °C for 8 minutes. The PEB time suggested on by the 

photoresist manufacturer was lengthened to provide optimal results. The PEB process 

was ramp down at 5°C/min and the substrate was removed at 30°C.  A layer of 100 nm of 

SiO2 was deposited by physical vapor deposition (Kurt Lesker PVD75). The substrate 

was then O2 plasma cleaned. A second layer of photoresist (JSR Chemicals, NFR 016D2) 

was spin applied at 3000 rpm to yield a 3.5 µm thickness, confirmed with profilometer. A 

soft bake step ensued at 90°C on hot plate for 90 seconds. This was followed by exposure 

through the CAD designed photomask. A dose of 100 mJ/cm2 (6.52 seconds with an 

intensity of 15.33 mW/cm2) was used to expose the photoresist. The optimal dose of 100 

mJ/cm2 was found after doing an exposure dose matrix and checking the dimensions with 

an optical microscope and profilometer. A PEB was performed on a hot plate at 90°C for 

90 seconds. Develop ensued in PD523AD developer for 60 seconds. This was followed 
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by immersion into a DI H2O bath, rinsing with DI H2O stream, and blown dry with N2 

gas. A reactive ion etcher (LAM Rainbow 4400) used CF4 with 10% O2 to etch the SiO2 

layer using the patterned JSR NFR resist as an etch mask. The etch gases were then 

changed to purely O2, which was used to etch the SU-8 layer. During the O2 dry etch, the 

remaining JSR NFR resist was removed and the remaining SiO2 layer acted as an etch 

mask for SU-8. This process yielded a fluidic dam with overcut sidewalls of 80° or less. 

Sidewalls with angles less than 80° are easily coated with a PVD process. The next step 

was metal deposition by evaporation. Titanium (4 nm), gold (250 nm), titanium (4 nm), 

and SiO2 (100 nm) were deposited atop the substrate. 

 

 

Figure 5.2. Fabrication Process for the Flow-over Fluidic Dam with Overcut Sidewall 
Profile Using a Multi-layered Resist (MLR) Method. (A) Spin Apply SU-8 Photoresist 
and Soft Bake, (B) Flood Expose and Post Exposure Bake the SU-8, (C) Deposit 100 nm 
of SiO2 atop the Cross-linked SU-8 Structural Layer, (D) Spin Apply JSR NFR 016D2 
Photoresist, (E) Expose the JSR NFR Photoresist through the Photomask with Design of 
the Flow-over Dam, (F) Post Exposure Bake and Develop the JSR NFR, (G) Dry Etch the 
SiO2 Layer with a CF4/O2 Plasma, (H) Dry Etch the SU-8 Layer with an O2 Plasma, (I) 
Deposit 4 nm Ti, 250 nm Au, 4 nm Ti, and 100 nm SiO2. 
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 (A) (B) (C) (D) (E) 

Figure 5.3. An Overview of the Fabrication Process is as Follows: (A) Thin Film 
Deposition, (B) Nanostructuring by Focused Ion Beam Milling, (C) Surface Chemistry 
by Self Assembly, (D) Flow Chamber Fabrication and Bonding to Chip, and (E) 
Transmission SPR Measurement. 
 

Nanostructuring the Substrate 

 Focused ion beam (Zeiss, Auriga) milling was used to manufacture nanostructures 

into the planar top of the 75 µm dam. A step feature, 280 nm wide, was milled 

completely through the SiO2 capping layer and 100 nm into the gold film. A 50 nm slit 

was milled into the center of the 280 nm step and was milled completely through the 

remaining gold film. The pair, 280 nm step with 50 nm slit, made a complete nanoledge. 

An array of these single nanoledge structures consisted of 100 nanoledges, evenly spaced 

600 nm apart. The 280 nm ledge and the 50 nm inner slit were chosen as optimized 

structures. See our lab group’s previous work for details.17 
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        (A) (B) 
 
Figure 5.4. Schematic of FIB Milled Structure (A) with SiO2 Capping Layer and (B) 
without SiO2 Capping Layer. 
 

Milling a metallic substrate is straightforward and provides no obstacles and 

requires no sputter coating. However, nanostructuring a substrate with non-conductive 

top layer, such as SiO2, provides a charging obstacle. It is not ideal to sputter coat the 

substrate and at a later time be required to fully remove the coating. In light of this, a 

sample preparation method was developed. The sample with SiO2 capping layer was 

wrapped with a thin foil of aluminum, a small window cut in the foil in the area of 

interest, and then FIB milling ensued, as shown in Figure 5.5. This drastically improves 

the charging effect and improves the drift when milling an array of nanostructures. 

 

 

Figure 5.5. A Photograph of a Chip after the Microfabrication of the Fluidic Dam, Metal 
Deposition, and SiO2 Deposition. The Chip is Wrapped with a Foil of Aluminum and a 
Small Window is Cut around the Area of Interest (the Fluidic Dam). The Foil Functions 
to Displace Charging and Minimize Drift during Milling without the Need for Sputter 
Coating the Chip. 
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Self-assembled Monolayer Formation 

 The self-assembled monolayer (SAM) was established using cystamine and 

glutaraldehyde chemistry. These compounds were chosen over the more typical EDC-

NHS method as it has fewer process steps and affords a similar result. The step-by-step 

formation of the SAM is shown in Figure 5.6. A chip surface was thoroughly cleaned 

with an ethanol rinse, O2 plasma clean, ethanol rinse, N2 dry, and UV/Ozone treatment. 

The oxygen plasma treatment was for 5 min at 100 W in an oxygen plasma cleaner 

(South Bay Technologies PC-2000 Plasma Cleaner) at an O2 pressure of 178.6 mTorr and 

a DC bias of -783 volts. A 5 mM solution of cystamine in 90% ethanol solution was used 

to form a SAM with the reaction catalyzed by a chemical microwave. The disulfide bond 

within the cystamine molecule breaks and yields two sulfur-gold bonds to the surface of 

the chip. The substrate was then rinse with a 90% ethanol solution and then rinsed with 

DI water in order to remove the unbound molecules. The terminal amine, sticking up 

from the surface, is then able to bond to a carbon oxygen double bond on next molecule, 

glutaraldehyde, forming an imine bond. A 2.5% solution of glutaraldehyde was used to 

self-assemble atop of the formed cystamine layer. This provided a terminal aldehyde 

group to which an aminated DNA aptamer could bind. The DNA aptamer for Troponin 

T-1 had the following sequence from 5’ to 3’: 

ATACGGGAGCCAACACCAGGACTAACATTATAAGAATTGCGAATAATCATTG

GAGAGCAGGTGTGACGGAT.18 This aptamer contained 71 base pairs and had a 

molecular weight of 22.1 kDa, which is approximated 3 nm in size. A stock solution of 
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100 µM of DNA aptamer was diluted with a 10% glycerol solution to yield a 10 µM 

working solution. This solution was delivered to the nanostructured area of the chip and 

allowed to bond for several hours. The entire chip was encased in a high humidity 

environment during this time. Afterwards, the chip was rinsed with DI water and dried 

with a N2 stream. Available sites on the metal film were blocked with a 200 µM solution 

of thiolated PEG 800 (poly ethylene glycol) in order to control non-specific binding. 

 

 
 
Figure 5.6. A Schematic Showing the Stepwise Sequence of the SAM Formation, DNA 
Aptamer Attachment, and Protein Binding to the DNA Aptamer.  
 

The chips were reusable depending on the type of bonding used to seal the chip to 

the flow chamber (see Figure 5.7). In order to regenerate the clean metallic surface, the 

adsorbed SAM could be removed by subjecting the substrates to oxygen plasma (South 

Bay Technologies, PC-2000 Plasma Cleaner) for 5 minutes at 100 W. The plasma treated 

substrates were then exposed to sonication in acetone, ethanol, then water19 and then 
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cleaned for 20 minutes by UV/Ozone exposure20 using a Bioforce UV/Ozone ProCleaner. 

It has previously been demonstrated that plasma cleaning does not adversely affect the 

metallic surfaces and does not add roughness to the surface.21 This is in contrast to the 

roughness and pinholes22 that can occur by some cleaning methods, such as the use of 

piranha (H2SO4 and H2O2). 

 

 
 (A) (B) (C) 
 
Figure 5.7. (A) A Schematic of a Chip with Fluidic Dam in the Center of the Flow 
Channel. (B) Magnification of the Schematic to Show the Nanostructures atop the Flow-
over Dam. (C) A Procedural Drawing Showing the SAM Formation, DNA Aptamer 
Attachment, and Protein Binding in Single Steps (from Left to Right). The Metal Surface 
Forms a Bond to Cystamine, to Which Glutaraldehyde Forms an Imine Bond. An 
Aminated Aptamer Bonds to the Free Aldehyde of Glutaraldehyde. Troponin Protein 
Binds to the DNA Aptamer. 
 

Chip and Flow-Chamber Setup 

 The metallic substrate with nanostructures functioned as the bottom to an 

enclosed flow cell with the top portion composed of a polyethylene (PE) flow chamber. 

This top substrate contained the flow channel, which had the dimensions 50.0 x 5.0 x 0.4 

mm and a total volume of 100 µL. Prior to sealing the two pieces together, the PE flow 
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chamber was cleaned with a series of solvents (acetone, isopropanol, DI water) and 

subjected to O2 plasma (Plasma Etch Inc. PE-100 Plasma Etch). One of three methods 

was used to seal the two pieces together: an adhesive (3M, VHB), polydimethyl siloxane 

(PDMS), or a UV active photoresist (Microchem, SU-8 3050).  A syringe pump 

(Harvard, PHD 2000) was used to manipulate fluids through the enclosed chip and was 

connected to a degasser (Biotech, 2003 Degasser) to remove air bubbles from the system. 

Optical Measurements 

  The transmission measurements through the nanostructured arrays were 

monitored in the spectral range of 450 nm to 1100 nm. Transmission surface plasmon 

resonance (tSPR) was used to monitor the binding between protein and DNA aptamer by 

a local RI change. This was seen as a redshift in the primary resonant peak. A tungsten 

halogen white light source (Ocean Optics, LS-1) was fed through a fiber optic cable and 

into a holder that was CAD designed and printed with a 3D printer. Fiber optics was used 

in order to achieve placement and focusing of the light source onto the underside of the 

chip. The light was collected by a 50X objective (Olympus LMPlanFLN) on an Olympus 

BX-41 microscope. The CCD of a Horiba Xplora was used for data collection. 

Measurements were taken in real-time over the nanoslit array, a reference box of the 

same dimensions as the nanoslit array, and a dark background measurement, which 

corrected for the small amount of light that potentially transmitted through the thin 

metallic film. The nanostructured film, which consisted of 4 nm Ti, 250 nm Au, 4 nm Ti, 

and 100 nm SiO2 in thickness, essentially blocked all of the light. The ‘dark’ 
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measurements, those taken at a location without an opening or aperture, showed 

intensities in the range of 10 to 50 counts in comparison to 12000 counts for the 

apertures. Therefore, the light collected by the CCD was due to the extraordinary optical 

transmission (EOT) effect.32 The transmission was calculated as follows: 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 = 100×
𝑠𝑙𝑖𝑡 − 𝑑𝑎𝑟𝑘
𝑟𝑒𝑓.−𝑑𝑎𝑟𝑘 

Sample Characterization 

 A scanning electron microscope (SEM) with focused ion beam (FIB) capability 

(Auriga Dual Beam FIB/SEM, Carl Zeiss) was used to mill the nanostructures as well as 

image the fluidic dam microstructure and milled nanostructures.  In order to corroborate 

the dimensions of each nanoledge array and reference box both SEM and FIB imaging 

was used. SEM images were captured with a secondary electron detector while using a 7 

kV acceleration voltage and a 4.7 mm working distance. FIB imaging gave better contrast 

between the milled gold ledge and the SiO2 planar top. This allowed for ease of 

visualization with the 280 nm wide ledge. A step profilometer (KLA Tencor, P-10) was 

also used to give insight into the microstructures, particularly the fluidic dam. 
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Figure 5.8. Scanning Electron Microscope (SEM) Images of a Flow-over Dam with 
Milled (A) Nanoledge Array and (B) Reference Box. Focused Ion Beam (FIB) Images of 
Milled Nanoledges Showing the (C) Periodicity, Which is the Center-to-center Spacing 
(604.5 nm) and (D) the Dimensions of the Nanoledge Slit (53.63 nm) and Outer Ledge 
(286.4 nm).  

 

Results 

Confocal Analysis of the Fluidic Dam 

 One of the primary objects in this work was to design and fabrication a device 

that could have real world utility. Using samples such as whole blood without any sample 

pretreatment would be ideal for point-of-care sensors in the field. The problems that arise 

when using whole blood samples are related to the viscosity, turbidity, and stickiness of 

samples with large red blood cells. Blood cells further add to the potential for non-

specific binding. To embark on this issue, we have designed a flow-over, fluidic dam that 

could potentially size discriminate the large blood cells from the protein biomarkers of 

interest. As a first step and to mimic red blood cells, we have chosen to follow the paths 

of fluorescent polystyrene microspheres (Polysciences’, Fluoresbrite) through their 

journey over the fluidic dam and through the fluidic channel. These microspheres were 

(A)	 (B)	

(C)	 (D)	
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close in size to a red blood cell and were a first step approximation of how red blood cells 

may behave in whole blood samples. The microspheres were used to study the flow and 

potential hang up under and near the sidewalls of the flow-over dam. The microspheres 

were 1.00 µm in size and contained fluorescein dye, which gave an emission at 486 nm. 

The microspheres were diluted to 0.25% aqueous suspension and passed through sealed 

fluidic chips by means of a syringe pump at a flow rate of 300 µL/min. Fluidic dams with 

an undercut sidewall profile (Figure 5.9) were shown to capture and retain the 

microspheres while dams with an overcut sidewall profile did not.  

 

Figure 5.9. A Cross-section View of a Drawing of a Fluidic, Flow-over Dam with an (A) 
Undercut Profile and a (B) Overcut Profile. Confocal Microscopy Analysis of 
Polystyrene Microspheres Passing over the Flow-over Dam. The Images are Shown Top-
Down (Not in Cross-section). Fluorescent Microspheres Shown (C) Hanging up at a Dam 
with Undercut Sidewalls and (D) Shown Passing over a Dam with Overcut Sidewalls. 
Using a Flow-over Dam with Overcut Sidewalls One Can See the Dam (E) before Entry 
of the Microspheres, (F) during Flow of the Microspheres, and Then (G) Completely 
Rinse Away by Flow of DI Water, Showing No Microspheres Adhered to the Sidewalls 
of the Dam. 

(C)	 (D)	

(E)	 (F)	 (G)	

(A)	 (B)	
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tSPR Measurements 

In order to detect the binding of troponin T the sensor must first be functionalized 

with a selective ligand that binds only the target analyte. A ligand with high selectivity is 

needed in order to avoid non-specific binding. Troponin was used as the protein free in 

the running solution while a self-assembled monolayer and DNA aptamer was 

functionalized to the chip surface.  

Before the addition of any self-assembled monolayer or DNA aptamers to the 

surface, tSPR measurements were taken in air to gain insight into the resonant peak 

locations. As shown in optical transmission spectra in Figure 5.10, the primary resonant 

peak locations are as follows: 744, 809, and 970 nm. The light source was placed 

underneath the substrate and shone directly onto the underside of the dam, which 

contained the nanoledge structures. After attachment of the self-assembled monolayers 

and the DNA aptamer there was a red shift to longer wavelengths. The binding of the 

troponin T protein to the DNA aptamer resulted in a further red shift. The shift is 

governed by the following equation:23 

 

	 
 

ΔλSPR represents the resonant peak shift in nm, S is the sensitivity in nm/RIU, ntroponin is 

the refractive index of troponin (a value of 1.45 is common for most proteins), nair is the 

refractive index of air (1.00), Tligand is the thickness of the organic layer that is attached to 

the surface (SAM and DNA aptamer), Ttroponin is the thickness of the binding element 
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(troponin protein in this case), ld is the length of decay of the surface plasmon wave into 

the dielectric layer at the nanoledge array. A value of 30 nm is often used,24 but with 

nanoledge arrays 110 nm is the decay length.25 Our group’s previous work with 

nanoledge arrays has shown sensitivity values of 576 nm/RIU.25 

 

 
 
Figure 5.10. (A) A Reflection Optical Microscope Image of a Flow-over Fluidic Dam. 
(B) A Transmission Optical Microscope Image of a Flow-over Fluidic Dam with Milled 
Aperture. (C) Optical Transmission through a Flow-over Dam with Milled Nanoledge 
Structures Showing Primary Resonant Peaks at 744, 809, and 970 nm. 
 

Solutions of increasing troponin T content were made and studied with tSPR. 

Solutions of troponin were made in Tris buffer, passed over the surface via a syringe, 

allowed to bond for 15 minutes, the unbound molecules rinsed away, the solution was 

forced out of the channel with a syringe. At this point the substrate was very gently 

blown with a N2 stream and then the substrate was allowed to dry. At this point the tSPR 

measurement was taken. As expected, the increasing troponin concentration gave a larger 

peak shift. As shown in Figure 5.11, the starting point for the peak shifts was at 0 ng/mL 
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(no troponin in the solution). From here a peak shift of 2.11 nm was observed for the low 

concentration of 1 ng/mL of troponin T. The second concentration of troponin T was 10 

ng/mL. This solution yielded a peak shift of 5.32 nm. Finally, the third concentration of 

troponin was 100 ng/mL. This yielded a peak shift of 7.37 nm from the 0 ng/mL 

concentration. 

 

 

Figure 5.11. Optical Transmission Spectrum through a Nanoledge Array Showing Peak 
Shifts to Longer Wavelengths with Increasing Concentration of Troponin T Protein.  
 

The dependency of peak wavelength shifts on the protein (troponin T) 

concentration is displayed in Figure 5.12. Three experiments were performed at each 

concentration and the values averaged. As the sensor is exposed to more troponin, more 

binding occurs. This increases in protein at the surface yields a peak shift due to the 

increase in dielectric constant. The data was fit with a logarithmic function. Figure 5.12A 

has linear concentration axis (x-axis) while Figure 5.12B has a logarithmic concentration 

axis. Both were fit with a logarithmic function and had a R2 value of 0.98405. 
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Figure 5.12. The Dependence of the Peak Wavelength Shift (ΔλSPR) on the Concentration 
of Troponin T Protein is a Logarithmic Relationship. (A) A Graph with a Linear x-axis 
and a (B) Graph with a Logarithmic x-axis. 
 

Control experiments were performed to ensure that the binding was in fact 

between the DNA aptamer and troponin T. To investigate this matter, a second protein 

was needed. Interleukin 6 (IL-6) has a molecular weight of 23,718 daltons while troponin 

T has a molecular weight of 35,760 daltons. IL-6 contains 185 amino acid residues while 

troponin has 298 residues. The availability of and similarity in size to troponin T is the 

reason why IL-6 was chosen for the control experiments. The sensor surface remained 

exactly the same. Cystamine and glutaraldehyde self-assembly chemistry was used 

followed by attachment of the same DNA aptamer (with binding specific towards 

troponin T). This DNA aptamer should only show binding towards troponin T and not 

towards other protein molecules. Figure 5.13 shows that this is indeed the case. A 

solution of 0 ng/mL of IL-6 was introduced and then tSPR measurement taken. This was 

repeated two more times. This gave a primary resonant peak at 756.53 nm. Then a high 

concentration (1000 ng/mL) solution of IL-6 was syringed into the channel and tSPR 
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measurement taken. This was also repeated two more times for a total of three 

measurements. The resonant peak did shift but only very slightly. The peak location was 

757.38 giving a peak shift of 0.85 nm with a very high concentration of IL-6 protein. 

 

 

Figure 5.13. Optical Transmission Spectrum through a Nanoledge Array Showing Little 
to No Peak Shift with Interleukin-6 (IL-6) Protein in the Running Solution. This 
Experiment with Troponin T DNA Aptamer Bound to the Sensor Surface and IL-6 in the 
Running Solution was Performed as a Control Experiment. 
 

Conclusion 

A metal/SiO2 film, atop a flow-over dam, with nanoledge arrays was investigated 

as a transmission SPR biosensor, utilizing the phenomena of extraordinary optical 

transmission. A flow-over fluidic dam was fabricated using a multi-layered resist (MLR) 

method. Micron sized fluorescent beads were shown to hang up on dams with undercut 

sidewalls and flow over top of dams with overcut sidewalls. FIB milling on top of the 

SiO2 capped dam became problematic with charging and drifting. This was solved with a 
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wrap of metallic foil around the chip before nanostructuring and afforded the ability to 

skip sputter coating and eventually being required to remove the coating before optical 

measurements. Arrays of nanoledge structures were used in the detection of Troponin T, 

one of the biomarkers for acute myocardial infarction (MI). SAM chemistry and DNA 

aptamers were used to functionalize the sensor surface. Troponin T protein bound to the 

DNA aptamer to give resonant peak shifts to longer wavelengths. A logarithmic 

relationship was found between increasing troponin concentration and the peak 

wavelength shift. A red shift of the resonant peak was observed as the refractive index 

increased at the sensor surface. 
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CHAPTER VI 

 
FABRICATION OF A PLASMONIC PHOTOCURRENT DEVICE 

 
 

Zheng Zeng, Taylor Mabe, Wendi Zhang, Bhawna Bagra, Zuowei Ji, Ziyu Yin, 
Kokougan Allado, Jianjun Wei. “Plasmon-exciton coupling in photosystem I 
based biohybrid photoelectrochemical cells.” ACS Applied Bio Materials. 2018. 

 

Overview 

 The light-induced property of photosystem I (PSI) has been utilized to convert 

solar energy to electrical energy in photoelectrochemical cells. Here we provide new 

results on the relationship between surface plasmon generation (SPG) efficiency of 

nanoslits and the experimentally obtained photocurrent by immobilizing PSI on the gold 

nanoslit electrode surfaces regarding different nanoslit widths. The photocurrent 

increases with the increment of SPG efficiency. This finding can be attributed to the 

phenomenon of plasmon-exciton coupling effect on the PSI in the nanoslits. The 

enhancement of photocurrent generation is discussed on the basis of plasmonic light 

trapping and plasmon-induced resonance energy transfer. 

KEYWORDS: photosystem I, surface plasmon resonance, plasmon-exciton coupling, 

photocurrent, photoelectrochemistry 

Introduction 

 Because of the photoelectric effect firstly discovered in 1839, photosystem I (PSI, 

∼500 kDa protein super-complex) has been widely used to efficiently capture sunlight for 
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achieving efficient biohybrid photo-energy conversion devices.1-3 In the photosynthesis 

process, photoexcited electrons are transported at a 1 µs time scale across the thylakoid 

membrane by using PSI as a photodiode at a quantum efficiency closing to 100%.4-5 

Within PSI, though an internal electron-transfer chain including chlorophylls, 

phylloquinones, and iron-sulfur cluster, the electron-transfer happens between the 

photoexciting P700 reaction center and iron-sulfur clusters terminating at the FB cluster.6-

7 Based on the rapid electron transfer and high energy conversion efficiency of PSI, 

Greenbaum firstly photoreduced platinum upon the chloroplast’s surface by using the 

reducing power of PSI.8 And then Gerster successfully measured the photocurrent using a 

single PSI and obtained a photocurrent of 10 pA by a near-field scanning optical 

microscopy.9 By electrochemically integrating an electrode with PSI, Baldo developed a 

photovoltaic device (solid-state) by employing PSI as the active species.10 Based on 

molecular wires on the gold electrode, a current density was obtained to be 88 nA/cm2, 

achieving an enhancement factor of 2.2 over that of the earlier reported system.11-12 

Moreover, the electrode with a nanostructured gold layer has been conducted to act as a 

positive factor by increasing the photocurrent of PSI.13-14 Over the past decade, to 

improve biohybrid devices, many researches have been conducted to electrochemically 

integrate an electrode with PSI via creating covalent attachments,15 increasing surface 

area,16 improving cell design,17 increasing film thickness,18 and applying semiconducting 

electrode,19 etc.  
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Conforming to these reports, light-harvesting enhancement has been considered to 

be one of the critical factors to design a biohybrid photoelectrochemical cell.20 To 

improve the coupling efficiency of plasmonic resonance and active species in biomaterial 

based systems, the strategies based on the plasmon-induced resonance energy transfer 

(PIRET)21-22 and metal particle-enhanced light emission have been developed.23-24 

Recently, to increase the light absorption and photocurrent generation of PSI, surface 

plasmon enhancement related coupling of plasmonic resonance and active species was 

used focusing on the localized surface plasmon resonance (LSPR) by improving the 

photoactivity of PSI with the gold nanoparticles due to confined collective electronic 

oscillations.25-29 This is because that the properties of PSI could be tuned by the enhanced 

fields derived from the spatially confined LSPR corresponding to the optical excitation 

at/near the resonant energies. Generally, LSPR and surface plasmon polariton (SPP) are 

two distinct forms of surface plasmon resonance. According to the origin of SPP, visible 

or near-infrared frequency electromagnetic waves occur at the interface of metal-

dielectric materials.30-31 To date, rare reports focus on the SPP effect on PSI and the 

metallic nanostructure in combination with PSI for implementation of its photoelectric 

functionality at the nanoscale, especially the fundamental relationship between the 

photocurrent generation and the surface plasmon generation (SPG) efficiency. Here the 

SPG efficiency is a term used to quantitatively describe how the surface waves scatter, 

launch, and propagate at the nanostructure interface by matching the continuous 

electromagnetic field quantities.30-31  
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In this work, we used a nanoslit design for an electrochemical setup and, for the first 

time, observed the photocurrent generation of PSI proteins in a nanoscale plasmonic 

structure. The PSI was extracted from spinach (Figure C1, Appendix C) with featured 

absorbance peaks at both 435 and 670 nm (Figure C2)32 The PSI proteins were 

immobilized at a nanoplasmonic electrochemical device for photocurrent measurements 

with light excitation. Each device was milled to have one slit of the width at 50 nm, 100 

nm, 200 nm, 300 nm, or 400 nm at the bridge center (Figures C3-C6). The present work 

considered using a semi-analytical SPG model and numerical simulations to demonstrate 

that the nanoslit width can induce changes in the photocurrent generation from the PSI 

proteins due to different SPG efficiencies. The results may offer new information to study 

the photovoltaic enhancement of PSI and give hints to develop an artificial light-

harvesting device. 

Materials and Methods 

PSI Preparation 

 Spinach leaves were purchased from a supermarket and used for the PSI 

extraction and purification. The steps of the extraction of thylakoid membranes from the 

spinach leaves and the isolation and purification of PSI complexes from the thylakoids 

via the methods of Ciesielski.6 

Fabrication of Nanoplasmonic Electrochemical Devices 

 We used AutoCAD to draw the sketch of a dark-field photomask and then used a 

high-resolution printer (25400 DPI) to print it on the transparency film. The design of the 
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photomask is shown in Figure C3. Glass slides (Globe diamond white) were used as 

substrates and were cleaned in a piranha bath (3:1 H2SO4/H2O2), rinsed with DI water, 

dried with a nitrogen stream, and cleaned in an oxygen plasma (200 W, 2 min). After 

that, we used the hot plate to dehydrate the substrates at 180 °C. A negative photoresist 

(JSR NFR 016 D2) was spin applied to the glass slides to a thickness of 3.5 µm, exposed, 

and developed. In contrast to the supplied data sheet, a substrate-priming step was 

omitted and an O2 plasma descum was added. Microscopy images and profilometry plots 

were obtained after each process step. Metal deposition was performed by evaporation 

(Kurt Lesker PVD75 e-beam evaporator). After reaching a base pressure of 1.0 x 10-6 

Torr, Ti was evaporated at a rate of 0.5 Å/s to a thickness of 4.6 nm, Au was evaporated 

at a rate of 4.4 Å/s to a thickness of 226.3 nm, then Ti was evaporated at a rate of 0.4 Å/s 

to a thickness of 4.4 nm. SiO2 was used as a capping layer and 100.1 nm was deposited 

atop the final Ti layer at a rate of 1.5 Å/s. We used the acetone bath to sonicate for the 

lift-off process. A positive photoresist (Shipley S1827) was spin coated onto the 

patterned substrate and exposed through the second photomask. The top oxide layer was 

dry etched with reactive ion etching (LAM Rainbow 4400) using a mixture of CF4/O2. 

The positive photoresist was stripped and a nanoslit was milled in the center of each 

substrate with focused ion beam milling (Zeiss Auriga). Each device was milled to have 

one slit (with a slit width of 50 nm, 100 nm, 200 nm, 300 nm, or 400 nm) at the bridge 

center (Figures C4-C5). 
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Immobilization of PSI on Gold Nanoslit Surfaces 

 The method for protein immobilization has been reported in detail previously.33 In 

brief, O2 plasma (South Bay Technologies PC2000 Plasma Cleaner) was used to clean the 

gold slide electrode for three minutes. A mixed self-assembled monolayer (SAM) of 11-

mercaptoundecanoic acid (Sigma Aldrich) and 8-mercapto-octanol (Sigma Aldrich) was 

formed by incubating in an absolute ethanol solution (ACROS Organics) containing a 1:2 

mole ratio of the two alkanethiols for 2 days. The SAM was activated by a 10 mM PBS 

solution with 0.5 mM EDC/NHS (Sigma Aldrich) for 2 hours. After rinsing with a 10 

mM PBS solution, the PSI was immobilized to the gold surfaces via incubating in a 10 

mM PBS solution with ~1 mM PSI for 2 hours.  

Electrochemical Measurement 

 Chronoamperometry (CA) photocurrent measurements were conducted using an 

electrochemical workstation (Bio-logic VMP3) with both sides of the gold slide as a 

testing system under a 0.2 V applied voltage in a homemade Faraday cage by the 

aluminum foil. Figure C6 shows the electrochemical device slide. A bridge center was 

fully covered by the electrolyte solution containing 20 mM methylene blue (MB) redox-

active mediator with 100 mM KCl in 10 mM PBS solution. We then used the copper tape 

piece to electrically connect either side of the electrode. The photo-induced measurement 

was carried out using the LS-1 white light source with a tungsten halogen lamp (Ocean 

Optics Inc.) connected with an optical fiber and the area for the nanoslit region was fully 

illuminated by the light source. Note that the external conditions include the light 
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excitation (without/with light) for different testing systems (SAM/gold slide without PSI 

immobilization and SAM/gold slide with PSI immobilization).  

Semi-analytical Analysis 

 With a semi-analytical model,30-31 the SPG efficiency, e, at the Au-glass interface 

of the nanoslit can be calculated as follows: 

 

 , (Eq. 1)  

which correlates to the SPG coefficient (α), nanoslit width (w), scaled width (w’), 

refractive index (n), dielectric constant (ε), and integration number (I) (see details in 

Appendix C). 

Finite-Difference Time-Domain (FDTD) Simulations 

 The electric or magnetic field intensity profiles of the nanoslit were calculated by 

a Lumerical FDTD method.31, 34 Considering the background of air, the refractive index 

was assumed to be 1.0 in the total mesh area. Perfectly matched layer (PML) was applied 

for the boundary conditions. The indices of Au and glass were obtained from the data of 

optical constants of solids. Electric-magnetic field distribution calculations were 

performed at different slit width. Using the Drude-Lorentz model, the transverse 

electric/magnetic (TE/TM) equations were obtained by a Fourier transform of the 

polarization.35  
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Results and Discussion 

We firstly study the photoelectric response of immobilized PSI on the gold slide 

electrodes through the mixed SAM (Figure 6.1). This strategy of covalent binding to the 

protein’s amino groups for immobilization may decrease PSI large-conformational 

motion.3, 36 The action spectrum of the PSI immobilized inside the nanoslit surfaces 

(Figure C7) was obtained by measuring the photocurrent in a 20 mM MB redox-active 

mediator (with -0.2 V vs. Ag/AgCl formal potential) associated with 100 mM KCl in 10 

mM PBS under light irradiation using the LS-1 white light source. Similar to the 

relaxation pathways occur in the interface of a semiconductor and an electrolyte, 

electron-hole pairs (e--h+) can undertake different pathways, which include electron 

transfer to redox species, electron transfer to the substrate, and electron-hole pair 

radiative recombination.37-38  

In this case, under light illumination of the PSI, an oxidized P700+ donor site and 

a reduced FB acceptor can be generated by the photon-induced electron-hole pairs 

separation. Consequently, a direct electron transfer would occur according to the 

following details. After photoexciting P700 center, the FB end will accept an electron 

from the photoexcited P700 center and then transfer it to the gold electrode through an 

internal electron-transfer chain. Gold electrode is an electron acceptor compatible with 

the FB cluster in PSI, leading to an increased electrode current. Meanwhile, before 

another photon can re-excite P700 center in the PSI, the oxidized P700+ center must be 

reduced by re-accepting a new electron. In our system, the MB in solution acts as 
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electron donors to the oxidized P700+ center (Figure 6.2a). Atomic coordinates from PDB 

entry 2O01 are used to make the structure of PSI.39  

 

 

Figure 6.1. A Schematic View of a Method for the PSI Immobilization with a SAM and a 
Setup for the Light Associated Electrochemistry Analysis of PSI.	
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Figure 6.2. (a) Illustration of the Electron Transfer from PSI to Au Slide Electrode with 
the Reaction-center Electron Transfer Chain. (b-f) Photocurrent Generation Analysis and 
Histograms for the Electrochemical Devices with Different Nanoslit Widths. 

 

Figure 6.2b-f show histogram distribution of photocurrent generation by the 

immobilized PSI at an applied voltage of 0.2 V in nanoslits. Figures C7-C8 show the 

representative CA measurements of nanoslit electrodes with or without immobilized PSI, 

respectively. In the CA measurements, the potential of the working electrode is stepped 

and recorded after 10 seconds of waiting time from the initial to the steady-state current. 

The photocurrent was recorded as a function of time from the photoexciting processes 

occurring at the side of nanoslit. The highest photocurrent (avg. ~181 nA by a 100 nm 
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nanoslit width device) and the lowest (avg.~76 nA by a 400 nm nanoslit width device) 

were obtained. Since the untreated gold nanoslits for all different widths have no obvious 

photocurrent generation under the light irradiation, we conclude that the photocurrent is 

originated from the PSI immobilized at the gold electrode surfaces due to the 

photoelectric effect. In accordance with a reported PSII-based photoelectrochemical 

cell,40 the current-voltage curve (Figure C9) of the electrochemical cell with PSI 

immobilization (using nanoslit width of 100 nm) also supports the photoactive role of PSI 

in photocurrent generation. Considering that PSI proteins should have either the acceptor 

side (FB) or the donor side (P700) in contact with the SAM-gold electrode to undergo a 

redox reaction,3, 7 the average value of the net photocurrent was obtained from 15 

measurements (chosen from 18 measurements including 2 nanoslit devices with the same 

nanoslit width × self-assembly performed on the same device 3 times × measurements 3 

times) for each nanoslit width device (Table C1). Note that 3 trials were failed (no 

photocurrent measured) possibly because of the release of chlorophyll or denature of PSI 

with the light irradiation. Using the excitation area of gold electrode about 18.2 µm2 

(fabrication information) with immobilized PSI, in our nanoscale device, the current 

density could be roughly obtained to be about 9.95 nA/µm2 for the 100 nm width nanoslit 

device. Considering that, in the centimeter-scale biohybrid photoelectrochemical cells, 

the photocurrent generation of PSI films on p-doped silicon can be obtained to be about 

875 µA/cm2,19 our results may suggest the good integration of photocurrent magnitude of 

10 pA created by a single PSI using such a nanoscale energy conversion device.9 
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Next, we move to study the relationship of SPG efficiencies with the nanoslit 

width and incident light wavelengths. Regarding the bounded SPP modes with the 

geometric diffraction presenting on the interface of a gold surface and a glass one, the 

SPP scattering coefficients and efficiencies at the slit apertures are calculated. The 

scheme in Figure 6.3a depicts the key parameters for the SPG calculation with respect to 

the geometry of the nanoslit and property of light source (a normally incident plane 

wave), including the slit width of w, the SPG coefficients at the Au-glass interface in an 

inverse direction (α+ and α-), the refractive index of glass (nglass of 1.41) and inside the 

slits (nair of 1). The SPG efficiency on one side of the aperture was obtained using Eq. 1 

presented earlier.  

After a numerical calculation by a Python script (Table C2) and an analytical 

technique, for one side of the nanoslit structure, the SPG efficiency e can be obtained.34 

As shown in Figure 6.3b, with the increase of light wavelength (λ from 600 nm to 1200 

nm) and scaled slit width (w’ from 0.1 to 1.0), the SPG efficiencies were demonstrated 

dependence as a function of λ and w’. The SPG efficiency is higher in the visible 

frequency region than that in the near-infrared region because of the stronger visible 

frequency electromagnetic waves occurring at the Au-glass interface. Considering that 

the optimal slit width is related to the optimal scaled slit width, a value of w’=0.26 is 

obtained to estimate the optimal slit width. For example, the optimal widths are w=0.18λ 

for the nanoslit with refractive index of 1.41. Moreover, according to different values for 
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w and λ, one can get different e values (Figure 6.3c, Table C3) and average SPG 

efficiencies (Table C1). 

 

 

Figure 6.3. (a) Illustration of the Key Parameters for the SPG Calculation with Respect to 
the Structure of the Nanoslit and Light Source. (b) The Plot of SPG Efficiencies e at the 
Au-glass Interface with Respect to λ and w’. (c) The Relationship of SPG Efficiencies e 
at the Au-glass Interface with λ at Different w. 

 

The electromagnetic field distribution of the nanoslit structure (without PSI 

immobilization) was further modeled via a FDTD method (Figure C10). A Fourier 
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transform polarization was initiated and implementing it into the FDTD formalism 

resulted in the TE/TM equations. The electromagnetic (EM) field distribution indicates 

the plasmonic intensity at the Au-glass interface with the strength of EM100 >EM50 

>EM200>EM300>EM400, which is consistent with the results of the nanoslit structure with 

PSI immobilization (Figure C11). It is interesting to compare the FDTD result with PSI 

immobilization to that without PSI with the same nanoslit width. Adding a bio-layer on 

the side of nanoslit decreases the plasmonic intensity due to the increase of refractive 

index. Note that the refractive index and thickness of the PSI film were estimated to be 

1.5 and 10 nm,41-42 respectively. The FDTD simulation agrees well with the semi-

analytical model results for SPG efficiencies from the five nanoslit devices. Hence, the 

stronger charge oscillation induced by the improved SPP excitation results in an 

enhanced EM field at the Au-glass interface.43-44  

Additionally, we used the CytoViva Hyperspectral imaging system to measure the 

light intensity in the nanoslit (Figure 6.4). The ENVI software was used to get the light 

intensity data in the center of the nanoslit by taking the image pixel by pixel. Spectra can 

be obtained from point to point and it gives the option to take the average spectra. We 

took the average spectra of each nanoslit 3 times to check the consistency and accuracy. 

The light intensity data is well consistent with the SPG efficiency of the electrochemical 

devices. More importantly, one absorbance peak wavelength of PSI (670 nm) locates 

within the range of light intensity peak wavelength (600-700 nm). These results suggest 



	

 
142 

that the plasmon-induced light trapping provides insight into the SPG efficiencies 

corresponding to the EM field distributions. 

 

 

Figure 6.4. (a) Light Intensity Measurements for Different Nanoslit Structures in 
Reflection Mode, (b) Peak Intensity Versus Different Nanoslit Structures.  

 

Figure 6.5 shows the photocurrent generation and SPG efficiency for the nanoslit 

electrochemical devices (D) as a function of nanoslit width. They both have the same 

order of D100 >D50 >D200>D300>D400. Regarding the plasmonic effects on the metal-

semiconductor photoelectrochemical cells,45 light trapping/scattering, direct electron 
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transfer (hot electron injection), and PIRET have been recognized as three major 

mechanisms.46 In this study, the photocurrent is originated from the electron transfer from 

immobilized PSI to the gold electrode, and the light intensity spectra in the nanoslits 

presents an overlap with the absorption peak of PSI. Hence, for this hybrid metal-biology 

system, it is expected that the plasmonic light trapping excitation and the PIRET between 

gold and PSI should play major roles in the enhanced photocurrent generation. 

Specifically, larger SPG efficiency (also called larger collective electron oscillations or 

larger electromagnetic near-field propagation) can concentrate more incident energy due 

to the larger combined dipole moment generation. This concentrated incident energy can 

be non-radiatively transferred to the PSI proteins though PIRET to generate more 

electron-hole pairs in PSI,47-48 resulting in more excited electrons inside the P700 center, 

thus more available P700+ donor sites and FB acceptor sites for better efficient electron 

exchange in PSI. As a result, more electrons from the FB end transfer to the gold 

electrode, leading to an increased photocurrent. Meanwhile, since plasmon resonance 

induced electron-hole separation potentially makes the kinetics of electron transfer faster, 

the gold electrode will receive more electrons under a unit time scale. Hence, the net 

photocurrent generation of the PSI is well consistent with the SPG efficiency of the 

electrochemical devices (Figure 6.5) with nanoslit width dependence and maximized at 

100 nm slit in this work. 
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Figure 6.5. Plot of Average Photocurrent in Experimental Measurements or Calculated 
SPG Efficiency Versus Nanoslit Width. 

 

Conclusions 

 This work demonstrates how surface plasmon resonance influence the 

photocurrent generation from PSI by immobilizing PSI on gold surfaces in a nanoslit. 

The energy conversion (photocurrent) is greatly enhanced, which is correlated to the SPG 

efficiency and EM field enhancement in the nanoslit. The results could be attributed to 

the phenomenon of plasmon-exciton coupling with the effects of plasmon-induced energy 

transfer and light trapping. This study offers promise to develop a novel photosystem I 

based biohybrid photoelectrochemical cell for high efficiency energy conversion. 
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CHAPTER VII 

 
CONCLUSION AND FUTURE CONSIDERATIONS 

 
 

The primary objective of the research within this dissertation was to develop new 

scientific knowledge and use that knowledge to create a point-of-care diagnostic device. 

The goal was to design, optimize, fabricate, and perform analyses with plasmonic 

biosensors. The theme of the work was centered on micro- and nanofabrication, surface 

functionalization, and plasmonic biosensing. The goal was to design and fabricate novel 

structures that would enhance the sensitivity and/or allow for the potential to detect 

analytes in complex samples, such as blood serum. In regards to the surface 

functionalization, the goal was to find chemical linkers and binding ligands (DNA 

aptamer vs. antibody), which gave an optimal performance for a plasmonic biosensor. 

After fabricating the structures and decorating the sensor surface with ligands, plasmonic 

sensing could ensue. A large portion of the dissertation was dedicated towards enhancing 

the sensitivity of the sensor. This was accomplished by adding an additional layer 

(bimetallic approach in Chapter II or a capping dielectric layer in Chapter III and V) and 

by novel nanostructures (nanoledge in Chapter III and V). Chapters IV and V were 

dedicated to the fabrication and use of a flow-over fluidic dam. 

A bimetallic nanoslit substrate was presented in Chapter II for an increase in 

sensitivity over gold equivalent devices. A device with a bilayer of Ag/Au layer was 
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chosen due to the great optical and electrical properties of silver with an outer layer of 

inert gold that would not oxidize upon contact with a sample solution. A 10% increase in 

bulk sensitivity was realized while the surface sensitivity was increased by 62%. This 

high increase in the surface sensitivity can be attributed to the short decay length of the 

plasmon wave with LSPR. This confined decay length affords high sensitivity near the 

metal surface. Cleaning the devices with oxygen generating species such as H2SO4 and 

H2O2 became problematic, as there was a reaction with silver. This made reusing the 

devices somewhat problematic.  

A novel nanoledge structure with a SiO2 capping layer was presented in Chapter 

III. The nanoledge structure, with a 50 nm inner slit and a 280 nm wide opening, was 

chosen to yield high sensitivity and large peak shifts along with an aperture that allowed 

protein delivery into the sensing area. Slits with widths less than 100 nm are needed for 

intense plasmon coupling, while a larger opening (280 nm) is needed to allow for 

proteins to easily enter into the sensing area for nanometer sized protein trapping and 

biosensing. The SiO2 capping layer was used to promote binding events to occur 

exclusively in the nano-cavity. TIRF imaging showed that proteins could diffuse their 

way into nanoledge structures, with a 280 nm open gap. TIRF imaging was performed on 

a straight nanoslits of similar size (100 nm and 300 nm) to investigate the protein 

migration behavior. Binding events between a monoclonal antibody and f-PSA were 

monitored with a wavelength peak shift.  
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Chapter IV served as a technical microfabrication chapter. A flow-over fluidic 

dam was designed and fabricated to decrease diffusion times of analytes to the sensing 

area, act as a barrier to exclude micron sized particles from the sensing area, and not clog 

like flow-through systems. Flow-over fluidic dams were fabricated with three different 

sidewall profiles: undercut, overcut, and T topped. The overcut sidewall profile was 

mandatory in creating a plasmonic biosensor because the sidewalls could be coated 

during metal evaporation yielding opaque sidewalls. The issue with transparent sidewalls 

was that light escaped from the sidewalls during a tSPR measurement. Fluidic dams with 

overcut sidewalls were fabricated using SU-8 photoresist with a multi-layered resist 

approach. SU-8 3005 was chosen because a DRIE tool was not available to etch deep 

trenches into a glass substrate and SU-8 had properties of interest. Those properties were 

that SU-8 3005 was optically transparent, was easily etched with a standard RIE tool, was 

a high refractive index material, showed good adhesion to SiO2 and gold films, and that 

thick layers could be applied and patterned. Using the MLR approach allowed for the 

sidewalls to have slopes between 50° and 70°, which falls in the range for the sidewalls to 

be coated when using a line-of-sight technique like PVD evaporation. Positive tone 

photoresists do have overcut profiles, but the slopes are typically closer to 85°. Also, no 

positive tone photoresist met all of the needs listed above for SU-8 3005. 

Troponin T biosensing was the topic of Chapter V. The fabricated fluidic dam 

structures were compared for their ability to allow micron sized fluorescent particles to 

pass over the dam. The undercut profile retained the microspheres while the overcut 
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profile allowed the microspheres to pass over the sensing area. This experiment gave a 

second reason why the overcut sidewall was needed. Self-assembly was used to attach 

DNA aptamers to the sensor surface. Binding events between the DNA aptamer and 

troponin T protein were monitored by a resonant peak shift. A logarithmic correlation 

was found between the protein concentration and the peak shift. IL-6 was used in the 

sample solution, as opposed to troponin T, for a control experiment. With a very large 

concentration of IL-6 protein in the sample, no notable peak shift was observed. 

Chapter VI was in regards to the fabrication and use of a photocurrent-generating 

device. A photoactive protein (PSI) was immobilized into a nanoslit. Investigated were 

the relationship between surface plasmon generation efficiency of nanoslit structures and 

the experimentally obtained photocurrent by immobilizing PSI on the gold nanoslit 

electrode surfaces regarding different nanoslit widths. The enhancement of photocurrent 

generation was on the foundation of plasmonic light trapping and plasmon-induced 

resonance energy transfer. 

Future work to follow the research outlined in this dissertation will be towards 

detecting multiple analytes at one time, called multiplexing. Multiple nanostructured 

arrays and multiple flow channels could be created to allow for on-chip analysis of 

several protein biomarkers during a single experiment. This would also allow for on-chip 

control experiments. The end goal is to create a commercial sensor that is sensitive, 

portable, and able to handle complex samples without any pre-treatment. All of the 

research presented in the preceding chapters were in buffer or diluted serum. The logical 
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next step would be to work with diluted whole blood and then whole blood. The fluidic 

dam presented in Chapter IV was solely for use in complex media, like whole blood 

samples. After speaking with health care workers and emergency responders, it became 

apparent that finger-prick blood samples have several benefits compared to a venous 

blood draw. For one, they are much easier to perform and cause less anxiety and pain for 

the patient. Additionally, only paramedics can perform venous blood draws, while all 

emergency care workers (EMS basic, EMS advanced, and paramedics) can perform 

finger-prick blood draws. Therefore, if the final device could work with finger-prick 

blood samples then that would be a benefit in the pre-hospital setting. The last future 

consideration would be to attach the detection chip to a smart phone. Transmission SPR 

with a nanostructured substrates allows for the complex optics, prism, and laser of 

Kretschmann SPR to be replaced with a simple white light and camera. Thus, using a 

smart phone as the light source, camera, and interfacing software would allow for the 

development of a truly portable sensor without the cost of the instrument. Only the chip 

and a plastic device to mount the chip near the phone would be needed. 
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APPENDIX A 
 

SUPPORTING INFORMATION FOR CHAPTER II 
 
 
Graphical Abstract 

 

An investigation of bimetallic (Ag/Au) nanoslit films with little-diffusing, long-term 
stable and temperature insensitive properties focusing on optical properties and refractive 
index sensitivity as a comparison to pure gold nanoslit films was conducted by using a 
semi-analytical analysis, FDTD simulation and SPR optical transmission. 
 
Experimental Section 

Fabrication of Metallic Film Nanoslit: The fabrication process is as follows: glass 

cleaning, thin film deposition, nanofabrication, and flow cell fabrication. Standard glass 

slides (75 x 25 x 1 mm, VWR) were used as substrates either as is or cut to size. The 

substrates were cleaned in a piranha bath (3:1 H2SO4:H2O2) followed by a DI water rinse 

(18.2 MΩ) then dried with nitrogen. Cleaned substrates were baked at 150 °C in an oven 

(282A, Fisher) while under vacuum. The clean, dried slides were placed into an electron 

beam evaporator (PVD75, Kurt Lesker) and pumped to a base pressure of 1.1 x 10-6 Torr. 

A 7kV e-beam sequentially coated the slides with 2.5 nm of Ti (0.4 Å/sec), 50.0 nm of 
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Ag (3.1 Å/sec), and 50.1 nm of Au (1.9 Å/sec) for the bimetallic devices and 2.7 nm of Ti 

(0.3 Å/sec) and 100.0 nm of Au (3.5 Å/sec) for the gold devices. All metals were 

purchased from Kurt Lesker. Titanium was used as an adhesion layer to promote the 

bonding of each noble metal to glass substrates. Titanium was chosen over the more 

commonly used chromium due to its smooth, level profile as well as the lower optical 

absorbance of titanium.1 The literature suggests that chromium is also more reactive to 

contaminants on glass surfaces, giving defects more frequently with chromium layers.1 

The film thickness of each metal was monitored via a quartz crystal microbalance (QCM) 

and later checked with a profilometer (Tencor P-10, KLA). Focused ion beam milling 

(Auriga Dual Beam FIB/SEM, Carl Zeiss) with upgraded software (NPVE, Fibics) was 

used to fabricate the nanoslit arrays. Custom made aluminum substrate holders were 

manufactured at a local machine shop and afforded a conductive path to ground inside the 

FIB/SEM without the need for conductive adhesives, which often diminished the 

transparency of the glass even after removal. The nanoslit arrays consisted of 50 slits 

milled into the metal. The slit dimensions were 50 nm x 20 µm or 100 nm x 20 µm. The 

nanoslit arrays covered a range of widths (22.1 µm to 36.8 µm), as various periods were 

investigated. For each periodicity, 50 slits were milled with a Ga+ beam using a dose of 

0.070 - 0.250 nC/µm2 for the bimetallic films and 0.140 – 0.700 nC/µm2 for the gold 

films. FIB probes of either 30kV:30pA or 30kV:50pA through an 80 µm aperture 

afforded 50 nm slits (± 6 nm depending on the probe alignment and focusing that day). 

The periodicities ranged from 400 nm to 700 nm which dictated the array widths.  For 
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each nanoslit array a corresponding reference box was milled a minimum distance of 1 

mm away from the nearest nanoslit array using a 30kV:4nA probe at 0.150 – 0.400 

nC/µm2 through a 700 µm FIB aperture. This gave a transparent window the same size 

(20 µm × 27 µm) as each nanoslit array and was used for reference measurements.  

Sample Characterization: Scanning electron microscopy (Auriga Dual Beam FIB/SEM, 

Carl Zeiss) was used to visualize the nanostructuring and to confirm the periodicity and 

dimensions of each nanoslit array and reference box. SEM images were captured using a 

secondary electron detector, a 5 kV acceleration voltage, and a 5.0 mm working distance. 

The dimensions of each array and reference box were also confirmed with profilometry 

(KLA Tencor, P-10) and atomic force microscopy (Agilent 5600 LS AFM). Transmission 

surface plasmon resonance (tSPR) was used to monitor binding events and local RI 

changes by a redshift in the primary resonant peak. A tungsten halogen light source 

(Ocean Optics, LS-1) with a spectral range of 360 - 2000 nm was fed through fiber optics 

into a holder that was designed in CAD then printed using a 3D printer. Fiber optic cables 

allowed for the placement and focusing of white light onto the underside of the 

substrate/flow cell. The light was collected by a 50X objective (Olympus LMPlanFLN) 

on an Olympus BX-41 microscope. The CCD of a Horiba Xplora was used for data 

collection. The temperature was monitored using an electric thermocouple thermometer 

(Amprobe TMD-52). Measurements were taken in real-time over the nanoslit array, a 

reference box of the same dimensions as the nanoslit array, and a dark background 

measurement, which corrected for the small amount of light that transmitted through the 
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thin metallic film. The metallic film, 100 nm in thickness, essentially blocked all of the 

light. Therefore, the light collected by the CCM was due to the EOT effect.2 The 

transmission was calculated as follows: 

 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 = 100× !"#$!!"#$

!"#.!!"#$
                                                                   (Eq. A1) 

SIMS analysis were performed at NC State University with a TOF SIMS V (ION TOF) 

instrument using a Bi+ liquid metal gun and a Cs+ sputtering gun.  

Chip and Flow-Chamber Setup: The metallic substrate with nanoslits functioned as the 

bottom to an enclosed flow cell with the top portion composed of either polyethylene 

(PE) or glass. This top substrate contained the flow channel, which had the dimensions 

50.0 x 5.0 x 0.4 mm and a total volume of 100 µL. PE devices were purchased from 

IBIDI and glass devices were fabricated using standard photolithographic techniques. 

Prior to sealing the two pieces together, both were cleaned with a series of solvents 

(acetone, isopropanol, DI water) and subjected to an oxygen plasma cleaning (Plasma 

Etch Inc. PE-100 Plasma Etch). An adhesive (3M, VHB) or UV epoxy (Microchem, SU-

8 2005) was used to affix the flow cell to the metallic substrate. A syringe pump 

(Harvard, PHD 2000) was used to manipulate fluids through the enclosed chip and was 

connected to a degasser (Biotech, 2003 Degasser) to remove air bubbles from the system. 

Self-assembled Monolayer Preparation: The self-assembly of alkanethiols on a cleaned 

substrate housed inside of a flow cell, were monitored using transmission surface 

plasmon resonance (tSPR). The substrates were cleaned by oxygen plasma for 5 min at 



	

 
159 

100 W in an oxygen plasma cleaner (South Bay Technologies PC-2000 Plasma Cleaner) 

at an O2 pressure of 177.2 mTorr and a DC bias of -773 volts. This was followed by a DI 

water rise, 0.1% Tween 20 rinse, and a second DI water rinse. The adsorption of 

alkanethiols onto the cleaned surface was monitored by a resonant peak shift. 16-

mercaptohexadecanoic acid (16-MHDA) was purchased from Sigma Aldrich and self-

assembled onto the metallic surfaces. A 5 mM ethanol solution of 16-MHDA was 

monitored in real-time using tSPR. The tSPR measurements were taken in air without 

SAM, in pure ethanol without SAM, and then 5 mM SAM solutions in ethanol were 

taken at 1 minute, 30 minutes, 1 hour, 2.5 hours, and then ever hour. The flow cell was 

then flushed with ethanol, dried with N2, and tSPR measurements taken. To regenerate 

the clean metallic surface the adsorbed SAM was removed by subjecting the substrates to 

oxygen plasma for 5 minutes at 100 W. The substrates were then exposed to sonication in 

a series of solvents (acetone, ethanol, water)3 and then cleaned by 20 minutes of 

UV/Ozone exposure4 using a Bioforce UV/Ozone ProCleaner. It has previously been 

demonstrated that plasma cleaning does not adversely affect the metallic surfaces and 

does not add roughness to the surface.5 This is in contrast to the roughness and pinholes6 

that can occur by some cleaning methods, such as the use of piranha, which is a mixture 

of sulfuric acid and hydrogen peroxide.  

Semi-analytical Analysis: In order to study nanoslit geometries that are of interest in 

practice and consider the geometric diffraction with the bounded surface plasmon (SP) 

modes launching on the flat interfaces surrounding the slits, the SP scattering coefficients 
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and efficiencies at the slit apertures need to be considered. With the semi-analytical 

model,2 the SP excitation efficiency, e, which is defined as the rate of SPP launching and 

scattering by matching the continuous electromagnetic fields quantities at the interface,2, 7 

for the Ag (or Au)/SiO2 interface at the bottom of the nanoslit aperture for one side of the 

aperture can be calculated using the following equations: 

𝑒(!"#$!%) = 𝛼(!"#$!%)! 𝑤 2 ! = 𝛼(!"#$!%)! 𝑤 2 ! =

!!!!!"#!
!

!!!"#
!

!!"/!"
! !

!!"/!"!!!"#!
!

!!
!! !!"#! !!"# !!!!

!
                                                              (Eq. A2) 

in which 

𝐼! = 𝑑𝑢 𝑠𝑖𝑛 𝜋𝑤!𝑢 𝜋𝑤!𝑢 !!
!! /𝑣                                                                   (Eq. A3) 

𝐼! = 𝑑𝑢 !"# !!"! ′! !"# !! ′! !! ′!

! !! !!"#!
! !!"#$!%!!!"#!

! ! !
∞
!∞                                                              (Eq. A4) 

𝑤! = 𝑛!"#!𝑤 𝜆                                                                                                      (Eq. A5) 

Similarly, for the Au/medium interface at the top of the nanoslit aperture (blue), e is 

given by 

𝑒 !"# = 𝛼 !"#
! 𝑤! 2 ! = 𝛼 !"#

! 𝑤! 2 ! = 

!!!!!"#
!

!!!"#

!!"
! !

!!"!!!"#
!

!!!

!! !!"# !!"# !!!!!

!
          (Eq. A6) 

with 

𝐼!! = 𝑑𝑢 𝑠𝑖𝑛 𝜋𝑤!𝑢 𝜋𝑤!𝑢 !!
!! /𝑣                                                                   (Eq. A7) 

𝐼!′ = 𝑑𝑢 !"# !!"! ′! !"# !! ′! !! ′!

! !! !!"#
! !!"!!!"#

! ! !
∞
!∞  (Eq. A8) 
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ℎ𝑒𝑟𝑒𝑤! = 𝑛!"#𝑤! 𝜆, (Eq. A9) 

where e is the SP generation efficiency, α is the SP generation coefficient, w is the width 

of the nanoslit structure, ε is the dielectric constant, n is the refractive index, I is the 

integration calculation, w’ represents the scaled width and u and v are applied for 

numerical integration with u2+v2=1. 

Finite-Difference Time-Domain (FDTD) Simulations: Numerical simulations were 

conducted using the FDTD method. A three-dimensional (3D) FDTD method was used to 

calculate the light transmission and electric-magnetic field intensity profiles of the 

nanoslit arrays along the metallic films with the following simulation details. The total 

mesh area had a background RI of 1.0 (air). Periodic boundary conditions (BCs) and 

perfectly matched layer (PML) BCs were applied along x-, y-, and z-boundaries of the 

unit cell, respectively. The indices of Au, Ag and SiO2 followed the data of optical 

constants of solids. Light transmission calculations were performed on arrays with a 50 

nm slit width and a periodicity of 450 nm, 500 nm, or 550 nm. Electric-magnetic field 

distribution calculations were performed on 50 nm or 100 nm slits with a 450 nm 

periodicity. Using the Drude-Lorentz model, a Fourier transform of the polarization was 

used in the model and implementing it into the FDTD formalism resulted in the 

transverse electric (TE) and transverse magnetic (TM) equations. The components of Ex, 

Ey, and Hz can be used to solve TE equations and those of Hx, Hy, and Ez can be used to 

solve TM equations, respectively. 

 
 



	

 
162 

Supporting Figures and Data Tables 
 
 

 
Figure A1. SEM Images of a Representative Au Nanoslit Array with 50 nm Width and a 
Periodicity of (a) 550 nm (b) 600 nm (c) 650 nm (d) 700 nm, Respectively. 
 

Semi-analytical analysis results:  
 
 
Table A1 
 
I0 and I1 for Silver at Different Wavelengths When the Refractive Index nSiO2 is 1.41 (I0 
Equals to Each Other for Different λ) 
 
  600nm 

ε= 
-15.97+ 

2.11i	

700nm 
ε= 

-23.04+ 
2.59i	

800nm 
ε= 

-31.19+ 
3.03i	

900nm 
ε= 

-40.53+ 
3.47i	

1000nm 
ε= 

-51.06+ 
3.92i	

1100nm 
ε= 

-62.80+ 
4.37i	

1200nm 
ε= 

-75.76+ 
4.83i	

W’	 I0	 I1	 I1	 I1	 I1	 I1	 I1	 I1	

0.1	 3.09-
4.09i	 0.18-2.85j	 0.31-2.89j	 0.40- 

2.91j	 0.47-2.92j	 0.52-2.93j	 0.57- 
2.94j	 0.60-2.94j	

0.2	 2.94-
2.61i	 0.89-2.46j	 1.04-2.47j	 1.14- 

2.47j	 1.21-2.47j	 1.27-2.47j	 1.31- 
2.46j	 1.35-2.46j	

0.3	 2.72-
1.69i	 1.38-1.89j	 1.52-1.87j	 1.62- 

1.84j	 1.69-1.82j	 1.75-1.80j	 1.79- 
1.79j	 1.83-1.77j	

0.4	 2.43-
1.05i	 1.60-1.25j	 1.72-1.19j	 1.81- 

1.14j	 1.87-1.10j	 1.91-1.07j	 1.95- 
1.04j	 1.98-1.02j	

0.5	 2.13-
0.64i	 1.56-0.65j	 1.65-0.56j	 1.71- 

0.50j	 1.76-0.44j	 1.79-0.40j	 1.82- 
0.37j	 1.84-0.34j	
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Table A1 
 
Cont. 
 
  600nm 

ε= 
-15.97+ 

2.11i	

700nm 
ε= 

-23.04+ 
2.59i	

800nm 
ε= 

-31.19+ 
3.03i	

900nm 
ε= 

-40.53+ 
3.47i	

1000nm 
ε= 

-51.06+ 
3.92i	

1100nm 
ε= 

-62.80+ 
4.37i	

1200nm 
ε= 

-75.76+ 
4.83i	

0.6	 1.82-
0.34i	 1.32-0.18j	 1.38-0.08j	 1.41- 

0.01j	
1.44+ 
0.04j	

1.45+ 
0.09j	

1.46+ 
0.13j	

1.47+ 
0.16j	

0.7	 1.54-
0.18i	

0.98+ 
0.10j	

1.00+ 
0.19j	

1.01+ 
0.26j	

1.01+ 
0.31j	

1.01+ 
0.35j	

1.01+ 
0.38j	

1.01+ 
0.41j	

0.8	 1.30-
0.10i	

0.62+ 
0.19j	

0.62+ 
0.26j	

0.61+ 
0.31j	

0.60+ 
0.35j	

0.59+ 
0.38j	

0.58+ 
0.40j	

0.57+ 
0.42j	

0.9	 1.11-
0.06i	

0.34+ 
0.13j	

0.32+ 
0.17j	

0.30+ 
0.20 j	

0.28+ 
0.22j	

0.27+ 
0.24j	

0.26+ 
0.25j	

0.25+ 
0.26j	

1.0	 0.97-
0.07i	 0.17-0.02j	 0.15-0.01j	 0.14+ 

0.00j	
0.12+ 
0.01j	

0.11+ 
0.01j	

0.10+ 
0.02j	

0.09+ 
0.02j	
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Table A2 
 
I0 and I1 for Gold at Different Wavelengths When the Refractive Index nSiO2 is 1.41 (I0 
Equals to Each Other for Different λ) 
 
  600nm 

ε= 
-10.21+ 

1.43i	

700nm 
ε= 

-17.94+ 
1.61i	

800nm 
ε= 

-26.27+ 
1.85i	

900nm 
ε= 

-35.80+ 
2.43i	

1000nm 
ε= 

-46.05+ 
3.11i	

1100nm 
ε= 

-57.32+ 
3.87i	

1200nm 
ε= 

-68.98+ 
4.68i	

W’	 I0	 I1	 I1	 I1	 I1	 I1	 I1	 I1	

0.1	 3.09-4.09i	 -0.02-2.76j	 0.23-2.85j	 0.35-2.89j	 0.44-2.91j	 0.50-2.92j	 0.55-2.93j	 0.58-
2.94j	

0.2	 2.94-2.61i	 0.67-2.41j	 0.94-2.45j	 1.08-2.46j	 1.18-2.47j	 1.24-2.47j	 1.29-2.46j	 1.33-
2.46j	

0.3	 2.72-1.69i	 1.16-1.90j	 1.42-1.87j	 1.56-1.85j	 1.66-1.83j	 1.72-1.81j	 1.77-1.79j	 1.81-
1.78j	

0.4	 2.43-1.05i	 1.39-1.31j	 1.63-1.22j	 1.75-1.16j	 1.84-1.12j	 1.89-1.08j	 1.93-1.05j	 1.97-
1.03j	

0.5	 2.13-0.64i	 1.40-0.75j	 1.58-0.61j	 1.67-0.53j	 1.73-0.47j	 1.77-0.42j	 1.80-0.38j	 1.83-
0.35j	

0.6	 1.82-0.34i	 1.21-0.31j	 1.33-0.14j	 1.39-0.05j	 1.42+ 
0.02j	

1.44+ 
0.07j	

1.46+ 
0.11j	

1.47+ 
0.14j	

0.7	 1.54-0.18i	 0.92-0.02j	 0.98+ 
0.13j	

1.00+ 
0.22j	

1.00+ 
0.29j	

1.01+ 
0.33j	

1.01+ 
0.37j	

1.01+ 
0.39j	

0.8	 1.30-0.10i	 0.61+ 
0.09j	

0.62+ 
0.22j	

0.61+ 
0.28j	

0.60+ 
0.33j	

0.59+ 
0.37j	

0.58+ 
0.39j	

0.57+ 
0.41j	

0.9	 1.11-0.06i	 0.35+ 
0.06j	

0.33+ 
0.14j	

0.31+ 
0.18j	

0.29+ 
0.21j	

0.28+ 
0.23j	

0.26+ 
0.24j	

0.25+ 
0.25j	

1.0	 0.97-0.07i	 0.19-0.06j	 0.16-0.02j	 0.15-0.00j	 0.13+ 
0.01j	

0.12+ 
0.01j	

0.11+ 
0.01j	

0.10+ 
0.02j	
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Table A3 
 
I’0 and I’1 for gold at different wavelengths when the refractive index nair is 1.0 (I’0 equals 
to each other for different λ) 
 
  600nm 

ε= 
-10.21+ 

1.43i	

700nm 
ε= 

-17.94+ 
1.61i	

800nm 
ε= 

-26.27+ 
1.85i	

900nm 
ε= 

-35.80+ 
2.43i	

1000nm 
ε= 

-46.05+ 
3.11i	

1100nm 
ε= 

-57.32+ 
3.87i	

1200nm 
ε= 

-68.98+ 
4.68i	

w’	 I’0	 I’1	 I’1	 I’1	 I’1	 I’1	 I’1	 I’1	

0.1	
3.09-4.09i	 0.27-2.89i	 0.44-2.92i	 0.53-2.93i	 0.59-2.94i	 0.63-2.94i	 0.67-2.95i	

0.69- 
2.95i	

0.2	
2.94-2.61i	 0.99-2.48i	 1.18-2.47i	 1.27-2.47i	 1.34-2.46i	 1.39-2.46i	 1.42-2.45i	

1.45- 
2.45i	

0.3	
2.72-1.69i	 1.48-1.89i	 1.66-1.83i	 1.75-1.80i	 1.82-1.78i	 1.86-1.76i	 1.90-1.75i	

1.92- 
1.74i	

0.4	
2.43-1.05i	 1.69-1.22i	 1.84-1.12i	 1.92-1.06i	 1.97-1.03i	 2.01-1.00i	 2.04-0.97i	

2.06- 
0.96i	

0.5	
2.13-0.64i	 1.63-0.60i	 1.74-0.47i	 1.79-0.40i	 1.83-0.35i	 1.85-0.31i	 1.87-0.28i	

1.89- 
0.26i	

0.6	
1.82-0.34i	 1.37-0.12i	

1.43+ 
0.02i	

1.45+ 
0.09i	

1.47+ 
0.15i	

1.48+ 
0.18i	

1.49+ 
0.21i	

1.49+ 
0.24i	

0.7	
1.54-0.18i	

1.00+ 
0.16i	

1.01+ 
0.28i	

1.01+ 
0.35i	

1.01+ 
0.40i	

1.00+ 
0.43i	

1.00+ 
0.46i	

1.00+ 
0.48i	

0.8	
1.30-0.10i	

0.62+ 
0.24i	

0.60+ 
0.33i	

0.58+ 
0.38i	

0.57+ 
0.41i	

0.56+ 
0.44i	

0.55+ 
0.45i	

0.54+ 
0.47i	

0.9	
1.11-0.06i	

0.33+ 
0.16i	

0.29+ 
0.21i	

0.27+ 
0.24i	

0.25+ 
0.26i	

0.24+ 
0.27i	

0.23+ 
0.28i	

0.22+ 
0.28i	

1.0	
0.97-0.07i	 0.16-0.01i	

0.13+ 
0.01i	

0.11+ 
0.01i	

0.10+ 
0.02i	

0.09+ 
0.02i	

0.08+ 
0.02i	

0.07+ 
0.02i	
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Figure A2. e(top) for Both the Bimetallic Nanoslit Structure and Au Nanoslit Structure. 
 
 

 

Figure A3. FDTD Simulation of Transverse Electro-magnetic Field Intensity for the 50-
450 nm Gold Nanoslit Structure with Transverse Electric Field Intensity (Top) and 
Transverse Magnetic Field Intensity (Bottom). 
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APPENDIX B 
 

SUPPORTING INFORMATION FOR CHAPTER III 
 
	
Methods 

Semi-analytical analysis and FDTD simulations 

With the semi-analytical model, the SP excitation efficiency e for one side of the 

aperture is readily calculated with the following equations: 

𝑒! = α!! w! 2 ! = α!! w! 2 ! = !!!
′ !!!

π!!!
ε! !

ε!!!
!

!!
!! !! !! !!

′ !!

!
                         

in which 

I! = du sin πw!
′ u πw!

′ u !∞
!! /v                                                                   

I! = du !"# !!π!!
′ ! !"# π!!

′ ! π!!
′ !

! !! !!!/ ε!!!!
! !

∞
!! , and 

w!
′ = n!w! λ                                                                                                              

 

𝑒! = α!! w! 2 ! = α!! w! 2 ! = !!!
′ !!!

π!!
ε! !

ε!!!
!

!!′

!! !! !! !!
′ !!′

!
                        

with 

I!′ = du sin πw!
′ u πw!

′ u !∞
!! /v                                                                   

I!′ = du !"# !!π!!
′ ! !"# π!!

′ ! π!!
′ !

! !! !!!/ ε!!!!
! !

∞
!! , and 

w!
′ = n!w! λ                                                                                                              

Similarly, for the Au/medium interface at the top of the nanoledge aperture (blue), e is 

given by 

𝑒! = α!! w! 2 ! = α!! w! 2 ! = !!!
′ !!!

π!!
ε! !

ε!!!
!

!!′′

!! !! !! !!
′ !!′′

!
                         

with 
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I!′′ = du sin πw!
′ u πw!

′ u !∞
!! /v,                          

I!′′ = du !"# !!π!!
′ ! !"# π!!

′ ! π!!
′ !

! !! !!!/ ε!!!!
! !

∞
!! , and 

w!
! = n!w! λ, 

where e is the SP generation efficiency, α is the SP generation coefficient, w is the width 

of the nanoledge structure, ε is the dielectric constant, n is the refractive index, I is the 

integration calculation, w’ represents the scaled width and u and v are applied for 

numerical integration with u2+v2=1. 

Moreover, FDTD simulations reiterate the previous study by adding additional 10 nm 

SiO2 film at the top of Au layer. Refractive index of the SiO2 film used in calculations 

was equal to 1.41.1 

	
Table B1 
 
The SP Generation Efficiency e1, e2, e3 for the Nanoledge Geometry w2/w1 of 280 -50nm 
with Different n 
 

n1, n2, n3, n4	 e1	 e2	 e3	 Δe	

n1=1.45, n2=n3=1, n4=1.41	 0.48	 0.18	 0.25	  

n1=1.45, n2=n3=1.2, n4=1.41	 0.38	 0.25	 0.20	 -0.08	

n1, n2, n3, n4	 e1	 e2	 e3	 Δe	

n1=1.45, n2=n3=n4=1	 0.48	 0.18	 0.16	  

n1=1.45, n2=n3=1, n4=1.2	 0.48	 0.18	 0.20	 0.04	

n1=1.45, n2=n3=n4=1.2	 0.38	 0.25	 0.15	 -0.04	

n1=1.45, n2=n3=1.2, n4=1	 0.38	 0.25	 0.13	 -0.06	
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Table B2 
 
The SP generation efficiency e1, e2, e3 for the nanoledge geometry w2/w1 of 280 -50 nm 
with different bulk refractive index (n1=1.45, n4=1.41, and n2=n3=1.0-1.5). 
 

n2 = n3	 e1	 e2	 e3	 Δe	

1.0	 0.48	 0.18	 0.25	 0	

1.1	 0.42	 0.21	 0.23	 -0.05	

1.2	 0.38	 0.25	 0.20	 -0.08	

1.3	 0.34	 0.28	 0.18	 -0.11	

1.4	 0.31	 0.32	 0.15	 -0.14	

1.5	 0.28	 0.35	 0.12	 -0.16	
 

Table B3 
 
The SP Generation Efficiency e1, e2, e3 for the Nanoledge Geometry w2/w1 of 280nm-
50nm with Different Bulk Refractive Index (n1=1.45, n4=1, and n2=n3=1.0-1.5) 
 

n2 = n3	 e1	 e2	 e3	 Δe	

1.0	 0.48	 0.18	 0.16	 0	

1.1	 0.42	 0.21	 0.16	 -0.03	

1.2	 0.38	 0.25	 0.15	 -0.04	

1.3	 0.34	 0.28	 0.15	 -0.05	

1.4	 0.31	 0.32	 0.14	 -0.05	

1.5	 0.28	 0.35	 0.13	 -0.06	
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Figure B1. FDTD Calculation of the Peak Wavelength of 280-50 nm Nanoslit System vs. 
Refractive Indices of Bulk Solutions. 
 
 

	
 
Figure B2. Movie Screenshots of the TE Field Propagation through the Simulation 
Volume of 280-50 nm Nanoledge System with SiO2. The Time of Each Screenshot 
Shows the Elapsed Time of the Movie. 
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Figure B3. SEM Image of Nanoslits (100 nm Width) with Period of 5.4 µm. 

 

 

Figure B4. Optical Transmission through a Nanoledge Device. 
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Figure B5. Design of Dark Field Photomask for Optical Lithography. Not Shown to 
Scale. 
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Figure B6. Lithography Process for Fabrication of the Flow Channel with Dam 
Structures.  
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APPENDIX C 
 

SUPPORTING INFORMATION FOR CHAPTER VI 
 
1. Methods 

Semi-analytical Analysis: With a semi-analytical model,1 the SPG efficiency, e, for the 

Au/glass interface at the bottom of the nanoslit aperture for one side of the aperture can 

be calculated using Eq. 1 from Chapter VI, in which 

 

 ( ) ( )
2

' '
0 sin / /I du wu wu vπ π

∞

−∞
⎡ ⎤= ⎣ ⎦∫  (Eq. C1)  

 
( ) ( ) ( )

( ){ }
' ' '

1 1/22 2
1 1

exp sin /

/

i wu wu wu
I du

v v n n

π π π

ε

∞

−∞

−
=

⎡ ⎤+ +⎣ ⎦
∫  (Eq. C2) 

 '
1 /w n w λ= , (Eq. C3) 

where e is the SPG efficiency, α is the SPG coefficient, w is the width of the nanoslit 

structure, ε is the dielectric constant, n is the refractive index, I is the integration 

calculation, w’ represents the scaled width, λ is the incident light wavelength, and u and v 

are applied for numerical integration with u2+v2=1. 

  



	

 
176 

2. Results 

 

Figure C1. SDS-PAGE of PSI Complexes from Spinach. Extrude Extract and Label 
Methods were Prepared as Other Reports.2,3 
 

 

Figure C2. UV-Vis Absorption Spectrum of Purified PSI Complexes Performed in a 
Solution of 10 mM PBS. 
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Figure C3. Illustration of the Protocol for Fabrication of the Electrochemical Device. 
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Figure C4. SEM Images of the Bridge Centers. 
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Figure C5. SEM Images of the Bridge Center Slit (Width of 50 nm, 100 nm, 200 nm, 300 
nm, or 400 nm). 
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Figure C5. Cont. 
	
	

	

Figure C6. Electrochemical Device Images. 
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Figure C7. Representative Chronoamperometry (CA) Measurements of the Gold Slide 
Electrode with PSI Immobilization before and after Light Irradiation. 
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Figure C8. Representative Chronoamperometry (CA) Measurements of the Gold Slide 
Electrode without PSI Immobilization before and after Light Irradiation. 
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Figure C9. The Current-voltage Curve of the Gold Slide Electrode (100 nm Nanoslit) 
with PSI Immobilization in the Presence/Absence of Light Irradiation.  
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Figure C10. FDTD Simulation of Transverse Electro-magnetic Field Intensity for 
Different Nanoslit Structures without PSI Immobilization (E: Transverse Electric Field 
Intensities; H: Transverse Magnetic Field Intensity). The Units of Electric Field Intensity 
(E2) and Magnetic Field Intensity (H2) are (V/m)2 and (A/m)2, Respectively. 
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Figure C11. FDTD Simulation of Transverse Electro-magnetic Field Intensity for 
Different Nanoslit Structures with PSI Immobilization. The Thickness of PSI Film was 
Estimated to be 10 nm and Its Refractive Index was Estimated to be 1.5. (E: Transverse 
Electric Field Intensities; H: Transverse Magnetic Field Intensity). The Units of Electric 
Field Intensity (E2) and Magnetic Field Intensity (H2) are (V/m)2 and (A/m)2, 
Respectively. 
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Table C1 
 
Photocurrent and Surface Plasmon Generation Efficiency Calculation for Different 
Nanoslits 
	

Nanoslit Width (nm)	 Photocurrent (nA)	 SPG Efficiency	

50	 157±78	 0.236±0.122	

100	 181±89	 0.269±0.089	

200	 112±53	 0.223±0.044	

300	 90±47	 0.153±0.016	

400	 76±41	 0.087±0.040	
	
 
Table C2 
 
I0 and I1 for Gold at Different Wavelengths When the Refractive Index n1 is 1.41 (I0 
equals to Each Other for Different λ) 
 
  600nm 

ε= 
-10.21+ 

1.43i	

700nm 
ε= 

-17.94+ 
1.61i	

800nm 
ε= 

-26.27+ 
1.85i	

900nm 
ε= 

-35.80+ 
2.43i	

1000nm 
ε= 

-46.05+ 
3.11i	

1100nm 
ε= 

-57.32+ 
3.87i	

1200nm 
ε= 

-68.98+ 
4.68i	

W’	 I0	 I1	 I1	 I1	 I1	 I1	 I1	 I1	

0.1	 3.09-4.09i	 -0.02-
2.76j	 0.23-2.85j	 0.35-2.89j	 0.44-2.91j	 0.50-2.92j	 0.55-2.93j	 0.58-2.94j	

0.2	 2.94-2.61i	 0.67-2.41j	 0.94-2.45j	 1.08-2.46j	 1.18-2.47j	 1.24-2.47j	 1.29-2.46j	 1.33-2.46j	

0.3	 2.72-1.69i	 1.16-1.90j	 1.42-1.87j	 1.56-1.85j	 1.66-1.83j	 1.72-1.81j	 1.77-1.79j	 1.81-1.78j	

0.4	 2.43-1.05i	 1.39-1.31j	 1.63-1.22j	 1.75-1.16j	 1.84-1.12j	 1.89-1.08j	 1.93-1.05j	 1.97-1.03j	

0.5	 2.13-0.64i	 1.40-0.75j	 1.58-0.61j	 1.67-0.53j	 1.73-0.47j	 1.77-0.42j	 1.80-0.38j	 1.83-0.35j	

0.6	 1.82-0.34i	 1.21-0.31j	 1.33-0.14j	 1.39-0.05j	 1.42+ 
0.02j	

1.44+ 
0.07j	

1.46+ 
0.11j	

1.47+ 
0.14j	

0.7	 1.54-0.18i	 0.92-0.02j	 0.98+ 
0.13j	

1.00+ 
0.22j	

1.00+ 
0.29j	

1.01+ 
0.33j	

1.01+ 
0.37j	

1.01+ 
0.39j	
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Table C2 
 
Cont. 
 
  600nm 

ε= 
-10.21+ 

1.43i	

700nm 
ε= 

-17.94+ 
1.61i	

800nm 
ε= 

-26.27+ 
1.85i	

900nm 
ε= 

-35.80+ 
2.43i	

1000nm 
ε= 

-46.05+ 
3.11i	

1100nm 
ε= 

-57.32+ 
3.87i	

1200nm 
ε= 

-68.98+ 
4.68i	

W’	 I0	 I1	 I1	 I1	 I1	 I1	 I1	 I1	

0.8	 1.30-0.10i	 0.61+ 
0.09j	

0.62+ 
0.22j	

0.61+ 
0.28j	

0.60+ 
0.33j	

0.59+ 
0.37j	

0.58+ 
0.39j	

0.57+ 
0.41j	

0.9	 1.11-0.06i	 0.35+ 
0.06j	

0.33+ 
0.14j	

0.31+ 
0.18j	

0.29+ 
0.21j	

0.28+ 
0.23j	

0.26+ 
0.24j	

0.25+ 
0.25j	

1.0	 0.97-0.07i	 0.19-0.06j	 0.16-0.02j	 0.15-0.00j	 0.13+ 
0.01j	

0.12+ 
0.01j	

0.11+ 
0.01j	

0.10+ 
0.02j	

 
	
Table C3 
 
Surface Plasmon Generation Efficiency Calculation under Different Incident 
Wavelengths for Different Nanoslits 
	
 50 nm	 100 nm	 200 nm	 300 nm	 400 nm	

600 nm	 0.46	 0.42	 0.29	 0.12	 0.02	

700 nm	 0.33	 0.34	 0.26	 0.15	 0.05	

800 nm	 0.24	 0.29	 0.24	 0.16	 0.08	

900 nm	 0.20	 0.25	 0.22	 0.17	 0.10	

1000 nm	 0.17	 0.22	 0.20	 0.16	 0.11	

1100 nm	 0.14	 0.19	 0.18	 0.16	 0.12	

1200 nm	 0.11	 0.17	 0.17	 0.15	 0.13	
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