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Abstract: 
 
Accurate estimates of the cumulative incidence of SARS-CoV-2 infection remain elusive. 
Among the reasons for this are that tests for the virus are not randomly administered, and that the 
most commonly used tests can yield a substantial fraction of false negatives. In this article, we 
propose a simple and easy-to-use Bayesian model to estimate the infection rate, which is only 
partially identified. The model is based on the mapping from the fraction of positive test results 
to the cumulative infection rate, which depends on two unknown quantities: the probability of a 
false negative test result and a measure of testing bias towards the infected population. 
Accumulating evidence about SARS-CoV-2 can be incorporated into the model, which will lead 
to more precise inference about the infection rate. 
 
Keywords: Bayesian inference | partial identification | measurement error | non-random 
sampling 
 
Article: 
 
1. Introduction 
 
Since its emergence in late 2019, the spread of the new severe acute respiratory coronavirus 2 
(SARS-CoV-2) and COVID-19, the illness caused by the virus, has become a global 
pandemic (Wiersinga et al., 2020). While quantitative data about the spread of SARS-CoV-2 
continues to accumulate, concerns remain about data reliability and measurement error. For 
example, estimating the fatality rate of COVID-19 is complicated by the fact that not all cases of 
COVID-19 are reported and included in public health statistics, and the decision whether or not 
to attribute a death to COVID-19 can be difficult (Basu, 2020). 
 
In this article, we consider the problem of estimating the cumulative incidence of infection (for 
simplicity referred to as the infection rate), which still remains largely unknown (Brown and 
Walensky, 2020). From a public health perspective, estimating and monitoring infection rates is 
critical both for predicting the demands on the healthcare system and for understanding the 
proportion of the population that remains vulnerable to infection. One way to learn about the 
infection rate is to estimate the presence of antibodies to the virus in large, population-based 
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samples (e.g., Havers et al., 2020, Stringhini et al., 2020). A difficulty with this approach is that 
infection rate estimates are difficult to update in real time. Also, antibody levels tend to decrease 
over time; an undetectable level therefore does not guarantee that an individual was not infected 
with SARS-CoV-2 at some point in the past (Patel et al., 2020). 
 
An alternative approach, and the focus of this paper, is to estimate infection rates from 
cumulative testing data. These data are frequently updated, which enables real-time monitoring 
of the spread of infection. Testing data, however, present two major challenges. First, SARS-
CoV-2 tests are not randomly assigned to individuals. In practice, receiving a test is more likely 
for individuals who show symptoms of COVID-19 and individuals who face a higher risk of 
exposure to the virus (e.g., healthcare workers). The infection rate among tested individuals is 
then likely to overestimate the infection rate in the general population. Second, emerging 
evidence suggests that the sensitivity of the reverse transcription-polymerase chain reaction (RT-
PCR) test, the most common test for an active SARS-CoV-2 infection, can be as low as 
70% (e.g., West et al., 2020). Put differently, the probability of a false negative—the event where 
an infected individual has a negative test result—can be as high as 30%. This implies that it is 
also possible that the actual infection rate is significantly higher than the observed fraction of 
positive test results. 
 
Manski and Molinari (2020) show that the lack of random testing and the inaccuracy of tests 
imply that the infection rate is only partially identified. They derive non-trivial parameter 
bounds, but, as evident from their Table 2, estimates of the bounds can be very far apart. Stoye 
(2020) notes the width of the bounds, and, similar in spirit to the approach taken here, uses prior 
bounds on test accuracy and the selection of test subjects to tighten the bounds on the prevalence. 
Another approach, by Sacks et al. (2020), uses testing from non-Covid hospital patients to 
provide bounds. Both papers, as well as Manski (2020) and this paper, focus on the period 
prevalence or cumulative incidence: the total fraction of the population who have been infected 
over a certain time period. In contrast, Peracchi and Terlizzese (2020) focus on bounding 
the point prevalence: the percentage of people who are infected at a given point in time. 
 
In this paper, we make two contributions. First, we present a simple way, similar to Stoye 
(2020), to parameterize the relation between the (observed) rate of positive test results and the 
(unobserved) population infection rate. This relation depends on two key parameters: a measure 
of the randomness in testing and the false negative rate for the average SARS-CoV-2 test. 
Second, we use a simple Bayesian model to estimate the infection rate. The prior distribution 
accounts for uncertainty about the two key parameters, which in turn affects posterior uncertainty 
about the infection rate. In the (non-Bayesian) partial identification approach of Stoye (2020), 
uncertainty is expressed through deterministic bounds on the key parameters. The use of a prior 
distribution, on the other hand, provides additional flexibility, since the prior can reflect 
deterministic bounds as well as probabilistic beliefs. As such, the Bayesian model can be seen as 
intermediate between a highly parameterized, point-identified model, and a fully nonparametric 
but much less informative bounding approach. 
 
The Bayesian approach also highlights the practical value of our parameterization: we discuss 
how accumulating evidence about the sensitivity of SARS-CoV-2 testing, the distribution of 
symptoms in the infected population, and the eligibility criteria for testing can be used to inform 



the prior and can lead to more precise estimates of the infection rate. In Section 2 below, we 
discuss the Bayesian model. Section 3 presents results and Section 4 concludes. 
 
2. The model 
 
Following Manski and Molinari (2020) and Stoye (2020), let Ct, Tt and Rt be three binary 
indicators for being infected with SARS-CoV-2 by time period t, for being tested by time t, and 
for receiving a positive test result by time t, respectively. Case count data (for example, 
from www.covidtracking.com) informs us about the fraction of positive test results 𝜇𝜇𝑡𝑡 = 𝑃𝑃(𝑅𝑅𝑡𝑡 =
1|𝑇𝑇𝑡𝑡 = 1) We are interested, however, in the cumulative incidence rate (or simply “infection 
rate”) 𝜋𝜋𝑡𝑡 = 𝑃𝑃(𝐶𝐶𝑡𝑡 = 1), which is not identified (Manski and Molinari, 2020, Manski, 2020). 
 
Before we consider the mapping between 𝜇𝜇𝑡𝑡 and 𝜋𝜋𝑡𝑡, we make two, arguably plausible 
assumptions. The first is that 
 

0 < 𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 0) ≤ 𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 1) (1) 
 
This assumption states that there is a non-zero probability that a non-infected individual will get 
tested, and that being tested is more likely when someone is infected with SARS-CoV-2. The 
latter is plausible, because infection increases the likelihood of having symptoms of COVID-19, 
which in turn makes it more likely that you become eligible or are encouraged to get tested. The 
second assumption is about the properties of the test: 
 

𝑃𝑃(𝑅𝑅𝑡𝑡 = 0|𝐶𝐶𝑡𝑡 = 1,𝑇𝑇𝑡𝑡 = 1) > 0, 𝑃𝑃(𝑅𝑅𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 0,𝑇𝑇𝑡𝑡 = 1) (2) 
 
Thus, the probability of a false positive is zero but the probability of a false negative is strictly 
positive (and, for simplicity, fixed over time). Given what is currently known about the RT-PCR 
test—see Section 1—this assumption is also plausible. 
  
Using assumptions (1), (2) and Bayes’ rule, it can be shown that 
 

𝜋𝜋𝑡𝑡 =
𝜇𝜇𝑡𝑡𝛾𝛾𝑡𝑡

𝜇𝜇𝑡𝑡𝛾𝛾𝑡𝑡 + (1 − 𝜇𝜇𝑡𝑡 − 𝑞𝑞)
. (3) 

 
where 𝛾𝛾𝑡𝑡 = 𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 0)/𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 1) is the relative likelihood of getting tested 
without and with the infection, respectively, and 𝑞𝑞 = 𝑃𝑃(𝑅𝑅𝑡𝑡 = 0|𝐶𝐶𝑡𝑡 = 1,𝑇𝑇𝑡𝑡 = 1) is the probability 
of a false negative test result. Note that (1) implies that 0 < 𝛾𝛾𝑡𝑡 ≤ 1. The parameter 𝛾𝛾𝑡𝑡 has a 
useful interpretation as a measure of the randomness in testing: if testing is done randomly, 
then 𝛾𝛾𝑡𝑡 = 1 and (3) shows that the prevalence of SARS-CoV-2 infection πt is higher than the test 
positive rate 𝜇𝜇𝑡𝑡 (due to the presence of false negatives). On the other hand, 𝛾𝛾𝑡𝑡 < 1 indicates that 
testing is not random. The closer 𝛾𝛾𝑡𝑡 is to zero, the more testing is geared towards the infected 
population only. Depending on the value of q, the value of 𝜋𝜋𝑡𝑡 could be higher or lower than 𝜇𝜇𝑡𝑡. 
We note that there are other ways to parameterize testing selectivity. Peracchi and Terlizzese 
(2020) use the relative likelihood of being infected, whereas (Stoye, 2020) uses the odds ratio of 
getting tested. Our use of 𝛾𝛾𝑡𝑡, however, is convenient for incorporating prior information, as we 
will discuss in Section 3. 
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We start by assigning (𝜇𝜇𝑡𝑡,  𝛾𝛾𝑡𝑡,𝑞𝑞) a prior distribution. Since 𝜇𝜇𝑡𝑡 is identified but (𝛾𝛾𝑡𝑡,𝑞𝑞) is not, it 
follows from the results in Poirier (1998) and Moon and Schorfheide (2012) that the joint 
posterior is the product of the posterior of 𝜇𝜇𝑡𝑡 and the conditional prior of (𝛾𝛾𝑡𝑡,𝑞𝑞), given 𝜇𝜇𝑡𝑡. Thus, 
even as the sample size grows, the prior will still exert significant influence over the posterior. 
The prior itself is additional information brought to the problem. The approach is appealing 
because it properly accounts for uncertainty about the unknowns and, as more evidence about 
testing and test reliability becomes available, allows us to adjust the prior distribution to reflect 
the current state of knowledge. While in some cases the exact mathematical form of the posterior 
of πt may be derived from the posterior of (𝜇𝜇𝑡𝑡,  𝛾𝛾𝑡𝑡, 𝑞𝑞), in practice it is easier to generate a set of 
random draws from it. Our data consists of (𝑛𝑛𝑡𝑡1,𝑛𝑛𝑡𝑡0), the cumulative numbers of positive and 
negative test results at time t, respectively. Throughout, we use a uniform prior for 𝜇𝜇𝑡𝑡, which is 
the natural conjugate prior for the binomial likelihood. We now repeat the following three simple 
steps: (1) generate a random draw 𝜇𝜇𝑡𝑡 from its beta posterior distribution with parameters (𝑛𝑛𝑡𝑡1 +
 1, 𝑛𝑛𝑡𝑡0 + 1); (2) generate a random draw (𝛾𝛾𝑡𝑡, 𝑞𝑞) from the prior; and (3) use the 
values (𝜇𝜇𝑡𝑡,  𝛾𝛾𝑡𝑡, 𝑞𝑞) and Eq. (3) to calculate πt. 
 
3. Results 
 
To illustrate our approach, we use testing data for North Carolina from www.covidtracking.com 
As of September 14, 2020, a total of 185,781 individuals tested positive and 2,449,038 tested 
negative for SARS-CoV-2 infection. As a benchmark, we first consider the case 𝑞𝑞 = 0 and 𝛾𝛾𝑡𝑡 =
1, so that 𝜋𝜋𝑡𝑡 = 𝜇𝜇𝑡𝑡. Summary statistics for 5,000 draws from the posterior are shown in the first 
row of Table 1. Clearly, the posterior is highly concentrated around the mean of 7.05%. 
 
Table 1. Posterior summary statistics for πt for different priors of (𝛾𝛾𝑡𝑡, q). 

q γt Mean Median Standard deviation 95% HPD interval 
0 1.00 0.0705 0.0705 0.0002 [0.0702,0.0708] 

TN(0.20,0.07) 1.00 0.0890 0.0882 0.0079 [0.0744,0.1043] 
TN(0.20,0.07) 0.75 0.0683 0.0677 0.0062 [0.0568,0.0803] 
TN(0.20,0.07) 0.50 0.0466 0.0461 0.0043 [0.0386,0.0550] 
TN(0.20,0.07) 0.25 0.0238 0.0236 0.0023 [0.0197,0.0283] 
TN(0.20,0.07) unif. mixture 0.0413 0.0408 0.0243 [0.0000,0.0816] 
TN(0.20,0.07) beta (4,3) 0.0524 0.0528 0.0162 [0.0209,0.0827] 

 
Next, we allow for false negatives. Recent estimates of the false negative rate range from around 
10% to as high as 40% (e.g. Woloshin et al., 2020, Arevalo-Rodriguez et al., 2020). Based on 
this, we assign a normal prior to q, with a mean of 20%, a standard deviation of 7%, truncated to 
the interval [0, 1 − 𝜇𝜇𝑡𝑡] (this ensures that 𝜋𝜋𝑡𝑡 does not exceed 1). Comparing rows 1 and 2 in 
Table 1, we see that assigning a prior to q while fixing 𝛾𝛾𝑡𝑡 = 1, shifts the posterior of 𝜋𝜋𝑡𝑡 to the 
right (as predicted by (3)) and increases its dispersion. The posterior mean increases by more 
than 26% to 8.90%, whereas the posterior standard deviation is nearly 40 times larger. As the 
value of 𝛾𝛾𝑡𝑡 decreases, rows 3–5 of Table 1 show that the posterior mean, median and standard 
deviation of 𝜋𝜋𝑡𝑡 all decrease. For example, when getting a test is four times less likely in the non-
infected population compared to the infected population (𝛾𝛾𝑡𝑡 = 0.25), the posterior mean for the 
infection rate is only 2.38% and much lower than the posterior mean of 𝜇𝜇𝑡𝑡. Thus, even with a 
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potentially large rate of false negatives, selectivity in testing yields estimates of the infection rate 
that are relatively low. 
 

 
Fig. 1. Uniform mixture prior for 𝛾𝛾𝑡𝑡 (left) and posterior of 𝜋𝜋𝑡𝑡 (right). 
 
Finally, instead of fixing its value, we now assign a prior distribution to 𝛾𝛾𝑡𝑡 = 𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 =
0)/𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 1) . Recent evidence suggests that as many as 30% of individuals infected 
with SARS-CoV-2 may be asymptomatic (Nishiura et al., 2020). Assuming that this group is 
very unlikely to receive a test, 𝑃𝑃(𝑇𝑇𝑡𝑡 = 1|𝐶𝐶𝑡𝑡 = 1) may be around 0.7. CDC data through May 
2020 shows that around 14% of infected individuals end up being hospitalized (Stokes et al., 
2020). This suggests that the infected population may be roughly partitioned into an 
asymptomatic group (30%), a group with severe symptoms that require hospital care (14%), and 
a residual group with “moderate” symptoms (56%). Regarding the numerator of 𝛾𝛾𝑡𝑡, suppose that 
in the non-infected population only those with moderate symptoms receive a test, and that severe 
symptoms requiring hospitalization are extremely unlikely. If the occurrence of at least moderate 
symptoms is less likely in the non-infected population than the infected population, then 𝛾𝛾𝑡𝑡 is 
bounded from above by 0.56/(0.14 + 0.56) = 0.80. 
 



 
Fig. 2. Beta prior for 𝛾𝛾𝑡𝑡 (left) and posterior of 𝜋𝜋𝑡𝑡 (right). 
 
A prior that reflects this reasoning would place most of its probability mass on values below 
0.80. We consider two such priors. The first is a uniform mixture, where 0 ≤ 𝛾𝛾𝑡𝑡 ≤ 0.8 with 
probability 90%, and 0.8 < 𝛾𝛾𝑡𝑡 ≤ 1 with probability 10%. Our second prior is a beta distribution 
with parameters (4,3). This distribution has a mean around 0.6, is slightly left-skewed and 
assigns a probability of around 90% to values below 0.8. The posteriors of 𝜋𝜋𝑡𝑡 resulting from 
these priors are shown in the last two rows of Table 1, and in Fig. 1, Fig. 2. 
 
Allowing for uncertainty about 𝛾𝛾𝑡𝑡 leads to a substantial increase uncertainty about 𝜋𝜋𝑡𝑡, as evident 
from the standard deviations and 95% HPD intervals. For example, moving from 𝛾𝛾𝑡𝑡 = 0.75 to a 
uniform mixture prior, the posterior standard deviation of πt increases about fourfold from 
0.0062 to 0.0243. The beta prior for 𝛾𝛾𝑡𝑡 is more informative than the uniform mixture; this leads 
to a slightly more concentrated posterior of 𝜋𝜋𝑡𝑡, with the standard deviation decreasing from 
0.0243 to 0.0162. The 95% HPD interval becomes narrower, which is mainly due to an increase 
in the lower bound. Finally, Fig. 1, Fig. 2 show that the shapes of the prior of 𝛾𝛾𝑡𝑡 and the posterior 
of 𝜋𝜋𝑡𝑡 are similar. This results from the mathematical relationship in (3). 
 
4. Conclusion 
 
In the current phase of the SARS-CoV-2 pandemic, tracking infection rates over time remains 
critically important. Much of the publicly available information in the U.S., and indeed in 
countries all over the world, takes the form of cumulative testing data. Estimating the infection 
rate by the fraction of positive test results is problematic because individuals are not tested 
randomly and the tests themselves may yield false negative results. 
 
In this paper, we present a mapping from the test positive rate to the infection rate that is 
parameterized in terms of a measure of testing selectivity and the false negative rate. This 
mapping subsequently forms the basis of a Bayesian model to conduct inference about the 



(unidentified) rate of infection. As an illustration, we use recent data from North Carolina. Our 
method, however, can be applied to any entity (e.g., counties, states, countries) for which case 
count data is available. 
 
A critical ingredient in the Bayesian model is the prior probability distribution for the testing 
selectivity parameter and the false negative rate. We motivated our choice of prior by referring to 
external studies with relevant direct and indirect information. Of course, we do not claim that our 
prior is “correct”. Indeed, other sources of prior information could be brought to bare in this 
analysis. For example, information on cold and flu prevalence and associated symptoms may 
provide evidence on symptom rates. As new tests are adopted, different information on 
misclassification rates will become available (Toulis, 2020). Or, as different populations are 
tested, new information on selection rates could be gained (Sacks et al., 2020). Over time, as 
more relevant information about the unknown parameters becomes available, prior distributions 
can be further adjusted, the scope for disagreement about priors will narrow and the accuracy of 
inference will improve. 
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