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Abstract: 
 
Reuter et al. [1] highlight the limitations of using a general population survey (GPS) to 
determine the prevalence of frequent heroin use. Data from such surveys are likely to suffer from 
item non-response and under-reporting. In addition, frequent heroin use is relatively rare in the 
overall population, and the subpopulation of heavy users may, therefore, be poorly covered by 
the sampling frame.  
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Article: 
 

Estimating the prevalence of illegal drug use is notoriously difficult when using a general 
population survey. Data triangulation, or combining data from multiple sources, is a 
promising way forward but comes with its own set of challenges. 

 
Reuter et al. [1] highlight the limitations of using a general population survey (GPS) to 
determine the prevalence of frequent heroin use. Data from such surveys are likely to suffer from 
item non-response and under-reporting. In addition, frequent heroin use is relatively rare in the 
overall population, and the subpopulation of heavy users may, therefore, be poorly covered by 
the sampling frame. These problems are well-understood by survey scientists and do not just 
apply to heroin. Rather, the potential for survey bias arises whenever participants are asked about 
behaviors that are illegal, or when they worry about the “social desirability” of their responses 
[2-5]. In a striking illustration of survey bias, Reuter et al. [1] calculated two sets of estimates of 
the number of daily and near-daily heroin users in the United States between 2010 and 2016; one 
is based on data from the National Survey on Drug Use and Health (NSDUH), whereas another 
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is obtained from a combination of multiple alternative data sources. The NSDUH estimates turn 
out to be an order of magnitude too low and unrealistically volatile from year to year. 
 
It is timely to call renewed attention to the difficulty of quantifying substance use in the general 
population, and to the limitations of using survey samples for that purpose. Emerging evidence 
suggests that the COVID-19 pandemic may have led to significant increases in substance use and 
abuse [6-8]. Understanding these shifting patterns is critical for devising effective policy 
responses, and the demand for appropriate data and statistical methods will remain high for years 
to come. 
 
One option to address problems with a GPS is to try and improve the quality of the survey itself, 
or simply switch to a different survey altogether; however, to quote Reuter et al. [1], “(…), 
thinking in terms of ‘replace data system X with data system Y' perhaps misses the most 
fundamental point.” The authors argue that when it comes to tracking problematic and harmful 
drug use, the key to advancing research and informing policy is to triangulate or combine data 
from multiple sources. In an age of ever-increasing availability of data, both from probability-
based samples and non-survey sources such as administrative records and convenience samples, 
triangulation becomes a viable strategy that is particularly valuable when individual data sources 
are known to contain a weak signal at best. 
 
Although triangulation is arguably appealing, its implementation is anything but straightforward. 
Specific methods for combining data from multiple sources are highly dependent on the features 
of those sources. For example, summary statistics from different samples may be combined 
using meta-analysis, which has a long history in statistics [9]. A more recent twist on meta-
analysis is integrative data analysis (IDA), which uses pooled individual-level data from multiple 
sources [10-12]. In 2017, the National Academies of Sciences, Engineering and Medicine 
convened an expert panel that focused on data triangulation as a means to improve federal 
statistics for policy and research. This panel documented the heavy reliance of government 
agencies on survey samples, which suffer from increasing costs of administration and sustained 
declines in response rates [13]. The panel also discussed several state-of-the-art approaches for 
data triangulation as a promising way forward [14]. These approaches include record linkage, 
multiple frame methods, and imputation. Record linkage is based on matching multiple 
observations, either deterministically or probabilistically, from different data sets to the same 
sampling unit (e.g. an individual). Multiple frame methods provide a way to combine two or 
more samples with different but possibly overlapping target populations [15, 16]. Finally, 
imputation-based methods use statistical models to extrapolate or “fill in the gaps” that arise 
when combining data sets (e.g. [17]). 
 
The potential benefits of data triangulation are significant. This approach can improve coverage 
of the target population, save resources by leveraging existing information, and help provide 
information about specific subpopulations or spatial and temporal patterns [16, 18]. At the same 
time, using data from multiple sources creates new challenges. Differences in respondents, in 
modes of data collection, and in measurements of key constructs may prevent meaningful 
triangulation. Multiple frame and imputation approaches are based on statistical models, the 
application of which often requires significant expertise. Responsible use of these statistical 



models also demands transparency about the underlying assumptions, as well as model checking 
and sensitivity analysis [14]. 
 
If data triangulation can rise to the challenge, it can significantly add to our understanding of 
substance use in hard-to-track populations. There is, unfortunately, no one-size-fits-all approach, 
and particular methods will have to be judged on their merits on a case-by-case basis. 
Nonetheless, such methods are bound to become critical tools for applied policy research in the 
future, and continued advocacy for their use remains essential. 
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