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Abstract: 
 
In this paper, we present a Bayesian approach to estimate the mean of a binary variable and 
changes in the mean over time, when the variable is subject to misclassification error. These 
parameters are partially identified, and we derive identified sets under various assumptions about 
the misclassification rates. We apply our method to estimating the prevalence and trend of 
prescription opioid misuse, using data from the 2002–2014 National Survey on Drug Use and 
Health. Using a range of priors, the posterior distribution provides evidence that among middle-
aged White men, the prevalence of opioid misuse increased multiple times between 2002 and 
2012. 
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Article: 
 
1 INTRODUCTION 
 
In this paper, we present a Bayesian approach to estimate the population mean of a binary 
variable as well as changes in the mean over time, when the variable in question is subject to 
misclassification error.1 Our methods can be applied when data are available from either a single 
cross-section or multiple independent cross-sections, possibly supplemented with population-
level weights. To illustrate our approach, we conduct an empirical analysis of self-reported past-
year misuse of opioid pain relievers, using data from the 2002–2014 waves of the National 
Survey on Drug Use and Health (NSDUH). We focus on opioids because they constitute a 
pressing public health concern (e.g. Kolodny et al., 2015) and the misreporting of substance use 

 
1 Throughout this paper, we will refer to the mean as prevalence and to changes in the mean over time as trends. 
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in surveys is a well-documented problem (Biemer & Wiesen, 2002; Fendrich et al., 1999; Kroutil 
et al., 2010; Ledgerwood et al., 2008; Murphy et al., 2015).2  
 
Although the empirical focus in this paper is on substance use, the problem of misclassification 
arises in many different contexts. For example, Kreider and Pepper (2007) and Gosling and 
Saloniki (2014) address misclassification in self-reported disability status. Gundersen et 
al. (2012) and Meyer et al. (2015) document misreporting of participation in the food stamp 
program (SNAP). Beyond surveys, data from clinical settings or public health surveillance 
systems are also subject to misclassification error. The recent COVID-19 pandemic has 
highlighted the difficulties in estimating coronavirus infection rates. Although this largely results 
from sample selection issues, problems with testing accuracy, and in particular the potential for 
false negatives, can give rise to a substantial amount of misclassification (e.g., Li et al., 2020). 
Simple estimates of the prevalence of health conditions such as HIV, opioid misuse, or COVID-
19 can affect policy decisions with widespread health and economic implications. Furthermore, 
accurate measures of the trend in prevalence of a condition are equally important as they 
motivate changes in, or even cessation of, these same policies. A failure to account for 
misclassification errors leads to biased estimates of critical parameters and undermines the 
development of effective, evidence-based policies. 
 
Models with misclassification error have a long history in statistics and econometrics (e.g., 
Bross, 1954; Tenenbein, 1970). Unless the misclassification probabilities are known or a 
validation sample (i.e., a set of observations that is known to be correctly classified) is available, 
the prevalence is completely unidentified but the misclassification probabilities are partially 
identified (Bollinger & Van Hasselt, 2017a). In a Bayesian model, the lack of identification does 
not require a different approach to inference, while the likelihood function does not identify 
every model parameter, the information contained in the prior can still lead to informative 
posterior distributions (Kadane, 1974). For example, Gaba and Winkler (1992), Joseph et 
al. (1995), Evans et al. (1996) and Rahme et al. (2000) use beta priors for the misclassification 
rates to estimate the prevalence, resulting in posterior density intervals that are strictly contained 
within the unit interval. 
 
Since the influential contributions of Kadane (1974) and Poirier (1998), Bayesian inference in 
models that are partially identified has been an active area of research (e.g., Bollinger & Van 
Hasselt, 2017b; Gustafson et al., 2005; Hahn et al., 2016; Moon & Schorfheide, 2012; Poirier & 
Tobias, 2003). Using the nomenclature of Moon and Schorfheide (2012), the main feature of 
such models is that the data are fully informative about a reduced-form parameter vector ϕ, in the 
sense that its posterior becomes more concentrated as more data become available. Conditional 
on ϕ, however, the data contain no further information about the structural parameter vector θ. 
The prior of the non-identified and partially identified elements of θ is then updated by the data 
only to the extent that ϕ and θ are a priori dependent. When θ is partially identified, prior 
dependence is necessary for any prior that is consistent with the model, because the bounds of 
the identified set are functions of ϕ. Put differently, the support of the conditional prior of θ is a 

 
2 Even apparently objective data such as those obtained from death certificates are subject to possible reporting 
errors as new data systems have been implemented and medical examiners and other officials exercise personal 
judgment on when to test for or report opioid use as a cause of death (Mertz et al., 2014; Rudd et al., 2014; Rudd et 
al., 2016; Ruhm, 2016). 



function of ϕ. The prior dependence between θ and ϕ, combined with Bayesian learning about ϕ, 
ensures that at least some learning about θ occurs (Poirier, 1998; Poirier & Tobias, 2003). 
 
This paper makes two main contributions. First, we extend the work of Pepper (2001) and derive 
identified sets for prevalence and trend under a range of assumptions about changes in 
misclassification over time. Our results show that under sufficiently strong assumptions, the 
direction (upward or downward) of a trend is identified. Second, we develop a Bayesian 
approach to inference, where the identified sets are used to specify a range of priors that 
researchers might entertain in practice. The posterior distribution takes a simple form, and 
random samples from it are easily generated. While our development focuses on estimating 
prevalence and trends from repeated cross-sections, a case that is relevant for many nationally 
representative survey samples, our approach can be valuable in other settings as well. In 
the supporting information, we discuss how our methods might be adapted for use in regression 
models. 
 
In partially identified models, bounds are often only informative under strong assumptions. For 
example, to identify the direction of a trend, Pepper (2001) assumes that the probability of 
misclassification error has a known upper bound. In practice, there can be considerable 
uncertainty about the appropriate value of such a bound. An advantage of a Bayesian approach is 
that this uncertainty can be incorporated into the prior. Additionally, information contained in the 
prior can lead to more precise inference relative to a classical bounds analysis. This is apparent 
in our empirical analysis. The classical bounding approach identifies the direction of the trend 
only under very strict assumptions. Without these assumptions, the estimated bounds move 
farther apart and become practically useless. In contrast, for a range of prior distributions and 
assumptions, the Bayesian posterior provides strong evidence that among middle-aged White 
men, the prevalence of opioid misuse increased several times between 2002 and 2012. 
 
The remainder of this paper is organized as follows. In Section 2, we discuss the 
misclassification model and the identified sets for the prevalence and trend under different 
assumptions about the misclassification rates. Section 3 discusses a range of prior distributions 
and shows how to draw a sample from the posterior. Section 4 presents our empirical analysis, 
and Section 5 concludes. A supporting information contains more details about the identified 
sets, presents additional empirical results for select subgroups, and suggests ways for extending 
our methods to a regression context. 
 
2 THE MODEL 
 
2.1 The misclassification problem 
 
The model we present here is based on Bollinger and Van Hasselt (2017a), extended to the case 
of a repeated cross-section. Let 𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0, be the true value of a binary indicator for individual 𝑖𝑖 =
1, … , 𝑛𝑛𝑖𝑖, in time period  𝑖𝑖 = 1, … ,𝑇𝑇, and let 𝜋𝜋𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖∗) be its mean (the true prevalence). 
Instead of 𝑌𝑌𝑖𝑖𝑖𝑖∗ , we observe a possibly misclassified variable 𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0, 1, where 𝑝𝑝𝑖𝑖 =
Pr(𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0) is the probability of a false positive and 𝑞𝑞𝑖𝑖 = Pr(𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0) the 
probability of a false negative. The observed prevalence 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖) is related to (πt, pt, qt) 
through the equation 



 
𝜇𝜇𝑖𝑖 = 𝜋𝜋𝑖𝑖(1 − 𝑞𝑞𝑖𝑖) + (1 − 𝜋𝜋𝑖𝑖)𝑝𝑝𝑖𝑖 (1) 

 
We aim to learn about the prevalence πt and 𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗 = 𝜋𝜋𝑖𝑖+𝑗𝑗 − 𝜋𝜋𝑖𝑖, the trend between 
periods t and t + j. It is clear from equation (1) that without additional information, the 
parameters (πt, pt, qt) are completely unidentified (e.g., Gaba and Winkler (1992)). It is common 
to assume that pt + qt < 1, which ensures that the covariance between 𝑌𝑌𝑖𝑖𝑖𝑖∗  and Yit is positive 
(Bollinger, 1996; Chen et al., 2008a; Chen et al., 2008b; Lewbel, 2007). This assumption and 
equation (1) imply that pt ≤ μt and qt ≤ 1 − μt, and the misclassification probabilities are now 
partially identified. The true prevalence πt, however, remains completely unidentified. As a 
result, −1 ≤ Δπt, j ≤ 1 and nothing can be learned about the direction of the trend. 
 
Additional information in the form of restrictions on the misclassification rates can yield non-
trivial bounds on the prevalence and the trend. In what follows, we consider a number of cases 
that lead to partial identification. Throughout the discussion, we maintain the assumption 
that pt + qt < 1. Also, in the context of reporting prescription opioid misuse, it is highly unlikely 
that an individual who does not misuse actually reports doing so (Bollinger & David, 1997). 
Thus, in all but one of the cases we discuss below, we set pt equal to zero in all time periods. 
 
2.2 Assumptions and identified sets 
 
In this section, we consider five different assumptions about the misclassification rates. The first 
and most restrictive assumption is that the rate of false negatives (under-reporting) is constant 
over time. We subsequently allow this rate to vary over time in different ways and show the 
impact that this has on the identified sets for the prevalence and the trend. Our final assumption 
is an extension that allows for the possibility of false positives. Details about the derivation of 
the parameter bounds can be found in the supporting information. 
 
Case I. The first and most restrictive case we consider is the assumption that the probability of 
false negatives is constant over time. 
 
Assumption C-I. (i) 𝑞𝑞𝑖𝑖 = 𝑞𝑞∗for 𝑡𝑡 = 1, … ,𝑇𝑇, and (ii) 𝑝𝑝𝑖𝑖 = 0. 
 
Letting 𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝜇𝜇𝑖𝑖, it follows from Assumption C-I and equation (1) that 
 

𝜇𝜇𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖
𝑀𝑀

, 𝑡𝑡 = 1, … ,𝑇𝑇. (2) 

 
The trend in prevalence between periods t and t + j is bounded as follows. 
 

Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤
Δ𝜇𝜇𝑖𝑖,𝑗𝑗

𝑀𝑀
, if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ≥ 0, 

(3) Δ𝜇𝜇𝑖𝑖,𝑗𝑗

𝑀𝑀
≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤ Δ𝜇𝜇𝑖𝑖,𝑗𝑗, if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 < 0. 

 



Equations (2) and (3) show that the restrictions on (pt, qt) carry substantial identifying 
information. Because there are only false negatives, the true prevalence in each time period is at 
least as large as the observed prevalence, and may have an upper bound well below 1. Also, (3) 
shows that Δπt, j has the same sign as Δμt, j: if the observed prevalence increases (decreases) 
between time periods t and t + j, then so does the unobserved true prevalence. 
 
Case II. We now assume that the rate of false negatives is non-decreasing over time. This occurs, 
for example, when 𝑌𝑌𝑖𝑖𝑖𝑖∗  is an indicator for stigmatized behavior and stigma is increasing over time 
(Pepper, 2001). 
 
Assumption C-II. (i) 𝑞𝑞𝑖𝑖 ≥ 𝑞𝑞𝑠𝑠 when 𝑡𝑡  >  𝑠𝑠, and (ii) 𝑝𝑝𝑖𝑖 = 0. 
 
Defining 𝑀𝑀𝑖𝑖

+ = max𝑠𝑠≥𝑖𝑖𝜇𝜇𝑠𝑠, it follows that 
 

𝜇𝜇𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖+

𝑀𝑀𝑖𝑖
, 𝑡𝑡 = 1, … ,𝑇𝑇. 

(4) 

 
While the prevalence is still partially identified, a comparison of (2) and (4) shows that the upper 
bound on πt is now larger. Under Assumption C-II, the trend in prevalence between 
periods t and t + j is bounded as follows. 
 

Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤
𝜇𝜇𝑖𝑖+𝑗𝑗
𝑀𝑀 𝑖𝑖+𝑗𝑗

+
, if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ≥ 0, 

(5) 
Δ𝜇𝜇𝑖𝑖,𝑗𝑗

𝑀𝑀 𝑖𝑖

+

≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤
𝜇𝜇𝑖𝑖+𝑗𝑗
𝑀𝑀 𝑖𝑖+𝑗𝑗

+
, if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 < 0. 

 
Thus, if the observed prevalence increases between periods t and t + j, then so does the true 
prevalence. This is intuitive: If the observed trend is positive while the rate of false negatives 
increases (or at least, does not decrease), then the unobserved true prevalence must be increasing 
as well. Pepper (2001), using an assumption comparable with C-II, derives a similar result. On 
the other hand, when Δμt, j < 0, equation (5) shows that the sign of Δπt, j is not necessarily 
identified. While the lower bound is negative, the upper bound could be positive. In this case, a 
decrease in the observed trend results either from a decrease in the true prevalence or from an 
increase in false-negative reporting that more than offsets a stable or even increasing true 
prevalence. 
 
Case III. The third case we examine is the mirror image of Case II and assumes that the 
probability of false negatives is non-increasing over time. 
 
Assumption C-III. (i) 𝑞𝑞𝑖𝑖 ≥ 𝑞𝑞𝑠𝑠 when 𝑡𝑡  >  𝑠𝑠, and (ii) 𝑝𝑝𝑖𝑖 = 0. 
 
Defining 𝑀𝑀𝑖𝑖

− = max𝑠𝑠≥𝑖𝑖𝜇𝜇𝑠𝑠, Assumption C-III implies that 
 

𝜇𝜇𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖
𝑀𝑀𝑖𝑖

– , 𝑡𝑡 = 1, … ,𝑇𝑇. (6) 



 
The true prevalence is again partially identified, but the bounds are farther apart compared to 
Case I, where qt is constant over time. The bounds on the trend under Assumption C-III are given 
below. 
 

Δ𝜇𝜇𝑖𝑖+𝑗𝑗 −
𝜇𝜇𝑖𝑖
𝑀𝑀𝑖𝑖

– ≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤
Δ𝜇𝜇𝑖𝑖,𝑗𝑗

𝑀𝑀𝑖𝑖+𝑗𝑗
– , if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ≥ 0, 

(7) 
Δ𝜇𝜇𝑖𝑖+𝑗𝑗 −

𝜇𝜇𝑖𝑖
𝑀𝑀𝑖𝑖

– ≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤ Δ𝜇𝜇𝑖𝑖,𝑗𝑗, if Δ𝜇𝜇𝑖𝑖,𝑗𝑗 < 0. 

 
Equation (7) shows that when the observed prevalence decreases, so does the true prevalence. 
This occurs because the rate of false-negative reporting cannot increase. Hence, a decrease in 
observed prevalence has to be a result from a decrease in the actual prevalence. On the other 
hand, the direction of the trend in the true unobserved prevalence is not necessarily identified 
when Δμt, j ≥ 0. An observed increase could result from an increase in the true prevalence but also 
from a decrease in false-negative reporting that more than offsets a stable or even decreasing true 
prevalence. 
 
Case IV. The prior two cases are restrictive in terms of the structure they impose on qt. In the 
fourth case, we therefore assume that qt varies over time but remains within some distance of an 
unknown “base rate” q̄. We will refer to this as the assumption of bounded variation. 
 
Assumption C-IV. (i) For some 𝑚𝑚 ∈ (0,1] and �̄�𝑞 ∈ [0, (1 −𝑀𝑀) (1 + 𝑚𝑚)⁄ ], qt satisfies (1 −
𝑚𝑚)�̄�𝑞 ≤ 𝑞𝑞𝑖𝑖 ≤ (1 − 𝑚𝑚)�̄�𝑞; and (ii) 𝑝𝑝𝑖𝑖 = 0. 
 
For the identified set of each qt to be non-empty, the base rate q̄ has to satisfy (1 − 𝑚𝑚)�̄�𝑞 ≤ 1 −
𝑀𝑀. Assumption C-IV, however, imposes the slightly stronger restriction that (1 + 𝑚𝑚)�̄�𝑞 ≤ 1 −𝑀𝑀. 
This ensures that a maximum (positive or negative) deviation of 100(x)% from the base rate is 
possible in each time period. We also note that under Assumption C-IV, the case  leads 
to 0 ≤ 𝑞𝑞𝑖𝑖 ≤ �̄�𝑞 for all t. Thus, the assumption that qt is time-varying but remains below some 
unknown, fixed upper bound in each time period is subsumed under Assumption C-IV. 
 
From equation (1) and the bounded variation in qt, it follows that 
 

𝜇𝜇𝑖𝑖
1 − (1 − 𝑚𝑚)�̄�𝑞

≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖

1 − (1 + 𝑚𝑚)�̄�𝑞
. 

 
Minimizing the lower bound and maximizing the upper bound over �̄�𝑞 ∈ [0, (1 −𝑀𝑀) (1 + 𝑚𝑚)⁄ ] 
yields the following prevalence bounds: 
 

𝜇𝜇𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖
𝑀𝑀

 (8) 

 
Perhaps surprisingly, these bounds are the same as under Assumption C-I. While allowing qt to 
vary over time leads to a larger identified set, limiting the percentage deviation in each period 
narrows the bounds to the point where these opposing effects exactly offset each other. For the 



trend, define 𝑚𝑚 ≔ 1 − 𝑚𝑚 and 𝑏𝑏 ≔ 1 + 𝑚𝑚 and let Δ𝜋𝜋𝑖𝑖,𝑗𝑗
𝐿𝐿  and Δ𝜋𝜋𝑖𝑖,𝑗𝑗

𝑈𝑈  denote the lower and upper 
bounds, respectively. It is shown in the supplemental appendix that these bounds are given by 
 

Δ𝜋𝜋𝑖𝑖,𝑗𝑗
𝐿𝐿 =

⎩
⎪
⎨

⎪
⎧

𝜇𝜇𝑖𝑖+𝑗𝑗
1 − (𝑚𝑚/𝑏𝑏)(1 −𝑀𝑀) −

𝜇𝜇𝑖𝑖
𝑀𝑀

𝛥𝛥𝜇𝜇𝑖𝑖,𝑗𝑗

min �Δ𝜇𝜇𝑖𝑖,𝑗𝑗 ,
𝜇𝜇𝑖𝑖+𝑗𝑗

1 − (𝑚𝑚/𝑏𝑏)(1 −𝑀𝑀) −
𝜇𝜇𝑖𝑖
𝑀𝑀
�

 

if 𝑚𝑚𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑏𝑏𝜇𝜇𝑖𝑖, (9) 

if 𝑚𝑚𝜇𝜇𝑖𝑖+𝑗𝑗 ≥ 𝑏𝑏𝜇𝜇𝑖𝑖,𝑀𝑀 > (𝑏𝑏−𝑎𝑎)�𝑏𝑏𝜇𝜇𝑡𝑡
𝑏𝑏�𝑎𝑎𝜇𝜇𝑡𝑡+𝑗𝑗−𝑎𝑎�𝑏𝑏𝜇𝜇𝑡𝑡

, 

if 𝑚𝑚𝜇𝜇𝑖𝑖+𝑗𝑗 ≥ 𝑏𝑏𝜇𝜇𝑖𝑖,𝑀𝑀 > (𝑏𝑏−𝑎𝑎)�𝑏𝑏𝜇𝜇𝑡𝑡
𝑏𝑏�𝑎𝑎𝜇𝜇𝑡𝑡+𝑗𝑗−𝑎𝑎�𝑏𝑏𝜇𝜇𝑡𝑡

, 

 

Δ𝜋𝜋𝑖𝑖,𝑗𝑗
𝐿𝐿 =

⎩
⎪
⎨

⎪
⎧

𝜇𝜇𝑖𝑖+𝑗𝑗
𝑀𝑀

−
𝜇𝜇𝑖𝑖

1 − (𝑚𝑚/𝑏𝑏)(1 −𝑀𝑀)
𝛥𝛥𝜇𝜇𝑖𝑖,𝑗𝑗

max �Δ𝜇𝜇𝑖𝑖,𝑗𝑗,
𝜇𝜇𝑖𝑖+𝑗𝑗
𝑀𝑀

−
𝜇𝜇𝑖𝑖

1 − (𝑚𝑚/𝑏𝑏)(1 −𝑀𝑀)�

 

if 𝑏𝑏𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑚𝑚𝜇𝜇𝑖𝑖, (10) 

if 𝑏𝑏𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑚𝑚𝜇𝜇𝑖𝑖,𝑀𝑀 >
(𝑏𝑏−𝑎𝑎)�𝑏𝑏𝜇𝜇𝑡𝑡+𝑗𝑗

𝑏𝑏�𝑎𝑎𝜇𝜇𝑡𝑡−𝑎𝑎�𝑏𝑏𝜇𝜇𝑡𝑡+𝑗𝑗
, 

if 𝑏𝑏𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑚𝑚𝜇𝜇𝑖𝑖,𝑀𝑀 > (𝑏𝑏−𝑎𝑎)�𝑏𝑏𝜇𝜇𝑡𝑡
𝑏𝑏�𝑎𝑎𝜇𝜇𝑡𝑡−𝑎𝑎�𝑏𝑏𝜇𝜇𝑡𝑡+𝑗𝑗

, 

 
As an example, suppose that the observed prevalence increases between periods t and t + j (so 
that Δμt, j > 0 and bμt + j > aμt) but the increase is modest: aμt + j < bμt. From (9) and (10), it follows 
that 
 

𝜇𝜇𝑖𝑖+𝑗𝑗
1 − (𝑚𝑚/𝑏𝑏)(1−𝑀𝑀) −

𝜇𝜇𝑖𝑖
𝑀𝑀
≤ 𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗 ≤

𝜇𝜇𝑖𝑖+𝑗𝑗
𝑀𝑀

−
𝜇𝜇𝑖𝑖

1 − (𝑚𝑚/𝑏𝑏)(1 −𝑀𝑀). 

 
Comparing this with the trend bounds when qt is constant (cf. 3), it is easy to show that the lower 
bound is less than Δμt, j, whereas the upper bound exceeds Δμt, j/M. Thus, the identified set is 
again larger than under Assumption C-I. We also note that a constant rate of false negatives can 
be obtained as a limit of the bounded variation assumption when x↓0. In this case, a and b both 
converge to 1, and the lower and upper bounds in (9) and (10) converge to the bounds in (3). 
 
Case V. The final assumption we discuss is an extension of Case IV and allows for a non-zero 
but constant rate of false positives p. 
 
Assumption C-V. (i) For some 𝑚𝑚 ∈ (0,1) and �̄�𝑞 ∈ [0, (1 −𝑀𝑀) (1 + 𝑚𝑚)⁄ ], qt satisfies (1 − 𝑚𝑚)�̄�𝑞 ≤
𝑞𝑞𝑖𝑖 ≤ (1 − 𝑚𝑚)�̄�𝑞; and (ii) 𝑝𝑝𝑖𝑖 = 𝑝𝑝. 
 
Since p ≤ μt for all t, the upper bound for p is 𝑚𝑚 ≔ 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠𝜇𝜇𝑠𝑠. For a given value of p, we have the 
following prevalence bounds: 
 

𝜇𝜇𝑖𝑖 − 𝑝𝑝
1 − 𝑝𝑝 − 𝑚𝑚�̄�𝑞

≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖 − 𝑝𝑝

1 − 𝑝𝑝 − 𝑏𝑏�̄�𝑞
. 

 
The lower bound is minimal when �̄�𝑞 = 0 and the upper bound is maximal when �̄�𝑞 = (1 −𝑀𝑀)/𝑏𝑏, 
so that 
 

𝜇𝜇𝑖𝑖 − 𝑝𝑝
1 − 𝑝𝑝

≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖 − 𝑝𝑝
𝑀𝑀 − 𝑝𝑝

. 

 



The bounds on p shown above are decreasing in p, so that 
 

𝜇𝜇𝑖𝑖 − 𝑚𝑚
1 −𝑚𝑚

≤ 𝜋𝜋𝑖𝑖 ≤
𝜇𝜇𝑖𝑖
𝑀𝑀

 (11) 

 
Comparing (8) and (11), we see that allowing false positives reduces the lower bound and results 
in a larger identified set. The true prevalence may be below the observed prevalence due to the 
possibility of false positives. Regarding the trend, we use (1) and observe that for any given 
value of p, the difference Δπt, j is maximized when �𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖+𝑗𝑗� = (𝑚𝑚�̄�𝑞, 𝑏𝑏�̄�𝑞) and minimized 
for �𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖+𝑗𝑗� = (𝑏𝑏�̄�𝑞,𝑚𝑚�̄�𝑞). Therefore, 
 

𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑝𝑝
1 − 𝑝𝑝 − 𝑚𝑚�̄�𝑞

−
𝜇𝜇𝑖𝑖 − 𝑝𝑝

1 − 𝑝𝑝 − 𝑏𝑏�̄�𝑞
≤ Δ𝜋𝜋𝑖𝑖,𝑗𝑗 ≤

𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑝𝑝
1 − 𝑝𝑝 − 𝑏𝑏�̄�𝑞

−
𝜇𝜇𝑖𝑖 − 𝑝𝑝

1 − 𝑝𝑝 − 𝑚𝑚�̄�𝑞
 (12) 

 
The lower bound on the trend is obtained by minimizing the left-hand side of (12) subject to 
0 ≤ p ≤ m and 0 ≤ �̄�𝑞 ≤ (1 −𝑀𝑀)/𝑏𝑏. It is shown in the supporting information that if Δμt, j < 0 and 
Assumption C-V holds, the lower bound is attained at �̄�𝑞 = (1 −𝑀𝑀)/𝑏𝑏 and given by 
 

𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗
𝐿𝐿 =

⎩
⎪
⎨

⎪
⎧
𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑚𝑚
𝑐𝑐 −𝑚𝑚

−
𝜇𝜇𝑖𝑖 − 𝑚𝑚
𝑀𝑀 −𝑚𝑚

𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑃𝑃𝐿𝐿∗

𝑐𝑐 − 𝑃𝑃𝐿𝐿∗
−
𝜇𝜇𝑖𝑖 − 𝑃𝑃𝐿𝐿∗

𝑀𝑀 − 𝑃𝑃𝐿𝐿∗
𝜇𝜇𝑖𝑖+𝑗𝑗
𝑐𝑐

−
𝜇𝜇𝑖𝑖
𝑀𝑀

 

if 𝜇𝜇𝑖𝑖+𝑗𝑗 ≤ 𝑐𝑐 − �𝑐𝑐−𝑚𝑚
𝑀𝑀−𝑚𝑚

�
2
𝑀𝑀 + � 𝑐𝑐−𝑚𝑚

𝑀𝑀−𝑚𝑚
�
2
𝜇𝜇𝑖𝑖, 

 

if 𝑐𝑐 − �𝑐𝑐−𝑚𝑚
𝑀𝑀−𝑚𝑚

�
2
𝑀𝑀 + � 𝑐𝑐−𝑚𝑚

𝑀𝑀−𝑚𝑚
�
2
𝜇𝜇𝑖𝑖 < 𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑐𝑐 −𝑀𝑀 �𝑐𝑐

𝑀𝑀
�
2

+ � 𝑐𝑐
𝑀𝑀
�
2
𝜇𝜇𝑖𝑖, (13) 

if 𝜇𝜇𝑖𝑖+𝑗𝑗  ≥ 𝑐𝑐 −𝑀𝑀 �𝑐𝑐
𝑀𝑀
�
2

+ � 𝑐𝑐
𝑀𝑀
�
2
𝜇𝜇𝑖𝑖, 

 

 
where 
 

𝑃𝑃𝐿𝐿∗ =
𝑐𝑐�𝑀𝑀 − 𝜇𝜇𝑖𝑖 − 𝑀𝑀�𝑐𝑐 − 𝜇𝜇𝑖𝑖+𝑗𝑗
�𝑀𝑀 − 𝜇𝜇𝑖𝑖 − �𝑐𝑐 − 𝜇𝜇𝑖𝑖+𝑗𝑗

 

 
When Δμt, j ≥ 0, there is no convenient way to characterize 𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗

𝐿𝐿 , because it depends on the 
relative magnitudes of (a, b, μt, μt + j, m, M). Solutions to minimizing the left-hand side of (12), 
subject to the boundary restrictions, can be found by inspecting solutions to the Kuhn–Tucker 
first-order conditions. 
 
The upper bound on the trend is found by maximizing the right-hand side of (12) subject to 
0 ≤ p ≤ m and 0 ≤ �̄�𝑞 ≤ (1 −𝑀𝑀)/𝑏𝑏. If Assumption C-V holds and Δμt, j > 0, the upper bound is 
attained at �̄�𝑞 = (1 −𝑀𝑀)/𝑏𝑏 and given by 
 

𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗
𝑈𝑈 =

⎩
⎪
⎨

⎪
⎧

𝜇𝜇𝑖𝑖+𝑗𝑗
𝑐𝑐

−
𝜇𝜇𝑖𝑖
𝑀𝑀

𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑃𝑃𝐿𝐿∗

𝑐𝑐 − 𝑃𝑃𝐿𝐿∗
−
𝜇𝜇𝑖𝑖 − 𝑃𝑃𝐿𝐿∗

𝑀𝑀 − 𝑃𝑃𝐿𝐿∗
𝜇𝜇𝑖𝑖+𝑗𝑗 − 𝑚𝑚
𝑐𝑐 −𝑚𝑚

−
𝜇𝜇𝑖𝑖 − 𝑚𝑚
𝑀𝑀 −𝑚𝑚

 

if 𝜇𝜇𝑖𝑖+𝑗𝑗 ≤ 𝑀𝑀 − 𝑐𝑐 �𝑀𝑀
𝑐𝑐
�
2

+ �𝑀𝑀
𝑐𝑐
�
2
𝜇𝜇𝑖𝑖, 

 

if 𝑀𝑀 − 𝑐𝑐 �𝑀𝑀
𝑐𝑐
�
2

+ �𝑀𝑀
𝑐𝑐
�
2
𝜇𝜇𝑖𝑖 < 𝜇𝜇𝑖𝑖+𝑗𝑗 < 𝑀𝑀 − 𝑐𝑐 �𝑀𝑀−𝑚𝑚

𝑐𝑐−𝑚𝑚
�
2

+ �𝑀𝑀−𝑚𝑚
𝑐𝑐−𝑚𝑚

�
2
𝜇𝜇𝑖𝑖, (14) 

if 𝜇𝜇𝑖𝑖+𝑗𝑗  ≥ 𝑀𝑀 − 𝑐𝑐 �𝑀𝑀−𝑚𝑚
𝑐𝑐−𝑚𝑚

�
2
𝑀𝑀 + �𝑀𝑀−𝑚𝑚

𝑐𝑐−𝑚𝑚
�
2
𝜇𝜇𝑖𝑖, 

 



 
When Δμt, j ≤ 0 instead, there is again no convenient expression for 𝛥𝛥𝜋𝜋𝑖𝑖,𝑗𝑗

𝑈𝑈 . The upper bound can 
be found by inspecting solutions to the Kuhn–Tucker first-order conditions for maximizing the 
right-hand side of (12), subject to the boundary restrictions. 
 
In summary, we have presented the implications of different assumptions about pt and qt for the 
identified sets of πt and Δπt, j. The focus on conditional error probabilities is common in much of 
the misclassification literature. In contrast, Pepper (2001) imposes restrictions on the joint 
distribution of (𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑖𝑖𝑖𝑖). In our notation 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 1,𝑌𝑌𝑖𝑖𝑖𝑖 = 0) = 𝜋𝜋𝑖𝑖𝑞𝑞𝑖𝑖 and 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0,𝑌𝑌𝑖𝑖𝑖𝑖 = 1) =
(1 − 𝜋𝜋𝑖𝑖)𝑞𝑞𝑖𝑖. Pepper (2001) assumes that false negatives are at least as likely as false positives, so 
that 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 1,𝑌𝑌𝑖𝑖𝑖𝑖 = 0) ≥ 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0,𝑌𝑌𝑖𝑖𝑖𝑖 = 1). In addition, the total fraction of misclassified 
observations is assumed to lie below some known upper bound: 
 

𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 1,𝑌𝑌𝑖𝑖𝑖𝑖 = 0) + 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖∗ = 0,𝑌𝑌𝑖𝑖𝑖𝑖 = 1) ≤ 𝑃𝑃. 
 
In this case, the true prevalence satisfies the bounds 𝜇𝜇𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖𝑛𝑛{𝜇𝜇𝑖𝑖 + 𝑃𝑃, 1}. Our results for 
the prevalence provide a useful extension of Pepper (2001)'s Pepper (2001) bounds for two 
reasons. First, restrictions on the joint distribution of (𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑖𝑖𝑖𝑖) are restrictions on the triple 
(πt, pt, qt), whereas we only restrict (pt, qt) and investigate the implications for πt. Second, as 
noted by Pepper (2001), the upper bound P on total false reports must either be known or a value 
must be assumed by the researcher. Setting a reasonable value for P may be difficult in practice. 
The prevalence bounds we present here do not depend on any unknown constants. 
 
3 BAYESIAN INFERENCE 
 
3.1 Non-identification and the posterior 
 
We now consider Bayesian inference about the prevalence under Assumptions C-I through C-V. 
A Bayesian model that is consistent with these assumptions incorporates the parameter bounds 
from the previous section into the prior distribution. We initially assume that a simple random 
sample is available in each time period. We postpone a discussion of more complex survey 
designs and the use of sampling weights until Section 3.3. 
 
Let μ, π, and q be T-dimensional parameter vectors with tth elements μt, πt and qt, respectively, 
and let p be a scalar (recall that under Assumptions C-I through C-V), p is constant over time). 
We use 𝑌𝑌 = {𝑌𝑌𝑖𝑖𝑖𝑖; 𝑖𝑖 = 1, . . . ,𝑛𝑛𝑖𝑖 , 𝑡𝑡 = 1, . . . ,𝑇𝑇} to denote the full set of observations across all 
individuals and time periods. Let 𝑛𝑛𝑖𝑖1 = Σ𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖0 = Σ𝑖𝑖(1 − 𝑌𝑌𝑖𝑖𝑖𝑖) be the observed number of 
ones and zeroes in time period t, respectively, and define nt = nt1 + nt0. If the samples from 
different periods are independent and each individual only appears in a single period, the 
likelihood for the full sample can be written as 
 

𝑓𝑓(Y|𝜇𝜇,𝜋𝜋, 𝑞𝑞,𝑝𝑝) = �𝜇𝜇𝑖𝑖
𝑛𝑛𝑡𝑡1(1 − 𝜇𝜇𝑖𝑖)𝑛𝑛𝑡𝑡0

𝑇𝑇

𝑖𝑖=1

. 
(15) 

 
The likelihood is a function of μ alone and therefore does not separately identify π, q and p. 



 
Let f (μ, π) be a prior distribution. Since π is not identified, the joint posterior of (μ, π) can be 
decomposed as (Kadane, 1974; Poirier, 1998) 
 

𝑓𝑓(𝜇𝜇,𝜋𝜋|𝐘𝐘) ∝ 𝑓𝑓(𝐘𝐘|𝜇𝜇) ∙ 𝑓𝑓(𝜇𝜇) ∙ 𝑓𝑓(𝜋𝜋|𝜇𝜇) ∝ 𝑓𝑓(𝜇𝜇|𝐘𝐘) ∙ 𝑓𝑓(𝜋𝜋|𝜇𝜇). 
 
A similar expression holds for the joint posterior of μ, p and q. The marginal posterior of π is 
obtained by integrating out μ: 
 

𝑓𝑓(𝜋𝜋|𝐘𝐘) ∝ �𝑓𝑓(𝜇𝜇|𝐘𝐘)𝑓𝑓(𝜋𝜋|𝜇𝜇)𝑑𝑑𝜇𝜇. 

 
Learning about π occurs indirectly through the conditional prior. As more data become available, 
the posterior f (μ|Y) becomes more concentrated around some value, say μ̃. The marginal 
posterior of π will then get close to the conditional prior 𝑓𝑓(𝜋𝜋|𝜇𝜇𝜇) and uncertainty about π remains, 
even in large samples. When information about the rates of misreporting is available, a 
researcher could use it to specify a prior for (μ, p, q) instead of for (μ, π).3 A similar argument can 
be used to show that in large samples, the posterior of π again gets close to the conditional 
prior 𝑓𝑓(𝜋𝜋|𝜇𝜇𝜇). 
 
3.2 Prior distributions 
 
The prior distributions we propose are based on Assumptions C-I through C-V and specified in 
terms of the misclassification rates. Since μ is identified, the prior f (μ) will have a negligible 
influence on the posterior in large samples. However, as noted earlier, the priors f (p, q|μ) 
or f (π|μ) remain influential in large samples and their specification needs to be considered 
carefully. 
 
Case I. Under Assumption C-I, we know that q∗ ≤ 1 − M. Without specific knowledge about 
misreporting, a researcher might use a uniform prior on the interval [0, 1 − M], conditional on μ. 
The conditional prior of πt is then 𝑓𝑓(𝜋𝜋𝑖𝑖|𝜇𝜇) = 𝜇𝜇𝑖𝑖/[(1 −𝑀𝑀)𝜋𝜋𝑖𝑖2] for μt ≤ πt ≤ μt/M. This density is 
decreasing in πt, so that it is relatively more likely that the true prevalence is close to the 
observed prevalence (i.e., the lower bound of the identified set). If instead small values of q∗ are 
believed to be more likely than large values, we can use a power-type prior 𝑓𝑓(𝑞𝑞∗|𝜇𝜇) = 𝐶𝐶(𝑞𝑞∗)−𝛼𝛼, 
where 0 < α < 1 and C is a normalizing constant. The induced prior for πt is then 𝑓𝑓(𝜋𝜋𝑖𝑖|𝜇𝜇) =
𝐶𝐶𝜇𝜇𝑖𝑖1+𝛼𝛼/(𝜋𝜋𝑖𝑖2(𝜋𝜋𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝛼𝛼), which also places a relatively high probability on values of πt near μt. 
Finally, suppose a researcher wishes to use a (conditional) prior on πt directly. One possibility is 
the uniform distribution on the interval [μt, μt/M]. The induced prior for q∗ is then 𝑓𝑓(𝑞𝑞∗|𝜇𝜇) =
𝑀𝑀/[(1 −𝑀𝑀)(1 − 𝑞𝑞∗)2], which puts a relatively high probability on values of q∗ near 1 − M. 
Thus, a uniform prior for the true prevalence can be justified if we believe that the rate of false-
negative reporting is likely to be high. 
 
Case II. When qt is assumed to be non-decreasing (Assumption C-II), we can construct a prior of 
the form 

 
3 For example, Meyer et al. (2015) and Meyer et al. (2018) provide estimates of the amount of misreporting in 
SNAP participation. 



 

𝑓𝑓(𝑞𝑞|𝜇𝜇) = 𝑓𝑓(𝑞𝑞1|𝜇𝜇)�𝑓𝑓(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1, . . . , 𝑞𝑞1, 𝜇𝜇)
𝑇𝑇

𝑖𝑖=2

 

 
= 𝑓𝑓(𝑞𝑞1|𝜇𝜇)�𝑓𝑓(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1, 𝜇𝜇)

𝑇𝑇

𝑖𝑖=2

 

 
The conditional priors f (qt|qt − 1, … , q1, μ) for t ≥ 3 are chosen to be independent 
of qt − 2, … , q1 because qt satisfies the restriction qt ≥ qt − 1. The probability of a false negative in 
the first period satisfies q1 ≤ 1 − M, and we can specify a prior with support on this range, as in 
Case I. Similarly, for t ≥ 2, we have the inequalities 𝑞𝑞𝑖𝑖−1 ≤ 𝑞𝑞𝑖𝑖 ≤ 1 −𝑀𝑀𝑖𝑖

+, and we choose 
conditional priors f (qt|qt − 1, μ) with support on this interval. If lower misreporting rates are 
considered more likely, we choose a power-type distribution for each qt that puts more 
probability near the lower bound of the support (as in Case I). An alternative choice for f (q|μ) is 
to use a series of uniform distributions on the intervals discussed above. The choice of 
continuous distributions for f (qt|qt − 1, μ), however, implies that qt is strictly increasing with prior 
probability 1. This can result in a large probability of unreasonably high values of qt in later time 
periods. To avoid this in the empirical application, we therefore use a discrete-continuous 
mixture prior that assigns a positive probability to the false-negative rate staying the same 
between t − 1 and t. Specifically, if λ ∈ (0, 1) is the mixture proportion, we use (for 𝑡𝑡 = 2, . . . ,𝑇𝑇) 
 

𝑞𝑞𝑖𝑖 �
= 𝑞𝑞𝑖𝑖−1

~𝑓𝑓(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1, 𝜇𝜇) with probability λ 
with probability 1– λ, 

 
where, as discussed above, f (qt|qt − 1, μ) is a uniform or power-type distribution supported on the 
interval [𝑞𝑞𝑖𝑖−1, 1 −𝑀𝑀𝑖𝑖

+]. 
 
Case III. If the rate of false-negative reporting is assumed to be non-increasing, we can construct 
a prior in a way that resembles Case II: 
 

𝑓𝑓(𝑞𝑞|𝜇𝜇) = 𝑓𝑓(𝑞𝑞𝑇𝑇|𝜇𝜇)�𝑓𝑓(𝑞𝑞𝑇𝑇−𝑖𝑖|𝑞𝑞𝑇𝑇−𝑖𝑖+1, . . . , 𝑞𝑞𝑇𝑇 , 𝜇𝜇)
𝑇𝑇−1

𝑖𝑖=1

 

 
= 𝑓𝑓(𝑞𝑞𝑇𝑇|𝜇𝜇)�𝑓𝑓(𝑞𝑞𝑇𝑇−𝑖𝑖|𝑞𝑞𝑇𝑇−𝑖𝑖+1, 𝜇𝜇).

𝑇𝑇−1

𝑖𝑖=1

 

 
For qT, we choose a prior (conditional on μ) that is supported on the interval [0, 1 − M]. For t < T, 
the misreporting rate satisfies 𝑞𝑞𝑖𝑖+1 ≤ 𝑞𝑞𝑖𝑖 ≤ 1 −𝑀𝑀𝑖𝑖

−, and we choose a distribution 𝑓𝑓(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖+1, 𝜇𝜇) 
supported on that interval. If we want to ensure that there is a non-zero probability that qt stays 
the same between successive periods, we can again use a mixture distribution: 
 

𝑞𝑞𝑖𝑖 �
= 𝑞𝑞𝑖𝑖+1

~𝑓𝑓(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖+1, 𝜇𝜇) with probability λ 
with probability 1– λ, 

 
where f (qt|qt + 1, μ) is a continuous distribution supported on the interval [𝑞𝑞𝑖𝑖+1, 1 −𝑀𝑀𝑖𝑖

−]. 



 
Cases IV–V. Under the assumption of bounded variation, the probability of a false negative in 
period t can be written as 𝑞𝑞𝑖𝑖 = 𝑣𝑣𝑖𝑖�̄�𝑞, where 1 − x ≤ vt ≤ 1 + x. We assume that x is chosen by the 
researcher (e.g., x = 0.10 or x = 0.25). A prior for q can be obtained by combining a distribution 
for �̄�𝑞 with a distribution for (v1, … , vT). Since �̄�𝑞 ≤ (1 −𝑀𝑀)/(1 + 𝑚𝑚), possible (conditional) 
priors for �̄�𝑞 are the uniform or power-type distribution on [0, (1 − M)/(1 + x)]. Candidate priors 
for vt include the uniform distribution on the interval [1 − x, 1 + x] and the normal distribution 
with mean 1, truncated to the interval [1 − x, 1 + x]. Finally, under Assumption C-IV, we simply 
set p = 0, whereas under Assumption C-V, we can use a uniform or power-type prior 
for p supported on the interval [0, m]. 
 
3.3 Survey design and sampling from the posterior 
 
Since we are interested in inference about population prevalence and trends, it is necessary to 
consider the sampling design. In our empirical analysis, we use data Y from the NSDUH, which 
does not constitute a random sample from the population and invalidates the likelihood function 
in (15). Suppose, however, that a set of individual-level sampling weights wit is available, 
where 𝑁𝑁𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛𝑡𝑡
𝑖𝑖=1  is the size of the population at time t. Thus, observation Yit is thought to 

represent wit individuals in the population. We assume that the size of the population and the 
weights are known (as is typically done; incorporating uncertainty about the weights is beyond 
the scope of this paper) and follow an approach proposed by Gunawan et al. (2017) to conduct 
Bayesian inference about (μ, π, q). Their approach is based on data augmentation (Tanner & 
Wong, 1987) and consists of two steps. First, use the sampling weights to generate pseudo-
random samples from the population. Second, use these samples to conduct inference about the 
parameters in the usual Bayesian way. 
 
To describe the steps involved in more detail, let 𝑌𝑌𝑖𝑖 = (𝑌𝑌1𝑖𝑖, . . . ,𝑌𝑌𝑛𝑛𝑡𝑡,𝑖𝑖) be the observed sample at 
time t, so that 𝐘𝐘 = (𝑌𝑌1, . . . ,𝑌𝑌𝑇𝑇) . Similarly, let 𝑌𝑌𝑖𝑖� = �𝑌𝑌�1𝑖𝑖, … ,𝑌𝑌�𝑛𝑛𝑡𝑡,𝑖𝑖� be a random sample from the 
population at time t, and let 𝐘𝐘� = (𝑌𝑌�1, . . . ,𝑌𝑌�𝑇𝑇). The vector of sampling weights at time t is 𝑤𝑤𝑖𝑖 =
(𝑤𝑤1𝑖𝑖, . . . ,𝑤𝑤𝑛𝑛𝑡𝑡,𝑖𝑖) and we define 𝐰𝐰 = (𝑤𝑤1, . . . ,𝑤𝑤𝑇𝑇). Conditional on (Y, w), the variable 𝑌𝑌�𝑖𝑖𝑖𝑖 has a 
Bernoulli distribution with parameter 𝑝𝑝�𝑖𝑖, where 
 

𝑃𝑃𝑖𝑖� = 𝑃𝑃�𝑌𝑌�𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖,𝑤𝑤𝑖𝑖� =
∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑌𝑌𝑗𝑗𝑖𝑖
𝑛𝑛𝑡𝑡
𝑗𝑗=1

∑ 𝑤𝑤𝑗𝑗𝑖𝑖
𝑛𝑛𝑡𝑡
𝑗𝑗=1

. (16) 

 
The samples 𝐘𝐘� are not observed. With data augmentation, they are treated as an additional set of 
unknown parameters. The posterior distribution of μ and 𝐘𝐘� can be decomposed as 
 

𝑓𝑓(𝜇𝜇,𝐘𝐘�|𝐘𝐘,𝐰𝐰) = 𝑓𝑓(𝜇𝜇�𝐘𝐘�,𝐘𝐘,𝐰𝐰) ∙ 𝑓𝑓(𝐘𝐘�|𝐘𝐘,𝐰𝐰). 
 
The second term on the right-hand side is the product of the Bernoulli distributions in (16). Also, 
the conditional posterior of μ depends only on the random samples from the population, so that 
 
 



𝑓𝑓(𝜇𝜇,𝐘𝐘�|𝐘𝐘,𝐰𝐰) = 𝑓𝑓(𝜇𝜇� 𝐘𝐘�)  
 ∝ 𝑓𝑓(𝜇𝜇)𝑓𝑓(𝐘𝐘�|𝜇𝜇) (17) 
 

∝ 𝑓𝑓(𝜇𝜇)�𝜇𝜇𝑖𝑖
n�𝑡𝑡1(1 − 𝜇𝜇𝑖𝑖)n�𝑡𝑡0

𝑇𝑇

𝑖𝑖=1

, 
 

 
where n�𝑖𝑖1 = ∑ 𝑌𝑌�𝑖𝑖𝑖𝑖

𝑛𝑛𝑡𝑡
𝑖𝑖=1  and n�𝑖𝑖0 = ∑ (1 − 𝑌𝑌�𝑖𝑖𝑖𝑖

𝑛𝑛𝑡𝑡
𝑖𝑖=1 ) for 𝑡𝑡 = 1, . . . ,𝑇𝑇. A random draw from the joint 

posterior 𝑓𝑓(𝜇𝜇,𝐘𝐘|𝐘𝐘,𝐰𝐰) can now be generated by first drawing 𝐘𝐘� from (16) and then 
drawing μ from (17). Note that because the conditional posterior in (17) only depends 
on n�𝑖𝑖1 and n�𝑖𝑖0, it is not necessary to sample each 𝑌𝑌�𝑖𝑖𝑖𝑖 individually. Instead, we can 
sample n�𝑖𝑖1 from the binomial distribution with parameters nt and 𝑝𝑝�𝑖𝑖. Assuming that a conditional 
prior f (q|μ) or f (p, q|μ) has been specified, the steps to generate a sample from the posterior can 
now be summarized as follows. 
 
Sampling from the posterior: 

 
(1) For 𝑡𝑡 = 1, . . . ,𝑇𝑇, sample values n�𝑖𝑖1 from a binomial distribution with 

parameters nt and 𝑝𝑝�𝑖𝑖, and calculate n�𝑖𝑖0 = 𝑛𝑛𝑖𝑖 − n�𝑖𝑖1; 
(2) Given the sampled value (n�𝑖𝑖1, n�𝑖𝑖0) , sample μ from the posterior distribution in (17); 
(3) Given the sampled value μ, 

 
i. (Cases I–IV) if p = 0, sample q from the conditional prior f (q|μ) and 

calculate 𝜋𝜋𝑖𝑖 = 𝜇𝜇𝑖𝑖/(1 − 𝑞𝑞𝑖𝑖) for 𝑡𝑡 = 1, . . . ,𝑇𝑇; 
ii. (Case V) if p ≠ 0, sample p and q from f (p, q|μ) and calculate 𝜋𝜋𝑖𝑖 = (𝜇𝜇𝑖𝑖 − 𝑝𝑝)/(1 −

𝑝𝑝 − 𝑞𝑞𝑖𝑖) for  𝑡𝑡 = 1, . . . ,𝑇𝑇; 
 

(4) Return to 3.3 and repeat. 
 
In Section 4, we use a uniform prior for μ, so that Step 3.3 involves generating a random draw 
from a beta distribution with parameters (n�𝑖𝑖1 + 1, n�𝑖𝑖0 + 1). Finally, as referred to earlier, if the 
Bayesian model specifies a conditional prior for π instead of q, Step 3.3 is modified by sampling 
a value of f (π|μ) and a value from f (p, q|π, μ). 
 
4 ESTIMATING PREVALENCE AND TREND OF OPIOID MISUSE 
 
4.1 Observed prevalence 
 
For our empirical analysis, we use publicly available data from the 2002–2014 waves of the 
National Survey on Drug Use and Health (NSDUH).4 The NSDUH provides a nationally 
representative sample of the non-institutionalized US population aged 12 years or older and 
collects detailed information about the use and misuse of various substances, including alcohol, 

 
4 The data are available for download online (https://www.datafiles.samhsa.gov). Public use files for 2015–2018 
have also been released, but we are not using these for our analysis due to a major survey redesign in 2015 that 
impacted the prescription drug module of the questionnaire. 

https://www.datafiles.samhsa.gov/


tobacco, marijuana, prescription drugs, and illegal drugs. Data from the NSDUH are therefore a 
primary source of information for looking at trends in the use and misuse of prescription opioids. 
 
Our variable of interest is an indicator for misuse of prescription pain relievers during the past 
year. The NSDUH imputed this indicator based on an individual's response to the question “How 
long has it been since you last used any prescription pain reliever that was not prescribed for you 
or that you took only for the experience or feeling it caused?” We use the indicator and 
individual-level sampling weights to estimate the population prevalence of past-year misuse as 
well as the 1-year changes in prevalence. 
 
The observed prevalence μt, based on the self-reported misuse indicator, is shown in Figure 1. 
The left panel represents the population of individuals 18 and older. Between 2002 and 2007, the 
estimated prevalence rose from 4.4% to 4.9%, an increase of more than 10%. Between 2007 and 
2012, the prevalence fluctuated before starting a seemingly downward trend in 2013. The year 
2011 seems to be an anomaly, with the prevalence temporarily dropping down to 4.1%. The 
reason for this is unclear, but we suspect it may result from some extreme values in the sampling 
weights. The 95% confidence intervals for the observed prevalence in each year largely overlap, 
making it difficult to draw any definite conclusions about a trend. 
 

 
FIGURE 1. Past-year misuse of prescription pain relievers (2002–2014 National Survey on 
Drug Use and Health [NSDUH]) 
 
The right panel of Figure 1 shows the observed prevalence for white men, ages 26 to 49 years. 
This population is of interest because recent evidence suggests that middle-aged White men are 
at a relatively high risk of prescription drug abuse (Case & Deaton, 2015). As is apparent from 
the figure, the observed prevalence among middle-aged White men was substantially higher than 
in the overall population 18 and older. It rose from about 5.5% in 2002 to 7.3% in 2010, an 
increase of more than 30%. The prevalence may have started to decline in 2013 but, given the 
width of the confidence intervals, it is hard to discern any clear trend. In Section 4.3, we apply 
our Bayesian approach to the subsample of middle-aged White men. Results for several other 
subgroups are given in the supporting information. 
 
4.2 Prior specification 
 



We use the prior distributions proposed and discussed in more detail in Section 3.2. For all 
power-type distributions, we set α = 2. When qt is assumed to be constant over time, we use a 
uniform and power distributions supported on the identified set. When qt is thought to be non-
decreasing (Assumption C-II) or non-increasing (Assumption C-III), we use a mixture prior: 
with probability λ = 0.9, qt remains the same between adjacent periods; with probability 
0.10, qt follows a uniform or power distribution on the identified set, conditional on 
either qt − 1 or qt + 1. Under Assumption C-IV, qt deviates at most 100(x)% from a base rate �̄�𝑞, and 
we set x = 0.25. After sampling  from a power distribution, we generate 𝑞𝑞𝑖𝑖 = 𝑣𝑣𝑖𝑖�̄�𝑞 by 
drawing vt from a distribution truncated to the interval [0.75, 1.25]. Specifically, we use a 
uniform distribution and two normal distributions with mean 1 and standard deviations 0.25 and 
0.0625. These reflect increasingly strong beliefs that vt is close to 1 or, equivalently, that qt is 
close to �̄�𝑞. Finally, under Assumption C-V we augment the prior with a power distribution for p, 
supported on the interval [0, m]. 
 
The following section shows estimates of the classical bounds and the Bayesian 95% highest 
posterior density (HPD) intervals. Within these intervals, circles indicate the posterior mean. 
While other summary statistics can be calculated from the posterior, we focus on HPD intervals 
for the 1-year trend, the posterior probability that this trend is positive, and a comparison of the 
average prevalence between two subperiods. This narrower focus allows us to compare results 
across different prior distributions more easily. Additional posterior graphs and summary 
statistics are collected in the supporting information. 
 
4.3 Posterior summaries for the true prevalence 
 
The posterior results presented here are based on 100,000 simulated draws from the posterior 
distribution.5 As noted in Section 3.3, generating a random draw from the posterior involves 
generating a draw from the posterior f (μ|Y) followed by generating a random draw from the 
conditional prior f (q|μ) or f (p, q|μ). When qt is assumed to be constant, Figure 2 shows that the 
HPD intervals for the prevalence are much narrower than estimates of the identified set, 
especially when a power prior is used for q∗. This is no longer the case for the 1-year change in 
prevalence. The classical bounds often lie within the limits of the HPD interval, though this may 
partially occur because the estimates of the identified set do not account for uncertainty in the 
bounds. Table 1 shows the posterior probabilities that a given 1-year change in prevalence is 
positive. For example, the probability that the true prevalence of misuse increased between 2002 
and 2003 is about 78% under both priors. The posterior probabilities and means seem robust to 
the choice of the two priors for q∗ (uniform and power) that we consider here. There is strong 
evidence that the prevalence increased—relative to the previous year—in 2006 and 2007, with 
posterior probabilities of 95% and 82%, respectively. Until 2012, the prevalence shows no clear 
trend, but in 2013 and 2014, the probability of a positive 1-year change drop below 14%. This 
suggests that the misuse prevalence started a downward trend in those years. 

 
5 The computational time is modest. For example, generating 100,000 draws from the posterior under the 
assumption that qt is constant takes around 180–190 s. The largest fraction of this time is used to simulate from the 
(beta) posterior of μt (see Section 3.3). It is important to note that the marginal posterior is the same across all joint 
posteriors of (μt, πt), so that the additional computing time to simulate samples from other posteriors is much 
smaller. For example, generating samples of size 100,000 each from six different posteriors takes around 220 s. 
More than 85% of that time is used to generate the posterior draws of μt. 



 

 
FIGURE 2. Classical bounds and 95% HPD intervals for the prevalence and the 1-year change 
in prevalence (qt constant) 
 
TABLE 1. Posterior probability of an increase in prevalence relative to the previous year 
(qt constant) 

Year Uniform prior Power prior 
2003 0.7757 0.7757 
2004 0.7127 0.7127 
2005 0.2185 0.2185 
2006 0.9527 0.9527 
2007 0.8151 0.8151 
2008 0.1968 0.1968 
2009 0.4197 0.4197 
2010 0.6464 0.6464 
2011 0.4791 0.4791 
2012 0.5621 0.5621 
2013 0.1361 0.1361 
2014 0.1344 0.1344 

 
Estimates of the identified sets and 95% HPD intervals for the trend are shown in Figure 3, 
when qt is assumed to be either non-decreasing (Case II) or non-increasing (Case III). As 
expected, these sets and intervals are much wider compared to the case where qt is constant. The 
striking feature of this figure is that the Bayesian HPD intervals are now much narrower than the 
(estimated) classical bounds. Comparing the left- and right-hand sides of Figure 3, we also see 
that the location of the bounds strongly depends on whether false negatives are assumed to be 
(weakly) increasing or decreasing. 
 



 
FIGURE 3. Classical bounds and 95% HPD intervals for the 1-year change in prevalence. 
Left: qt non-decreasing (Case II); right: qt non-increasing (Case III) 
 
As shown in Table 2, the posteriors under Case II and Case III again provide evidence that the 
true prevalence increased in the periods 2005–2006 and 2006–2007. For example, assuming 
that qt was non-decreasing, the posterior probability of an increase during the period 2005–2006 
was 95.7% with either a uniform or a power mixture component in the prior (recall that in Cases 
II and III, we use priors for qt that are discrete-continuous mixtures). We also note that if qt is 
assumed to be non-decreasing, the posterior probabilities of a positive 1-year change are 
uniformly larger, compared with when qt is non-increasing. This was to be expected. For 
example, from Figure 1, we see a large increase in observed prevalence from 2005 to 2006. If 
false negatives stayed the same or increased in this period, as assumed in Case II, then the 
increase in true prevalence was even higher. On the other hand, if false negatives (weakly) 
decreased, then part of the observed increase in prevalence may be due to less misreporting, and 
the evidence for an increase in the true prevalence is weaker (i.e., the probability of a positive 
trend is smaller). 
 
TABLE 2. Posterior probability of an increase in prevalence relative to the previous year; priors 
are mixtures with a uniform or power component 

Year qt non-decreasing (Case II) qt non-increasing (Case III)  
Uniform Power Uniform Power 

2003 0.7961 0.7954 0.7139 0.7150 
2004 0.7385 0.7378 0.6557 0.6565 
2005 0.2810 0.2791 0.1990 0.1992 
2006 0.9571 0.9570 0.8871 0.8881 
2007 0.8313 0.8311 0.7526 0.7537 
2008 0.2604 0.2593 0.1793 0.1793 
2009 0.4666 0.4665 0.3839 0.3844 
2010 0.6760 0.6760 0.5932 0.5942 
2011 0.5216 0.5215 0.4368 0.4377 
2012 0.5988 0.5985 0.5138 0.5154 
2013 0.2002 0.1999 0.1235 0.1240 
2014 0.2020 0.2009 0.1222 0.1225 

 



Next, we consider the case where qt is assumed to deviate no more than 25% from an unknown 
base rate �̄�𝑞, with a constant rate of false positives p = 0 (Case IV) or p > 0 (Case V). 
Figure 4 shows the identified sets and HPD intervals for the trend in true prevalence. The 
identified sets for the trend cover a wide range of positive and negative values and are 
uninformative about the direction of the change in any given year. The 95% HPD intervals are 
again much narrower. 
 

 
FIGURE 4. Classical bounds and 95% HPD intervals for the 1-year change in prevalence; qt is 
assumed not to deviate more than 25% from the base rate. Left: p = 0; right: p > 0 
 
TABLE 3. Posterior probability of an increase in prevalence relative to the previous year 

Year (Case IV: p = 0) (Case V: p > 0)  
Uniform TN1 TN2 Uniform TN1 TN2 

2003 0.7256 0.7282 0.7560 0.7394 0.7414 0.7633 
2004 0.6681 0.6713 0.6954 0.6793 0.6826 0.7011 
2005 0.2742 0.2691 0.2426 0.2611 0.2571 0.2352 
2006 0.8887 0.8933 0.9306 0.9043 0.9091 0.9365 
2007 0.7519 0.7557 0.7883 0.7646 0.7669 0.7943 
2008 0.2578 0.2537 0.2224 0.2455 0.2412 0.2146 
2009 0.4356 0.4352 0.4273 0.4288 0.4272 0.4205 
2010 0.6169 0.6192 0.6345 0.6204 0.6232 0.6373 
2011 0.4851 0.4838 0.4813 0.4861 0.4849 0.4839 
2012 0.5464 0.5481 0.5544 0.5494 0.5489 0.5542 
2013 0.2002 0.1963 0.1613 0.1814 0.1808 0.1507 
2014 0.2019 0.1972 0.1599 0.1864 0.1825 0.1553 

Note: qt is assumed not to deviate more than 25% from the base rate. The priors of the relative deviation vt are 
uniform, N(1, (0.25)2) and N(1, (0.0625)2), all truncated to the interval [0.75, 1.25]. The latter two distributions are 
labeled TN1 and TN2. 
 
The results in Table 3 shows strong evidence for an increase in misuse from 2005 to 2006. 
Moreover, the posterior probability of an increase in the prevalence during that period becomes 
larger as the prior distribution of vt, the factor measuring the deviation from the base rate, 
becomes more concentrated around 1. For example, assuming that p > 0 as in Case V, the 
posterior probability of an increase in true prevalence between 2005 and 2006 is 90.4% under a 
uniform prior for vt on the interval [0.75, 1.25]. If that prior changes to a truncated 
N(0, (0.0625)2) distribution, the probability increases to 93.7%. Table 3 also shows evidence that 



the prevalence decreased after 2012. For example, allowing for false positives and depending on 
the prior, the probability of a decrease in prevalence between 2012 and 2013 ranged from 82% to 
85%. 
 
So far, we have focused on the quantity Δ𝜋𝜋𝑖𝑖,1 = 𝜋𝜋𝑖𝑖+1 − 𝜋𝜋𝑖𝑖 and the posterior probability that it is 
positive. There are, of course, many other parameters that could be of interest. For example, 
inspection of Figure 1 suggests that for middle-aged white men, the prevalence of misuse may 
have been higher in the period 2006–2009 compared with those in 2002–2005, but was more or 
less stable in the period 2010–2012. To assess the posterior evidence for this, we use the sample 
from the posterior of πt and first calculate the difference between the average true prevalence 
during 2002–2005 (𝜋𝜋�0) and the average during 2006–2009 (𝜋𝜋�1). Figure 5 shows kernel density 
estimates of the posterior of 𝜋𝜋�1 − 𝜋𝜋�0, assuming bounded variation in qt and p = 0 (Case IV) 
or p > 0 (Case V). For Case IV in the left graph, the prior of the base false negative rate �̄�𝑞 is a 
power distribution. For Case V in the right graph, the priors on both the base false negative rate 
and the false positive rate are power distributions. Summary statistics of the posteriors are given 
in Table 4. 
 

 
FIGURE 5. Posterior of difference in average prevalence between the periods 2002–2005 and 
2006–2009, Case IV (left; pt = 0) and Case V (right; pt = p > 0) 
 
In both cases, there is strong evidence that the average prevalence of prescription opioid misuse 
was higher in 2006–2009 than it was in 2002–2005. The posterior distributions are centered on a 
mean difference of about 2.1 to 2.2 percentage points (this corresponds increases in the average 
prevalence of roughly 23% under Assumption C-IV and 44% under Assumption C-V). The 
95% HPD intervals cover mostly positive values, and the posterior probability of an increase in 
the average prevalence exceeds 97% for both cases and all priors considered here. Results 
presented in the supporting information show that there is no evidence of a substantial change in 
prevalence between 2006–2009 and 2010–2012. Moreover, the results reported here appear to be 
unique to White men: individuals in the same age range who are not White men displayed a 
pattern of misuse that was more constant over time. 
 



TABLE 4. Posterior summary of the difference 𝜋𝜋�1 − 𝜋𝜋�0 in average prevalence between the 
periods 2006–2009 and 2002–2005 

Case Prior Mean Std. dev. 2.5% 50% 97.5% 95% HPD P(+) 
IV Uniform 0.0211 0.0235 -0.0018 0.0166 0.0805 [-0.0062,0.0732] 0.9721  

TN1 0.0209 0.0219 -0.0003 0.0167 0.0772 [-0.0050,0.0696] 0.9746  
TN2 0.0205 0.0130 0.0066 0.0173 0.0573 [0.0038,0.0486] 0.9962 

V Uniform 0.0217 0.0215 0.0033 0.0172 0.0774 [-0.0027,0.0661] 0.9817  
TN1 0.0218 0.0208 0.0042 0.0173 0.0752 [-0.0004,0.0651] 0.9839  
TN2 0.0211 0.0131 0.0070 0.0177 0.0580 [0.0038,0.0490] 0.9973 

Note: P(+) is the probability of an increase in average prevalence. 
 
5 CONCLUSION 
 
Misclassification error is a frequent concern in self-reported survey data. Examples include 
reports of participation in social programs and reports of certain types of behavior (e.g., 
substance misuse). In this paper, we analyze the implications of misclassification in the context 
of a repeated cross-section. We derive the identified sets for the means of a binary variable (the 
prevalence) as well as changes in the mean over time (the trend). These sets are sensitive to what 
is assumed about the probability of a misclassification error. We consider five different cases. In 
the first four cases, motivated by the context of prescription opioid misuse, we assume that the 
probability of a false positive (i.e., individuals incorrectly reporting misuse) is zero. In the fifth 
and final case, we allow for the possibility of false positives. 
 
A second contribution of this paper is that we show how to conduct Bayesian inference about the 
true prevalence and trends when these parameters are only partially identified. We apply this 
approach to an analysis of prescription opioid misuse, based on data from the NSDUH. The 
observed prevalence for White, middle-aged men is relatively high, which is why we mostly 
restrict our analysis to this population. We find that the estimated identified sets (intervals) are 
very wide and have limited usefulness. The Bayesian HPD intervals, on the other hand, are 
typically much narrower and provide information about the plausible values of the prevalence 
and the trend. Under a variety of assumptions and prior distributions, we find evidence that the 
prevalence of prescription opioid misuse increased several times between 2002 and 2014. An 
analysis of select subgroups shows that these patterns are mostly unique to middle-aged White 
men. 
 
Our paper highlights the strong impact of prior assumptions on identified sets and HPD intervals. 
This is necessarily the case in models with unidentified or partially identified parameters. We 
have experimented with a range of prior assumptions and prior distributions while remaining 
silent about which of these are most appropriate or reasonable in the context of the opioid 
epidemic. A related issue is that there may be substantial heterogeneity in misreporting behavior 
across the population, and researchers may wish to use different priors for distinct subgroups. 
Even with very little knowledge about the extent of misreporting, other outcomes such as 
emergency room visits or drug-related fatalities could provide direct prior information about the 
true prevalence of misuse. Because this information may have a significant impact on posterior 
inference, it is crucial to motivate and calibrate priors distributions carefully. 
 



Finally, we have illustrated our approach by analyzing the prevalence of past-year misuse of 
prescription opioids. For policy makers seeking to address this critical public health problem, an 
analysis of additional, potentially misreported outcomes such as the incidence of misuse, is likely 
to be of interest. Also, a natural next step is to determine the impact of misuse, at either the 
individual, county, or state level, on a range of health and socioeconomic outcomes. In 
the supporting information to this paper, we briefly discuss how our approach might be adapted 
to inform estimation in these contexts. We aim to pursue these issues in more detail in future 
work. 
 
Although bounding estimators and identified sets have long been the subject of academic pursuit, 
they have not been of much policy relevance, largely because the estimated bounds are often so 
far apart. Our approach provides an avenue by which these bounds can be narrowed and thus 
may become more informative for policy. We have illustrated their potential importance in the 
context of the prevalence of opioid misuse, a critical policy issue for the last several years. The 
more recent COVID-19 pandemic, however, further highlights the need to better estimate the 
true prevalence of health conditions within a population. And while the advent of big data has 
allowed us to greatly narrow traditional, frequentist confidence intervals, the fundamental issues 
of misclassification error, missing data, and their implications for identifying population 
prevalence and trends remain front and center. Thus, it is essential that further work apply and 
refine our methods to give policy makers more accurate information on critical policy parameters 
and emerging health issues. 
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