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Abstract: 

We study a regression model with a binary explanatory variable that is subject to 
misclassification errors. The regression coefficient is then only partially identified. We derive 
several results that relate different assumptions about the misclassification probabilities and the 
conditional variances to the size of the identified set. 
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Article: 

1. Introduction 

In this note, we study a regression model with a binary explanatory variable that may be 
misclassified. That is, there is some nonzero probability of observing a “false positive” or a 
“false negative”. For example, such errors can be simple data coding errors, or result from the 
underreporting of certain behaviors (e.g., illicit drug use) in surveys. In general, the regression 
parameter is not identified in the presence of misclassification, and different sets of identifying 
assumptions have been investigated. Chen et al., 2008a and Chen et al., 2008b, Mahajan 
(2006) and Lewbel (2007) present sufficient conditions for identification. Alternatively, Klepper 
(1988), Manski (1990), Bollinger (1996), and Deng and Hu (2009) take a partial identification 
approach and derive bounds of the identified set that are nonparametrically identified under weak 
assumptions. This note adds to this literature by presenting several new partial identification 
results. Specifically, we demonstrate to what extent homoscedasticity and restrictions on the 
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misclassification probabilities shrink the size of the identified set. We present the model, 
assumptions and main results in Section 2. We provide a brief discussion in Section 3. All proofs 
are collected in the Appendix. 

2. Main results 

The regression model for the outcome variable Yi is given by 

equation(1) 

 

where Ui is an unobserved error term. The regressor Zi∈{0,1} is binary, 
with Pr{Zi=1}=π andπ∈(0,1). Note that linearity of the model is not restrictive since Zi is binary. 
The econometrician does not observe Zi, but a binary variable Xi, which is a potentially 
misclassified version of Zi. Specifically, we assume the following. 

Assumption 2.1. 

Pr{Xi=1|Zi,Yi}=(1−q)Zi+p(1−Zi). 

Assumption 2.2. 

p+q<1. 

Assumption 2.1 introduces the misclassification probabilities p and q, and states that Xi is 
conditionally independent of the outcome Yi; hence, the misclassification error contains no 
information about Yi, or vice versa.1 In some applications, however, this assumption may be 
untenable (e.g., Kreider and Pepper, 2007). Assumption 2.2 ensures that the covariance 
between Zi and Xi is positive, so that Xi is a better predictor of Zi than a purely random guess. 

The mean, variance and covariance of (Xi,Yi) are given by2 

μX=(1−π)p+π(1−q), 

equation(2) 

μY=α+βπ, 

σXY=βπ(1−π)(1−p−q), 

 

These moments of (Xi,Yi) are nonparametrically identified. If σXY=0, then it follows 
from (2) that  is identified. To avoid this trivial case, we impose the following: 

Assumption 2.3. 



σXY>0. 

Bollinger (1996, Theorem 1) shows that 
under Assumption 2.1, Assumption 2.2 and Assumption 2.3: 

equation(3) 

 

The first and second bounds on the right-hand side apply for  and , respectively. 
Let  for j=0,1 be the conditional variance of Yi given Xi. Our first result 
shows that the bounds can be tightened if the regression error Ui is homoscedastic: 

Lemma 1. 

If    Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold and  , 
then   

 

The first and second bound on the right-hand side apply for  and  , respectively. 
The upper bound is sharper than the one in  (3). 

By comparing the upper bounds of Lemma 1 and Eq. (3) it is easy to see when homoscedasticity 
is effective in reducing the size of the identified set. For example, suppose that  and 
consider increasing values of ; this leads to a higher value of , which in turn increases the 
bound in (3). The bound in Lemma 1, however, is unaffected. Intuitively, when  it is more 
likely that Xi=0. At the same time a large value of  implies substantial variation in the outcome 
when Xi=0, making it ‘harder’ to identify β. The homoscedasticity assumption is then more 
valuable in terms of reducing the (absolute and relative) size of the identified set. 

The following results consider the effect of various assumptions about p and q on the bounds 
for β. Lemma 2 complements Theorem 2 in Bollinger (1996): 

Lemma 2. 



Suppose that    Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold. If  q=0and  p>0, 
then   

 

If  p=0and  q>0, then 

 

In some cases the restriction that either p or q is equal to zero, may be reasonable. For example, 
individuals are likely to underreport the use of illegal drugs (q>0), but it is highly implausible 
that a non-user reports actual use (p=0). The upper bounds in Lemma 2 are again sharper than the 
one in (3). For example, when  the additional assumption that q=0 reduces the upper 
bound by an amount 

  

Next, suppose that false positives are at least as likely as false negatives (q≤p), or vice versa 
(p≤q). Let ρXY denote the correlation coefficient. The identified set for β then takes the following 
form: 

Lemma 3. 

Suppose that    Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold. If  q≤p, then   

 

Conversely, if  p≤q, then   

 

 



the first and second bounds on the right-hand side apply for  and  , respectively. 

When , a comparison with Eq. (3) shows that the additional information q≤p does not 
sharpen the upper bound on β; however, for  the upper bound is reduced to 

 . 

Finally, suppose that p=q. Misclassification is now symmetric: conditional on (Zi,Yi) false 
positives and false negatives are equally likely. Under Assumption 2.2 and Assumption 2.3 the 
bounds for β follow immediately from Lemma 3: 

 

If, in addition, Ui is homoscedastic, then β is typically identified: 

Lemma 4. 

Suppose that    Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold with  p=q and 
 . Then  βis identified, except when  . 

The identification result can be understood in terms of solving the system of equations in (2). 
Symmetry eliminates one of the unknowns, and homoscedasticity leads to two equations 
for  and , instead of a single one for . This yields a system of 5 equations in 5 unknowns, 
which has a unique solution when . 

3. Discussion 

In this paper we have analyzed partial identification of the regression coefficient of a binary 
misclassified variable. In particular, we have shown how various assumptions about the 
misclassification probabilities and the regression error variance affect the bounds of the 
identified set. Interestingly, these assumptions only affect the upper bound. In the case 
of Lemma 4 the regression parameter is identified. For most applications, however, the 
assumptions of homoscedasticity and symmetric misclassification are too strong. The 
identification strategies of Mahajan (2006) and Lewbel (2007), based on the availability of an 
instrumental variable, may then be more appropriate. 

The use of conditional moments is common in identification analyses. Chen et al. (2008b) show 
that with homoscedasticity and the additional assumption that  , the regression 
parameter is identified. We demonstrate here (Lemma 1) that dropping the restriction on the third 
moment results in partial identification. Our bounds are sharper, however, than those for the 
general heteroscedastic case in Bollinger (1996). On the other hand, Deng and Hu (2009) show 
that the identified set can be unbounded if the misclassification error is related to the outcome Yi. 
The assumption of nondifferential measurement error therefore carries important identifying 



information, because it bounds the identified set. Additional information about the 
misclassification rates, if deemed plausible, can further sharpen the bounds 
(Lemma 2 and Lemma 3). 

Appendix.  

Proof of Lemma 1. 

From Assumption 2.1 and Bayes’ rule it follows that 

 

The conditional variance of Zi given Xi is 

  

 

Assumption 2.1 and homoscedasticity imply that 

E(Ui|Xi)=E[E(Ui|Zi,Xi)|Xi]=E[E(Ui|Zi)|Xi]=0, 

  

The conditional variance of Yi given Xi can now be calculated as 

equation(A.1) 

 

equation(A.2) 

  

From the first and third equations in (2) we can solve for β as 

equation(A.3) 

  



Substituting β and π=(μX−p)/(1−p−q) in  and , and using  , we obtain: 

equation(A.4) 

 

equation(A.5) 

 

The upper (lower) bound of the identified set is the maximum (minimum) of b(p,q), subject to 
the restrictions in  and . Since ∂b/∂p,∂b/∂q>0 the lower bound for β is attained at p=q=0. For the 
upper bound, suppose first that 

 

or . Starting at (0, 0) it is optimal to increase p. Moreover, since d2b/dp2>0 for q=0 and all 
feasible values of p, it is optimal to increase p until the upper bound of (A.4) is binding. The first 
upper bound is then obtained by setting q=0 and 

 

in (A.3). A similar argument shows that for  the second upper bound follows by 
substituting p=0and 

 

into (A.3). 

To show the second statement of Lemma 1, we first derive an expression for . From Bayes’ 
rule: 

 

  

Using π=(μX−p)/(1−p−q) and Eq. (A.3), we get 



 

Suppose , and consider the difference between the corresponding bounds 
in (3) and Lemma 1. Using the expression for  given above: 

 

 

Similarly, for  the difference is 

 

□ 

Proof of Lemma 2. 

Suppose first that q=0, so that π=(μX−p)/(1−p), and 

 

We now need to minimize and maximize b(p), subject to constraints. From  and the 
system (2), it follows that 

 

 



Since db(p)/dp>0, the maximum and minimum of b(p) are attained at  and 0, 
respectively. Substituting these values in b(p) yields the result. The argument for the case p=0 is 
completely analogous. □ 

Proof of Lemma 3. 

Consider b(p,q) in (A.3). Since b(p,q) is increasing in both p and q, the lower bound is obtained 
atp=q=0, and . For the upper bound, first consider the case . 
Then ∂b(p,q)/∂p≥∂b(p,q)/∂q>0 at (0,0), and it is optimal to increase p until the nonnegativity 
of  is binding. This occurs at , and substitution of this into b(p,q) yields the 
first bound in Lemma 3. Now suppose that , so that 0<∂b(p,q)/∂p<∂b(p,q)/∂q at the 
point (0,0). It would be optimal to increase q, but now the constraint q≤p is binding. At the 
optimum we therefore must have p>0. It is easy to show that  is zero when 

equation(A.6) 

 

This curve intersects with the line q=p at the point 

equation(A.7) 

 

For maximizing b(p,q) the constraint q=p is binding when p<p∗, whereas (A.6) is binding 
for p>p∗. It remains to determine at which point the maximum can be found. Suppose 
that (A.6) holds at the solution. Substituting this into b(p,q) and taking the derivative it follows 
that 

 

Therefore, the value of b(p,q) can be increased by decreasing p to the point p∗, where 
also q=p∗(note that a point (q,p∗) with q<p∗ is not optimal, since b(p,q) can be increased by 
increasing q). Substituting q=p∗ and (A.7) into the expression for b(p,q) yields the second bound. 
The proof for the case p≤q is analogous and omitted here. □ 

Proof of Lemma 4. 

Assume first that . Following the proof of Lemma 1 it can be shown that 

 



 

Taking the difference of these two equations eliminates the structural parameter . 
Substituting π=(μX−p)/(1−2p) and b(p,q) with p=q into the difference , we find 

 

 

Substituting the solution for p back into (A.3) we can solve for the coefficient as 

 

When  the conditional variance of Yi does not depend on Xi and we can no longer 
eliminate . The remaining parameters  are now no longer identified. □ 
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