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Abstract:  

 

We consider Bayesian inference about the mean of a binary variable that is subject to 

misclassification error. If the error probabilities are not known, or cannot be estimated, the 

parameter is only partially identified. For several reasonable and intuitive prior distributions of 

the misclassification probabilities, we derive new analytical expressions for the posterior 

distribution. Our results circumvent the need for Markov chain Monte Carlo simulation. The 

priors we use lead to regions in the identified set that are a posteriori more likely than others. 
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1. Introduction 

 

We consider the problem of inference for the population mean of a binary variable that suffers 

from measurement error. That is, there is some nonzero probability that observations are 

misclassified. This type of model has a long history in both statistics and econometrics (e.g.  

Neyman, 1950, Bross, 1954, Aigner, 1973). If the misclassification rates are known, the mean is 

identified and can be estimated without bias. If the rates are unknown but a set of correctly 

classified observations is available (i.e., validation data), the mean is also identified and 

estimable (Tenenbein, 1970). In the absence of validation data, however, it is well known that 

under mild conditions the population mean can be non-trivially bounded. It is then said to be 

partially identified and the collection of feasible parameter values is called the identified set. The 

bounds of this set can usually be estimated consistently. 

 

In the classical approach to inference (e.g.  Bollinger, 1996, Imbens and Manski, 2004, Molinari, 

2008), a confidence interval for the parameter takes the form of the estimated bounds, plus a 

multiple of their standard errors. The resulting region in the parameter space, however, can be 

quite wide and classical inference provides no additional information about the location of the 

parameter within the bounds. In particular applications, a researcher’s intuition or knowledge of 

previous studies may lead him or her to believe that the true parameter is, for example, likely to 

be closer to the estimated upper bound. However, such prior knowledge cannot be easily 

exploited or incorporated into a classical analysis. 
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In this paper we take a Bayesian approach to inference. Our analysis relies on key insights of 

Poirier (1998) and Moon and Schorfheide (2012). Given that some parameters are not identified, 

extra care must be given to the specification of prior distributions, since even asymptotically 

these priors will remain an important component of posterior inference. Some previous Bayesian 

studies of misclassification achieved identification through the prior (Gaba and Winkler, 1992, 

Joseph et al., 1995, Evans et al., 1996, Rahme et al., 2000). In contrast, we consider a variety of 

priors that explicitly incorporate the parameter bounds inherent in the model. These priors can be 

considered intermediate between weak information leading only to partial identification, and 

strong information leading to full identification. A second contribution is that we derive exact, 

analytical expressions for the posterior and therefore do not have to rely on Markov chain Monte 

Carlo sampling. 

 

Although sensitivity to the prior distribution is sometimes seen as a weakness of the Bayesian 

approach, we believe that it facilitates a sensitivity analysis with respect to assumptions about 

misclassification rates. The analysis examines how additional prior information about these rates 

affects what the researcher can learn about the population mean. Of course, the identification 

problem is by no means eliminated through the use of a Bayesian prior. Instead, the prior allows 

us to easily incorporate varying amounts of information and examine the effect on posterior 

inferences. Our results show that under a number of reasonable prior assumptions, the posterior 

is far from uniform and, relative to a classical analysis, provides additional information about the 

location of the population mean within the identified set. 

 

The remainder of this paper is organized as follows: Section  2 discusses misclassification and 

partial identification, as well as a number of intuitive prior distributions that range from less to 

more informative about the probability of a misclassification error. The resulting finite-sample 

posterior distributions are presented in Section  3. Section  4 provides concluding remarks. 

Derivations of some of the results are collected in the Appendix. 

 

2. The model 

 

2.1. Misclassification and parameter bounds 

 

Let Z∈{0,1} be a binary random variable with P(Z=1)=π. Instead of observing Z, we observe X∈ 

{0,1}, which may suffer from misclassification error: 

 

P(X=1|Z)=p(1−Z)+(1−q)Z.                                                                                                           (1) 

 

Here, p is the probability of a false positive, whereas q is the probability of a false negative. We 

assume, as is typical in the literature, that p+q<1. This ensures that the covariance between Z and 

X is positive. The mean of X can be written as μ=π(1−q)+(1−π)p, which implies the following 

bounds on the misclassification rates: 

 

 

0≤p≤μ,0≤q≤1−μ.                                                                                                                            (2) 



The parameter π, however, can take values over the entire unit interval. For example, if p=μ, then 

π=0, regardless of the value of q. Similarly, if q=1−μ, then π=1. Hence, π is completely 

unidentified. 

 

Given a random sample X=(X1,...,Xn), let n1=∑ X𝑛
𝑖=1 i and n0=n−n1 be the observed number of 

ones and zeros, respectively. The likelihood f(X|μ)=μn
1(1−μ)n

0 is a function of μ only, so that 

 

                                                                                                     (3) 

 

and the posterior is the product of the marginal posterior of the identified parameter and the 

conditional prior of the unidentified parameter (Poirier, 1998, Moon and Schorfheide, 2012). If 

the true value of the population mean of X is μ0, then under standard regularity conditions the 

posterior distribution of μ will increasingly concentrate around μ0 as n→ ∞ (e.g.  Heyde and 

Johnstone, 1979, Chen, 1985). This has an important implication for the posterior of . Eq. (3) 

implies that 

 

 
 

so that the posterior of π is a mixture of conditional priors. As the sample size increases, the 

mixing distribution (μ|X) – namely the marginal posterior of μ – becomes asymptotically 

degenerate at μ=μ0 and f(π|X) converges to f(π|μ0).
1 

 

2.2 Prior distributions 

 

 In this section we examine a number of prior distributions that are increasingly 

informative about the misclassification rates. The first prior is a uniform distribution for μ, 

combined with conditional priors p|μ∼U(0,μ) and q|μ∼U(0,1−μ) that are uniform on the 

identified set: 

 

             (4) 

 

It follows that f1(μ,p,π)=μ−pμ(1−μ)π2. Using the relation between μ, p and q, and letting q range 

from 0 to 1−μ, it follows that max {0, (μ−π)/(1−π)} ≤ p ≤ μ. Since f1(π|μ) = f1(π,μ) (because μ 

has a uniform prior), we find 

 



                                                                    (5) 

 

 The second prior expresses the belief that, conditional on μ, lower misclassification rates 

are more likely than higher ones.We combine a uniform prior for μ with ‘power-type’ 

conditional priors for p and q (proportional to p−1/2 and q−1/2 on the identified set). This yields the 

prior 

 

                                                                   (6) 

 

This implies the following joint prior distribution for (μ, p, π): 

 

 
 

where max{0,(μ−π)/(1−π)} ≤ p ≤ μ. It is shown in the Appendix that 

 

                                                                                   (7) 

 

 The third prior expresses the belief that, with probability λ, the misclassification error is 

symmetric. In that case, p=q and false positive and false negatives are equally likely. We 

maintain the assumption that Z and X are positively correlated, so that p < 12. From 

μ=(1−π)p+π(1−p), it now follows that π∈ [0,μ] if μ < 1/2 and π∈ [μ,1] if μ >1/22 From (2) it also 

follows that p ≤ min{μ,1−μ}.Thus, symmetry of the misclassification error shrinks the identified 

set. A conditional prior that imposes the restriction p=q and is uniform over the identified set is 

 

                                                                                  (8) 

 

Using a uniform marginal prior for μ, the joint prior is 

 



                                                                         (9) 

 

Thus, with probability λ the misclassification error is believed to be symmetric (and p has a 

uniform distribution over the identified set), and with probability (1−λ) the error is asymmetric. 

Using a change of variables to (π,μ), it can be shown that 

 

                                                                                 (10) 

 

3. Main results 

 

We now present analytical results for the finite-sample posteriors of π, using the priors 

discussed in the previous section. Derivations can be found in the Appendix. The posterior 

corresponding to f1(μ, p, q) in Eq. (4) is given by 

 

                                                                            (11) 

 

where Ba,b is the Beta function and Ia,b(t) is the cumulative distribution function of the Beta 

distribution with parameters a and b.3 

 



 
Fig. 4. Finite-sample posteriors f3(π|X) for different probabilities (λ) of error symmetry; n=100 

 

For prior f2(μ,p,q) in Eq.(6), the posterior of π is 

 

                                                                               (12) 

 

Where f2(π|μ) is given in Eq. (7). This expression cannot be simplified any further. Finally, using 

the mixture prior in Eq. (9), the corresponding posterior of π is a mixture distribution 

 

                                                                                                (13) 

 

where f1(π|X) is the posterior in Eq.(11), 𝑓(π|X) is given by 

 



 
 

And Ia,b(s,t) = Ia,b(t) − Ia,b(s). 

 

 Graphs of the posteriors f1(π|X) and f2(π|X) in Eqs. (11) and (12) are given in Figs.1 and 

2. We plot the finite-sample posteriors for sample sizes n=20 and n=100, when the observed 

fraction of ones is 0.25, as well as the conditional priors of π given μ=0.25. The latter represent 

the asymptotic posteriors when μ0=0.25. Fig.1 shows that the posterior f1(π|X) is informative in 

that it places higher probability on values of π that are close to 0.25and lower probability on 

values close to 0 or 1. Fig. 2 shows that under the more informative prior in Eq.(6), the posterior 

f2(π|X) becomes more concentrated around 0.25. 

 Figs. 3. And 4 show the mixture posterior f3(π|X) for sample sizes n=20 and n=100, 

respectively. Within each figure, we consider a range of prior probabilities that the 

misclassification error is symmetric (λ=0.5,0.75,0.95). The figures clearly show that as λ 

increases, the posterior distribution puts more and more mass on values less than 0.25. This 

occurs because under symmetry, the restriction π ≤ μ must hold. In the limit as n→∞ (see Fig.5), 

the posterior becomes discontinuous at μ0=0.25 and values of π less than μ0 are much more likely 

than values greater than μ0.  

 The classical bounding results do not reveal anything about the location of the parameter 

within the identified set. Under the posteriors derived here, however, certain parts of the 

identified set are more likely than others. Also, as expected, the use of stronger information 

about misclassification rates will lead to a more concentrated posterior distribution. 

 

4. Discussion  

 

 In this paper we have derived a number of exact, finite-sample posterior distributions for 

the mean of a misclassified binary variable. Although this parameter is not identified (unless the 

prob-abilities of misclassification errors are known or consistently estimable), the posteriors 

provide non-trivial information even when weak priors are specified. Classical analyses often 

consider how the identified set changes when certain model assumptions are either imposed or 

relaxed. In contrast, a Bayesian analysis allows researchers to impose or relax assumptions in a 

probabilistic and hence, more continuous manner. This facilitates sensitivity analyses and adds to 

our understanding of the mapping between assumptions and identification. 

 



 
Fig. 5. A symptotic posterior f3(π|μ=0.25) for different probabilities (λ) of error symmetry. 
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Appendix. Calculating the posteriors 

 

The marginal likelihood   so that 

 
Substituting Eq. (5) into this expression, we find 

 

 
 

Substituting  and   

into the previous equation yields the posterior in Eq. (11). Next, we turn to f2(π|μ). Given the 

uniform prior for μ, we have f2(π|μ) = f2(μ,π). Under the restrictions max{0,(μ−π)/(1−π)} ≤ p ≤ 

μ, it follows that 



 
The two integrals on the right-hand side can be calculated using the relation 

 

 
 

Substituting a = μ, b = 1−π, and c = π−μ and simplifying, it follows that 

 

 
 

which is Eq.(7). 

Finally, consider f3(π|X). We only need to find the marginal posterior of π under 

symmetry (p=q). From Eq. (8) and a change of variables, it follows that 

 

 
 

First, consider the case π < 
1

2
. Then 

 



 
 

Using the fact that  we find that for π < 
1

2
: 

 

 
 

If π > 
1

2
, then 

 

 
 

Since and   it 

follows that for π > 
1

2
: 

 



 
 

Which completes the derivation of f(π|X) in Eq. (13). 
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